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Abstract: We consider the positivity of the discrete sequential fractional operators ( RLygv, RaI;V"Z f ) (1)

ap+1
defined on the set 2, (see (1.1) and Figure 1) and (QO%V“ Ry f) (1) of mixed order defined on the
set 2, (see (1.2) and Figure 2) for 7 € N,,. By analysing the first sequential operator, we reach that
(VS)(T) 2 0, for each 7 € N, ;. Besides, we obtain (Vf)(3) = 0 by analysing the second sequential
operator. Furthermore, some conditions to obtain the proposed monotonicity results are summarized.
Finally, two practical applications are provided to illustrate the efficiency of the main theorems.
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1. Introduction

Discrete operators are the most essential branches of discrete fractional calculus that enable
problems where the change of variables can be modeled in a numerical or theoretical continuum to
derive, from it, the variation of these elements in specific kernels [1-4]. Besides, the discrete
fractional difference/sum equations have important applications in areas like fluid dynamics [5-7],
heat or mass transfer [8-10], chemical reaction processes [11-13], geometry [14, 15],
ecology [16,17], and contaminant transport [18-20].

The positivity and monotonicity analysis are basic parts of applied mathematics and mathematical
analysis, and the development of discrete fractional calculus has enabled powerful mathematical tools
for these areas. These kinds of problem can be solved either by analysing discrete operators or by using
integrating by parts. By applying these techniques, it is possible to determine when the nabla operators
are positive or the function is monotonically increasing or decreasing. Also, these have lead to additive
(or splitting) schemes, but so far they are examined with various delta and nabla fractional difference
operators in time space N, (see previous works [21-26] and the references therein for more details).

In the literature of discrete fractional calculus mixed order sequential fractional difference operator
has a form (Ral(;V” RaI;VVZ f) (1), where v, and v, are two different orders. In addition, in most of the
research on monotonicity and positivity analysis, discrete sequential fractional operators and mixed
order fractional operators in discrete fractional environments are two of the most active research areas
as you can see in previous studies. For this reason, there exists a wide literature about its reanalysis,
numerically and analytically, see for example [27-31]. Therefore, it is of interest to analyse a discrete
sequential fractional operator of mixed order correctly, provided that they allow a development of the

applications and theory based on them successfully.

In view of the above discussion, this paper focuses on analysing discrete sequential fractional
operator of mixed orders ( RLy» Ra%V"Z f) (7) and ( RLy» RQEVVZ f) (1), and applying these to handle

ap+1 a0+2

the positivity of (V f)(7) on the sets

9, = {(vz,vl)e(O,l)x(l,Z); 1 <v1+v2<2}, (1.1)
and

D, = {(Vz,w) €(1,2)x(0,1); l<vi+w< 2}, (1.2)

respectively. The regions of these sets are plotted in the Figures 1 and 2 below.

The article set-up is structured as follows: in Section 2, we recall the basic discrete fractional
operator tools and investigate the main lemmas and theorems concerning the designation of discrete
sequential fractional operator of mixed orders. The sets &, and %, and the main theorems on these
sets are given in Section 3. Section 4 is devoted to the study of practical applications with specificity
of the order of the discrete sequential fractional operator. Finally, the conclusion and significance of
the present article are elaborated in Section 5.
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Figure 1. The regions of the set Z,.
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Figure 2. The region of the set %,.

2. Preliminaries

In this section, we will list some relevant preliminaries including the definition of discrete fractional
difference and sum operators and their alternatives in the sense of Riemann-Liouville defined on the
set Ny, defined by N, := {ag,ap + 1,a0 +2,...}.

Definition 2.1. [32, Definition 3.58] Suppose that f is defined on N,, and 0 < «a is the order of the
discrete fractional operator. Then the V—fractional sum operator is given as follows

" S (t+1-5s = ,
(Bvef)@m= > T)) f(s), for 7 in N1, (2.1)
s=ap+1
where it is important to state that
- I'(a+71) — oy
@ _ , V1= @ , 2.2
e ™ =art (2.2)
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where these lead to zero when the denominators are undefined but the numerators are well defined.

Definition 2.2. [26, Lemma 2.1] Suppose that f is defined on N,, and £ — 1 < @ < ¢ is the order of the
discrete fractional operator. Then the V—fractional difference operator is given as follows

1 < oy
(%VW)@)=f@;hgifr+1—9””f@%®rTmN%M, 2.3

(VA (1) = f(r) = f(r = 1), for 7 € N1

Lemma 2.1. Let v, > 0 and f be defined on N,,. Then for 0 < v, < 1, the following identity can be
obtained

(t—ap)"!

