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1 Introduction
Fractional calculus broadens the classical calculus by generalizing differentiation and inte-
gration of integer order and studies these operators with arbitrary order so that they take
the fundamental operator D� where � ∈ C. There are numerous approaches to fractional
derivatives, including Caputo, Weyl, Hadamard, Grünwald–Letnikov, Riemann–Liouville,
and others (see, for instance, [1, 2]). The Caputo FD lends itself well to conceptual inter-
pretations of initial and boundary conditions. Despite these challenges, researchers have
proposed local fractional derivatives and integrals because of the complicated process and
not possessing certain fundamental characteristics fulfilled by standard derivatives. The
standard conformable derivative (shortly, C D ) was initiated by the authors of [3, 4]. F.
Jarad et al. [5, 2017] recently presented a modified version of the fractional conformable
integral operator.

The problem of turbulent flow in a porous medium is fundamental in mechanics. The
p-Laplacian equation was first presented by L. S. Leibenson as a model for the afore-
mentioned problem in [6, 1983]. A characteristic extension of the p-Laplacian differential
equation was put forth by replacing the ordinary derivative with an FD, which produced
the fractional p-Laplacian equation, therefore as direct consequence of the advancement
of FD. Boundary value problems with integral and multipoint boundary conditions on an
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unbounded domain have many practical applications, including the study of physical phe-
nomena like the unsteady flow of fluid through a semiinfinite porous medium and radially
symmetric answers to nonlinear elliptic equations. They also appear in the study of drain
flows and plasma physics (see [7–12]). This interest has led to the publication of several
findings and the investigation of various forms of the p-Laplacian equation (see [13–16]).

Over the past few years, there has been a lot of research done on the boundary value
problems (abbreviated BVPs) that are defined by fractional differential equations (shortly,
FDE). Numerous papers have recently examined boundary value issues for FDE at non-
resonance (see [17–21]). Furthermore, the BVPs for differential equations at resonance
have been investigated in a number of papers (see [22–24]). With the help of various fixed
point theorems, including the fixed point theorems of Leggett–Williams, Schaefer, Kras-
nosel’skii, the topological degree of vector fields and maps, and the fixed point index, nu-
merous fascinating findings relating to the existence, uniqueness, and stability results have
been reported (see [25–29]). In order to analyze functional and differential equations, the
concept of coincidence degree theory was first presented in 1977 by the authors of [30].
The hypothesis is known as Mahwin’s coincidence degree theory due to the significant
outcome of Mawhin’s research and his significant contributions to the field of coincidence
degree theory (shortly, C DE ) (see [30–33]). In particular, when there are nonlinear equa-
tions involved in the problem, coincidence theory is a very potent tool. It has numerous
applications, but it is particularly useful in determining whether periodic solutions to non-
linear differential equations exist (see [34]).

Most of these interdisciplinary research fields have nonlinear problems that can be con-
structed mathematically in following way:

Find u ∈X such that L u = N u, (1.1)

in which a Banach space is represented by Y and a nonempty set represented by X , and
L ,N are mappings from X to Y . A coincidence problem is the problem of solving equa-
tion (1.1).

There has been a massive increase in the investigation of second-order nonlinear ordi-
nary differential equations (shortly, ODE ) of the form

u′′(θ ) = A
(
θ , u(θ )

)
, 0 < θ < T < ∞, (1.2)

depending on the area of interest, various boundary conditions may apply (see [35]).
The p-Laplacian equation was explored in [6], which opened up new directions for fu-

ture research:

(
ψϑ

(
u′(θ )

))′ = A
(
θ , u(θ ), u′(θ )

)
, (1.3)

where ψϑ (ρ) = |ρ|ϑ–2ρ,∞ > ϑ > 1,ρ ∈ R. The nonlinear fractional boundary value prob-
lem was initiated by Bai and Lu [18], and examined the existence and abundance of positive
solutions:

(
D�

θ

)
u(θ ) = A

(
θ , u(θ )

)
in (0, 1), 1 < � ≤ 2, (1.4)
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and boundary conditions

u(0) = 0, u(1) = 0. (1.5)

Following fractional boundary value problem was explored by the authors of [17]:

(
D�

θ

)
u(θ ) = –A

(
θ , u(θ ), –

(
Dα

θ

)
u(θ )

)
in (0, 1), (1.6)

with the boundary conditions in (1.5), where Dα
θ and D�

θ are Riemann–Liouville fractional
operators with 0 < α < � ≤ 2. With the aid of cone-based fixed point theorems, they proved
the existence results. As we know, an improved outcome that proves the existence of (1.6)
solution continua that meet the aforementioned requirements is also possible.

