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Abstract
In this investigation, we unfold the Jensen–Mercer (J – M) inequality for convex
stochastic processes via a new fractional integral operator. The incorporation of
convex stochastic processes, the J – M inequality and a fractional integral operator
having an exponential kernel brings a new direction to the theory of inequalities.
With this in mind, estimations of Hermite–Hadamard–Mercer (H – H – M)-type
fractional inequalities involving convex stochastic processes are presented. In the
context of the new fractional integral operator, we also investigate a novel identity for
differentiable mappings. Then, a new related H – H – M-type inequality is presented
using this identity as an auxiliary result. Applications to special means and matrices
are also presented. These findings are particularly appealing from the perspective of
optimization, as they provide a larger context to analyze optimization and
mathematical programming problems.
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1 Introduction
The concept of convexity for stochastic processes has received much attention in recent
years because of its usefulness in optimization, optimal designs, and numerical approxi-
mations. Guessab et al. [1] investigated the error of the barycentric approximation and the
convex function. The Jensen-type inequalities on convex polytopes were also presented
by Guessab [2, 3], who also looked at the error in the approximation of a convex function.
Nikodem [4] proposed convex stochastic processes in 1980 and looked into their regu-
larity characteristics. Skowroǹski [5] derived some more conclusions on convex stochas-
tic processes in 1992, which generalize several known convex functions. More properties
of convex and Jensen-convex processes were presented by Pales in [6]. Skowronski [7]
investigated wright-convex stochastic processes. Kotrys [8] provided a new generaliza-
tion of the Hermite–Hadamard (H – H) inequality for convex stochastic processes. Many
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mathematicians began researching this notion soon after Kotrys’s work was published,
and many improvements of H – H-type inequalities incorporating other types of convexi-
ties were established. Kotrys [9] studied strongly convex stochastic processes, Barrez [10]
and Saleem [11] investigated h-convex stochastic processes, Iscan et al. [12] introduced
the p-convex stochastic processes, Maden et al. [13] proposed s-convex stochastic pro-
cesses in the first sense, and derived H – H-type inequalities for them. Set et al. [14] defined
s-convex stochastic process in the second sense, and they looked at H – H-type inequali-
ties for these processes. Furthermore, preinvex stochastic processes have been described
in recent studies [15] and Fu et al. [16] derived the H – H-type inequality and its refine-
ments via an n-polynomial convex stochastic process. For some recent generalizations on
the stochastic process and corresponding inequalities, see [12, 17, 18] and the references
therein. Stochastic processes also have applications in variation principles [19], optimal
Robin boundary control problem [20], optimal consumption and equilibrium prices [21],
Portfolio optimization [22], gradient iteration [23], and physics [24].

Suppose that (�,A,P) is an arbitrary probability space. A function F : I×� →R is said
to be a random variable if it is A-measurable. A function F : I×R is said to be a stochastic
process if for every u ∈ I, the function F(u, ·) is a random variable, where I ⊆ R is an
interval.

The stochastic process F is said to be:
1. Stochastically continuous on I, if

η – lim
u→u0

F(u, ·) = F(u0, ·),

for all u0 ∈ I, where η – lim denotes the limit in probability.
2. Mean-square continuous in I, if

lim
u→u0

E
[
F(u, ·) – F(u0, ·)]2 = 0,

for all u0 ∈ I, where E[F(U, ·)] denotes the expectation value of the random variable
F(u, ·).

Definition 1.1 (see [4, 5, 24]) Let F : I× � →R be a stochastic process with E[F(u)2] ≤
∞, where u ∈ I. Then, the random variable represented by Z : � → R is said to be a
mean-square integral of the process F on [η, ξ ] if for all sequences of partitions of interval
[η, ξ ] ⊆ I, η = u0 < u1 < · · · < un = ξ and for all θk ∈ [uk–1;uk], k = 1, . . . , n, we have

lim
n→∞E

[( n∑

k=1

F(θk , ·)(uk – u(k–1))–Z(·)
)2]

= 0,

which can also be written as

∫ ξ

η

F(u, ·) du = Z(·).

For the existence of the mean-square integral it is enough to assume the mean-square
continuity of the stochastic process F.
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Definition 1.2 (see [4]) Assume (�,A,P) is an arbitrary probability space. Then, a
stochastic process F : I× � →R is said to be a convex stochastic process, if we have

F
(
μw + (1 – μ)y, ·) ≤ μF(w, ·) + (1 – μ)F(y, ·),

for all w,y ∈ I, μ ∈ [0, 1].

Theorem 1.1 (see [8]) Let F : I×� → R be a convex stochastic and mean-square contin-
uous process in the interval I× � then, the following inequality holds true:

F

(
w + y

2
, ·
)

≤ 1
y – w

∫ y

w
F(x, ·) dx ≤ F(w, ·) + F(y, ·)

2
, (a.e.) (1.1)

for w,y ∈ I, w < y.

The purpose of this study is to establish a counterpart of the J – M and H – H – M-type
inequalities for convex stochastic processes via a new fractional integral operator. To addi-
tionally encourage discussion of this article, we present the definition of the R–L fractional
operator and related H – H-type inequalities.

