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1. Introduction

Fractional calculus has attempted to be accessed as a promising technique in fluid mechanics [1],
nano-material [2], thermal energy [3], epidemics [4] and other scientific disciplines over recent
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decades. For example, by provoking interest in both cutting-edge and conventional pure and applied
analytical techniques, it has reinforced creative collaboration between different disciplines, existence,
and relevant applications in real-world manifestations, see [5—7]. In 1965, the possibility of fractional
calculus depended on theconversation between L’hospital and Leibnitz as letters in [8]. After that,
many researchers started experimenting in this field, and a large portion of them concentrated on
describing novel fractional formulations [9-11]. Various classifications were raised in this process
and were expressed by the advancement of research.

Recently, extensive investigation has been proposed for the qualitative characterization of
verification for various fractional differential equations (FDEs) with initial and boundary value
problems. Several significant approaches regarding the existence, uniqueness, multiplicity and
stability have been reported by proposing certain fixed point theorems. Although many of the
important problems have been tackled by the classical fractional derivatives (RL and Caputo) [12-14],
it has a few limitations when used to design physical issues as a result of the necessary assumptions
are themselves fractional and may be unsuitable for physical problems. The Caputo derivative has the
opportunity of being appropriate for physical problems because it only necessitates classical initial
conditions [15, 16].

Khalil et al. [17] invented an interesting definition of fractional derivative, which is known to be a
conformable derivative. In actuality, this so-called derivative is not a fractional derivative, however, it
is it is essentially a first derivative duplicated by an extra straightforward factor. Consequently, this
novel concept appears to be a regular extension of the classical derivative. More characterizations and
the extended form of this derivative have been expounded in [18]. Then authors [19] explored an
extension of the conformable derivative by considering proportional derivative. This fact leads to the
modified conformable (proportional) differential operator of order A. The researchers investigated
numerous integral inequalities using classical [20], conformable and generalized conformable
fractional integrals [21,22]. Qurashi et al. [23] proposed new fractional derivatives and integrals that
have nonsingular kernels. By using the generalized proportional Hadamard fractional integral
operator, Zhou et al. [24] investigated some general inequalities and their variant forms.

This recently characterized local derivative approaches to the original function as A +— 0. In this
manner, they had the option to improve the conformable derivative. Jarad et al. [25] presented another
kind of fractional operators created from the extended conformable derivatives. The exponential
function appeared as a kernel in their examination with outstanding performance [26-28]. For the
interest of readers, we draw in their thoughtfulness regarding some new papers [29, 30].

In parallel with the concentrated exploration of the fractional derivative, the existence-uniqueness
of verification fits to the intense prominent qualitative characterizations of FDE's, see [31-34].

Inspired by the work, we utilize a novel fractional derivative which is known as Hilfer-GPF
derivative for finding the existence-uniqueness of solutions for a new class of nonlinear F DE's having
non-local boundary conditions. For this we consider the subsequent BV P for a class of Hilfer-FDE's:

DE"y(p) = G, ¥(p), A€ (0,1, L€0,1], p € (@1, @],
I:U:‘S’;ﬁ[mly(wf) +my(wy)| =€, 6=A1+L(1-2), ¢, €R, (L.1)

where G : (@, @w,] X R — R be a continuous mapping, Z)i;{;ﬁ(.) is the Hilfer-GPF derivative of order
1

A€ (,1)and T ;‘5;’9(.) is the GPF integral of order 1 — ¢ > 0. We find the existence consequences by
1

AIMS Mathematics Volume 8, Issue 1, 382—403.



384

the fixed point techniques of Schauder, Schaefer and Kransnoselskii. Additionally, the investigation
of nonlinear FDEs as far as their information sources (fractional orders, related boundaries, and
suitable function) has fascinated the interest of mathematicians because of its importance in Orlicz
space (see [35]). Rely upon this, the subject of coherence of verification of the Hilfer-F DE's regarding
inputs is significant and worth assuming.

The organization of the paper is as follows. In Section 2, we proceed with some basics concepts
and detailed consequences as a review literature. In Section 3, we establish an equivalence criterion
of integral equation of BV P (1.1) and then proposed the existence consequences for GPF-derivative
by well-noted fixed point theorem. Also, in Section 4, illustrative examples are presented to check
the applicability of the findings developed in Section 3. The conclusion with some open problems is
presented in Section 5.

2. Preliminaries

In what follows, we demonstrate some preliminaries, initial results and spaces which are essential
for proving further consequences. Throughout this investigation, let L (@, @,), p > 1, is the space of
Lebesgue integrable mappings on (@, @>).

Assume that @, @, € (—o0, +00) be a finite and infinite intervals on R.