(59 BV @ = (577) (@) = S+ D, o
and for 1 < v, < 2, the following identity can be obtained
— gyt —ag— DT
(59 v ) () = (R ) (- T2y T D g 1)
ap ap ap I'(vy) I'(vy) (2.5)
_ _ vi—1 ‘
ST DT g+ 2,

L'(v)
for T € Ny ;0.

Proof. Let g(1) = (%V"Z f) (7). Then by considering (2.1), we have
(7 92 ) (0 = (57 )

=Y (s ) g()

F(Vl ) s=ap+2

(T —ap)"!

_ 1 - _ vi—1 L —do)
= o5 2 =+ )" g(e) - N —glan+ D

s=ap+1

RLy-vi RLyv, _ (r —ap)"!
(v V) @ - =g, 5@+ D
(- ap)" "

L(vy)

(v £) (@) flag+ 1),

where we have used

glag+ 1) = (V2 f) (g + 1)
1 ap+1

D (ag+2-9)"7f(8) = flag + ),

s=ap+1

ED

which completes the proof of (2.4). Similarly, we can proceed
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(57 )0 = (5 g o

N , (T —a )v1—1
= (RLy™ RLg £ (1) - Tvol)g(ao +1)
(t—ag— D!
- +2
To) g(ap +2)
— gL (t—ag — 1)1/17—1
— RLVVZ—Vl _ (T — aop) _ 0 +1
(v O oy @D
(t—ay— D!
- +2),
Tom) flag+2)
where we have used
a0+2
+2) = +3-8)""f(s) = +2) - +1),
8(a0+2) = fo = s;w(ao )U(S) = flap +2) = va flag + 1)
which completes the proof of (2.5). Hence, the proof is done. O

Theorem 2.1. Let f be defined on N,,. Then for 0 < v, < 1 and 1 < v, £ 2, the following identity
holds

Vi Vv V2+v] (T —a )_Vl_l
(19" 59 p) @) = (59 1) (@) = T a0 + 1), 20

and for1 <v, <2and0 < vy £ 1, we have

Py —an— )T
(877 890 = (0 )| CEA - D g 41

(=) (=) 2.7)

(t—ay— ™!

['(=v1)

flap +2),
Jor T € Ny 3.
Proof. With the help of Lemma 2.1, we have forO < v, < land 1 <v; £2:

(i7" WVS) 0 = PV ) @

a

_ —vi+1
= 9| ) 0 - CR g+ )
RLv+v (T B aO)_Vl_l
= (V)@= SRt D,

which completes the proof of (2.6). In similar way, we have for 1 <v, <2and0<v, £ 1:
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(as?" WV )@ =V (57 GV @

a()+2

_ v |(RLgvan-1 (GT=a)™t  (m—ag -1

= V[( wvelf) (n) (—m e )f(ao+ 1)
(T—ap— 17"

T TTa-w) Sflao +2)

_ (RLyw+v (7'—610)_“7_1 (t—ap— 1)‘“7‘1

= (aoV f) (T)—[ TESERE = ]f(a0+ 1)

_ — 1)y -1
ST U fa+2),

['(=vy)

which completes the proof of (2.7), where in both we have used [32, Lemma 3.108]
and [32, Theorem 3.57]. Thus, the proof is done. O

3. Monotonicity results

We start with the first result concerning the V—fractional difference on the set Z,.

Lemma 3.1. Let f be defined on Ny, (v2,v1) € 2y and (559" *:V"2f) (1) 2 0, for T € Nyyu3. Then
the following inequality can be obtained.:

W™ @
Ty T vy | @t

(VA)ao +p) 2

3 (3.1
1 =
[EE— —7-1 —Vi—V2 \vj 2
r(l_vl_v2);(f‘ J=1D (Va0 + g+ 2),
for u € N3. Furthermore,
—vi-1 —vitvy
W >0, (3.2)
[(=vy) T(1=vi—-wn)
and
1 V=,
A Wm0 33
Ay W=/~ h >0 (3.3)

for j=0,1,...,u—4and u € Ny.
Proof. The identity (2.6) and Definition (2.3) enable us to write

( RLVV] RLVV2f) (1) = (RLVV2+V1 f) (r) - Mf(d +1)

ap+1 ao a0 [(=vy) ’
_ 1 N ) (t —ag)™"
=T I A L b vy R

s=ap+1
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(t—ap™!

ol N g s 1y e -
Ao 2 Vs ) - T+ 1)

s=ap+1

1
R 4

] _ (t—ap)™"

7—1
+ ), =S+ DTTVNE)| - s M@+ D

s=ap+2
(T—a)™™ (r-a)™"!