Hafiz [25] introduced the following stochastic mean-square fractional integral operators
given as:

Definition 1.3 (see [25]) Let F : I × � → R be a stochastic process. Then, the mean-
square continuous fractional integrals Iαη+ and Iαξ– of order α > 0 are defined by

Iαη+ [F](z) =
1

�(α)

∫ z

η

(z – x)α–1F(x, ·) dx (a.e)

and

Iαξ– [F](z) =
1

�(α)

∫ ξ

z
(x – z)α–1F(x, ·) dx (a.e),

where �(·) is the Gamma function.

In [26], the authors employed the stochastic mean-square fractional integrals to obtain
fractional stochastic H – H-type inequalities, given as follows:

Theorem 1.2 ([26]) Let F : I × � → R be a convex stochastic process in the interval I.
Then, the following stochastic fractional integral inequality holds true:

F

(
η + ξ

2
, ·
)

≤ �(α + 1)
2(ξ – η)α

[
Iαη+ [F](ξ ) + Iαξ– [F](η)

] ≤ F(η, ·) + F(ξ , ·)
2

, (a.e.)

for all η, ξ and α > 0.

During the preceding few decades, researchers have been quite interested in their gen-
eralizations and enhancements, as indicated by a large number of publications on the sub-
ject. Öğülmüs and Sarikaya [27] introduced the fractional version of the H – H – M-type in-
equality via the Riemann–Liouville fractional operator. After this article, many improved
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versions of the H – H – M-type inequality for different existing fractional operators such as
Conformable [28], ψ-Riemann–Liouville [29], Katugampola [30], and Atangana–Baleanu
[31] fractional operators have been presented. Motivated by the above-mentioned arti-
cles, the results by Agahi and Babakhani [26], and the concept of stochastic processes, the
main objective is to generalize the J – M and H – H – M inequalities pertaining to a new
fractional operator with an exponential function in its kernel.

To generate more generalized results, we introduced a new mean-square fractional inte-
gral operator in this study. This is due to the fact that this fractional operator has an expo-
nential kernel. The aforementioned fractional inequalities do not follow our conclusions,
which is a distinction between our results and existing generalizations. Many experts have
presented extensions of the H – H inequality with various fractional integral operators, but
there is no exponential characteristic in their results. This research sparked an interest in
creating more generalized fractional inequalities with an exponential function as the ker-
nel. Moreover, the applications of convex stochastic processes to the main findings brings
a new direction to the field of analytical inequalities. We have incorporated the concepts
of stochastic processes with fractional calculus to present new inequalities. Although we
can find few studies on the growth of integral inequalities involving convex stochastic pro-
cesses, there are still numerous gaps to be filled for integral inequalities. As a result, to fill
the gap, in this investigation, we put forward our step in establishing J – M and H – H – M
inequalities for convex stochastic processes employing fractional integral operators. We
strongly believe that this article will encourage many researchers to present different im-
proved versions of J – M-type inequalities via both classical and fractional integrals for
various new convex stochastic processes.

2 Jensen–Mercer inequality via convex stochastic processes
Before describing the key conclusions, we introduce the definitions of the new generalized
mean-square fractional integrals.

Definition 2.1 Let F : I ×� →R be a stochastic process. Then, the mean-square contin-
uous fractional integrals Jαη+ and Jαξ– of order α > 0 are defined by

Jα
η+ [F](x) :=

1
α

∫ x

η

e– 1–α
α (x–z)F(z, ·) dz, (a.e.) (0 ≤ η < x < ξ )

and

Jα
ξ– [F](x) :=

1
α

∫ ξ

x
e– 1–α

α (z–x)F(z, ·) dz, (a.e.) (0 ≤ η < x < ξ ),

respectively.

For brevity, we denote σ = 1–α
α

(y – w) throughout the manuscript.
In this section, we derive two new J – M inequalities for convex functions, which will be

used to present our main results.
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Lemma 2.1 Assume F : I ×� −→ R is a convex stochastic process, α = (α1,α2, . . . ,αm) and
0 < w1 ≤ w2 ≤ · · · ≤ wm, such that

∑m
k=1 αk = 1, then the following inequality holds true

F

( m∑

k=1

αkwk , ·
)

≤
m∑

k=1

αkF(wk , ·), (2.1)

almost everywhere.

Next, we will prove the J – M inequality for convex stochastic process and for that, we
need Lemma 2.1.

Lemma 2.2 Let α = (α1,α2, . . . ,αm) and 0 < w1 ≤ w2 ≤ · · · ≤ wm, such that
∑m

k=1 αk = 1. If
F : I × � −→R is a convex stochastic process, then the following inequality

F(w1 + wm – wk , ·) ≤ F(w1, ·) + F(wm, ·) – F(wk , ·), (2.2)

holds true almost everywhere.

Proof Let us consider yk = w1 +wm –wk , then it immediately follows that w1 +wm = wk +yk .
Therefore, the pairs w1, wm and wk , yk possess the same midpoint. Since this is the case,
we have μ such that

wk = μw1 + (1 – μ)wm,

yk = (1 – μ)w1 + μwm,

where 0 ≤ μ ≤ and 1 ≤ k ≤ m. Now, if we use the general convexity of F, we have

F(yk , ·) = F
(
(1 – μ)w1 + μwm, ·)

≤ (1 – μ)F(w1, ·) + μF(wm, ·)
= F(w1, ·) + F(wm, ·) –

[
μF(w1, ·) + (1 – μ)F(wm, ·)]

≤ F(w1, ·) + F(wm, ·) – F
(
μw1 + (1 – μ)wm, ·)

