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Abstract: Monkeypox (MPX) is a zoonotic illness that is analogous to smallpox. Monkeypox
infections have moved across the forests of Central Africa, where they were first discovered, to other
parts of the world. It is transmitted by the monkeypox virus, which is a member of the Poxviridae
species and belongs to the Orthopoxvirus genus. In this article, the monkeypox virus is investigated
using a deterministic mathematical framework within the Atangana-Baleanu fractional derivative that
depends on the generalized Mittag-Leffler (GML) kernel. The system’s equilibrium conditions are
investigated and examined for robustness. The global stability of the endemic equilibrium is
addressed using Jacobian matrix techniques and the Routh-Hurwitz threshold. Furthermore, we also
identify a criterion wherein the system’s disease-free equilibrium is globally asymptotically
stable. Also, we employ a new approach by combining the two-step Lagrange polynomial and the
fundamental concept of fractional calculus. The numerical simulations for multiple fractional orders
reveal that as the fractional order reduces from 1, the virus’s transmission declines. The analysis
results show that the proposed strategy is successful at reducing the number of occurrences in
multiple groups. It is evident that the findings suggest that isolating affected people from the general
community can assist in limiting the transmission of pathogens.

Keywords: Monkeypox virus model; Atangana-Baleanu differential operators; existence-uniqueness;
qualitative analysis; Lagrangre interpolating polynomial
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1. Introduction

Monkeypox (MPX) is a burgeoning contagious agent with a gradually increasing recurrence
incidence and predicted breakout magnitude in human groups [1]. Inflammation, swollen glands and
a dermatitis that produces blisters and then scabs over are among the symptoms (Figure 1). From the
period of testing to the beginning of complications, it might take anywhere from 5 to 21 days.
Symptoms last about 2 to 4 weeks on average. MPX infections have travelled beyond the woodlands
of Central Africa, where they were first discovered, to various regions of the globe, where they are
being transported. This mechanism of propagation is most probably connected to a global reduction
in orthopoxvirus susceptibility following the termination of smallpox vaccination after the disease
was declared eliminated in 1980. As a result, MPX could become the least common orthopoxvirus
epidemic in human history [2]. The outbreak capability ofMPX will tend to increase in a community
exhibiting falling protective immunization versus orthopoxvirus organisms, according to
mathematical techniques.

Figure 1. Transmission mechanism ofMPX virus [3].

Furthermore, the MPX infection, a species of the orthopoxvirus genera in the Poxviridae category,
causes MPX. The variola virus (which causes smallpox), chicken pox infection and adenovirus
bacterial infection are all members of this family. Smallpox and MPX have common physiological
manifestations, with MPX exhibiting lymphadenopathy slightly earlier in the illness phase as a
differentiating characteristic [2]. Cowpox contamination results in long-lasting immunization;
chickenpox recurrence incidence is only approximately 1 in 1000 over 15–20 years [4]. A first
vaccine against cowpox with attenuated virus produces long-lasting resistance with an 80–95 %
effectiveness. Prospective researchers have reported that prevention can persist for a considerable
time. The present recommendation for amendment was introduced a decade ago [5]. Vaccinia has
also been shown to provide long-lasting protection against MPX, with an effectiveness of 85 % [6].
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Additionally, investigations of immunogenicity to orthopoxvirus genera imply that cowpox and MPX
have excellent meld.

There have never been any reports of smallpox and MPX outbreaks occurring at the same time.
Smallpox is a deadly pathogen, whereas MPX is a zoonotic virus that is highly contagious to humans
via an unexplained arthropod vector. Interactions between mammalian genera in northern and southern
African jungles, particularly in the northern African countries, the democratic states of the Congo,
Cameroon, and Nigeria, culminate in intermittentMPX invasions into living creature species. AllMPX
breakouts have been self-contained, having living organism infection networks stop before outbreaks
could develop [2]. MPX looks to be emerging as the most prevalent viral illness in people following
the elimination of smallpox (Figure 2). People are generally understood to be at low danger of an
outbreak [7].

(a) (b)

Figure 2. (a)MPX virus particle, (b)MPX epidemiology [8].

Recently, MPX has come to be known as complex and requires a mammalian repository at this
time since MPX human-to-human dissemination networks are comparatively limited; the greatest
quantity of iterations described in research is seven [9]. However, as the H1N1 pandemic (swine flu)
demonstrated, certain viral modifications can improve infectious viability in humans [10]. They have
longitudinal, dual DNA chromosomes ranging from 130 to 230 kbp, and so they evolve at a far more
moderate pace than H1N1. Despite this, they can adjust quickly [11], and genomic manipulation and
contemporary molecular genetics have successfully transformed a mousepox infection into a
particularly dangerous species [12].

To fully comprehend the unintended consequences of bacterial contamination and transmission,
etiologic variational systems have been developed [13, 14]. The structure for a mathematical equation
for MPX has been roughly established, but previous incarnations have experienced flaws in trying to
acknowledge several of the virus’s conditions associated with their completeness. Despite the fact
that Bhunu and Mushayabasa [15] established a fundamental SIR vector-borne variational framework
between humans and primates, they dismiss the possibility of an invasive condition in people. Usman
and Adamu [16] extended this paradigm by integrating an SVEIR dimensional ability to estimate the
virus’s persistence duration and vaccination efficacy.

Fractional calculus adds dimensions to the explanation of complex phenomena in physical
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processes involving memory impacts. However, researchers face significant challenges in defining
such phenomena. This is because traditional fractional formulations have a unique kernel and
therefore might not be equipped to adequately capture the non-locality of meaningful phenomena.
Novel fractional derivatives featuring non-singular kernels have been proposed and implemented for
pragmatic reasons in an attempt to accurately characterize nonlocal phenomena. The Mittag-Leffler
(ML) [17] expressions are one of the leading contenders among known descriptions.

One of the most significant advantages of this novel derivative is that it exhibits innovative
asymptotic behaviours that are distinct from those of fractional derivatives in their simplest
rendition [18–21]. Furthermore, authentic mechanisms are being employed to investigate the
properties of these adaptations, and appropriate numerical techniques should be refined to enable
them to be accessible in application. To put it differently, the Atangana–Baleanu operator in the
Caputo interpretation has an ML form kernel that permits it to preserve the Riemann–Liouville and
Caputo derivatives for subsequent duration but just the Caputo–Fabrizio derivative for earlier
generations [22–25]. The Atangana–Baleanu operator, more specifically, can encapsulate Brownian
and unpredictable behavior, yielding crossover behavior. Careful analysis revealed that the
Atangana–Baleanu operator can also represent strong predictive configurations, such as the
multivariate Gaussian dispersion.

In new findings, it has been discovered that fractional-order formulations, in correlation with
conventional ordinary formulae, have a stronger power to predict the non-local and unpredictable
characteristics of diverse infections such as pneumonia-meningitis [26], diabetes [27], cholera [28],
gastroenteritis [29], tuberculosis [30], hepatitis B virus [31], oncolytic virus [32], scabies [32] and
several others [33–35]. Other scientific and mechanical frameworks [36–38] are advantageously
adjusted in the domain of fractional derivatives because the discipline of fractional calculus includes
the robust instruments of modeling a realistic world exhibiting significant memory consequences and
irregularities [39–41].

The primary goal of this work was to analyze a novel fractional framework characterizing MPX
and it was inspired by the preceding discussion and the work reported in [42, 43]. An extensive
examination of the MPX model under fractional-order differential operators with the
Atangana–Baleanu in the Caputo context was motivated by the flexibility of providing accessibility
for clarity purposes. The Atangana-Baleanu fractional operator in the Caputo sense has been used to
investigate the suggested system. An efficacious numerical approach proposed by the authors of [44]
has been indeed adopted to handle these issues successfully. The following are the primary
characteristics of the important milestones described in this article:
• The new technique just involves overcoming a simple recurrent mathematical expression for the
proposed fractional operator. This research also includes an analysis of the indicated tool’s
existence-uniqueness that uses fixed point postulates. In comparison to other conventional systems,
these features allow the suggested methodology to be inexpensive and simple to execute.
• The qualitative analysis of theMPX virus is discussed from a fractional standpoint.
• The stabilities of the disease-free and endemic equilibria are presented out in a detailed manner,
taking into account the Routh-Hurwitz threshold.
• The modeling results show that emerging projections rely on a fractional operator and exhibit
significantly more asymptomatic behavior than classical systems.
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• The novel fractional form featuring ML kernels generates projections that are significantly
correlated by using a handful of quantified evidence, according to numerical studies.
As a result, fractional calculus makes it possible to create increasingly comprehensive assessments of
evolutionary phenomena, facilitating more revolutionary techniques of their complicated behaviours.

2. Model illustration

In this part, the Atangana-Baleanu-Caputo (ABC) fractional derivative form of the MPX epidemic
mathematical systems is introduced. Let us just continue with a review of the ML kernels’ notions and
their concerning consequences.

Definition 2.1. ( [17]) For ρ ∈ [0, 1], c < d and F1 ∈ H1(c,d), the ABC derivative of fractional-order
for F1 is presented as

ABCDρF1(τ) =
ABC(ρ)
(1 − ρ)

τ∫
c

dF1

dτ
Eρ

( ρ

ρ − 1
(τ − ϱ)ρ

)
dϱ, (2.1)

where ABC(ρ) is a normalization mapping satisfying ABC(0) = ABC(1) = 1 and the ML function
signified by Eρ(z1) having the set of complex numbers C is defined as

Eρ(z1) =
∞∑
γ=0

zγ1
Γ(ργ + 1)

, ρ, z1 ∈ C, ℜ(ρ) > 0.

Definition 2.2. ( [17]) For ρ ∈ [0, 1], c < d and F1 ∈ H1(c,d), the Atangana–Baleanu (AB) fractional
integral of F1 is presented as

AB
c IρτF1(τ) =

(1 − ρ)
ABC(ρ)

F1(τ) +
ρ

Γ(ρ)ABC(ρ)

τ∫
c

F1(ϱ)(τ − ϱ)ρ−1dϱ. (2.2)

Lemma 2.1. ( [42]) (Newton-Leibniz identity) For F1 ∈ C
1(c,d), the ABC fractional derivative and

integral for F1 holds:

AB
c Iρτ
( ABC

c Dρ
τF1(τ)

)
= F1(τ) − F1(c). (2.3)

Lemma 2.2. ( [42]) For c < d, F1,F2 ∈ H1(c,d), the ABC fractional derivative holds for the
subsequent variant: ∥∥∥ ABC

c Dρ
τF1(τ) − ABC

c Dρ
τF2(τ)

∥∥∥ ≤ H
∥∥∥F1(τ) − F2(τ)

∥∥∥. (2.4)

Our next result is the generalized mean-value theorem, which is mainly due to [42].

Lemma 2.3. ( [42]) Assume there is a function h1(ϱ) ∈ C[c,d] and also suppose
ABC
0 Dρ

τh1(ϱ) ∈ C[c, q2] and ρ ∈ (0, 1]. Then h1(ϱ) = h1(c) + 1
Γ(ρ)

ABC
0 Dρ

τh1(χ)(ϱ − c)ρ, χ ∈ [0, ϱ].
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Figure 3. Schematic configuration ofMPX virus.