Furthermore, we elaborate the subsequent weighted spaces with induced norms defined by (see [8]).
Suppose that C[w, @] is said to be the space of continuous functions defined on [@, @;] and the
norm is defined as follows:

b

IGllcto o1 = max |G
§

€lw,w2]

and AC"[w,w,] represents the space of n-times absolutely continuous differentiable mappings
defined as follows:

AC"[w, @] = |G : (w), @] - R: G € AC[wy, w,]},

Csl@, @,] denotes the weighted space of G on (@, @,] is defined as
C‘S[wl,wz] ={G: (., m]—~ R:(p— wl)ég(@) € Clw, @]}, 6 €[0,1)

with the norm
1G1leste1.020 = 19 = @)’ G et = max |9 =@1)°G].
Also, the weighted space of a function G on (@, @] is denoted by Ci(w@, @,] defined as
Cilw, @] = (G : (w1, @2l = R : G(p) € C7 w1, @,]; G"(9) € Colm1, @]}, 6 €10, 1)
with the norm
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n—1
1Glcsten 1 = D NG w21 + 16" ey > ¥ € N,
k=0

For n = 0, Ci[@,, @,] coincides with Cs[w, @>].

Definition 2.1. ( [8]) Assume that G € L,([@,, @>],R), then the RL fractional integral operator of G
of order A > 0 is stated as

1

A e
J0:60) = 51

¥
f(g) - 0G0t 9 > @, 2.1

where I'(.) represents the classical Gamma function.
Definition 2.2. ( /8]) Assume that G € C([@,, @,]), then the RL fractional derivative operator of G of

order A > 0 is stated as

1 d"
I'(n—A)dp"

§
DL G(p) = f (p —O"'Gdt, p >, n—1<A<nneN, (2.2)
wq

where I'(.) represents the Gamma function.
Definition 2.3. ( /8]) Assume that G € C"([w, @>]), then the Caputo fractional derivative operator of
G of order A > 0 is stated as

1
T(n-A)

19
“D1.G(p) = f (9 - 01 Odt, 9>y, n—1<A<nmneN, (23)

where I'(.) represents the Gamma function.
Definition 2.4. ( [25]) For ¢ € (0,1], 1 € C,R(1) > 0, then the left-sided generalized proportional

integral of G of order A > 0 is stated as

1
M)

)
TEGW) = gy [ €700 - 0G0t > o, @4

Definition 2.5. ( [25]) For ¢ € (0,1], 1 € C,R(1) > 0, then the left-sided generalized proportional
derivative of G of order A > 0 is stated as

1%
. oY 01y s
D60) = 5oare = f T - 0G0, 9 > @, (2.5)

where n = [A] + 1.
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Definition 2.6. ( [25]) For ¢ € (0,1], 1 € C,R(1) > 0, then the left-sided generalized proportional
integral of G of order A > 0 is stated as

9]
. 1 — (p— n—a— 71
DHG) = G [ €70 - 0 0G0 9> . 26)

where n = [1] + 1.
Remark 2.1. Specifically, if ¢ = 1 Definitions 2.4-2.6 reduces to Definitions 2.1-2.3, respectively.

Definition 2.7. ( [25]) Forn e N,A1 € (n — 1,n),% € (0,1],¢ € [0, 1], then the left/right-sided Hilfer-
GPF derivative having order A, type { of G is stated as follows:

(D §)0) = I [D"T @), 27)

where D?G(y) = (1 - HG(y) + 9G'(y) and I assumed to be GPF-integral stated in 2.4.

Specifically, if n = 1, then Definition 2.7 reduces to
(D G)) = I [D" T G) ). (2.8)

In the present investigation, we discuss the case where n = 1,4 € (0,1),{ € [0,1]and 6 = A+ { — AL.

Remark 2.2. It is remarkable to mention that:
(a)The Hilfer fractional derivative can be considered as an interpolator between the G PF-derivative
and Caputo GPF-derivative, respectively, as

Z)ﬂfg:/l);ﬁg’ { =0 (see Defll’llllOl’L 25),
. 1
z)/;,i,ﬂg =3 1Y DG, ¢ =1 (see Definition 2.6), 2:9)
1 @,
(b) The following assumptions holds true:

0<6<16=2A4 6>, 1-6<1-2(1-2).
(c) Particularly, if 1 € (0,1), { € [0,1] and 6 = A + { — AL, then

(OO = (15D TGN,
therefore, we have
(DL6)9) = (75:(D516))9).
where (Z)‘;’?gl)(go) = %(I;:{)(l—ﬁ);ﬂg)(so).
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Now we define the weighted spaces of continuous mappings on (@, @,] :
Cllm @] = (G € Crslm, @) DG € Crslmanl), 6=2+401-2) (210
and

Clsl@n, 2] = (G € Croslmy, @2l DG € Crglm, mal). .11

Since Dfrﬁﬂ =7 gi_’l)’ﬂ@iﬁ, therefore, we have C?_ [w, w;] C Cff; [T, @>].
1 1 1
Theorem 2.1. ( [25]) For p > w, & € (0,1], R(1), R() > 0. If G € C([w, @3], R), then
THI:6)9) = I AI526)(9) = (I G)w).