= F(w1, ·) + F(wm, ·) – F(wk , ·)

and yk = w1 + wm – wk . This yields the desired result. �

Lemma 2.3 Let α = (α1,α2, . . . ,αm) and 0 < w1 ≤ w2 ≤ · · · ≤ wm, such that
∑m

k=1 αk = 1. If
F : I × � −→R is a convex stochastic process, then the following inequality

F

(

w1 + wm –
m∑

k=1

αkwk , ·
)

≤ F(w1, ·) + F(wm, ·) –
m∑

k=1

αkF(wk , ·), (2.3)

holds true almost everywhere.
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Proof The proof follows from Lemma 2.1 and Lemma 2.2 for general convex stochastic
processes,

F

(

w1 + wm –
m∑

k=1

μkwk , ·
)

= F

( m∑

k=1

μk(w1 + wm – wk , ·)
)

≤
m∑

k=1

μkF(w1 + wm – wk , ·)

≤
m∑

k=1

μk
[
F(w1, ·) + F(wm, ·) – F(wk , ·)]

= F(w1, ·) + F(wm, ·) –
m∑

k=1

μkF(wk , ·).

This yields the desired result. �

3 Hadamard–Jensen–Mercer- and Pachpatte–Mercer-type inequalities via
fractional integrals

Theorem 3.1 Let F : I × � → R be a convex stochastic process in the interval I, such that
η, ξ ∈ I, with 0 < η < ξ . Then, for w,y > 0, the following fractional inequality holds true:

F

(
η + ξ –

w + y
2

, ·
)

≤ [
F(η, ·) + F(ξ , ·)] –

1 – α

2(1 – e–σ )
[
Jα
w+ [F](y) + Jα

y– [F](w)
]

≤ [
F(η, ·) + F(ξ , ·)] – F

(
w + y

2
, ·
)

. (a.e.) (3.1)

Proof Since F is a convex function on [η, ξ ], by the hypotheses of the Jensen–Mercer in-
equality, we can write

F

(
η + ξ –

S1 + S2

2
, ·
)

≤ F(η, ·) + F(ξ , ·) – F
(

S1 + S2

2
, ·
)

. (a.e.)

Now, if we let S1 = μw + (1 – μ)y and S2 = μy + (1 – μ)w, we have

F

(
η+ξ –

w + y
2

, ·
)

≤ F(η, ·)+F(ξ , ·)–
F(μw + (1 – μ)y, ·) + F(μw + (1 – μ)y, ·)

2
. (a.e.)

If we multiply the above inequality by e– 1–α
α (y–w)μ and then integrate the obtained in-

equality over [0, 1], we find that

∫ 1

0
e– 1–α

α (y–w)μF

(
η + ξ –

w + y
2

, ·
)

dμ

≤ F(η, ·) + F(ξ , ·)
∫ 1

0
e– 1–α

α (y–w)μ dμ

–
1
2

∫ 1

0
e– 1–α

α (y–w)μ[
F
(
μw + (1 – μ)y, ·) + F

(
μw + (1 – μ)y, ·)]dμ,
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consequently,
(

1 – e–σ

σ

)
F

(
η + ξ –

w + y
2

, ·
)

≤ [
F(η, ·) + F(ξ , ·)]

(
1 – e–σ

σ

)

–
1

2(y – w)

[∫ y

w
e– 1–α

α (y–u)F(u, ·) du +
∫ y

w
e– 1–α

α (u–w)F(u, ·) du
]

,

which readily yields

F

(
η + ξ –

w + y
2

, ·
)

≤ [
F(η, ·) + F(ξ , ·)] –

1 – α

2(1 – e–σ )
[
Jα
w+ [F](y) + Jα

y– [F](w)
]
. (a.e.) (3.2)

This gives us the first part of the desired result. For the second part, we use the convexity
of F.

F

(
S1 + S2

2
, ·
)

= F
(

(μw + (1 – μ)y) + (μy + (1 – μ)w)
2

, ·
)

≤ F(μw + (1 – μ)y, ·) + F(μy + (1 – μ)w, ·)
2

. (3.3)

If we multiply the above Equation (3.3) by e– 1–α
α (y–w)μ and then integrate the obtained

inequality over [0, 1], we find that

F

(
S1 + S2

2
, ·
)∫ 1

0
e– 1–α

α (y–w)μ dμ

≤ 1
2

[∫ 1

0
e– 1–α

α (y–w)μF
(
μw + (1 – μ)y, ·)dμ

+
∫ 1

0
e– 1–α

α (y–w)μF
(
μy + (1 – μ)w, ·)dμ

]
.

It follows from the above developments that
(

1 – e–σ

σ

)
F

(
w + y

2
, ·
)

≤ α

2(y – w)
[
Jα
w+ [F](y) + Jα

y– [F](w)
]
.