Followed by Lemma 2.3, for ρ ∈ (0, 1], if h1(ϱ) ∈ [0,d], ABC
0 Dρ

τh1(ϱ) ∈ (0,d] and ABC
0 Dρ

τh1(ϱ) ≥ 0
for all ϱ ∈ (0,d], then the mapping h1(ϱ) is increasing. Otherwise, h1(ϱ) is said to be decreasing for all
ϱ ∈ [0,d].

We will now proceed to design the MPX model. The configuration diagram below (Figure 3) was
utilized to construct the numerical structure for this analysis.

The explanatory features of the system are examined in this section. To streamline the approach,
we divided the coherent model into several Differential equations (DEs), as shown in (2.5), that are
estimations for (MPX).

The underlying formulations, which are established on the basis of the process, describe the
numerical technique involving the mathematical model implemented in this research.

Ṡℏ(τ) = χℏ −
(η1Ir+η2Iℏ)Sℏ

Nℏ
− υℏSℏ + σQℏ,

Ėℏ(τ) = (η1Ir+η2Iℏ)Sℏ
Nℏ

− (δ1 + δ2 + υℏ)Eℏ,
İℏ(τ) = δ1Eℏ − (υℏ + φℏ + γ)Iℏ,
Q̇ℏ(τ) = δ2Eℏ − (σ + υℏ + φℏ + ψ)Qℏ,
Ṙℏ(τ) = γIℏ + ψQℏ − υℏRℏ,
Ṡr(τ) = χr −

η3SrIr
Nr
− υrSr,

Ėr(τ) = η3SrIr
Nr
− (υr + δ3)Er,

İr(τ) = δ3Er − (υr + φr)Ir.

(2.5)

Here, we present a deterministic compartmental framework of MPX propagation and prevention,
including two communities: individuals and rodents. Susceptible individuals Sℏ(t1), vulnerable
individuals Eℏ(t1), infectious individuals Iℏ(t1), segregated individuals Qℏ(t1) and human restoration
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Table 1. Explanation of the attributed values assumed in the model.

S ymbols Explanations Values References

χℏ Proportion of humans acquisition 0.029 [45]
χr Proportion of rodents acquisition 0.2 [45]
η1 Rodent-human interaction rate 0.00025 [46]
η2 Rate of human-to-human interaction 0.00006 [46]
η3 Rate of rodent-to-rodent interaction 0.027 [46]
δ1 Rate of exposed people to infectious people 0.2 Supposed
δ2 Rate of confirmed reported incidents 2.0 Estimated
σ Rate of untreated after screening 2.0 Estimated
ψ Transition from the separated to the restored group 0.52 Supposed
γ Humans’ rate of recuperation 0.83 [45]
υℏ Natural mortality rate for people 1.5 [46]
υr Natural mortality rate for rodents 0.002 [46]
φℏ Proportion of rodents dying as a result of disease 0.5 Supposed
φr Proportion of humans dying as a result of disease 0.2 [47]

Rℏ(t1) are the five categories of the global community. Susceptible rodents Sr(t1), revealed rodents
Er(t1) and infectious rodents Ir(t1) are the three categories of the rodent community. The proportion
of enlistment into the global community is χℏ. η1 is the component of the efficacious interaction yield
and the possibility of a sentient contracting the pathogen after coming into contact with a
contaminated rodent, and η2 is the outcome of the impact correspondence yield and the plausibility of
a sentient contracting the pathogen after coming into contact with a highly contagious person. The
rate of reported cases who becoming extremely contaminated is δ2, while the population of
individuals of becoming diseased is δ1. Several suspicious instances are validated after diagnostic
testing, while the rest are not identified and are transferred to susceptibility populations at a pace σ.
At an incidence of ψ, suspicious infections are diagnosed and shifted to the restored group. Adult
recuperation capacity is increasing at a rate of γ. Spontaneous mortality happens at speeds of υℏ and
υr in the adult and rodent populations, respectively. The appropriate connection incidence is based on
η3, which is the possibility of a rodent being contaminated per encounter with an infectious rodent.
Both the spontaneous fatality rate υr and the illness fatality rate φr reduced the diseased rodent
community. The crossover between the several cohorts addressed in the system is depicted in Figure
3, and the system is controlled by the nonlinear differential equations listed below.

3. Qualitative aspects of ABC fractionalMPX virus

3.1. Invariant region

First we find the invariant region, which confirms that the solution is bounded. Therefore, we
assume the overall human population is Nℏ = Sℏ + Eℏ + Iℏ + Qℏ + Rℏ and the rodent population is
Nr = Sr + Er + Ir.

The fractional version of the biologically viable domain Φ = Φℏ × Φr for the MPX virus system
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(2.5), i.e., Φℏ ⊂ R5
+ and Φr ⊂ R3

+ is such that

Φℏ :=
{
(Sℏ,Eℏ, Iℏ,Qℏ, rℏ) ∈ R5

+ : Nℏ ≤
χℏ
υℏ

}
and

Φr :=
{
(Sr,Er, Ir) ∈ R3

+ : Nℏ ≤
χr

υr

}
.

Lemma 3.1. If there is an MPX virus system (2.5) having initial conditions (ICs) in Domain Φ is
positively invariant.

Proof. Now, to illustrate the boundedness of the solutions of theMPX virus system (2.5), we proceed
by accumulating all of the model’s formulas, which yields

ABC
0 Dρ

t1Nℏ(t1) = χℏ − υℏSℏ − υℏEℏ − (υℏ + φℏ)Iℏ − (υℏ + φℏ)Qℏ − υℏRℏ
= χℏ − υℏNℏ − φℏ(Iℏ +Qℏ)
≤ χℏ − υℏNℏ.

Implementing the Laplace transform, we find that

L
( ABC

0 Dρ
t1Nℏ(t1) + υℏNℏ(t1)

)
≤ L
(
χℏ
)
.

It follows that

L(Nℏ) ≤
(
1 −

ℓ1ρ

(1 − ℓ1)(1 − ρ)
s−ρ1

)−1
{ 1 − ρ

(1 − ℓ1)ABC(ρ)

(
1 +

ρ

1 − ρ
s−ρ1

)χℏ
s1
+ Nℏ(0)

1
s1(1 − ℓ1)

}
,

where ℓ1 = −
υℏ(1−ρ)
ABC(ρ) .

By implementing the approach described in [35] and using the solution produced by employing the
inverse Laplace transform, we have

Nℏ(t1) =
χℏ
υℏ
−

χℏ
υℏ(1 − ℓ1)

d
dt1

t1∫
0

Eρ

( ℓ1ρ

(1 − ℓ1)(1 − ρ)
(t1 − x1)ρ

)
dx1

+
1

1 − ℓ1
Eρ

( ℓ1ρ

(1 − ℓ1)(1 − ρ)
(t1)ρ
)
Nℏ(0).

Repeating the analogous process for the rodent population, we have

Nr(t1) =
χℏ
υr
−

χr

υr(1 − ℓ2)
d

dt1

t1∫
0

Eρ

( ℓ2ρ

(1 − ℓ2)(1 − ρ)
(t1 − x1)ρ

)
dx1

+
1

1 − ℓ2
Eρ

( ℓ2ρ

(1 − ℓ2)(1 − ρ)
(t1)ρ
)
Nr(0),

where ℓ2 = −
υr(1−ρ)
ABC(ρ) .
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Here, in both cases the ML function is denoted by Eν1,ν2 . Based on the assumption that the ML
function possesses asymptotic tendency, we have

Eν1,ν2 ≈

w∑
k=1

z−k
1 /Γ(ν2 − νk) + O

(
1/|z1|

1+w), |z1| 7→ ∞, ν1π/2 < |Arg(z1)| ≤ π.

Consequently, Nℏ(t1) and Nr(t1) converges for t1 7→ ∞. Hence, the domain Φ is positively invariant.

Now, we demonstrated the accompanying result by applying a (Lemma 2.3 from [42]) and the
fractional comparative criterion [48].

Assume that there is a solution (Sℏ,Eℏ, Iℏ,Qℏ,Rℏ,Sr,Er, Ir) involved in the ICs of R5
+ × R

3
+. Then,

the R5
+ × R

3
+ domain is a positively invariant set of the system (2.5).

Based on the scheme described in [49], we intended to define the existence-uniqueness of theMPX
virus dynamics (2.5); thus, we have



ABCDρ
t1Sℏ(τ)

∣∣∣
Sℏ=0
= χℏ ≥ 0,

ABCDρ
t1Eℏ(τ)

∣∣∣
Eℏ=0
= 0,

ABCDρ
t1Iℏ(τ)

∣∣∣
Iℏ=0
= δ1Eℏ ≥ 0,

ABCDρ
t1Qℏ(τ)

∣∣∣
Qℏ=0
= δ2Eℏ ≥ 0,

ABCDρ
t1Rℏ(τ)

∣∣∣
Rℏ=0
= γIℏ + ψQℏ ≥ 0,

ABCDρ
t1Sr(τ)

∣∣∣
Sr=0
= χr ≥ 0,

ABCDρ
t1Er(τ)

∣∣∣
Er=0
= 0,

ABCDρ
t1Ir(τ)

∣∣∣
Ir=0
= δ3Er ≥ 0.

(3.1)

Observe that (3.1) shows that every solution of (2.5) is nonnegative and remains in Φ; we have that

0 ≤ Nℏ(t1) ≤ Nℏ(0) exp(−υℏt1) +
χℏ
υℏ

(
1 − exp(−υℏt1)

)
(3.2)

and

0 ≤ Nr(t1) ≤ Nr(0) exp(−(υr + χr)t1) +
χℏ
υℏ

(
1 − exp(−(υr + χr)t1)

)
. (3.3)

This gives the desired estimates.

3.2. Disease free equilibrium forMPX virus

The disease-free phases are cohorts Sℏ,Rℏ and Sr, in our developed framework (2.5), while the
infectious category includes compartments Eℏ, Iℏ,Qℏ,Er and Ir1 .

As a result, theMPX-free equilibrium condition can be determined as E0 =
(
χℏ
υℏ
, 0, 0, 0, 0, χr

υr
, 0, 0
)
.
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3.3. Basic reproduction number

One of the major considerations for analyzing an epidemic’s protracted dynamics is the basic
reproduction number. It is the number of additional occurrences created by a single infectious person
over the course of their pathogenic agent’s lifetime. To obtain the formulation of the reproducing
number R0, we used the next-generation matrix procedure described in [50]. It was initially
mentioned in [51], which goes into great length about how to estimate R0 using this approach. There
are also several publications on this research wherein the authors describe a next-generation matrix
approach to determine the basic reproduction number representation.

The matrixF corresponds to transmissions and the matrixV to transitions. In this paper, we include
death in the transition matrix to keep the notation simple (in contrast with Diekmann et al. [50]). Hence,
all epidemiological events that lead to new infections are incorporated into the model via F , and all
other events via V. Progress to either death or immunity guarantees that V is invertible. Thus, the
MPX can be expressed as

F =



0
η1Ir+η2Iℏ

Nℏ
Sℏ

0
0
0
0
0
0
0


and V =



−χℏ +
(η1Ir+η2Iℏ)Sℏ

Nℏ
+ υℏSℏ − σQℏ

(δ1 + δ2 + υℏ)Eℏ
−δ1Eℏ + (υℏ + φℏ + γ)Iℏ

−δ2Eℏ + (σ + υℏ + φℏ + ψ)Qℏ
−γIℏ − ψQℏ + υℏRℏ
−χr −

η3SrIr
Nr
+ υrSr

−
η3SrIr

Nr
+ (υr + δ3)Er

−δ3Er + (υr + φr)Ir


.