The boundary value problem (1.4)–(1.5) happens to be at resonance in the sense that its
associated linear homogeneous BVP

(
D�

θ

)
u(θ ) = 0 in (0, 1), 1 < � ≤ 2, (1.7)

and the conditions in (1.5) have x(θ ) = ct�–1, c ∈R as a nontrivial solution when c �= 0.
In order to deal with fractional-BVP at resonance, the authors of [13] have taken into

account a BVP with two-points considering p-Laplacian operator provided by

cD�

0+,θ
[
ψϑ

(cDα
0+,μ[u]

)]
= A

(
θ , u(θ ), –cDα

0+,θ [u]
)
, θ ∈ (0, 1), 0 < α,� ≤ 1, (1.8)

with the condition

cDα
0+,θ [u](0) = 0, cDα

0+,θ [u](1) = 0. (1.9)

Wang et al. [24], in their study of the two-point BVP for FDE (1.8) at resonance with
different boundary conditions

u(0) = 0 and cDα
0+,θ [u](0) = cDα

0+,θ [u](1), (1.10)

made use of the C DT to obtain the results for existence.
The BVP for fractional order at resonance is only briefly discussed in a few papers,

though. The existence of solutions pertaining to Sturm–Liouville and Dirichlet problems
has become the topic of several works.

Motivated by the preceding results, by means of Mawhin’s continuation theorem, we
present some sufficient conditions which guarantee the existence of at least one solution
for a type of boundary value problem with p-Laplacian and in the framework of a specific
type of generalized fractional Caputo derivative. More clearly, in this paper with the aid
of C DT , we examine the existence of solutions for a two-point FDE at resonance

cD�,γ
0+,θ

[
ψϑ

(cDα,γ
0+,μ[u]

)]
= A

(
θ , u(θ ), –cDα,γ

0+,θ [u]
)
, θ ∈ (0, 1), 0 < α,� ≤ 1, (1.11)

with the condition for (1.11) being

u(0) = u(1), cDα,γ
0+,θ [u](0) = 0, (1.12)
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where (cD�,γ
0+,θ ) and (cDα,γ

0+,μ) denote generalized Caputo derivative with 0 < α ≤ α + � <
1, 0 < γ , with A continuous (but not necessarily locally Lipschitz continuous).

Note that the nonlinear operator cD�,γ
0+,θ [ψϑ (cDα,γ

0+,μ)] is restricted to (cD�+α,γ
0+,θ ) if we take

ϑ = 2. Furthermore, the index law of additiveness,

cD�,γ
0+,θ

[cDα,γ
0+,μ[u]

]
= cD�+α,γ

0+,θ [u],

holds when the function u(θ ) is subjected to some fair constraints (see [5, Theorem 4.6]).
Additionally, the C DT for linear differential operators with boundary conditions can-

not be directly applied to cD�,γ
0+ [ψϑ (cDα,γ

0+,μ)] because it is a nonlinear operator.
The problem (1.11)–(1.12) is transformed into a two-point BVP of second order ODE

in the special case of ϑ = 2 and α = � = 1.
The remaining of this paper is organized as follows: The next section presents some

preliminaries. In Sect. 3, by employing the Mawhin’s continuation theorem of coincidence
degree theory, a criterion is established for the existence of solutions of BVP (1.11)–(1.12).
Finally, an example is presented to illustrate our theoretical result. We claim that the re-
sults of this paper are new and generalize some earlier results.

2 Basic definitions and preliminaries
According to Khalil et al. [3], an intriguing concept that expands on the well-known limit
definition of the derivative of a function is presented below.

Definition 2.1 ([3]) The C D and its order � ∈ (0, 1] is provided by

T�

0+,θ [u] = lim
ε→0

u(θ + εθ1–�) – u(θ )
ε

, T�

0+,θ [u](0) = lim
θ→0+

T�

0+,θ [u]. (2.1)

The properties of T�

0+[u] can be found in [3, 4].