Theorem 2.2. ( [25]) For ¢ > w,¥ € (0, 1] and R(A) > 0 and let G € L ([w, @>]), then

DITG(9) = G(9), n=[RW] + 1.
Lemma 2.1. ( [25]) For A, ¢ € C such that R(A) > 0 and R(s) > 0. Then for any 9 € (0, 1] we have

.9 9=l I 9-1
(@) (TeT!(C—m) ")) = —ﬂ»r(g He @t
9 o1 - IT(s) S
0 Ble o el _ -1
b) (Dgre ™ (E=@) )(p) e " TV (p - @)

Lemma 2.2. ( [30]) For A € (0,1), ¥ € (0,1], (€ (0,1)and 6 = A+ - AL. IfG € C‘ls_é[w],m], then
50 O o 709 AL
Lo Do = 1oy Vi &
and
D(S;l?]'/l;ﬁg — D{(l—/l);ﬂg.
Lemma 2.3. ( [30])For y € (w,@],4 € (0,1),9 € (0,1, € [0,1] and 6 € (0,1). If
G € Ci[wy, @) and T2 G, then
wl)(y Wl) 1 519
Lemma 2.4. ( [30]) For 6 € [0,1),9 € (0,1] and g, € Cs. If G € Cs|w, @], then

I'3G(@) = lim I7G(y) = 0, § € [0, ).
1 y—@f @

TG = Gly) - 510"

Lemma 2.5. ( [30]) For A € (0,1),l € [0,1]and 6 = A+ — AL and let G : (@, @] X R — R be
a mapping such that G € C_s|w,, @,] for any y € C‘f_d[wl, @, ], then y satisfies problem (1.1) if and
only if 'y satisfies the Volterra integral equation

9-1 5

P-1T(6)

_ Elo—s)¢ , _ pyA-1
) = +Wr(/1)fe e - O G y(dl. (2.12)
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3. Existence of solution

This section consists of the existence of solution to BVP (1.1) in Cffgﬂ[wl, w35].

Lemma 3.1. For 1 € (0,1), £ € [0,1], where 6 = A + { — AL and suppose there be a function G :
(@1, @] X R — R such that G € C_s[w, @,] for any y € Cy_slw, @,]. If y € C‘f_é[wl,wz], then y
Sfulfills BVP (1.1) if and only if y holds the following identity

e TV -—m)  m e TYT(p— )]
my + my 195F(5) my + my PT(5)

o) =

Tl (@r-0) -6
XS Mm 570 f (@2 = O G y(0)dt

Plo-0¢ , _ pya-1
b f e 0(p — 01 G(L, y(0))de. (3.

Proof. By means of Lemma 2.5 and utilizing the solution of (1.1) can be expressed as

jl (519 ( ) 1%
Y = T -0 — g+ f T (p - (G y(E)dL, 9 > w1 (B2)
99-11(5) ! 9T(5) : ’ b
Employing J "% on (3.2) and applying the limit ¢ — @, ', we find

jl —050 (wz)—jl -0;0 (731)

Pl (@,-0) -6
@} @t Y1-0+AL(1 — 5_'_/1)[ (wy — O °G(L, y(0)dL. (3.3)

1-6;0

Again, employing j on (3.3), we have

T Do — G, y(O)de

1- 619 _ 1-659

=J v + I ﬂg(go,y@)). (3.4)
ing limit  — w7, and utilizing Lemma 2.4 having 1 — 6 < 1 — (1 — ), yields
Applying limi + and utilizing L 2.4 having 1 =6 < 1 - (1 - Q), yield
Ty @)) = T (@), (3.5)

thus

Tt @) = T y(@)) + 5 Mm 5T f T 0 (@, - G ()AL (3.6)

AIMS Mathematics Volume 8, Issue 1, 382—403.
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From boundary condition (1.1), we have

m
T (@) = m—’z - ;; o y(@?). (3.7)

@y

From (3.5) and (3.6), and utilizing (3.4), we have

g ‘“’y( @) =

ms ( e @20, — f)”‘ég(f,y(f))df) (3.8)
m; +mp

my M- 5”1“(1 -0+ 4) f

Setting (3.2) in (3.8), one can find

9-1 -1
e,  eT™(p— ) my eV (p —a)’!