The progression of contaminated individuals from Eℏ to Eℏ or Qℏ is not considered as the emergence
of a new virus, but rather the evolution of contaminated individuals across multiple cohorts. So, we
have a linearized system at a disease-free state:

F =


0 η2 0 η1

0 0 0 0
0 0 0 0
0 0 0 0

 and V =


(δ1 + δ2 + υℏ) 0 0 0
−δ1 υℏ + φℏ + γ 0 0
−δ2 0 σ + ψ + φℏ + υℏ 0
0 0 0 υr + φr

 ,
where F and V are 4 × 4 matrices, computed as F = ∂F ȷ

∂x ȷ
and V = ∂V ȷ

∂x ȷ
. For the sake of convenience,

assume b1 = δ1 + δ2 + υℏ, b2 = υℏ + φℏ + γ, b3 = σ + ψ + φℏ + υℏ and b4 = υr + φr.

Furthermore, the next-generation matrix is presented as:

FV−1 =
1

b1b2b3b4


η2δ1b3b4 0 0 η1b1b2b3

0 0 0 0
0 0 0 0
0 0 0 0

 .
Thus, the reproductive number for System (2.5) can be calculated as

R0 = Ψ(FV−1) =
η2δ1b3b4

b1b2b3b4
,
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or equivalently,

R0 =
η2δ1

(δ1 + δ2 + υℏ)(υℏ + φℏ + γ)
.

3.4. Local stability of disease-free equilibrium

Theorem 3.1. Suppose there is two non-negative integers ϑ1, ϑ2 with gcd(ϑ1, ϑ2) = 1, σ = ϑ1/ϑ2

and K = ϑ1; then, the model (3.1) is locally asymptotically stable if |Arg(λ)| > π
2K for all roots of the

concerning equation det(diag(λKσ) − J(E0)) = 0.

Proof. The Jacobian matrix of system (3.1) at E0 implies,

(J0)E0 =



−υℏ 0 −η2 0 0 0 0 −η1

0 −B1 η2 0 0 0 0 η1

0 δ1 −B2 0 0 0 0 0
0 δ2 0 −B3 0 0 0 0
0 0 γ ψ −υℏ 0 0 0
0 0 0 0 0 −υr 0 0
0 0 0 0 0 0 −B4 η3

0 0 0 0 0 0 η3 −B5


(3.4)

Suppose the concerned eigenvalues areϖ = (ϖ1, ϖ2, ϖ3, ϖ4, ϖ5, ϖ6, ϖ7, ϖ8). This can be achieved
by simple computation:

−υℏϖ1 − η2ϖ3 − η1η8 = 0, − B1ϖ2 + η2ϖ3 + η1ϖ8 = 0, δ1ϖ2 − B2ϖ3 = 0,
δ2ϖ2 − B3ϖ4 = 0, γϖ3 + ψϖ4 − υℏϖ5 = 0, υrϖ6 − η3ϖ8 = 0, − B4ϖ7 + η3ϖ8 = 0,
δ3ϖ7 − B5ϖ8 = 0. (3.5)

Clearly, ϖ ȷ, ȷ = 1, 2, ..., 8 are positive if R0 < 1. Moreover, the argument is

arg(ϖ ȷ) =
π

ϑ1
+ ȷ

2π
ϑ1

>
π

K
>

π

2K
, ȷ = 0, 1, 2, ...(ϑ1 − 1).

The arguments of the other roots can be acquired in a similar way and are all greater than π
2K if

R0 < 1. So, the DFE is locally asymptotically stable for R0 < 1.

Further, we adopted the methodology proposed by Castillo-Chavez and Song [52] to determine the
requirements for global stability (GS) for E0, which stipulates that the model scheme be stated in the
appropriate pattern:

Ẋ1 = F1(X1,Z1),
Ż1 = G1(X1,Z1),G1(X1, 0) = 0. (3.6)

Now, X1 ∈ R
n represents the unexposed persons and Z1 ∈ R

m states the infectious people. Using
this terminology, the DFE is calculated by H0 = (X10, 0). The GS of the DFE is now guaranteed by the
underlying two requirements:

Mathematical Biosciences and Engineering Volume 20, Issue 1, 402–436.



413

a) For Ẋ1 = F1(X1, 0), X10 is asymptotically GS.
b) G1 = (X1,Z1) = A1Z1 − G̃1(X1,Z1), where G̃1(X1,Z1) ≥ 0 for X1,Z1 ∈ Υ.

Since A1 = DZ1G1(X10, 0) is an M-matrix and the viability of the system is presented by Υ. The GS of
E0 is then determined by the accompanying lemma.

Lemma 3.2. Suppose there is an equilibrium point H0 = (X10, 0) that is asymptotically GS when
R0 < 1 admits the assertions (a) and (b).

Proof. Firstly, we intend to verify a) as:

F1(X1, 0) =


χℏ − υℏSℏ
−υℏRℏ
χr − υrSr

−(υr + δ3)Er

 .
The characteristic polynomial of F1(X1, 0) implies that λ1 = λ2 = −υℏ, λ3 = −υr and λ4 = −υr− δ3.

Therefore, X1 = X10 is asymptotically GS.
Furthermore, we have

G1(X1,Z1) = A1Z1 − G̃1(X1,Z1) =


−b1

η2S0
ℏ

Nℏ
0 η1S0

ℏ

Nℏ
δ1 −b2 0 0
δ2 0 −b3 0
0 0 0 b4



Eℏ
Iℏ
Qℏ
Ir

 −

η2(S0

ℏ
−Sℏ)+η1(S0

ℏ
−Sℏ)

Nℏ
Eℏ

0
0

δ3Er

 .
As a result, it is clear that A1 satisfies all of the criteria stated in b).

3.5. Endemic equilibrium point (EEP)

The EEP happens when the illness continues to spread among the community, as indicated by

E∗0 = (S∗ℏ,E
∗
ℏ, I
∗
ℏ,Q

∗
ℏ,R

∗
ℏ,S

∗
r,E

∗
r, I
∗
r).

Thus, we have

E∗0 =
( b1b3χℏ
υℏb1b3 − δ2σb6 + b1b3b6

,
b6b3χℏ

υℏb1b3 − δ2σb6 + b1b3b6
,

δ1b3b6χℏ
b2(υℏb1b3 − δ3σb6 + b1b3b6)

,
δ2b6χℏ

υℏb1b3 − δ3σb6 + b1b3b6
,

(δ1γb3 + δ2b2ψ)b6χℏ
υℏb2(υℏb1b3 − δ3σb6 + b1b3b6)

,
χr

υr + b7
,

χr

b5(υr + b7)
,

b7δ − 3χr

b4b5(υr + b7)

)
,

(3.7)

where b5 = υr + δ3, b6 =
η1I∗r+η2I∗

ℏ

Nℏ
and b7 =

η3I∗r
Nr

3.6. Stability of the EE

Here, the Routh–Hurwitz threshold [53] will be employed to demonstrate the endemic equilibrium’s
(EE’s) local stability. The criteria whereby the EE is locally asymptotically stable will be determined
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by the Jacobian matrix as

J =



ϱ11 0 ϱ13 ϱ14 0 0 0 ϱ18

ϱ21 ϱ22 ϱ23 0 0 0 0 ϱ28

0 ϱ32 ϱ33 0 0 0 0 0
0 ϱ42 0 ϱ44 0 0 0 0
0 0 ϱ53 ϱ54 ϱ55 0 0 0
0 0 0 0 0 ϱ66 0 ϱ68

0 0 0 0 0 ϱ76 ϱ77 ϱ78

0 0 0 0 0 0 ϱ87 ϱ88


, (3.8)

where ϱ11 = −
η1Ir+η2Iℏ

Nℏ
, ϱ13 = −

η2Sℏ
Nℏ
, ϱ14 = ϕ, ϱ18 = −

η1Sℏ
Nℏ
,

ϱ21 = −
η1Ir+η2Iℏ

Nℏ
, ϱ22 = −b1, ϱ23 =

η2Sℏ
Nℏ
, ϱ28 =

η1Iℏ
Nℏ
, ϱ32 = δ1, ϱ33 = −(υℏ + φℏ + γ), ϱ42 = δ2, ϱ44 =

−b2, ϱ53 = γ, ϱ54 = ψ, ϱ55 = −υℏ, ϱ66 = −
(
υr +

η3Ir
Nr

)
, ϱ68 = −

η3Sr
Nr
, ϱ76 =

η3Ir
Nr
, ϱ77 = −b5, ϱ78 =

η3Sr
Nr
, ϱ87 = δ3 and ϱ88 = −b4. The characteristic equation yields

y8
1 + B1y7

1 + B2y6
1 + B3y5

1 + B4y4
1 + B5y3

1 + B6y2
1 + B7y1 + B8 = 0, (3.9)

where B ȷ, ȷ = 0, 1, 2, ..., 8 are the coefficients of y ȷ1 after the polynomial has been converted to the
simplified form.

We shall use the appropriate adjustment to achieve the EE stability requirements:

P =
B1B2 − B0B3

B1
, Q =

B1B4 − B0B5

B1
, R =

B1B6 − B0B7

B1
,

S = B8, P
∗ =
PB3 − QB1

P
, Q∗ =

PB5 − RB1

P
, R∗ =

PB7 − SB1

P
,

M =
P∗Q − PQ∗

P∗
, N =

P∗R − PR∗

P∗
, T =

P∗S

P∗
, M∗ =

MQ∗ − NP∗

M
,

N∗ =
MR∗ − TP∗

M
, X∗ =

NM∗ −MN∗

M∗
(3.10)

Therefore, the Hurwitz assumptions concerning the characteristic equation are

B1 > 0,
B1B2 > B3,

B1B2B3 + B0B1B5 > B0B2
3 + B4B2

1,

P∗Q > PQ∗, Q∗M > NP∗, M∗N >MN∗, N∗X > TM∗. (3.11)

Hence, the EEP is locally asymptotic stable.

3.7. Model design

The combination of the DEs depicts the intricate framework (2.5), which includes the assumptions,
the saturation contact pattern, and the schematic diagram shown in Figure 3, as well as analyses of the
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concept (2.5) using the ABC fractional derivative.