=V Fa s, o) T T

lf(ao +1)

1 -1 —
TTa—v-w) S;MZ(T —s+ )7VAE) (3.4)

where we have used that (0)™>™" = 0. By using the assumption that (GOE%V‘” %VW f) (r) 2 0, it follows
that

1 -1 S
f(ao+1)—m Z(T—S‘i'l) (V1)(S).

s=ap+2

(VA z

(T—a)™'  (@—a)” ]
(=) Il —vy =)

Changing the variable u := T — ay gives the desired inequality (3.1).
The last part of the lemma is easy to be proved by considering the definition (2.2) as follows

<0 <0
@™ -y @=3 v =2-w)
(=) (- D! ’
and
S =
W " A=vi=»)2=vi=v) - (u=3=vi=v)(U =2~V =) <0
L(l—vi—v) (u—D! ’

fory € N3, 1 <vy <2and 1 < vy +v, < 2, which rearranges to (3.2). And we can obtain (3.2) as
follows

1

- - _ _l—Vl—VZ
T Y
<0
w2 vi=v)u =y =3 -vi=m) - C-vi=m) (I v —w) 20
(u—j-2)! ’
forl <vi+v;<2and j=0,1,...,u—4 with u € Ny. This ends the proof. O

Theorem 3.1. Under the assumptions of Lemma 3.1 together with

(1) flap+1) 2 0;
(2) (Vf)ao+1) 2 0;
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(3) (Vf)ao+2) 20,
one can have (Vf)(1) 2 0, for T € N 4.

Proof. From (3.1)—(3.3), the assumption (a) we have inductively that (Vf)(r) = 0, for each 7 € N, ;3.
Furthermore, from the assumptions (b) and (c) we get (Vf)(r) = 0, for 7 € N, ,;. This concludes the
proof. O

Our second result concerning the V—fractional difference on the set %;.

Lemma 3.2. Let f be defined on N, (v2,v) € 9, and (
the following inequality holds

RLy7v, Ra];VVZf) (r) 2 0, for T € Nyyu3. Then

ap+2

(/J)_Vl_l (ﬂ)_V1+V2 (/l _ 1)—\/1—1 (/J _ 1)—v1—1
(V)ao +p) = S v ———— V2 Fv) flag+1) + Wf(ao +2)
1 S
- m;(ﬂ—J— 1) (V) ao + j+2), (3.5

Jor u € Nj.
Proof. In view of the identity (2.7) and (3.4), we have

(L R5v™ Riy™ ) (r) = m s_;(T Cs+ L)
_[(T ;(621_;_1 — 7 S ?ﬂ(z__vll))_w_l]f(ao +1) - - lci(z__yll))_yl_lf (ao +2)
P
- lcf(z__vll))_w_l flao +2) + m i (t—s+ 1) 27(VF)(S).

s=ap+2

RLy» R;;V"? f ) (t) 2 0 to the last identity, we get

ap+2

By applying the assumption (

(t—ap)™""! C(rmag)™ (t—ap—1)""

T(—v)  Td-vi-v) 2 T(w)

(VA)(©) 2 [ ]f(ao +1)

(T —dy — 1)7‘/171 1 -1 —
+ T(—v) flap+2)— m Z (t—s+1) (Vf)(s),

s=ap+2

for T € Ny, 3. The last inequality together with changing the variable u := T — q rearrange the desired
inequality (3.5). O

Theorem 3.2. Let the assumptions of Lemma 3.2 be fulfilled with T = ay + 3. Suppose that

AIMS Mathematics Volume 8, Issue 2, 2673-2685.
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(1) flap+1)20;

(2) (Vf)ao+2) 2 0;

(3) 6 flap+ 1) = f(ap+2) 20, for some 1 < 6.

3v2 v2 -2

Then one can have (V f)(ag + 3) 2 0 such that 6 £ 1 +
Proof. Rewriting (3.5) at u = 3 to get

O © R @™
(V1o +3) 2 e Sy " = =) " T ]f @+
L, "™
F( f( ap+2) — m—(vf)(ao +2). (3.6)
We know that _F((l)vl —5 =—(L=vi=v)>0byl <vi+v <2 and (Vf)ag + 2) 2 0 by condition
(b), so (3.6) becomes
e @ 2 )‘”' o
(Vf)ao+3) 2 o)  Td-vi—w) ~ V2 T, ]f( 0+1)+ f(610+2)

flag+1) = vy flap +2)

-1 1
= [71’1(1 -V - 5(2 —vi=v)(I =vi =)+ vV

by - 1
dé_ o [_Vl(l — Vi) — 5(2—1’1 —v)(L=vi =) +vovi| flap+ 1) —6vi flag+ 1)
condition (¢
2vi 4+ 3v, = 26v —vi -2
= 5 2— flag + 1),
which is = 0 by condition (a) provided that M = 0, or equivalently, 6 < 1 + %
Hence, the proof is finished. O

Remark 3.1. It is worth mentioning that in Theorem 3.2 the quam‘lty
D.