) = 911() T+ 911(0)

2
X G =6+ ) f ¢ 7@ 0@, ~ 06 y(O)dt
@i

+191F(/l) fe%](w—f)(@ — OIG(L, y(b))dL. 59)

1-6;09

Conversely, employing [f on (3.1), utilizing Lemmas 2.1 and 2.2, and simple computations yields

o my(@ ) + I 2 myy())

= mpm; ﬁ (w2 ) € P € € df)
my + mz(mz ! ‘5”F(1 -0+ /Df v (@2 = 077G y(0)
2
™ (& =L (@7,-0) O GE v(E df)
T +m2(m2 95T (1 —5+/l)f @ - OGO

ny
19‘ L1 -6+ )

f T @20y — O OG(L, W(O)dL
e, (3.10)

This shows that y(¢p) satisfies boundary condition (1.1).
Furthermore, employing Z) on (3.1) and applying Lemmas 2.1 and 2.2, we have

DIV(p) = D560, y(9)). (3.11)

Since y € C‘S’ [, @] and in view of definition of C%’ [, @], we have O oY € C? [w, ], thus,
y -5 1-6 -5

D76 = DI 170G € Ciylw, wal.

AIMS Mathematics Volume 8, Issue 1, 382—403.
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For G € C\_s[@}, @], it is noting that I *'"Yg € C\_s[@, @>]. So, G and T__*"""*"G holds the
1 1
assumptions of Lemma 2.3. Now, employing J 4;1‘”"’ on (3.11), we have
1
I Dy(e) = I D069, y(9)). (3.12)
Considering (2.8), (3.11) and Lemma 2.3, we have

156 (@)
#O-ITE(1 = D)

I DYy(p) = G, y(9)) — e T (9 — @)V Vo € (@, @,). (3.13)
By Lemma 2.4, we have T ;{("_ﬂ)g(wl,y(wl)) = 0. Thus, we have Dfﬂ’f;ﬂy(p) = G(p,¥(p)). Hence,
1 1
this completes the proof. O

Let us evoke some essential assumptions which are required to prove the existence of solutions for
the problem mentioned.
(A)) Let a function G : (@, @] X R = R with G(., y(.)) € C*>Y @, @,]. For any y € C!_[w), @]
and there exist two constants M, m such that

1691, 3)| < Mi(1+ il ). (3.14)
(A,) The inequality
. mM,I'(6) 1 A+1-6
G = m[(wz—wl) + (@ - o)™ < 1 (3.15)
holds.

Now we are in a position to show the existence results for the BVP (1.1) by employing Schauder’s
fixed point theorem (see [36]).

Theorem 3.1. Suppose that the assumptions (A;) and (A,) fulfills. Then by Hilfer-BVP (1.1) has at
least one solution in C‘fﬂ[wl, w3] C Cf’_{;ﬂ[wl, ws].

Proof. Defining an operator T : C_s[w, @w,] — C,_s[w, @,] by

Ty)p) = — T (g — ) I R -
) 9IT0) m+m  9-10(0)
()
1 9-1
X T @20, — OYOGL, y(£))dE
T f ¢ 7@y~ 0'7GL0)
: 9
221 (p-0) -1
+ 7 —{ £, y({))d¢. 3.16
D fe (9~ OGO (3.16)
Assume that B, = {y € Cislm, @2] : ylle,, < Q} having o > %, for G < 1, we have
Q = i + ‘ e !
(my + my)9°1IT°©0)  |my + my [9971T°(6)

AIMS Mathematics Volume 8, Issue 1, 382—403.
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(3.17)

Ml [(wz _ wl)/Hl—(S . (wz _ w1)2/1—6+1
-0+ T(A—-6+2) Ir(a+1)

The proof will be demonstrated by the accompanying three steps:
Case 1. We will prove that T(B,) C B,. Utilizing assumption (A,), we have
(T - )|
o M e
< +
(my + mz)ﬁé_lr(é) my; +myp 19‘“1“((5)

@)
1 9-1
=1 (5, ) e
Xﬂl—éur(l —5+ Q) f‘e ! ‘(WZ O My (1 + mlyhdt
@

+(80 — )

%
lo-0|r., _ pA-1
T f 6700 = O Mu(1 + miyihae
W

1
¥-1T(6)

e ‘ my
< +
— (my + my)9°7'T(6)

w3
1
X
P01 -5+ ) f

wy

my +mp

e%(mz—f)‘(wz — [)/l_‘le(l + m||ylle,_,)d¢

(p—w)'™

1%
25l (p-0) -1
91T f‘e ) ‘(80‘5) M1+ milylle,,)de. (3.18)
@]

Since |e%’0| < 1. Observe that, for any y € B,,, and for every ¢ € (@), @:], we have

w?