This implies

–F
(
w + y

2
, ·
)

� –
1 – α

2(1 – e–σ )
[
Jα
w+ [F](y) + Jα

y– [F](w)
]
. (a.e.) (3.4)

Now, adding [F(η, ·) + F(ξ , ·)] to both sides of the above Equation (3.4), we have

[
F(η, ·) + F(ξ , ·)] – F

(
w + y

2
, ·
)

�
[
F(η, ·) + F(ξ , ·)] –

1 – α

2(1 – e–σ )
[
Jα
w+ [F](y) + Jα

y– [F](w)
]
. (a.e.) (3.5)

From Equations (3.2) and (3.5), the proof is completed. �
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Corollary 3.1 If we put η = w and ξ = y in Theorem 3.1, we have the following new frac-
tional inequality for convex stochastic processes:

F

(
w + y

2
, ·
)

≤ [
F(w, ·) + F(y, ·)] –

1 – α

2(1 – e–σ )
[
Jα
w+ [F](y) + Jα

y– [F](w)
]

≤ [
F(w, ·) + F(y, ·)] – F

(
w + y

2
, ·
)

. (a.e.) (3.6)

Corollary 3.2 If α → 1, we have limα→1
1–α

2(1–e–σ ) = 1
2(y–w) . Then, from Theorem 3.1, the fol-

lowing new Hermite–Hadamard–Mercer-type inequality for convex stochastic processes
holds true:

F

(
η + ξ –

w + y
2

, ·
)

≤ [
F(η, ·) + F(ξ , ·)] –

1
y – w

∫ y

w
F(u) du

≤ [
F(η, ·) + F(ξ , ·)] – F

(
w + y

2
, ·
)

. (a.e.) (3.7)

Theorem 3.2 Let F : I × � → R be a convex stochastic process in the interval I, such that
η, ξ ∈ I, with 0 < η < ξ . Then, for w,y > 0, the following fractional inequality holds true:

F

(
η + ξ –

w + y
2

, ·
)

≤ 1 – α

2(1 – e–σ )
[
Jα

η+ξ–w– [F](η + ξ – y) + Jα
η+ξ–y+ [F](η + ξ – w)

]

≤ F(η, ·) + F(ξ , ·) –
F(w, ·) + F(y, ·)

2
. (a.e.) (3.8)

Proof Let F : [η, ξ ] →R be a convex stochastic process. Then, by hypothesis, we have

F

(
η + ξ –

S1 + S2

2
, ·
)

= F
(

η + ξ – S1 + η + ξ – S2

2
, ·
)

≤ 1
2
(
F(η + ξ – S1, ·) + F(η + ξ – S2, ·)). (a.e.) (3.9)

Now, if we change the variables as

η + ξ – S1 = μ(η + ξ – w) + (1 – μ)(η + ξ – y)

and

η + ξ – S2 = μ(η + ξ – y) + (1 – μ)(η + ξ – w)

in Equation (3.9), we have

F

(
η + ξ –

w + y
2

, ·
)

≤ [F(μ(η + ξ – w) + (1 – μ)(η + ξ – y), ·) + F(μ(η + ξ – y) + (1 – μ)(η + ξ – w), ·)]
2

. (3.10)
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Multiplying both sides of the above Equation (3.10) by e– 1–α
α (y–w)μ and then integrating

the obtained result over [0, 1], we find that

(
1 – e–σ

σ

)
F

(
η + ξ –

w + y
2

, ·
)

≤ 1
2(y – w)

[∫ η+ξ–w

η+ξ–y
e– 1–α

α (u–(η+ξ–y))F(u, ·) du +
∫ η+ξ–w

η+ξ–y
e– 1–α

α ((η+ξ–w)–u)F(u, ·) du
]

=
α

2(y – w)
[
Jα

η+ξ–w– [F](η + ξ – y) + Jα
η+ξ–y+ [F](η + ξ – w)

]
,

which readily yields

F

(
η +ξ –

w + y
2

, ·
)

≤ 1 – α

2(1 – e–σ )
[
Jα

η+ξ–w– [F](η +ξ –y) +Jα
η+ξ–y+ [F](η +ξ –w)

]
. (a.e.)

This leads us to the first part of the proof. Now, for the second part, we use the convexity
of F, given as

F
(
μ(η + ξ – w) + (1 – μ)(η + ξ – y), ·) ≤ μF(η + ξ – w, ·) + (1 – μ)F(η + ξ – y, ·)

and

F
(
μ(η + ξ – y) + (1 – μ)(η + ξ – w), ·) ≤ μF(η + ξ – y, ·) + (1 – μ)F(η + ξ – w, ·).

Adding both the inequalities, we find that

F
(
μ(η + ξ – w) + (1 – μ)(η + ξ – y), ·) + F

(
μ(η + ξ – y) + (1 – μ)(η + ξ – w), ·)

≤ F(η + ξ – w, ·) + F(η + ξ – y, ·)
≤ F(η, ·) + F(ξ , ·) – F(w, ·) + F(η, ·) + F(ξ , ·) – F(y, ·)
= 2

[
F(η, ·) + F(ξ , ·)] –

[
F(w, ·) + F(y, ·)]. (3.11)

Multiplying both sides of the above Equation (3.11) by e– 1–α
α (y–w)μ and then integrating

over [0, 1], we have

∫ 1

0
e– 1–α

α (y–w)μF
(
μ(η + ξ – w) + (1 – μ)(η + ξ – y), ·)dμ

+
∫ 1

0
e– 1–α

α (y–w)μF
(
μ(η + ξ – y) + (1 – μ)(η + ξ – w), ·)dμ

≤ 2
[[
F(η, ·) + F(ξ , ·)] –

[
F(w, ·) + F(y, ·)]]

∫ 1

0
e– 1–α

α (y–w)μ dμ.

It follows from the above developments that

α

2(y – w)
[
Jα

η+ξ–w– [F](η + ξ – y) + Jα
η+ξ–y+ [F](η + ξ – w)

]

≤
[
F(η, ·) + F(ξ , ·) –

F(w, ·) + F(y, ·)
2

][
(1 – e–σ )

σ

]
,
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which readily yields

1 – α

2(1 – e–σ )
[
Jα

η+ξ–w– [F](η + ξ – y) + Jα
η+ξ–y+ [F](η + ξ – w)

]

≤ F(η, ·) + F(ξ , ·) –
F(w, ·) + F(y, ·)

2
. (a.e.)