2 is positive for (v,,vy) €

4. Application

Here we provide two numerical examples in infinite time set N,, to demonstrate the performance
of Theorems 3.1 and 3.2. Furthermore, we have performed all implementations using Matlab 2018-b,
installed on laptop with Intel(R) Core(TM) 17-2600 CPU@2.30GHz and 16.00 Gb-RAM running on
Windows 10 operating system.

Example 4.1. Let f be a function defined by
f(r)y=27%, forteN,.

From the proof of Lemma 3.1, we have for 7 := ay + u :

W

( RL v, RLszf) (ap + ) =

a0+1

1 5 "
> = )T G an+ 1) - f(ao +1),
2= V1) =0

I'(—v

AIMS Mathematics Volume 8, Issue 2, 2673-2685.
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for u € Nj. Letting ay = 0, it follows that

1 (/vl)‘V1

Rva] Rvaz V2 vi— 1 _
( N =555 Z(y DTG+ =S
-1
b S Tw—g-v-vi= oy T-vi-1
F(=v2 =w1) £ Fu—1p) l“( Vl)r(ﬂ)
for 4 € N3. Computing (4.1) at v; = 1.2, v, = 0.3, and some values of u, we get
51
RLVv1 Rvag f —
( F) @) = <5 for p =3,
5561
= 1000’ OTH =4
3741
= ——,fi =5,
332 O

and so on, we get (RIIV” R%VVZ f) (1) = 0, for each u € N;3. Furthermore, we have

fy=2, (VHM)=1(V)2) =2
Hence, Theorem 3.1 confirms that (V f)(u) 2 0, for each u € N;.
Example 4.2. In this example, let us define f by

f(r) = (%) ,for T € N,,.

In view of the proof of Lemma 3.2, we have for t :=ap + u :

1 u-l -
( RLyvi RLszf) (ao )y =— — Z(ﬂ _ ])—Vz—w—lf(] +ag+1)
D 2

ap+2 ( Vy—v
W w-nt (u-D™"
[r( e Ch v ]f( @+ 1) = o 5@ +2)

for u € Nj. Putting ay = 0, it follows that

1 S Tu—j—va—v = 1) 3\
RLyv RLyv: _ 21 h
(57 S W = o = 2 T-) 2
[F(y—vl—l) " l"(p—vl—2)] 9 I'w-vi-2)
F(=v)I'(w) C(=v)l(u—-1)] 4Tl - 1)
for u € N3. Calculating (4.2) at v, = 1.1, vy = 0.05, and u = 3 to obtain
393

(RLVV] RLszf) (3) m > 0.

3y —v2
2—2 = 1.9, we have

Besides, by choosing 1 £6=16=<1+
f() =15, f12)=225,(Vf)(2) = 0.75,andf(2) — 6 f(1) = —0.15.

Then (V£)(3) 2 0, which confirms the conclusion of Theorem 3.2.

4.1)

4.2)

AIMS Mathematics Volume 8, Issue 2, 2673-2685.
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5. Conclusions

The investigation of positivity analysis development for discrete sequential fractional operator of
mixed order was explored in this research article based on the time set N, . In general, our results can
be summarized as follows:

(1) The standardized discrete sequential operators (aOE%VV‘ R;(;VVZ f) () and (
firstly formulated in (2.6) and (2.7), respectively.

(2) The above formulations are defined on the sets &, and %,, respectively.

(3) Based on the first formulation (2.6), the positivity of nabla is discussed in details for each 7 € N,.

(4) Although it was difficult to examine the positivity of nabla at each time step 7 € N,, we have
found the positivity of nabla at 7 = gy + 3 with an extra condition (see condition (c) in
Theorem 3.2) based on the formulation (2.7).

(5) We have demonstrated the accuracy and efficiency of the main results using two examples. In the
first example, we have found that f(7) = 27 is increasing (i.e. (Vf)(7) = 0) for each 7 € N, 4,

RLyv, IZI;VVZ f) (1) are

a0+2

based on Theorem 3.1. In the second example, Theorem 3.2 confirmed that f(7) = (%)Hl(J is
increasing at 7 = {ap + 1, a9 + 2, a9 + 3}.
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