ABC
0 Dρ

τSℏ(τ) = Ω1(τ,Sℏ),
ABC
0 Dρ

τEℏ(τ) = Ω2(τ,Eℏ),
ABC
0 Dρ

τIℏ(τ) = Ω3(t3, Iℏ),
ABC
0 Dρ

τQℏ(τ) = Ω4(τ,Qℏ),
ABC
0 Dρ

τRℏ(τ) = Ω5(τ,Rℏ),
ABC
0 Dρ

τSr(τ) = Ω6(τ,Sr),
ABC
0 Dρ

τEr(τ) = Ω7(τ,Qℏ),
ABC
0 Dρ

τIr(τ) = Ω8(τ,Qℏ),

(3.12)

where kernels are configured as shown in:



Ω1(τ,Sℏ) = χℏ − (η1Ir+η2Iℏ)Sℏ
Nℏ

− υℏSℏ + σQℏ,
Ω2(τ,Eℏ) = (η1Ir+η2Iℏ)Sℏ

Nℏ
− (δ1 + δ2 + υℏ)Eℏ,

Ω3(τ, Iℏ) = δ1Eℏ − (υℏ + φℏ + γ)Iℏ,
Ω4(τ,Qℏ) = δ2Eℏ − (σ + υℏ + φℏ + ψ)Qℏ,
Ω5(τ,Rℏ) = γIℏ + ψQℏ − υℏRℏ,
Ω6(τ,Sr) = χr −

η3SrIr
Nr
− υrSr,

Ω7(τ,Er) =
η3SrIr

Nr
− (υr + δ3)Er,

Ω8(τ, Ir) = δ3Er − (υr + φr)Ir,

(3.13)

which are subject the following ICs: Sℏ(0) = Sℏ0, Eℏ(0) = Eℏ0, Iℏ(0) = Iℏ0,Qℏ(0) = Qℏ0,Rℏ(0) =
Rℏ0,Sr(0) = Sr0, Er(0) = Er0 and Ir(0) = Ir0.

Here, we have dN/dτ = χℏ−φℏIℏ−υℏNℏ in the occurrence of human infectious and rodent dN/dτ =
Sr + Er + Ir, illustrating that the size of the communities is not constant. The parameters that were
evaluated in the investigation (2.5) are listed in Table 1.

3.8. Existence–uniqueness results forMPX model

The Banach fixed point f̃p assumption for contraction mapping is used to demonstrate the
existence–uniqueness of the result for the ABC fractional framework stated in (3.12). It is vital to
understand the two new theories preceding the progress on [43].

To establish the system’s existence-uniqueness, we proceed as follows. While implementing the
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Atangana-Baleanu fractional integral, we can obtain System (3.12):

Sℏ(τ) − Sℏ(0) = 1−ρ
ABC(ρ)Ω1(τ,Sℏ) + ρ

ABC(ρ)Γ(ρ)

∫ τ
0
Ω1(ς,Sℏ)(τ − ς)ρ−1dς,

Eℏ(τ) − Eℏ(0) = 1−ρ
ABC(ρ)Ω2(τ,Eℏ) + ρ

ABC(ρ)Γ(ρ)

∫ τ
0
Ω2(ς,Eℏ)(τ − ς)ρ−1dς,

Iℏ(τ) − Iℏ(0) = 1−ρ
ABC(ρ)Ω3(τ, Iℏ) + ρ

ABC(ρ)Γ(ρ)

∫ τ
0
Ω3(ς, Iℏ)(τ − ς)ρ−1dς,

Qℏ(τ) −Qℏ(0) = 1−ρ
ABC(ρ)Ω4(τ,Qℏ) + ρ

ABC(ρ)Γ(ρ)

∫ τ
0
Ω4(ς,Qℏ)(τ − ς)ρ−1dς,

Rℏ(τ) − Rℏ(0) = 1−ρ
ABC(ρ)Ω5(τ,Rℏ) + ρ

ABC(ρ)Γ(ρ)

∫ τ
0
Ω5(ς,Rℏ)(τ − ς)ρ−1dς,

Sr(τ) − Sr(0) = 1−ρ
ABC(ρ)Ω6(τ,Rℏ) + ρ

ABC(ρ)Γ(ρ)

∫ τ
0
Ω6(ς,Rℏ)(τ − ς)ρ−1dς,

Er(τ) − Er(0) = 1−ρ
ABC(ρ)Ω7(τ,Er) +

ρ

ABC(ρ)Γ(ρ)

∫ τ
0
Ω7(ς,Er)(τ − ς)ρ−1dς,

Ir(τ) − Ir(0) = 1−ρ
ABC(ρ)Ω8(τ, Ir) +

ρ

ABC(ρ)Γ(ρ)

∫ τ
0
Ω8(ς, Ir)(τ − ς)ρ−1dς.

(3.14)

Assume that the collectionB = Λ(J)×Λ(J)×Λ(J)×Λ(J)×Λ(J)×Λ(J)×Λ(J)×Λ(J),whereΛ(J) =
C[0, T̄ ] refers to real-valued continuous functions for the B on J = [0, T̄ ], taking into account the
established norm

∥∥∥(Sℏ,Eℏ, Iℏ,Qℏ,Rℏ,Sr,Er, Ir)
∥∥∥ = ∥∥∥Sℏ∥∥∥+∥∥∥Eℏ∥∥∥+∥∥∥Iℏ∥∥∥+∥∥∥Qℏ∥∥∥+∥∥∥Rℏ∥∥∥+∥∥∥Sr

∥∥∥+∥∥∥Er
∥∥∥+∥∥∥Ir

∥∥∥,
where

∥∥∥Sℏ∥∥∥ = sup
τ∈J

∣∣∣Sℏ(τ)
∣∣∣, ∥∥∥Eℏ∥∥∥ = sup

τ∈J

∣∣∣Eℏ(τ)
∣∣∣, ∥∥∥Iℏ∥∥∥ = sup

τ∈J

∣∣∣Iℏ(τ)
∣∣∣, ∥∥∥Qℏ∥∥∥ = sup

τ∈J

∣∣∣Qℏ(τ)
∣∣∣, ∥∥∥Rℏ∥∥∥ = sup

τ∈J

∣∣∣Rℏ(τ)
∣∣∣,∥∥∥Sr

∥∥∥ = sup
τ∈J

∣∣∣Sr(τ)
∣∣∣, ∥∥∥Er

∥∥∥ = sup
τ∈J

∣∣∣Er(τ)
∣∣∣ and

∥∥∥Ir
∥∥∥ = sup

τ∈J

∣∣∣Ir(τ)
∣∣∣.

The accompanying result is established on the basis of the contraction and the Lipschitz supposition.

Theorem 3.2. For kernels Ωℓ, ℓ = 1, 2, ..., 8 in (3.12), there exists Lℓ > 0, ℓ = 1, 2, ...8, such that

∥∥∥∥Ω1(τ,Sℏ) −Ω1(τ,Sℏ1)
∥∥∥∥ ≤ L1

∥∥∥∥Sℏ(τ) − Sℏ1(τ)
∥∥∥∥,∥∥∥∥Ω2(τ,Eℏ) −Ω2(τ,Eℏ1)

∥∥∥∥ ≤ L2

∥∥∥∥Eℏ(τ) − Eℏ1(τ)
∥∥∥∥,∥∥∥∥Ω3(τ, Iℏ) −Ω3(τ, Iℏ1)

∥∥∥∥ ≤ L3

∥∥∥∥Iℏ(τ) − Iℏ1(τ)
∥∥∥∥,∥∥∥∥Ω4(τ,Qℏ) −Ω4(τ,Qℏ1)

∥∥∥∥ ≤ L4

∥∥∥∥Qℏ(τ) −Qℏ1(τ)
∥∥∥∥,∥∥∥∥Ω5(τ,Rℏ) −Ω5(τ,Rℏ1)

∥∥∥∥ ≤ L5

∥∥∥∥Rℏ(τ) − Rℏ1(τ)
∥∥∥∥,∥∥∥∥Ω6(τ,Sr) −Ω6(τ,Sm11)

∥∥∥∥ ≤ L6

∥∥∥∥Sr(τ) − Sm11(τ)
∥∥∥∥,∥∥∥∥Ω7(τ,Er) −Ω7(τ,Er1)

∥∥∥∥ ≤ L7

∥∥∥∥Er(τ) − Er1(τ)
∥∥∥∥,∥∥∥∥Ω8(τ, Ir) −Ω8(τ, Ir1)

∥∥∥∥ ≤ L8

∥∥∥∥Ir(τ) − Ir1(τ)
∥∥∥∥,

(3.15)

which are contractions for Lℓ ∈ [0, 1), ℓ = 1, 2, ..., 8.

Proof. To achieve Lipschitz’s requirements, we have∥∥∥∥Ω1(τ,Sℏ) −Ω1(τ,Sℏ1)
∥∥∥∥ =

∥∥∥∥∥χℏ − (η1Ir + η2Iℏ)Sℏ
Nℏ

− υℏSℏ + σQℏ

−
(
χℏ −

(η1Ir + η2Iℏ)Sℏ1

Nℏ
− υℏSℏ1 + σQℏ

)∥∥∥∥∥
=
∥∥∥∥ − ( (η1Ir + η2Iℏ)

Nℏ
+ υℏ
)
(Sℏ − Sℏ1)

∥∥∥∥
≤
( (η1Ir + η2Iℏ)

Nℏ
+ υℏ
)∥∥∥Sℏ − Sℏ1

∥∥∥
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≤ L1

∥∥∥Sℏ − Sℏ1
∥∥∥, (3.16)

where L1 =
η1(K8+η2K3)

N
,
∥∥∥Sℏ∥∥∥ = sup

τ∈J

∣∣∣Sℏ(τ)
∣∣∣ = K1,

∥∥∥Eℏ∥∥∥ = sup
τ∈J

∣∣∣Eℏ(τ)
∣∣∣ = K2,

∥∥∥Iℏ∥∥∥ = sup
τ∈J

∣∣∣Iℏ(τ)
∣∣∣ = K3,∥∥∥Qℏ∥∥∥ = sup

τ∈J

∣∣∣Qℏ(τ)
∣∣∣ = K4,

∥∥∥Rℏ∥∥∥ = sup
τ∈J

∣∣∣Rℏ(τ)
∣∣∣ = K5,

∥∥∥Sr
∥∥∥ = sup

τ∈J

∣∣∣Sr(τ)
∣∣∣ = K6, and

∥∥∥Er
∥∥∥ = sup

τ∈J

∣∣∣Er(τ)
∣∣∣ =

K7, and
∥∥∥Ir
∥∥∥ = sup

τ∈J

∣∣∣Ir(τ)
∣∣∣ = K8.

It is significant to mention that Ω1(τ,Sℏ1) admits the Lipschitz requirement involving the Lipschitz
constant L1 =

η1(K8+η2K3)
N

. Also, if L1 ∈ [0, 1), then Ω1(τ,Sℏ1) is verified to be a contraction.
Accordingly, we can investigate the significance of the existence of Lℓ, ℓ = 2, 3, ..., 8 and the

contraction condition for Ω2(τ,Eℏ), Ω3(τ, Iℏ), Ω4(τ,Qℏ), Ω5(τ,Rℏ), Ω6(τ,Sr) and Ω7(τ,Er) for Lℓ ∈
[0, 1), ℓ = 2, 3, ..., 8.