1 -1
= (wr=0) -6
19‘1_5_'_/11—‘(1 — S5+ /1) f e’ '(WZ - f) Ml(l + m”y”(cl_g)df

1

< Ml(wz_wl)ﬂ[(wﬁ_wl)l_a N mol'(6)

ince |e77| < 1 3.19
=T 9o [TA-6+2) r(a+1)]’ since |77 < (3.19)

and

¥
(p—@)"° bt )
W f|eﬂl9l(§0 5)'(80 _ f)/l lMl(l + m”y”cli(s)df
wy

(3.20)

- Milp - @) [(50 - @) L mel'@) ]
= ey TA+1) T+ Dl

Therefore, we get
M) - )"~

1
¥-1T(6)

e ‘ my
= +
— (my + mp)d°~'T(6)

mp +mp

AIMS Mathematics Volume 8, Issue 1, 382—403.
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M (@, - wl)ﬂ[(wz — @) N mol'(6) ]
Pl-o+a IF'A-6+2) T@A+1)
Moot o' nel)]
9 TA+1) TA+DI

(3.21)

which leads to

< e, N 1
T (my + m)9IT6)  Imy + my |991T(0)
Ml (wz _ wl)/l+1—6 (wz _ wl)z/l—éﬂ
ﬁl—M[ fA-6+2) « TA+D ]
M;mol'(6)
T+ 1)

)

ITyllc,

[(go — @)+ (@ - wn“”]. (3.22)

of assumption (A,), we conclude that [ Tyl|c, ; < Go + (1 — G)o = o, Therefore, T(B,) C B,.

Next we will prove that T is completely continuous.
Case 2. We prove that the operator T is completely continuous.

Assume that {z,} is a sequence such that Z, — Z in B, as n + oo. Then for every ¢ € (@, @:], we
have

((T260) - X200 = )
- ‘ ny ' 1
CAO)

my +mp

1 Is 2=l (@y—0) -6 5 >
< | T - 0 e - e o

+(80 - @) j‘
M)

wy

9-1

700 - £y |G(e.2.00) - Gtz lae

< \mlnfmziw(; @ @)|6¢.z.0 - 6C. zc»\im

NG _ 1-0+4
(ﬁ)gﬁr(;vi)(g) (p - 5)1—6+/I

G20 - G20, - (3.23)

g—1
e

Since ’e < 1 and G is continuous on (@, @,] and Z,, — Z, then
(T2, = T2l — 0asn— o, (3.24)

which shows that operator T is continuous on B,,.

Case 3. We show that T(B,) is relatively compact. In case 1, we have T(B,) C B,. It is observed that
T(B,) is uniformly bounded. To show operator T is equi-continuous on B,,. In fact, for any @w; < ¢, <
92 < @ and Z € B, we have

(92 — @) (Ty)(2) = (91 — @) (Ty)(p)

AIMS Mathematics Volume 8, Issue 1, 382—403.
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(2 — @)™ = (1 —w)"™| e my (|92 — @)= (1 — @)
< 4 ‘ ‘

N 19‘“1“(6) my; + myp my +myp 19‘5‘1F(5)

@,
1 . )
T — 6+ 1) f ¢ 7@, ~ £y |Gy de
@

2

1 9-1
o RO f e T oy = OGN (0)dC

w
1
1= o) [T, - 0G0
w1
(02 — @)™ = (1 — ™[ e, m Gle, [
< + - — O — @)’ de
9-11(0) [ml + 'ml iy (1 =6 + ) f(wz =)

92
IGllc, s _ _ _
i M@E =2 - at f (92— (€~ @)Yt
91
—(pr — @'’ f (1 —O"'(€ - wl)é“df‘ (since 79| < 1)
@y
|(502 @) = (g1 —T)"" e, m [(5) A
< —
- 91T(6) [ml o ‘ml S 9T ) T ”g”m]
Gllc,
+ M‘f‘ﬂ) B —n+ 1,92 — @)~ (1 — @), (3.25)

which approaches to zero as ¢, — @i, independent of y € o, where B(.,.) denotes the Euler Beta
function.

Therefore, we deduce that T(B,) is equicontinuous on B, that leads to the relatively compactness.
As a result, we conclude that by Arzela-Ascoli theorem, the defined operator T : B, — B, is
completely continuous operator.

By Schauder’s fixed point theorem, there exists at least one fixed point y of T in C,_s[w, @;]. This
fixed point y is the solution of (1.1) in C‘ff’;, and this completes the proof. O

Now we present another existence result via Schaefer fixed point theorem. For this, we need the
following assumption.

(A3) Suppose a function G : (@, @;] X R — R such that G(.,y(.)) € C
C\_sl@1, @,] and there exist a mapping 1(p) € C,_s[@,, @,] such that

L1-2:0

_s @, @] for any y €

G(9.9)| < n(p), Y9 € (w1, ],y € R. (3.26)

Theorem 3.2. Suppose that assumption (A3) satisfies. then Hilfer-BV P (1.1) has at least one solution
inC%_, C Cfﬁ;ﬂ[wl, @>].
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Proof. For the proof of Theorem 3.2, one can adopt the same technique as we did in Theorem 3.1
and easily prove that the operator T : Cy_s[w;, @,] — C,_s[w,w,] stated in (3.16) is completely
continuous. Now we show that

A= {y € C,_slw, @3] : y =0Ty, for some o € (0, 1)} (3.27)

is bounded set. Assume thaty € A and o € (0, 1) be such that y = o'Ty. By assumption (A3) and (3.16),
then for all p € [@, @;], we have

n—6|

[Ty(p)(p — @)
B Z TN —m)* e

POHT(E —k+ 1) my +my

w?