This leads us to the proof of the desired Theorem 3.2. �

Corollary 3.3 If we put η = w and ξ = y in Theorem 3.2, we have the following new frac-
tional inequality for convex stochastic processes:

F

(
w + y

2
, ·
)

≤ 1 – α

2(1 – e–σ )
[
Jα
w+ [F](y) + Jα

y– [F](w)
] ≤ F(w, ·) + F(y, ·)

2
. (a.e.)

Corollary 3.4 If α → 1, we have limα→1
1–α

2(1–e–σ ) = 1
2(y–w) . Then, from Theorem 3.2, the fol-

lowing new Hermite–Hadamard–Mercer-type inequality for convex stochastic processes
holds true:

F

(
η + ξ –

w + y
2

, ·
)

≤ 1
y – w

∫ y

w
F(η + ξ – u, ·) du

≤ [
F(η, ·) + F(ξ , ·)] –

F(w, ·) + F(y, ·)
2

. (a.e.) (3.12)

Remark 3.1 If we put η = w and ξ = y in Theorem 3.2, then for α → 1, the Hermite–
Hadamard-type inequality (1.1) for convex stochastic processes given by Kotrys [8] is re-
covered.

Theorem 3.3 Let F : I × � → R be a convex stochastic process in the interval I, such that
η, ξ ∈ I, with 0 < η < ξ . Then, for w,y > 0, the following fractional inequality holds true:

F

(
η + ξ –

w + y
2

, ·
)

≤ 1 – α

2(1 – e– σ
2 )

[
Jα

(η+ξ– w+y
2 )– [F](η + ξ – y) + Jα

(η+ξ– w+y
2 )+ [F](η + ξ – w)

]

≤ F(η, ·) + F(ξ , ·) –
F(w, ·) + F(y, ·)

2
. (a.e.) (3.13)

Proof Using the convexity of F on [η, ξ ], one has

F

(
η + ξ –

S1 + S2

2
, ·
)

= F
(

η + ξ – S1 + η + ξ – S2

2
, ·
)

≤ F(η + ξ – S1, ·) + F(η + ξ – S2, ·)
2

. (a.e.)

If we let S1 = μ

2 w + 2–μ

2 y and S1 = μ

2 y + 2–μ

2 w, we have

2F
(

η + ξ –
w + y

2
, ·
)

≤ F

(
η + ξ –

(
μ

2
w +

2 – μ

2
y

)
, ·
)

+ F
(

η + ξ –
(

μ

2
y +

2 – μ

2
w

)
, ·
)

. (3.14)
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If we multiply the above equation (3.14) by e– 1–α
2α (y–w)μ and then integrate the obtained

inequality over [0, 1] we have

4(1 – e– σ
2 )

σ
F

(
η + ξ –

w + y
2

, ·
)

≤
∫ 1

0
e– 1–α

2α (y–w)μF

(
η + ξ –

(
μ

2
w +

2 – μ

2
y

)
, ·
)

dμ

+
∫ 1

0
e– 1–α

2α (y–w)μF

(
η + ξ –

(
μ

2
y +

2 – μ

2
w

)
, ·
)

dμ

≤ 2
y – w

∫ η+ξ– w+y
2

η+ξ–y
e– 1–α

α (u–(η+ξ–y))F(u, ·) du

+
2

y – w

∫ η+ξ–w

η+ξ– w+y
2

e– 1–α
α ((η+ξ–w)–u)F(u, ·) du

=
2α

y – w
[
Jα

(η+ξ– w+y
2 )– [F](η + ξ – y) + Jα

(η+ξ– w+y
2 )+ [F](η + ξ – w)

]
.

It follows from the above developments that

F

(
η + ξ –

w + y
2

, ·
)

≤ 1 – α

2(1 – e– σ
2 )

[
Jα

(η+ξ– w+y
2 )– [F](η + ξ – y) + Jα

(η+ξ– w+y
2 )+ [F](η + ξ – w)

]
. (a.e.) (3.15)

This leads us to the first part of the proof. Now, for the second part, we use the J–M
inequality

F

(
η + ξ –

(
μ

2
w +

2 – μ

2
y

)
, ·
)

+ F
(

η + ξ –
(

μ

2
y +

2 – μ

2
w

)
, ·
)

≤ 2
[
F(η, ·) + F(ξ , ·)] – F(w, ·) + F(y, ·). (3.16)

If we multiply the above Equation (3.16) by e– 1–α
2α (y–w)μ and then integrate the obtained

result over [0, 1], we find

2α

y – w
[
Jα

(η+ξ– w+y
2 )– [F](η + ξ – y) + Jα

(η+ξ– w+y
2 )+ [F](η + ξ – w)

]

≤ [
2
[
F(η, ·) + F(ξ , ·)] – F(w, ·) + F(y, ·)]

∫ 1

0
e– 1–α

2α (y–w)μ dμ.