At τ = τm, m = 1, 2, ..., presenting the recurrent form that follows from (3.14) gives

Sℏm(τ) = 1−ρ
ABC(ρ)Ω1(τ,Sℏm−1) + ρ

ABC(ρ)Γ(ρ)

∫ τ
0
Ω1(ς,Sℏm−1)(τ − ς)ρ−1dς,

Eℏm(τ) = 1−ρ
ABC(ρ)Ω2(τ,Eℏm−1) +

ρ

ABC(ρ)Γ(ρ)

∫ τ
0
Ω2(ς,Eℏm−1)(τ − ς)ρ−1dς,

Iℏm(τ) = 1−ρ
ABC(ρ)Ω3(τ, Iℏm−1) +

ρ

ABC(ρ)Γ(ρ)

∫ τ
0
Ω3(ς, ℏmm−1)(τ − ς)ρ−1dς,

Qℏm(τ) = 1−ρ
ABC(ρ)Ω4(τ,Qℏm−1) +

ρ

ABC(ρ)Γ(ρ)

∫ τ
0
Ω4(ς,Qℏm−1)(τ − ς)ρ−1dς,

Rℏm(τ) = 1−ρ
ABC(ρ)Ω5(τ,Rℏm−1) +

ρ

ABC(ρ)Γ(ρ)

∫ τ
0
Ω5(ς,Rℏm−1)(τ − ς)ρ−1dς,

Srm(τ) = 1−ρ
ABC(ρ)Ω6(τ,Rℏm−1) +

ρ

ABC(ρ)Γ(ρ)

∫ τ
0
Ω6(ς,Srm−1)(τ − ς)ρ−1dς,

Erm(τ) = 1−ρ
ABC(ρ)Ω7(τ,Erm−1) +

ρ

ABC(ρ)Γ(ρ)

∫ τ
0
Ω7(ς,Erm−1)(τ − ς)ρ−1dς,

Irm(τ) = 1−ρ
ABC(ρ)Ω8(τ, Irm−1) +

ρ

ABC(ρ)Γ(ρ)

∫ τ
0
Ω8(ς, Irm−1)(τ − ς)ρ−1dς

(3.17)

in the presence of the ICs Sℏ(0) = Sℏ0, Eℏ(0) = Eℏ0 , Iℏ(0) = Iℏ0 ,Qℏ(0) = Qℏ0 ,Rℏ(0) = Rℏ0 ,Sr(0) =
Sr0 , Er(0) = Er0 and Ir(0) = Ir0 .

In (3.17), the differences of successive terms are expressed in the following terms:

Ψ1m(τ) = Sℏm(τ) − Sℏm−1(τ)

=
1 − ρ
ABC(ρ)

(
Ω1(τ,Sℏm−1) −Ω1(τ,Sℏm−2)

)
+

ρ

Γ(ρ)ABC(ρ)

∫ τ

0

(
Ω1(ς,Sℏm−1) −Ω1(ς,Sℏm−2)

)
(τ − ς)ρ−1dς,

Ψ2m(τ) = Eℏm(τ) − Eℏm−1(τ)

=
1 − ρ
ABC(ρ)

(
Ω2(τ,Eℏm−1) −Ω2(τ,Eℏm−2)

)
+

ρ

Γ(ρ)ABC(ρ)

∫ τ

0

(
Ω2(ς,Eℏm−1) −Ω2(ς,Eℏm−2)

)
(τ − ς)ρ−1dς,

Ψ3m(τ) = Iℏm(τ) − Iℏm−1(τ)

=
1 − ρ
ABC(ρ)

(
Ω3(τ, Iℏm−1) −Ω3(τ, Iℏm−2)

)
+

ρ

Γ(ρ)ABC(ρ)

∫ τ

0

(
Ω3(ς, Iℏm−1) −Ω3(ς, Iℏm−2)

)
(τ − ς)ρ−1dς,

Ψ4m(τ) = Qℏm(τ) −Qℏm−1(τ)
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=
1 − ρ
ABC(ρ)

(
Ω4(τ,Qℏm−1) −Ω4(τ,Qℏm−2)

)
+

ρ

Γ(ρ)ABC(ρ)

∫ τ

0

(
Ω4(ς,Qℏm−1) −Ω4(ς,Qℏm−2)

)
(τ − ς)ρ−1dς,

Ψ5m(τ) = Rℏm(τ) − Rℏm−1(τ)

=
1 − ρ
ABC(ρ)

(
Ω5(τ,Rℏm−1) −Ω5(τ,Rℏm−2)

)
+

ρ

Γ(ρ)ABC(ρ)

∫ τ

0

(
Ω5(ς,Rℏm−1) −Ω5(ς,Rℏm−2)

)
(τ − ς)ρ−1dς,

Ψ6m(τ) = Srm(τ) − Srm−1(τ)

=
1 − ρ
ABC(ρ)

(
Ω2(τ,Srm−1) −Ω6(τ,Srm−2)

)
+

ρ

Γ(ρ)ABC(ρ)

∫ τ

0

(
Ω6(ς,Srm−1) −Ω6(ς,Srm−2)

)
(τ − ς)ρ−1dς,

Ψ7m(τ) = Erm(τ) − Erm−1(τ)

=
1 − ρ
ABC(ρ)

(
Ω7(τ,Erm−1) −Ω7(τ,Erm−2)

)
+

ρ

Γ(ρ)ABC(ρ)

∫ τ

0

(
Ω7(ς,Srm−1) −Ω7(ς,Erm−2)

)
(τ − ς)ρ−1dς,

Ψ8m(τ) = Irm(τ) − Irm−1(τ)

=
1 − ρ
ABC(ρ)

(
Ω8(τ, Irm−1) −Ω8(τ, Irm−2)

)
+

ρ

Γ(ρ)ABC(ρ)

∫ τ

0

(
Ω8(ς, Irm−1) −Ω8(ς, Irm−2)

)
(τ − ς)ρ−1dς. (3.18)

Applying the norm to the specified framework (3.18), we have∥∥∥Ψ1m(τ)
∥∥∥ =

∥∥∥Sℏm(τ) − Sℏm−1(τ)
∥∥∥

=
1 − ρ
ABC(ρ)

∥∥∥Ω1(τ,Sℏm−1) −Ω1(τ,Sℏm−2)
∥∥∥

+
ρ

Γ(ρ)ABC(ρ)

∫ τ

0

∥∥∥Ω1(ς,Sℏm−1) −Ω1(ς,Sℏm−2)
∥∥∥(τ − ς)ρ−1dς,∥∥∥Ψ2m(τ)

∥∥∥ =
∥∥∥Eℏm(τ) − Eℏm−1(τ)

∥∥∥
=

1 − ρ
ABC(ρ)

∥∥∥Ω2(τ,Eℏm−1) −Ω2(τ,Eℏm−2)
∥∥∥

+
ρ

Γ(ρ)ABC(ρ)

∫ τ

0

∥∥∥Ω2(ς,Eℏm−1) −Ω2(ς,Eℏm−2)
∥∥∥(τ − ς)ρ−1dς,∥∥∥Ψ3m(τ)

∥∥∥ =
∥∥∥Iℏm(τ) − Iℏm−1(τ)

∥∥∥
=

1 − ρ
ABC(ρ)

∥∥∥Ω3(τ, Iℏm−1) −Ω3(τ, Iℏm−2)
∥∥∥

+
ρ

Γ(ρ)ABC(ρ)

∫ τ

0

∥∥∥Ω3(ς, Iℏm−1) −Ω3(ς, Iℏm−2)
∥∥∥(τ − ς)ρ−1dς,∥∥∥Ψ4m(τ)

∥∥∥ =
∥∥∥Qℏm(τ) −Qℏm−1(τ)

∥∥∥
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=
1 − ρ
ABC(ρ)

∥∥∥Ω4(τ,Qℏm−1) −Ω4(τ,Qℏm−2)
∥∥∥

+
ρ

Γ(ρ)ABC(ρ)

∫ τ

0

∥∥∥Ω4(ς,Qℏm−1) −Ω4(ς,Qℏm−2)
∥∥∥(τ − ς)ρ−1dς,∥∥∥Ψ5m(τ)

∥∥∥ =
∥∥∥Rℏm(τ) − Rℏm−1(τ)

∥∥∥
=

1 − ρ
ABC(ρ)

∥∥∥Ω5(τ,Rℏm−1) −Ω5(τ,Rℏm−2)
∥∥∥

+
ρ

Γ(ρ)ABC(ρ)

∫ τ

0

∥∥∥Ω5(ς,Rℏm−1) −Ω5(ς,Rℏm−2)
∥∥∥(τ − ς)ρ−1dς,∥∥∥Ψ6m(τ)

∥∥∥ =
∥∥∥Srm(τ) − Srm−1(τ)

∥∥∥
=

1 − ρ
ABC(ρ)

∥∥∥Ω6(τ,Srm−1) −Ω6(τ,Srm−2)
∥∥∥

+
ρ

Γ(ρ)ABC(ρ)

∫ τ

0

∥∥∥Ω6(ς,Srm−1) −Ω6(ς,Srm−2)
∥∥∥(τ − ς)ρ−1dς,∥∥∥Ψ7m(τ)

∥∥∥ =
∥∥∥Erm(τ) − Erm−1(τ)

∥∥∥
=

1 − ρ
ABC(ρ)

∥∥∥Ω7(τ,Erm−1) −Ω7(τ,Erm−2)
∥∥∥

+
ρ

Γ(ρ)ABC(ρ)

∫ τ

0

∥∥∥Ω7(ς,Erm−1) −Ω7(ς,Erm−2)
∥∥∥(τ − ς)ρ−1dς,∥∥∥Ψ8m(τ)

∥∥∥ =
∥∥∥Irm(τ) − Irm−1(τ)

∥∥∥
=

1 − ρ
ABC(ρ)

∥∥∥Ω8(τ, Irm−1) −Ω8(τ, Irm−2)
∥∥∥

+
ρ

Γ(ρ)ABC(ρ)

∫ τ

0

∥∥∥Ω8(ς, Irm−1) −Ω8(ς, Irm−2)
∥∥∥(τ − ς)ρ−1dς. (3.19)

Furthermore, the first equation in (3.19) can be converted to the following characterizations:∥∥∥Ψ1m(τ)
∥∥∥ =

∥∥∥Sℏm(τ) − Sℏm−1(τ)
∥∥∥

=
1 − ρ
ABC(ρ)

∥∥∥Ω1(τ,Sℏm−1) −Ω1(τ,Sℏm−2)
∥∥∥

+
ρ

Γ(ρ)ABC(ρ)

∫ τ

0

∥∥∥Ω1(ς,Sℏm−1) −Ω1(ς,Sℏm−2)
∥∥∥(τ − ς)ρ−1dς

≤ L1
1 − ρ
ABC(ρ)

∥∥∥Sℏm−1 − Sℏm−2

∥∥∥ + ρL1

Γ(ρ)ABC(ρ)

∫ τ

0

∥∥∥Sℏm−1 − Sℏm−2

∥∥∥(τ − ς)ρ−1dς

≤ L1

∥∥∥Ψ1(m−1)(τ)
∥∥∥∣∣∣∣ 1 − ρ
ABC(ρ)

+
τρ

ABC(ρ)

∣∣∣∣.
Ultimately, we have ∥∥∥Ψ1m(τ)

∥∥∥ ≤ L1

∥∥∥Ψ1(m−1)(τ)
∥∥∥∣∣∣∣ 1 − ρ
ABC(ρ)