n -1
ny eT(s@—m)(go — @)~ 91 (st o]
+ v @2 -0 O)d¢t
’ml +m2'Z 96 —k+ DEn—0+4) J © @2 =4 1)
@
(p = @) [
M %(W—f) —¢ A-1 0)de
@
- Z w-@)™ ¢
T POHT(S —k + 1) my + my
ny - (9 — @)™ f pyr+A-o1 6-n
+ € — dt
’ml + mz' ; P —k+ DI(n =0 + Q) (@ (€~ @)™, ,
(p = @] [
P —@1)"” a-1 5-n
R — - {— dc. 3.28
T [0- 0= @0 e (3.28)
Since |e%&’| < 1, we have
||T)’||c,, 5
Z (w2 - wl)n K e,
- 99~ K+1F(5—K+ 1)m +my
(@ — @)™ T)  BE-n+1,1) .
+ —
Hml + m2| Z Pl BA, 1) @, - @) (@2 = @) lc,.
=T (3.29)

Since o € (0, 1), then y < Ty. The last inequality with (3.29) leads us to the conclusion that

Ve, <Tylle,-; < (3.30)

which proves that A is bounded. Utilizing Schaefer fixed point postulate, this completes the proof. O
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Our last result is the existence result for the problem (1.1) by using the Kransnoselskii’s fixed point
theorem (see [37]), the following assumption is needed:
(A4) Suppose that G : (@, @,] X R + R is a function such that G(.y(.)) € C:"Y [, @] for any
y € C,_s[@, @,] and there exists a constant L > 0 such that

16(9.y) - G(p.w)| < L|y - w|, V9 € (@1, w,], y.w €R. (3.31)

Also, we note the following assumption as follows: (As) the inequality

(wy — @) BO—n,A+ 1)]
Q Hml +m2' Z 96—k + 1) | 9T —n)
TS - n)(wy — @) « e, v (m-w)
X8 —n DF 1 D) Glem + 2 96—k + 1)

<1 (3.32)

is hold.

Theorem 3.3. Suppose that the assumptions (Ay) and (As) are satisfied. If

my 2 (w, — @)™ T(6-n+1)
L<l. 3.33
‘ml +m2'Z I G —k+ 1) PTAL1) (3.33)

Then the Hilfer-BV P (1.1) has at least one solution in C5 _sl@1, @2] C C’lw

Proof. Considering the operator T stated in Theorem 3.1.
First, surmise the operator T into sum of two operators T; + T, as follows

w?

T @O, — £ G(L, y(£))dA3.34)

9-1

RN
T =
wp) = +mZZ 9GS —k+ 1) Tn—06+ )

wl

and

9=l _
e T p - @)

§
e 1 9=1
T = T 0 - O G, y()de.  (3.35
() m1+m2; T —— +Wm)fev (9 - OGOl (3.35)

Setting G = G(¢,0) and suppose the ball B, = {y € C, —sum.a)) © IDlle,_pw < € having € > 1%5,Q < 1,
where

- H 'Z (wy — )" +23(6—n,/1+1)
my + my PO —k+ 1) WPI(S — n)

I'(6 - n)(w; — @)
MBS —n, DA + 1)

(3.36)

The proof will be done in three cases.
Case 1. We show that T,y + T w € B, for every y,w € B..
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Utilizing assumption (A,4), then for every y € B, and ¢ € (@, @,], we have

|(80 - ’wl)"—‘sTl(sO)|

no 2l m) n—K
<‘ ny ‘Ze“ (p —@) 1
~my+mp PTG —k+1) T(n=6+ )
w2

% feﬂﬁ'(m—f)(wz _ {;)n—(swl—l“g(& y(0) — G(¢, ())| + |Q(€, ())de

w

n -1
S Do -y
C iy +myl PO LG —k+1) T(n—6+ Q)
@)

x [ 7 0@, - 00 @ Ll + 6], L

w

m o v (p-—@)' TE-n+1) .
< ‘ml + mz‘ Kz:; ﬁn—6+/ll"(5 — K+ 1) 19”1"(/1 n 1) [Lf + ||g C,H;]' (337)
Since |e%&’| < 1. Therefore, we get
||T1Y||<c,,_(S
m, N (wy—w)" M TG -n+1) ~
< 'm1 n mz‘ Zl 9o —x+ 1) 9T+ 1) |Le + |G C] (3.38)

For operator T,, we have

(9 — @) Tow(p)|

< ' ¢ ‘Zn: e'T (9 — @)
T lmy+my ‘= 19"_6+/1F(5 —k+1)

%)