Definition 2.2 ([4]) Let us assume that � ∈ (�,� + 1], u is an �-differentiable function at
θ > 0, thus, at θ > 0, the left-sided C D of order � is given by

T�

0+,θ [u] = T�–�

0+,θ
[
u(�)](θ ) = lim

δ→0

[
u(�)(θ + δθ�+1–�

)
– u(�)(θ )

]
/
(
δθ�+1–�

)
. (2.2)

Lemma 2.3 ([4]) Let us assume θ > 0, � ∈ (�,� + 1]. Then u is (� + 1)-differentiable iff u is
�-differentiable, furthermore, T�

0+,θ [u] = θ�+1–�u(�+1)(θ ).

Remark 2.4 As a simple example, if � ∈ (�,� + 1], we have T�

0+,θ [μk] = 0 whenever k =
0, 1, . . . ,�.

Definition 2.5 ([4]) Consider � ∈ (�,� + 1]. The left-sided conformable integral of order
� of a function u ∈ C((0, +∞),R) is given by

I�

0+,θ [u] = I�+1
0+

(
θ�–�–1u(θ )

)
=

1
�!

∫ θ

0
(θ – ρ)�ρ�–�–1u(ρ) dρ, (2.3)

when u(�)(θ ) exists.
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In order to obtain an equivalent integral representation of the BVP (1.11)–(1.12), the
lemma below is crucial.

Lemma 2.6 ([4]) Let � ∈ (�,� + 1]. If u ∈ C(0, 1], T�

0+,θ [u] ∈ L1[0, 1], then

I�

0+,θ
[
T�

0+,μ[u]
]

= u(θ ) +
�–1∑

k=0

u(k)(0)
k!

θ k = u(θ ) + c0 + c1θ + · · · + c�–1θ
�–1,

for θ ∈ (0, 1], (2.4)

where ck = u(k)(0)
k! and the smallest integer � ≥ �(� = [�] + 1).

Lemma 2.7 Assume that θ2 > θ1 ≥ 0 and u : [θ1, θ2] →R is a function such that
(i) u is continuous on [θ1, θ2];

(ii) u is �-differentiable on (θ1, θ2) for some � ∈ (0, 1).
Then there exists μ ∈ (θ1, θ2) such that

T�

0+,μ[u] =
u(θ2) – u(θ1)

1
�

(θ�

2 – θ
�

1 )
. (2.5)

Lemma 2.8 Let � ∈ (0, 1]. Moreover, assume that u,ω are �-differentiable at a point θ > 0.
Then

(i) T�

0+,θ [r1u + r2ω] = r1(T�

0+,θ [u]) + r2(T�

0+,θ [ω]), r1, r2 ∈R.
(ii) T�

0+,θ [r] = 0 for all constant functions u(θ ) = r, r ∈R.
(iii) T�

0+,θ [uv] = vT�

0+,θ [u] + uT�

0+,θ [ω].

The predominant conformable left-sided integral operator of fractional order with � ∈
(0, 1],γ > 0, a being a positive number, and θ ∈ (a,∞[, according to [5], is

J
�,γ
a+,θ [u] =

1
�(�)

∫ θ

a

(
(θ – a)γ – (μ – a)γ

γ

)�–�–1

u(μ)
dμ

(μ – a)1–γ
, (2.6)

and the conformable left-sided derivative operator of fractional order [5] is

D�,γ
a+,θ [u] =

1
�(� – �)

(
Tγ ,�

a
)∫ θ

a

(
(θ – a)γ – (μ – a)γ

γ

)�–�–1

u(μ)
dμ

(μ – a)1–γ
,

� ∈ [� – 1,�), (2.7)

where Tγ ,� = Tγ ◦ Tγ ◦ · · · ◦ Tγ (composition taken � times), � = [�] + 1. Besides this,
Tγ ,� represents the right and left conformable differential operators shown in (2.2). The
fractional C D on the left-hand side in view of Caputo definition is defined as [5]

cD�,γ
a+,θ [u] = J

�–�,γ
a+,θ

[
Tγ ,�

a+,μ[u]
]
(θ ) (2.8)

=
1

�(� – �)