=
[
2
[
F(η, ·) + F(ξ , ·)] – F(w, ·) + F(y, ·)]2(1 – e– σ

2 )
σ

,

which readily gives

1 – α

2(1 – e– σ
2 )

[
Jα

(η+ξ– w+y
2 )– [F](η + ξ – y) + Jα

(η+ξ– w+y
2 )+ [F](η + ξ – w)

]

≤ F(η, ·) + F(ξ , ·) –
F(w, ·) + F(y, ·)

2
. (a.e.) (3.17)

Reorganizing Equations (3.15) and (3.17) completes the proof of Theorem 3.3. �



Jarad et al. Journal of Inequalities and Applications         (2023) 2023:51 Page 12 of 18

Corollary 3.5 If we put η = w and ξ = y in Theorem 3.3, we have the following new frac-
tional inequality for convex stochastic processes:

F

(
w + y

2
, ·
)

≤ 1 – α

2(1 – e– σ
2 )

[
Jα

( w+y
2 )– [F](w) + Jα

( w+y
2 )+ [F](y)

] ≤ F(w, ·) + F(y, ·)
2

. (a.e.)

Remark 3.2 If α → 1, then from Theorem 3.3, we recapture (3.12).

Remark 3.3 If we put η = w and ξ = y in Theorem 3.3, then for α → 1, the Hermite–
Hadamard-type inequality (1.1) for convex stochastic processes given by Kotrys [8] is re-
covered.

4 Further inequalities for differentiable convex stochastic processes
This section focuses on demonstrating a new identity for differentiable stochastic pro-
cesses via a new fractional integral operator having an exponential kernel. The H – H – M-
type inequality is then refined by taking this identity into account.

Lemma 4.1 Let F : I × � → R be a convex stochastic process in the interval I, such that
η, ξ ∈ I, with 0 < η < ξ . Then, for w,y > 0,

F(η + ξ – w, ·) + F(η + ξ – y, ·)
2

–
1 – α

2(1 – e–σ )
[
Jα

η+ξ–w– [F](η + ξ – y) + Jα
η+ξ–y+ [F](η + ξ – w)

]

=
y – w

2(1 – e–σ )

∫ 1

0

[
e–σ (1–μ) – e–σμ

]
F′(η + ξ –

(
μw + (1 – μ)y

)
, ·)dμ, (4.1)

holds true almost everywhere.

Proof

Let I1 =
∫ 1

0
e–σμF′(η + ξ –

(
μw + (1 – μ)y

)
, ·)dμ

=
e–σF(η + ξ – w, ·) – F(η + ξ – y, ·)

y – w
+

σα

(y – w)2

[
Jα

η+ξ–w– [F](η + ξ – y)
]

=
e–σF(η + ξ – w, ·) – F(η + ξ – y, ·)

y – w
+

1 – α

y – w
[
Jα

η+ξ–w– [F](η + ξ – y)
]

and

I2 =
∫ 1

0
e–σ (1–μ)F′(η + ξ –

(
μw + (1 – μ)y

)
, ·)dμ

=
F(η + ξ – w, ·) – e–σF(η + ξ – y, ·)

y – w
+

σα

(y – w)2

[
Jα

η+ξ–y+ [F](η + ξ – w)
]

=
F(η + ξ – w, ·) – e–σF(η + ξ – y, ·)

y – w
–

1 – α

y – w
[
Jα

η+ξ–y+ [F](η + ξ – w)
]
.
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From the above developments, we have

I2 – I1 =
F(η + ξ – w, ·) – e–σF(η + ξ – y, ·)

y – w
–

1 – α

y – w
[
Jα

η+ξ–y+ [F](η + ξ – w)
]

–
[

e–σF(η + ξ – w, ·) – F(η + ξ – y, ·)
y – w

+
1 – α

y – w
[
Jα

η+ξ–w– [F](η + ξ – y)
]
]

=
F(η + ξ – w, ·) – e–σF(η + ξ – y, ·)

y – w
–

e–σF(η + ξ – w, ·) – F(η + ξ – y, ·)
y – w

–
1 – α

y – w
[
Jα

η+ξ–y+ [F](η + ξ – w)
]

–
1 – α

y – w
[
Jα

η+ξ–w– [F](η + ξ – y)
]

=
(
1 – e–σ

)F(η + ξ – w, ·) + F(η + ξ – y, ·)
y – w

–
1 – α

y – w
[
Jα

η+ξ–y+ [F](η + ξ – w) + Jα
η+ξ–w– [F](η + ξ – y)

]
. (4.2)

Multiplying both sides of the above equality by y–w
2(1–e–σ ) , we obtain

F(η + ξ – w, ·) + F(η + ξ – y, ·)
2

–
1 – α

2(1 – e–σ )
[
Jα

η+ξ–y+ [F](η + ξ – w) + Jα
η+ξ–w– [F](η + ξ – y)

]

=
y – w

2(1 – e–σ )
[I2 – I1].

This leads us to the proof of Lemma 4.1. �

Corollary 4.1 If we put η = w and ξ = y in Lemma 4.1, we have the following new equality
for convex stochastic processes:

F(w, ·) + F(y, ·)
2

–
1 – α

2(1 – e–σ )
[
Jα
y– [F](w) + Jα

w+ [F](y)
]

=
y – w

2(1 – e–σ )

∫ 1

0

[
e–σ (1–μ) – e–σμ

]
F′(μy + (1 – μ)w, ·)dμ. (a.e.)