+
τρ

ABC(ρ)

∣∣∣∣. (3.20)

By a similar argument, the following terms of (3.19) can be computed as∥∥∥Ψ2m(τ)
∥∥∥ ≤ L2

∥∥∥Ψ2(m−1)(τ)
∥∥∥∣∣∣∣ 1 − ρ
ABC(ρ)

+
τρ

ABC(ρ)

∣∣∣∣,
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420∥∥∥Ψ3m(τ)
∥∥∥ ≤ L3

∥∥∥Ψ3(m−1)(τ)
∥∥∥∣∣∣∣ 1 − ρ
ABC(ρ)

+
τρ

ABC(ρ)

∣∣∣∣,∥∥∥Ψ4m(τ)
∥∥∥ ≤ L4

∥∥∥Ψ4(m−1)(τ)
∥∥∥∣∣∣∣ 1 − ρ
ABC(ρ)

+
τρ

ABC(ρ)

∣∣∣∣,∥∥∥Ψ5m(τ)
∥∥∥ ≤ L5

∥∥∥Ψ5(m−1)(τ)
∥∥∥∣∣∣∣ 1 − ρ
ABC(ρ)

+
τρ

ABC(ρ)

∣∣∣∣,∥∥∥Ψ6m(τ)
∥∥∥ ≤ L6

∥∥∥Ψ6(m−1)(τ)
∥∥∥∣∣∣∣ 1 − ρ
ABC(ρ)

+
τρ

ABC(ρ)

∣∣∣∣,∥∥∥Ψ7m(τ)
∥∥∥ ≤ L7

∥∥∥Ψ7(m−1)(τ)
∥∥∥∣∣∣∣ 1 − ρ
ABC(ρ)

+
τρ

ABC(ρ)

∣∣∣∣,∥∥∥Ψ8m(τ)
∥∥∥ ≤ L8

∥∥∥Ψ8(m−1)(τ)
∥∥∥∣∣∣∣ 1 − ρ
ABC(ρ)

+
τρ

ABC(ρ)

∣∣∣∣. (3.21)

Theorem 3.3. There is a fractionalMPX model defined in (3.12) that has a solution ifU0 admits the
variant

( 1 − ρ
ABC(ρ)

+
U

ρ
0

ABC(ρ)Γ(ρ)

)
Lℓ < 1, ℓ = 1, 2, ..., 8. (3.22)

Proof. Utilizing the hypothesis stated in (3.20) and (3.23), one obtains

∥∥∥Ψ1m(τ)
∥∥∥ ≤ ∥∥∥Sℏ(0)

∥∥∥{L1

( 1 − ρ
ABC(ρ)

+
τρ

ABC(ρ)

)}m
,∥∥∥Ψ2m(τ)

∥∥∥ ≤ ∥∥∥Eℏ(0)
∥∥∥{L2

( 1 − ρ
ABC(ρ)

+
τρ

ABC(ρ)

)}m
,∥∥∥Ψ3m(τ)

∥∥∥ ≤ ∥∥∥Iℏ(0)
∥∥∥{L3

( 1 − ρ
ABC(ρ)

+
τρ

ABC(ρ)

)}m
,∥∥∥Ψ4m(τ)

∥∥∥ ≤ ∥∥∥Qℏ(0)
∥∥∥{L4

( 1 − ρ
ABC(ρ)

+
τρ

ABC(ρ)

)}m
,∥∥∥Ψ5m(τ)

∥∥∥ ≤ ∥∥∥Rℏ(0)
∥∥∥{L5

( 1 − ρ
ABC(ρ)

+
τρ

ABC(ρ)

)}m
,∥∥∥Ψ6m(τ)

∥∥∥ ≤ ∥∥∥Sr(0)
∥∥∥{L6

( 1 − ρ
ABC(ρ)

+
τρ

ABC(ρ)

)}m
,∥∥∥Ψ7m(τ)

∥∥∥ ≤ ∥∥∥Er(0)
∥∥∥{L7

( 1 − ρ
ABC(ρ)

+
τρ

ABC(ρ)

)}m
,∥∥∥Ψ8m(τ)

∥∥∥ ≤ ∥∥∥Ir(0)
∥∥∥{L8

( 1 − ρ
ABC(ρ)

+
τρ

ABC(ρ)

)}m
. (3.23)

Theorem 3.2 verifies the validity of the solution (the existence of a f̃p) and and which shows that the
mappings Sℏ(τ), Eℏ(τ), Iℏ(τ), Qℏ(τ), Rℏ(τ), Sr(τ) and Er(τ), are solution of the model (3.12).

Mathematical Biosciences and Engineering Volume 20, Issue 1, 402–436.



421

Let us commence by identifying which criteria are fulfilled:

Sℏ(τ) − Sℏ(0) = Sℏm − ˜B1m(τ),
Eℏ(τ) − Eℏ(0) = Eℏm −

˜B2m(τ),
Iℏ(τ) − Iℏ(0) = Iℏm −

˜B3m(τ),
Qℏ(τ) −Qℏ(0) = Qℏm −

˜B4m(τ),
Rℏ(τ) − Rℏ(0) = Rℏm −

˜B5m(τ),
Sr(τ) − Sr(0) = Srm −

˜B6m(τ),
Er(τ) − Er(0) = Erm −

˜B7m(τ),
Ir(τ) − Ir(0) = Irm −

˜B8m(τ).

By making the use of (3.24), we have

∥∥∥B1m(τ)
∥∥∥ ≤

1 − ρ
ABC(ρ)

∥∥∥Ω1(τ,Sℏm) −Ω1(τ,Sℏm−1)
∥∥∥

+
ρ

Γ(ρ)ABC(ρ)

∫ τ

0

∥∥∥Ω1(ς,Sℏm) −Ω1(ς,Sℏm−1)
∥∥∥(τ − ς)ρ−1dς

≤ L1
1 − ρ
ABC(ρ)

∥∥∥Sℏm − Sℏm−1

∥∥∥ + ρmL1

Γ(ρ)ABC(ρ)

∥∥∥Sℏm − Sℏm−1

∥∥∥.
Recursively conducting the procedure yields

∥∥∥B1m(τ)
∥∥∥ ≤ Lm

1

{ 1 − ρ
ABC(ρ)

+ Lm
1

τρ

Γ(ρ)ABC(ρ)

}m+1∥∥∥Sℏm − Sℏm−1

∥∥∥m.
Then, τ = Uρ

0 generates

∥∥∥B1m(τ)
∥∥∥ ≤ Lm

1

{ 1 − ρ
ABC(ρ)

+
τρ

Γ(ρ)ABC(ρ)

}m+1∥∥∥Sℏm − Sℏm−1

∥∥∥m. (3.24)

This is because ∥∥∥B1m(τ)
∥∥∥ 7→ 0.

Let us apply the following limit to (3.24) as m 7→ ∞. Obviously, we have that
∥∥∥B1m(τ)

∥∥∥ 7→ 0 for(
1−ρ
ABC(ρ) +

τρ

Γ(ρ)ABC(ρ)

)
L1 < 1.

In an analogous manner, we can obtain
∥∥∥Bℓm(τ)

∥∥∥ 7→ 0, f or ℓ = 2, 3, ..., 7; then,(
1−ρ
ABC(ρ) +

τρ

Γ(ρ)ABC(ρ)

)
Lℓ < 1, ℓ = 1, 2, ..., 8.

This gives the immediate consequence.

Furthermore, the Banach f̃p assumptions assure the existence of the system solution for (3.12) by
Theorem 3.2 and Theorem 3.3. Theorem 3.4 confirms the system’s uniqueness.
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Theorem 3.4. A fractionalMPX system (3.12) has unique solution if( 1 − ρ
ABC(ρ)

+
τρ

Γ(ρ)ABC(ρ)

)
Lℓ < 1, ℓ = 1, 2, ..., 8.

Proof. Suppose that Sℏ1, Eℏ1 , Iℏ1 , Qℏ1 , Rℏ1 , Sr1 , Er1 and Ir are another solution to the fractionalMPX
system (3.12). Then

S(τ) − S1(τ) =
1 − ρ
ABC(ρ)

(
Ω1(τ,Sℏ) −Ω1(τ,Sℏ1)

)
+

ρ

ABC(ρ)Γ(ρ)

∫ τ

0

(
Ω1(ς,Sℏ) −Ω1(ς,Sℏ1)

)
(τ − ς)ρ−1dς.

Considering the norm to the above identity, gives∥∥∥S(τ) − S1(τ)
∥∥∥ ≤ 1 − ρ
ABC(ρ)

∥∥∥Sℏ − Sℏ1

∥∥∥L1 +
τρ

ABC(ρ)Γ(ρ)

∥∥∥Sℏ − Sℏ1
∥∥∥.

Since
(
1 −
(

1−ρ
ABC(ρ) +

τρ

Γ(ρ)ABC(ρ)

)
L1

)
> 0, we acquire

∥∥∥Sℏ − Sℏ1
∥∥∥ = 0. Finally, we have Sℏ = Sℏ1 . by the

same argument, we can verify that Eℏ = Ip1 , Iℏ = Ir, Qℏ = Ipr, Rℏ = Rp1 , Sr = Rr and Er = Rpr. This
yields the immediate consequence.

3.9. Numerical scheme ofMPX model

In this part, we implement the Toufik–Atangana [44] method to produce a comprehensive
formulation for the framework (3.12).

When we investigate the first factor of (3.12), we obtain ABC
0 Dρ

τSℏ(τ) = Θ1(τ,Sℏ(τ)),
Sℏ(0) = Sℏ0.

(3.25)

Analyzing (3.16), ones can estimate for (3.25) in the formulation stated in (3.26):

Sℏ(τ) = Sℏ(0) +
1 − ρ
ABC(ρ)

Θ1(τ,Sℏ(τ)) +
ρ

ABC(ρ)Γ(ρ)

∫ τ

0
Θ1(ς,Sℏ(ς))(τ − ς)ρ−1dς. (3.26)

Considering Lagrange’s interpolating polynomial approach on [τq, τq+1], gives

Sℏq ≈
1
h1

[
(w − τq−1)Θ1

(
τq,Sℏ(τq),Eℏ(τq), Iℏ(τq),Qℏ(τq),Rℏ(τq),Sr(τq),Er(τq), Ir(τq)

)
−(w − τq)Θ1

(
τq−1,Sℏ(τq−1),Eℏ(τq−1), Iℏ(τq−1),Qℏ(τq−1),Rℏ(τq−1),Sr(τq−1),Er(τq−1),Er(τq−1)

)]
,

(3.27)

where h1 = τq − τq−1.

Substituting (3.27) into (3.26), one can obtain

Sℏ(τm+1) = Sℏ(0) +
1 − ρ
ABC(ρ)

Θ1
(
τq,Sℏ(τq),Eℏ(τq), Iℏ(τq),Qℏ(τq),Rℏ(τq),Sr(τq),Er(τq), Ir(τq)

)
Mathematical Biosciences and Engineering Volume 20, Issue 1, 402–436.