(p — @) 910 B
T f e T (p - 0|6 w(0) - 6L 0)] + |G(£.0)Jat
€ c (p — @)™
< 'ml + mz‘ ; ﬂn—6+/ll—‘(6 — K+ 1)
1
(p — )"’ 0-1(,_ B . ~
T&) f TV — 0 - m) | Lllle,., + [|G].,]de (3.39)

For every w € B, and ¢ € (@, @,], this shows

||T1w||c,1_5

& v (@ -w)
S‘ml-:mg‘;ﬁ‘”“fﬂzr(dw—lk+l)
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(@ —@)!
TG -n+a+1)

From (3.38), (3.40) and utilizing assumption (As) with (3.36), we find

[Le+ ]G], | (3.40)

Ty + Thwllc,,

< |Twlle,s + T wlle,
(wr, —w)T(E-n+1)

- HMT(A+1)

N

~ my - (wy — @)™ Ir‘a+1
Le + +
|Le+ ]l m1+m2‘;ﬁn—6+ﬂr(5—/<+1) TG—n+d+1)

€ - (wy — @)™
+m1 + my ; 0”‘5”1“(5 — K+ 1)
<Qe+(1-Qe=e (3.41)

Case 2. We prove that the operator T is a contraction mapping on B,,.
For any y, w € B,, and for any ¢ € (w, @], then by supposition (A4), we have

|(p = @) T1y(p) = (9 — )" T1w(p)|

w?

n ﬂ;'(go—w) _ n—k
my e’ (SO ’ZD'[) 1 -1 (5,—0) |
< 7 (@ — " 6,y(0) — G, w(t))|de
= Z; T Taser ) ¢ @ - 0 G 0) - 6t o)
n 9-1 w?
n eT(Ko_W)(XO - wl)n_K 1 LESEn —5+ -1
< 7 (@ — 0y ULy — w(O)|de
=l +my Z:; 9T —k+1) Tn—6+4) ) © (@20 p(6) - w(0)
@)
m o (p-@)'* T@E-n+1) A
< — oLy - . 3.42
=g+ m, Z::A gt — e ) orae D 2 O el (3.42)
Since |e'7?| < 1, this yields
[Ty - To||,,
m, N (@) T —-n+1)
< Ly - : 3.43
'ml + mz‘ PGS -k + 1) P+ 1) b= elle,., (343)

k=1

Due to assumption (3.33), which shows that the operator T is a contraction mapping.
Case 3: Now we show that the operator T, is completely continuous on B..

From the continuity of G, we deduce that the operator T, : B, — B, is continuous on B..
Furthermore, we prove that for all € > 0 there exists some € > 0 such that ||T,yllc, , < €. In view of
case 1, for y € B,, we have that

o (@ — @) e B©G —n+ 1, )(w, — @) .
T < : Le + , 3.44
ITollc, , < ;:1 TG kT Dt T |Le +1Gllc,.,]. (344
which is free of p and y, so there exists
e, 5N (@ — @) BO—n+1,)(w, —o)! ~
r + Le + 345
€ my + my ; PG —k + 1) () [ ¢ ||g||<cn_5] ( )
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such that |[T>(y)llc, , < €. Therefore, T, is uniformly bounded set on B,. Finally, to show that T, is
equicontinuous in B, for any z € B, and ¢4, ¢, € (@, @,] having 9, < ¢,, we have

(2 = @) Tay(92) — (91 — @) Tay(9)))|

92
C (802 - wl)n_K B (801 - ’(D-l)n_(S (802 - ZD-l)n_(S f L;l(”_g) -1
5P - L, y(0)dt
- Z‘ PTo -k T erw J ¢ Wiy

w|

_(p1 - @)’

91
Sloi-0¢., _ pA-1
ﬁqu)‘fe 0, ~ 0) Qwﬂmﬂ‘

- Z|(@2—Wl)'” (1 —@)" 6|
_m1+m2 P*T(E —k+ 1)

(P2 — @)

feﬁgl(@z—f)(sgz - f)/l_l(f - wl)5_n||g||cn—6,w[w1,w2]d€

9I(A)
|
(@ - [
— 9-1 — — —n
_%T;) fen, @1=0(0, — O\ (€ - @) ||g||cn_6yw[m‘w2]d€'
w|
- e, |(802—W1)"_K—(801 —Wl)"_§| BE-—n+1)
= =+ —_ —
2imim PTG -xi ) NGl s e (92 = ) = (01 = )|
(3.46)

Since |eﬁ%’f”| < 1. It is noting that the right hand side of the aforesaid variant is free of y. So,

(92 = @1)" " Tay(92) — (91 — @) *Tay(p1)| > 0, as lp2 — 91| — 0. (3.47)

This shows that T, is equicontinuous on B,. According to Arzela-Ascoli Theorem, observed that
(T,B,) is relatively compact. By Kransnoselskii’s fixed point theorem, the problem (1.1) has at least
one solution. O

4. Examples

Consider the fractional differential equation with boundary condition which encompasses the Hilfer-
GPF derivative of the form