Theorem 4.1 Let F : I × � → R be a convex stochastic process in the interval I, such that
η, ξ ∈ I, with 0 < η < ξ . Then, for w,y > 0, the following fractional inequality

∣∣
∣∣
F(η + ξ – w, ·) + F(η + ξ – y, ·)

2

–
1 – α

2(1 – e–σ )
[
Jα

η+ξ–y+ [F](η + ξ – w) + Jα
η+ξ–w– [F](η + ξ – y)

]
∣∣
∣∣

≤ y – w
2(1 – e–σ )

(
1 + e–σ – 2e– σ

2

σ

)[(∣∣F′(η, ·)∣∣ +
∣
∣F′(ξ , ·)∣∣) –

|F′(w, ·)| + |F′(y, ·)|
2

]
,

holds true almost everywhere.
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Proof Employing Lemma 4.1, using properties of modulus, the convexity of |F|, and the
J–M inequality, we have

∣
∣∣
∣
F(η + ξ – w, ·) + F(η + ξ – y, ·)

2

–
1 – α

2(1 – e–σ )
[
Jα

η+ξ–y+ [F](η + ξ – w) + Jα
η+ξ–w– [F](η + ξ – y)

]
∣∣
∣∣

≤ y – w
2(1 – e–σ )

∫ 1

0

∣∣e–σ (1–μ) – e–σμ
∣∣∣∣F′(η + ξ –

(
μw + (1 – μ)y

)
, ·)∣∣dμ

≤ y – w
2(1 – e–σ )

∫ 1

0

∣
∣e–σ (1–μ) – e–σμ

∣
∣||F′(η, ·) + F′(ξ , ·)

–
(
μF′(w, ·) + (1 – μ)F′(y, ·)|)dμ

=
y – w

2(1 – e–σ )

∫ 1
2

0

(
e–σμ – e–σ (1–μ))

× [∣∣F′(η, ·)∣∣ +
∣
∣F′(ξ , ·)∣∣ –

(
μ

∣
∣F′(w, ·)∣∣ + (1 – μ)

∣
∣F′(y, ·)∣∣)]dμ

+
y – w

2(1 – e–σ )

∫ 1

1
2

(
e–σ (1–μ) – e–σμ

)

× [∣∣F′(η, ·)∣∣ +
∣∣F′(ξ , ·)∣∣ –

(
μ

∣∣F′(w, ·)∣∣ + (1 – μ)
∣∣F′(y, ·)∣∣)]dμ

=
y – w

2(1 – e–σ )

{(∣∣F′(η, ·)∣∣ +
∣
∣F′(ξ , ·)∣∣)

∫ 1
2

0

(
e–σμ – e–σ (1–μ))dμ

–
{∣∣F′(w, ·)∣∣

∫ 1
2

0

(
e–σμ – e–σ (1–μ))μdμ

+
∣∣F′(y, ·)∣∣

∫ 1
2

0

(
e–σμ – e–σ (1–μ))(1 – μ) dμ

}}

+
y – w

2(1 – e–σ )

{(∣∣F′(η, ·)∣∣ +
∣∣F′(ξ , ·)∣∣)

∫ 1

1
2

(
e–σ (1–μ) – e–σμ

)
dμ

–
{∣∣F′(w, ·)∣∣

∫ 1

1
2

(
e–σ (1–μ) – e–σμ

)
μdμ

+
∣∣F′(y, ·)∣∣

∫ 1

1
2

(
e–σ (1–μ) – e–σμ

)
(1 – μ) dμ

}}

=
y – w

2(1 – e–σ )
{(∣∣F′(η, ·)∣∣ +

∣
∣F′(ξ , ·)∣∣)

(
e–σ (eσ + 1) – 2e– σ

2

σ

)

– {∣∣F′(w, ·)∣∣e–σ (eσ – 1) – σ e– σ
2

σ 2

+
∣∣F′(y, ·)∣∣

(
e–σ ((σ – 1)eσ + σ + 1) – σ e– σ

2

σ 2

)
+

(∣∣F′(η, ·)∣∣

+
∣
∣F′(ξ , ·)∣∣)

(
e–σ (eσ + 1) – 2e– σ

2

σ

)

–
{∣
∣F′(w, ·)∣∣

(
e–σ ((σ – 1)eσ + σ + 1) – σ e– σ

2

σ 2

)
+

∣
∣F′(y, ·)∣∣

(
e–σ (eσ – 1) – σ e– σ

2

σ 2

)}
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=
y – w

2(1 – e–σ )

(
1 + e–σ – 2e– σ

2

σ

)

×
[(∣∣F′(η, ·)∣∣ +

∣∣F′(ξ , ·)∣∣) –
|F′(w, ·)| + |F′(y, ·)|

2

]
. (a.e.)

This leads us to the desired inequality. �

Corollary 4.2 If we put η = w and ξ = y in Theorem 4.1, we have the following inequality
for convex stochastic processes:

∣
∣∣∣
F(w, ·) + F(y, ·)

2
–

1 – α

2(1 – e–σ )
[
Jα
y– [F](w) + Jα

w+ [F](y)
]
∣
∣∣∣

=
y – w

2(1 – e–σ )

(
1 + e–σ – 2e– σ

2

σ

) |F′(w, ·)| + |F′(y, ·)|
2

. (a.e.)

5 Applications
Here, we present applications of our established results via special means and matrices.

5.1 Applications to special means
1. The arithmetic mean:

A = A(q1,q2) =
q1 + q2

2
, q1,q2 ≥ 0.

2. The logarithmic mean:

L = L(q1,q2) =
q2 – q1

lnq2 – lnq1
, q1,q2 > 0.