423

+
ρ

ABC(ρ)Γ(ρ)

m∑
ℓ=1



Θ1

(
τℓ,Sℏ(τℓ),Eℏ(τℓ),Iℏ(τℓ),Qℏ(τℓ),Rℏ(τℓ),Sr(τℓ),Er(τℓ),Ir(τℓ)

)
ℏ

×
∫ τℓ+1

τℓ
(w − τℓ−1)(τm+1 − w)ρ−1dw

−
Θ1

(
τℓ−1,Sℏ(τℓ−1),Eℏ(τℓ−1),Iℏ(τℓ−1),Qℏ(τℓ−1),Rℏ(τℓ−1),Sr(τℓ−1),Er(τℓ−1),Ir(τℓ−1)

)
ℏ

×
∫ τℓ+1

τℓ
(w − τℓ−1)(τm+1 − w)ρ−1dw

= Sℏ(0) +
1 − ρ
ABC(ρ)

Θ1
(
τm,Sℏ(τm),Eℏ(τm), Iℏ(τm),Qℏ(τm),Rℏ(τm),Sr(τm),Er(τm), Ir(τm)

)
+

ρ

ABC(ρ)Γ(ρ)

m∑
ℓ=1



Θ1

(
τℓ,Sℏ(τℓ),Eℏ(τℓ),Iℏ(τℓ),Qℏ(τℓ),Rℏ(τℓ),Sr(τℓ),Er(τℓ),Ir(τℓ)

)
h1

ℑℓ−1

−
Θ1

(
τℓ−1,Sℏ(τℓ−1),Eℏ(τℓ−1),Iℏ(τℓ−1),Qℏ(τℓ−1),Rℏ(τℓ−1),Sr(τℓ−1),Er(τℓ−1),Ir(τℓ−1)

)
h1

ℑℓ

 ,
where

ℑℓ−1 =

∫ τℓ+1

τℓ

(w − τℓ−1)(τm+1 − w)ρ−1dw

= −
1
ρ

{
(τℓ+1 − τℓ−1)(τm+1 − τℓ+1)ρ − (τℓ − τℓ−1)(τm+1 − τℓ)ρ

}
−

1
ρ(ρ + 1)

{
(τm+1 − τℓ+1)ρ+1(τm+1 − τℓ+1)ρ − (τm+1 − τℓ)ρ+1

}
, (3.28)

and

ℑℓ =

∫ τℓ+1

τℓ

(w − τℓ−1)(τm+1 − w)ρ−1dw

= −
1
ρ

{
(τℓ+1 − τℓ−1)(τm+1 − τℓ+1)ρ

}
−

1
ρ(ρ + 1)

{
(τm+1 − τℓ+1)ρ+1 − (τm+1 − τℓ)ρ+1

}
. (3.29)

Moreover, employing τℓ = ℓℏ in (3.28) and (3.29) describes

ℑℓ−1 =
ℏρ+1

ρ(ρ + 1)

{
(m + 1 − ℓ)ρ(m − ℓ + 2 + ρ) − (m − ℓ)ρ(m − ℓ + 2 + 2ρ)

}
(3.30)

and

ℑℓ =
ℏρ+1

ρ(ρ + 1)

{
(m + 1 − ℓ)ρ+1 − (m − ℓ)ρ(m − ℓ + 1 + ρ)

}
. (3.31)

Consequently, we can express (3.32) in the expression of (3.30) and (3.31) as follows:

Sℏ(τm+1) = Sℏ(τ0) +
1 − ρ
ABC(ρ)

Θ1
(
τm,Sℏ(τm),Eℏ(τm), Iℏ(τm),Qℏ(τm),Rℏ(τm),Sr(τm),Er(τm), Ir(τm)

)

+
ρ

ABC(ρ)Γ(ρ)

m∑
ℓ=1





Θ1

(
τℓ,Sℏ(τℓ),Eℏ(τℓ),Iℏ(τℓ),Qℏ(τℓ),Rℏ(τℓ),Sr(τℓ),Er(τℓ),Ir(τℓ)

)
Γ(ρ+2)

×hρ1
{
(m + 1 − ℓ)ρ(m − ℓ + 2 + ρ) − (m − ℓ)ρ(m − ℓ + 2 + 2ρ)

}
−
Θ1

(
τℓ−1,Sℏ(τℓ−1),Eℏ(τℓ−1),Iℏ(τℓ−1),Qℏ(τℓ−1),Rℏ(τℓ−1),Sr(τℓ−1),Er(τℓ−1),Ir(τℓ−1)

)
h1

×hρ1
{
(m + 1 − ℓ)ρ(m − ℓ + 2 + ρ) − (m − ℓ)ρ(m − ℓ + 2 + 2ρ)

}


.
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Thus, the following are the descriptions for the rest of the model cohorts:

Eℏ(τm+1) = Eℏ(τ0) +
1 − ρ
ABC(ρ)

Θ2
(
τm,Sℏ(τm),Eℏ(τm), Iℏ(τm),Qℏ(τm),Rℏ(τm),Sr(τm),Er(τm), Ir(τm)

)

+
ρ

ABC(ρ)Γ(ρ)

m∑
ℓ=1





Θ2

(
τℓ,Sℏ(τℓ),Eℏ(τℓ),Iℏ(τℓ),Qℏ(τℓ),Rℏ(τℓ),Sr(τℓ),Er(τℓ),Ir(τℓ)

)
Γ(ρ+2)

×hρ1
{
(m + 1 − ℓ)ρ(m − ℓ + 2 + ρ) − (m − ℓ)ρ(m − ℓ + 2 + 2ρ)

}
−
Θ2

(
τℓ−1,Sℏ(τℓ−1),Eℏ(τℓ−1),Iℏ(τℓ−1),Qℏ(τℓ−1),Rℏ(τℓ−1),Sr(τℓ−1),Er(τℓ−1),Ir(τℓ−1)

)
h1

×hρ1
{
(m + 1 − ℓ)ρ(m − ℓ + 2 + ρ) − (m − ℓ)ρ(m − ℓ + 2 + 2ρ)

}


,

Iℏ(τm+1) = Iℏ(τ0) +
1 − ρ
ABC(ρ)

Θ3
(
τm,Sℏ(τm),Eℏ(τm), Iℏ(τm),Qℏ(τm),Rℏ(τm),Sr(τm),Er(τm), Ir(τm)

)

+
ρ

ABC(ρ)Γ(ρ)

m∑
ℓ=1





Θ3

(
τℓ,Sℏ(τℓ),Eℏ(τℓ),Iℏ(τℓ),Qℏ(τℓ),Rℏ(τℓ),Sr(τℓ),Er(τℓ),Ir(τℓ)

)
Γ(ρ+2)

×hρ1
{
(m + 1 − ℓ)ρ(m − ℓ + 2 + ρ) − (m − ℓ)ρ(m − ℓ + 2 + 2ρ)

}
−
Θ3

(
τℓ−1,Sℏ(τℓ−1),Eℏ(τℓ−1),Iℏ(τℓ−1),Qℏ(τℓ−1),Rℏ(τℓ−1),Sr(τℓ−1),Er(τℓ−1),Ir(τℓ−1)

)
h1

×hρ1
{
(m + 1 − ℓ)ρ(m − ℓ + 2 + ρ) − (m − ℓ)ρ(m − ℓ + 2 + 2ρ)

}


,

Qℏ(τm+1) = Qℏ(τ0) +
1 − ρ
ABC(ρ)

Θ4
(
τm,Sℏ(τm),Eℏ(τm), Iℏ(τm),Qℏ(τm),Rℏ(τm),Sr(τm),Er(τm), Ir(τm)

)

+
ρ

ABC(ρ)Γ(ρ)

m∑
ℓ=1





Θ4

(
τℓ,Sℏ(τℓ),Eℏ(τℓ),Iℏ(τℓ),Qℏ(τℓ),Rℏ(τℓ),Sr(τℓ),Er(τℓ),Ir(τℓ)

)
Γ(ρ+2)

×hρ1
{
(m + 1 − ℓ)ρ(m − ℓ + 2 + ρ) − (m − ℓ)ρ(m − ℓ + 2 + 2ρ)

}
−
Θ4

(
τℓ−1,Sℏ(τℓ−1),Eℏ(τℓ−1),Iℏ(τℓ−1),Qℏ(τℓ−1),Rℏ(τℓ−1),Sr(τℓ−1),Er(τℓ−1),Ir(τℓ−1)

)
h1

×hρ1
{
(m + 1 − ℓ)ρ(m − ℓ + 2 + ρ) − (m − ℓ)ρ(m − ℓ + 2 + 2ρ)

}


,

Rℏ(τm+1) = Rℏ(τ0) +
1 − ρ
ABC(ρ)

Θ5
(
τm,Sℏ(τm),Eℏ(τm), Iℏ(τm),Qℏ(τm),Rℏ(τm),Sr(τm),Er(τm), Ir(τm)

)

+
ρ

ABC(ρ)Γ(ρ)

m∑
ℓ=1





Θ5

(
τℓ,Sℏ(τℓ),Eℏ(τℓ),Iℏ(τℓ),Qℏ(τℓ),Rℏ(τℓ),Sr(τℓ),Er(τℓ),Ir(τℓ)

)
Γ(ρ+2)

×hρ1
{
(m + 1 − ℓ)ρ(m − ℓ + 2 + ρ) − (m − ℓ)ρ(m − ℓ + 2 + 2ρ)

}
−
Θ5

(
τℓ−1,Sℏ(τℓ−1),Eℏ(τℓ−1),Iℏ(τℓ−1),Qℏ(τℓ−1),Rℏ(τℓ−1),Sr(τℓ−1),Er(τℓ−1),Ir(τℓ−1)

)
h1

×hρ1
{
(m + 1 − ℓ)ρ(m − ℓ + 2 + ρ) − (m − ℓ)ρ(m − ℓ + 2 + 2ρ)

}


,

Sr(τm+1) = Sr(τ0) +
1 − ρ
ABC(ρ)

Θ6
(
τm,Sℏ(τm),Eℏ(τm), Iℏ(τm),Qℏ(τm),Rℏ(τm),Sr(τm),Er(τm), Ir(τm)

)

+
ρ

ABC(ρ)Γ(ρ)

m∑
ℓ=1





Θ6

(
τℓ,Sℏ(τℓ),Eℏ(τℓ),Iℏ(τℓ),Qℏ(τℓ),Rℏ(τℓ),Sr(τℓ),Er(τℓ),Ir(τℓ)

)
Γ(ρ+2)

×hρ1
{
(m + 1 − ℓ)ρ(m − ℓ + 2 + ρ) − (m − ℓ)ρ(m − ℓ + 2 + 2ρ)

}
−
Θ6

(
τℓ−1,Sℏ(τℓ−1),Eℏ(τℓ−1),Iℏ(τℓ−1),Qℏ(τℓ−1),Rℏ(τℓ−1),Sr(τℓ−1),Er(τℓ−1),Ir(τℓ−1)

)
h1

×hρ1
{
(m + 1 − ℓ)ρ(m − ℓ + 2 + ρ) − (m − ℓ)ρ(m − ℓ + 2 + 2ρ)

}


,

Mathematical Biosciences and Engineering Volume 20, Issue 1, 402–436.