“ﬁ)’(sO) 9 6+‘ Slny(sO) p€J=1[0,2],4€(0,1),{ €[0,1]
J;r”[gy(m) +H2)|=2a<6=2+- AL, (4.1)
By comparison (1.1) with (4. 1) we have A = 1 , (= %,6 g,ml = 3,m2 = 3,19: land e, = 2 Ctis

clear that g3 g(go y(p)) = 506 + 27 gin y(p) € C([O 2]), So G(p, y(p)) € C. Thus, it follows that for
anyy € R* and p €7,

" (124
o) <pi(1+2—lo"y0))
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<(1+ —||y||@1) 42)

Hence, the assumption (A;) is fulfilled having M = 1 and m = %. It is easy to verify that the
assumption (A,) is hold too. In fact, by simple computations, we obtain

mM,T'(6)

9= S

[(w2 — o)+ (T — @) 5] ~0.03510 < 1. (4.3)

Hence, all suppositions of Theorem 3.1 implies that the problem (1.1) has a unique solution in
2
C,((0.2]).

_1

Also, assume that G(p,y(p)) = 95 + &= Smy(@) Thus |G(p1.y(9) < 975 + 5’ | n(p) €
Ci-5(10,2]). So, (A5) is satisfied. Therefore, 1n view of Theorem 3.2, we Conclude that problem (1.1)

has a solution in C%;([O 2).
Finally, if G(p, y(p)) = 9~ ¢ + 2% sin y(p), then for y, w € R* and p € J, we have

5\

1
ig<ga,y(m) - G(p.0e)| < |- o]

Therefore, the assumption (A4) is fulfilled having L = 1—16. Clearly, assumption (As) and
inequality (3.33) are holds. In fact, simple computations yields
- K B —n,A+1
Q D ‘Z (w, — @) N (6-—n,A+ )]
my + my PG —k+ 1) PT(5 — n)

I'© - n)(@ - @)
91B(6 — n, DI(A + 1)

L~0.1456 < 1, 4.4)

and

m; N (wy—w) M TG -n+1)
‘ml - mz' > > L ~0.0495 < 1 (4.5)

n=0HAN(§ —k+ 1) T (A+ 1)
2
of Theorem 3.3, shows that problem (1.1) has a solution in C; ([0, 2]).

5. Conclusions

In this approach, we have established certain existence consequences for the solution of BV P for
Hilfer-FDE's depend on the lessening of FDE's to integral equations. The proposed scheme with the
fixed point assertions unifies the existing results in the frame of RL and Caputo GPF sense,
respectively. Besides that, the analysis’s comprehensive improvements are dependent on various
techniques such as Schauders, Schaefers and Kransnoselskiis fixed point theorems. Also, the Hilffer
G PF-derivative comprise two parameters and a proportionality index J.

e If J — 1 and A = [0, 1], then the contemplated problem converted to RL and Caputo fractional
derivative [8]. If ¥ € (0,1) and ¢ = 0,1 we recaptures the RL and Caputo GPF-derivative [25],
respectively (see Figure 1).
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e Clearly, if 9, ¢ € (0, 1), then the newly employed derivatives amalgamate the existing ones in the
adjustment of Hilfer, RL and G PF-derivative, (see Figure 2).

e If 9 — 1 and {,4 € [0,1], then the formulation for this problem enjoys Hilfer factional
derivative [8], (see Figure 3).

—_A\=1
—==)=0.95
A=0.85
—==A=0.75
A=0.65
===\ =0.55

e L
0.8 1

ot e e

0.2 0.4 0.6

Figure 1. Plot of y(p), for the RL fractional derivatives ({ = 0,¢ = 1), and GPF-derivatives
(& =0,9 € (0, 1)).

—_—) = 0.95
D[ =) = 0.90
9 =0.85
—==1 = 0.80
——=1 =0.75
¥ =0.70

702

Figure 2. Graph of y(g), for the RL fractional derivatives ({ = 0,9 = 1), GPF-derivatives
(¢ = 0,9 = 0.8) and Hilfer GPF-derivatives ({ € (0,1),9 € (0, 1)).

—— =100, ¥ =0.95
5]—--1=0.95, 9 =0.90 /1
A=0.85, 9 =0.85 7
—==)\=0.75, 9 = 0.80 7
4 }
—==A=0.65, 9=0.75 [
A =0.55, 9= 0.70 6 1 ;
17, ¢
)} T 4 '// A
/
I/,{/
///
2F R
/7
A
S5
1t 52
S = N N i i
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 3. Plot of y(p), for the Hilfer fractional derivatives (¢

derivatives (¢ € (0, 1)).
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Moreover, a stimulative example is presented to show the efficacy of the established outcomes.
We hope that the testified outcomes here will have a considerable impact for more parameters on
the stability and other qualitative features of differential equations in the areas of interest of applied
sciences.
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