3. The p-logarithmic mean:

Lp = Lp(q1,q2) =
(

qp+1
2 – qp+1

1
(p + 1)(q2 – q1)

) 1
p

, q1,q2 > 0.

Proposition 5.1 Let η, ξ ∈ R with η < ξ then,

[
2A(η, ξ ) – A(w,y)

]n ≤ [
2A

(
ηn, ξn) – Ln

n(w,y)
] ≤ [

2A
(
ηn, ξn) – An(w,y)

]
. (5.1)

Proof Putting F(u·, ) = un in Corollary 3.2, then we obtain the inequality (5.1). �

Proposition 5.2 η, ξ ∈R with η < ξ then,

[
2A(η, ξ ) – A(w,y)

]n ≤ [
Ln

n(η + ξ – w,η + ξ – y)
] ≤ [

2L
(
ηn, ξn) – A

(
wn,yn)]. (5.2)

Proof Putting F(u·, ) = un in Corollary 3.4, then we obtain the inequality (5.2). �

5.2 Applications to matrices
Example 5.1 Let Cn represent the set of n × n complex matrices, Mn represent the algebra
of n × n complex matrices, and M+n represent the strictly positive matrices in M. That is,
P ∈ M+

n for every nonzero u ∈ Cn if < Pu, u » 0.
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Sababheh [32] proved that F(u) = ‖PxYQ1–x + P1–xYQx‖, P,Q ∈ M
+
n , Y ∈ Mn is convex for

all x ∈ [0, 1]. If we use the stochastic convex process as F(u·, ) = ‖PxYQ1–x +P1–xYQx‖ then,
by using Theorem 3.1, we have

∥∥Pη+ξ– w+y
2 YQ1–(η+ξ– w+y

2 ) + P1–(η+ξ– w+y
2 )YQη+ξ– w+y

2
∥∥

�
[∥∥PηYQ1–η + P1–ηYQη

∥∥ +
∥∥PξYQ1–ξ + P1–ξYQξ

∥∥]

–
1 – α

2(1 – e–σ )
[
Iα
w+

∥∥PyYQ1–y + P1–yYQy
∥∥ + Iα

y–
∥∥PwYQ1–w + P1–wYQw

∥∥]

�
∥∥PηYQ1–η + P1–ηYQη

∥∥ +
∥∥PξYQ1–ξ + P1–ξYQξ

∥∥

–
∥
∥P

w+y
2 YQ1– w+y

2 + P1– w+y
2 YQ

w+y
2

∥
∥.

Example 5.2 With the same conditions as in the above example, if we consider Theo-
rem 3.2, we have

∥
∥Pη+ξ– w+y

2 YQ1–(η+ξ– w+y
2 ) + P1–(η+ξ– w+y

2 )YQη+ξ– w+y
2

∥
∥

� 1 – α

2(1 – e–σ )
[
Iα

η+ξ–w–
∥
∥Pη+ξ–yYQ1–(η+ξ–y) + P1–(η+ξ–y)YQη+ξ–y∥∥

+ Iα
η+ξ–y+

∥
∥Pη+ξ–wYQ1–(η+ξ–w) + P1–(η+ξ–w)YQη+ξ–w∥∥]

�
∥
∥PηYQ1–η + P1–ηYQη

∥
∥ +

∥
∥PξYQ1–ξ + P1–ξYQξ

∥
∥

–
‖PwYQ1–w + P1–wYQw‖ + ‖PyYQ1–y + P1–yYQy‖

2
.

Example 5.3 With the same conditions as in the above example, if we consider Theo-
rem 3.3, we have

∥∥Pη+ξ– w+y
2 YQ1–(η+ξ– w+y

2 ) + P1–(η+ξ– w+y
2 )YQη+ξ– w+y

2
∥∥

� 1 – α

2(1 – e– σ
2 )

[
Iα

η+ξ– w+y
2

–
∥∥Pη+ξ–yYQ1–(η+ξ–y) + P1–(η+ξ–y)YQη+ξ–y∥∥

+ Iα

η+ξ– w+y
2

+
∥∥Pη+ξ–wYQ1–(η+ξ–w) + P1–(η+ξ–w)YQη+ξ–w∥∥]

�
∥∥PηYQ1–η + P1–ηYQη

∥∥ +
∥∥PξYQ1–ξ + P1–ξYQξ

∥∥

–
‖PwYQ1–w + P1–wYQw‖ + ‖PyYQ1–y + P1–yYQy‖

2
.

6 Conclusion
In this paper, we demonstrate some improved versions of the J – M inequality for con-
vex stochastic processes. In addition, for the stochastic process F, new classes of mean-
square fractional integrals Jα

η [F](x) and Jα
ξ– [F](x) are introduced. Then, for Jensen-convex

stochastic processes pertaining to the introduced stochastic fractional integrals, we pro-
posed the J – M and the H – H – M inequalities. In the realm of integral inequalities, all of
the conclusions and inequalities derived here are novel, fascinating, and significant. More-
over, we have derived a new identity and related improvements to the H – H – M-type in-
equality for convex stochastic processes in fractional calculus. The presented applications
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of this manuscript show that inequalities of this type can be applied to means and matri-
ces. Also, in the future, we will check the applicability of q-Digamma functions for these
inequalities. In upcoming publications, we will use different fractional operators to inves-
tigate Ostrowski–Mercer-, J – M- and H – H – M-type inequalities for some new stochastic
processes.
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