425

Er(τm+1) = Er(τ0) +
1 − ρ
ABC(ρ)

Θ7
(
τm,Sℏ(τm),Eℏ(τm), Iℏ(τm),Qℏ(τm),Rℏ(τm),Sr(τm),Er(τm), Ir(τm)

)

+
ρ

ABC(ρ)Γ(ρ)

m∑
ℓ=1





Θ7

(
τℓ,Sℏ(τℓ),Eℏ(τℓ),Iℏ(τℓ),Qℏ(τℓ),Rℏ(τℓ),Sr(τℓ),Er(τℓ),Ir(τℓ)

)
Γ(ρ+2)

×hρ1
{
(m + 1 − ℓ)ρ(m − ℓ + 2 + ρ) − (m − ℓ)ρ(m − ℓ + 2 + 2ρ)

}
−
Θ7

(
τℓ−1,Sℏ(τℓ−1),Eℏ(τℓ−1),Iℏ(τℓ−1),Qℏ(τℓ−1),Rℏ(τℓ−1),Sr(τℓ−1),Er(τℓ−1),Ir(τℓ−1)

)
h1

×hρ1
{
(m + 1 − ℓ)ρ(m − ℓ + 2 + ρ) − (m − ℓ)ρ(m − ℓ + 2 + 2ρ)

}


.

Ir(τm+1) = Ir(τ0) +
1 − ρ
ABC(ρ)

Θ8
(
τm,Sℏ(τm),Eℏ(τm), Iℏ(τm),Qℏ(τm),Rℏ(τm),Sr(τm),Er(τm), Ir(τm)

)

+
ρ

ABC(ρ)Γ(ρ)

m∑
ℓ=1





Θ8

(
τℓ,Sℏ(τℓ),Eℏ(τℓ),Iℏ(τℓ),Qℏ(τℓ),Rℏ(τℓ),Sr(τℓ),Er(τℓ),Ir(τℓ)

)
Γ(ρ+2)

×hρ1
{
(m + 1 − ℓ)ρ(m − ℓ + 2 + ρ) − (m − ℓ)ρ(m − ℓ + 2 + 2ρ)

}
−
Θ8

(
τℓ−1,Sℏ(τℓ−1),Eℏ(τℓ−1),Iℏ(τℓ−1),Qℏ(τℓ−1),Rℏ(τℓ−1),Sr(τℓ−1),Er(τℓ−1),Ir(τℓ−1)

)
h1

×hρ1
{
(m + 1 − ℓ)ρ(m − ℓ + 2 + ρ) − (m − ℓ)ρ(m − ℓ + 2 + 2ρ)

}


.

4. Results and discussion

Nonlinearities exist in both the integer-order and projected fractional-order systems, necessitating
the application of the development of computational approaches to produce the requisite simulation
model. For dynamic simulations of the mathematical formalism, a standard numerical approach from
conventional calculus characterized as the Lagrange polynomial [44], has been employed; but, for
fractional-order structures, recently created numerical techniques in [32, 35, 54] were implemented by
utilizing the Atangana-Baleanu fractional derivative operator. Furthermore, the basic reproduction
number is an important metric in patterns since it provides us with a plethora of data about the
condition. We presented stability projections demonstrating the fluctuations of R0 by using influential
factors to analyze the influence of numerous disease spreading characteristics on the basic
reproductive number.

Figures 4–7 shows thatMPX and variola infections are phylogenically connected and the smallpox
vaccine is 65 % efficacious in eliminating MPX within the Atangana-Baleanu fractional derivative
operator. Cross-reactive immune responses exist against the Orthopoxvirus genera, which means that
immunized people have a considerably reduced chance of illness and fatality than uninfected people.
For the purpose of clarification, the vaccine’s unsatisfactory protection probability was deleted from
the numerical model’s formulation. Inadequate fortification, as highlighted in [55], exacerbates the
challenge of proactive preventive acts, as poorer vaccine efficiency can contribute to higher vaccine
penetration and indicative impacts; meanwhile, the epidemic’s influence can be more difficult to
ameliorate. We can deduce that diminishing the fractional-order ρ significantly decreases the
occurrence of vulnerable, exposed, infectious, isolated and restored human populations as well as the
rodent community.

As shown in Figures 8–11, determining the value of φℏ reduces virus transmission. In addition to
immunization, it would be interesting to identify and evaluate potential preventive interventions that
could have a discernible impact on MPX propagation. For example, reducing animal-to-human
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interaction and starting an awareness program about the consequences of consuming unprocessed
meat, which appears to be the primary cause of squirrel-to-human [56] dissemination, would
drastically reduce the animal-to-human propagation incidence. It may result in a high operating cost
(for example, a reduction in meat availability), but it does not necessitate the costly or poorly
functioning healthcare systems required for vaccination, providing the public with a commonly
approachable prophylactic strategy. Such an amendment’s mathematical analysis would grow more
complicated. The basic idea may be similar to that of [57], the authors of which investigated cholera
preventative conditions in which people could be vaccinated or consume dangerously toxic water.
Figures 8–11 show how dropping the ρ from 1 deflects the susceptible human incident Sℏ curves,
resulting in a considerable mitigation in the number of occurrences in the cohorts.

The level of interaction involving the rodent community has a significant effect on theMPX spread,
as shown in Figures 12–15. We included a cohort Qℏ in the model, which contains the separated portion
of infectious individuals. We demonstrated how the contaminated community would respond in the
context of specific treatments by using numerical modeling. Furthermore, the real data [43] included
with the fractional-order, which predicts that real data is in strong harmony the fractional-order one.

In a nutshell, Figures 16–19 depicts a cumulative comparative evaluation of both classical and
suggested fractional-order modelling techniques with preventive measures and non-preventive
measures, showing that several of the observations from the Atangana–Baleanu operator are pretty
close to the factual arguments for about 8 weeks, indicating that the suggested fractional-order
derivative operator has the best effectiveness proportion.

Hence, we conclude that Atangana-Baleanu fractional-order modeling in the Caputo context is still
a useful approach for gaining a better grasp of howMPX works in different situations. Epidemiologic
modelling and fractional analysis have a broad array of applications. We expect that the simulations
can be used as a prognostic approach to precisely comprehend the transmission of MPX as more
occurrences of the virus are documented in the human population.
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Figure 4. Graphical illustration of the susceptible group Sℏ(τ) and exposed individuals Eℏ(τ)
for the human population when δ2 decreases considering multiple fractional orders ρ ∈ [0, 1].
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Figure 5. Graphical illustration of the infectious group Iℏ(τ) and isolated individuals Qℏ(τ)
for the human population when δ2 decreases considering multiple fractional orders ρ ∈ [0, 1].
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Figure 6. Graphical illustration of the recovered human group Rℏ(τ) and exposed individuals
Er(τ) for the rodent population when δ2 decreases considering multiple fractional orders
ρ ∈ [0, 1].
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Figure 7. Graphical illustration of the exposed group Er(τ) and infectious individuals Ir(τ)
for the rodent population when δ2 decreases considering multiple fractional orders ρ ∈ [0, 1].
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Figure 8. Graphical illustration of the susceptible group Sℏ(τ) and exposed individuals Eℏ(τ)
for the human population when φℏ decreases considering multiple fractional orders ρ ∈ [0, 1].
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Figure 9. Graphical illustration of the infectious group Iℏ(τ) and isolated individuals Qℏ(τ)
for the human population when φℏ decreases considering multiple fractional orders ρ ∈ [0, 1].
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Figure 10. Graphical illustration of the recovered human group Rℏ(τ) and susceptible
individuals Sr(τ) for the rodent population when φℏ decreases considering multiple fractional
orders ρ ∈ [0, 1].
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Figure 11. Graphical illustration of the Exposed group Er(τ) and infectious individuals Ir(τ)
for the rodent population when φℏ decreases considering multiple fractional orders ρ ∈ [0, 1].
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Figure 12. Graphical illustration of the susceptible group Sℏ(τ) and exposed individuals
Eℏ(τ) for the human population when ψ increases considering multiple fractional orders ρ ∈
[0, 1].

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

1

2

3

4

5

6

7

Real data

Classical data

 = 0.98

 = 0.90

 = 0.85

 = 0.80

 = 0.75

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

1

2

3

4

5

6

7

8

9

10
10

-3

Real data

Classical data

 = 0.98

 = 0.90

 = 0.85

 = 0.80

 = 0.75

(b)

Figure 13. Graphical illustration of the infectious group Iℏ(τ) and isolated individuals Qℏ(τ)
for the human population when ψ increases considering multiple fractional orders ρ ∈ [0, 1].
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Figure 14. Graphical illustration of the recovered human group Rℏ(τ) and susceptible
individuals Sr(τ) for the rodent population when ψ increases considering multiple fractional
orders ρ ∈ [0, 1].
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Figure 15. Graphical illustration of the exposed group Er(τ) and infectious individuals Ir(τ)
for the rodent population when ψ increases considering multiple fractional orders ρ ∈ [0, 1].
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Figure 16. Graphical illustration of the new model (3.12) for the susceptible group Sℏ(τ) and
exposed individuals Eℏ(τ) for the human population without treatment (red solid line) and
with treatment (blue-dotted line)
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Figure 17. Graphical illustration of the new model (3.12) for the infectious group Iℏ(τ) and
isolated individuals Qℏ(τ) for the human population without treatment (red solid line) and
with treatment (blue-dotted line)
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Figure 18. Graphical illustration of the new model (3.12) for the restored human group Rℏ(τ)
and susceptible rodent individuals Sr(τ) without treatment (red solid line) and with treatment
(blue-dotted line)
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Figure 19. Graphical illustration of the new model (3.12) for the exposed group Er(τ) and
infectious individuals Ir(τ) for the rodent population without treatment (red solid line) and
with treatment (blue-dotted line)
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5. Conclusions

To better comprehend the spread ofMPX infection, a non linear deterministic mathematical model
has been devised by applying the Atangana-Baleanu fractional derivative in the Caputo viewpoint.
The suggested paradigm consists of eight compartments that are collectively exhaustive. The human
species has been separated into five cohorts, each with its own variety of challenges. Likewise, the
rodent community was classified into three categories. In addition, the essential features of the
suggested framework have been demonstrated. The next-generation matrix approach was used to
determine the basic reproduction value. There are two equilibria in the developed framework: a DFE
point and an EEP. The stability requirements for both equilibrium conditions have been determined.
Furthermore, the presence of an endemic equilibrium means that a backward bifurcation is
conceivable. We have also demonstrated the interactive effects of several settings on the
fractional-order by using numerical computations. According to our findings, the numerical results
show that decreasing the order of the fractional derivative from 1 straightens the graphs and reduces
the probability of susceptible individuals. The ABC fractional operator expressing the hereditary
property is credited with this crucial breakthrough. The generalized ML function outperformed the
exponential decay and index law kernels due to resilient reminiscence linked to the
Atangana–Baleanu fractional derivative. Moreover, the Atangana–Baleanu fractional order derivative
is also Liouville–Caputo and Caputo–Fabrizio, indicating that it has both Markovian and
non-Markovian features. We, the investigators of this extensive review on the impact of various
fractional formulations, including fractal–fractional derivatives, who have also analyzed the efficiency
of the ABC fractional operator results on systems characterized by numerous and additional prevalent
pathogen systems, may validate this notion.
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