∫ θ

a

(
(θ – a)γ – (μ – a)γ

γ

)�–�–1

Tγ ,�
a+,μ[u](μ)

dμ

(μ – a)1–γ
.
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Lemma 2.9 ([5]) Let � ≥ � > � – 1,� /∈N. Then

J
�,γ
a+,θ

[cD�,γ
a+,μ[u]

]
= u(θ ) –

�–1∑

k=0

T�,k
a+,μ[u](a)

γ kk!
(θ – a)γ k , for θ ∈ (a, b]. (2.9)

Lemma 2.10 ([5]) For α > 0, the general solution to Caputo-FDE ,

cDα,γ
0+,θ [u] = 0, (2.10)

is given by

u(θ ) = c0 + c1θ + · · · + c�–1θ
�–1, (2.11)

with the coefficients denoted by ci(i = 1, . . . ,� – 1), and � = [α] + 1.

Lemma 2.11 ([5]) When u(θ ) = (θ – a)γ (ν–1) and ν > 0, we have

J
�,γ
a+,θ [u] =

�(ν)
γ ��(� + ν)

(θ – a)γ (�+ν–1).

On the other hand, assume that � ∈ R
� is bounded and open, and u ∈ C1(�̄). The

Brouwer degree expressed as deg(u,�,ϑ) is a framework that used extensively to describe
the number of solutions for u(θ ) = ϑ if ϑ /∈ u(∂�).

Definition 2.12 ([33]) Let u ∈ C1(�̄), ϑ ∈R
� be given with ϑ /∈ u(∂�) and ϑ /∈ u(Su). The

Brouwer degree of u at ϑ in terms of �, deg(u,�,ϑ), is defined as follows:

deg(u,�,ϑ) =
∑

θ∈u–1(ϑ)

sgnJu(θ ),

where deg(u,�,ϑ) = 0 if u–1(ϑ) = φ. The Jacobian of u at θ is Ju(θ ). Moreover, Su(�̄) is
the collection including all critical points of u in �̄,

Su(�̄) =
{
θ ∈ � : Ju(θ ) = 0

}
.

Theorem 2.13 ([33]) The following are some characteristics of the Leray–Schauder degree:
(i) deg(I,�, 0) = 1 iff 0 ∈ �.
(ii) Whenever deg(I – M ,�, 0) �= 0, Mu = u does have a solution in �.
(iii) Assume that H (u,η) maps from �̄ × [0, 1] to X and is continuous and compact.

Besides that, let H (u,η) �= u for every (u,η) ∈ ∂�̄ × [0, 1]. Then deg(I – H (·,η),�, 0) �= 0.

Lemma 2.14 ([30]) An isomorphism with a linear structure has a Leray–Schauder degree
of ±1.

An algebraic projection is defined as an operator P which maps from X to X whenever
P is idempotent and linear, in other words, it can be written as P2 = P . Let us say that
there are two algebraic projections P and Q, where P maps from X to X and Q maps
from Y to Y .
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Let us consider two real Banach spaces X ,Y and suppose that L mapping from
Dom(L ) ⊂X to Y is a Fredholm operator having index zero, where the index of a Fred-
holm operator L is given by

Index L := dimkerL – codim�(I) : L ,

and P mapping from X toX and Q mapping from YtoY are projectors such that ImP =
kerL , ImL = kerQ. then X = kerL ⊕ kerP ,Y = ImL ⊕ ImQ, and

L |Dom(L ) ∩ kerP :Dom(L ) ∩ kerP → ImL,

is invertible. We denote the inverse by KP .
If � is an open bounded subset ofX such thatDom(L )∩�̄ �= 0, then the map N : X →

Y will be called L -compact on �̄ if QN (�̄) is bounded and KP(I – Q)N : �̄ → X is
compact.

Definition 2.15 Given two normed spaces, let us call them X and Y . Additionally, sup-
pose that L mapping from Dom(L ) ⊂ X to Y is a Fredholm operator with index zero
such that:

(i) Y has a closed subset ImL ,
(ii) dimkerL = codimIm(L ) < +∞.

Definition 2.16 Assume that X is a normed space. An operator P which maps from X
to X is referred to as a projection if P ◦ P = P . In such a case, I – P : X →X serves as
a projection. Here ker(P) = Im(I – P), Im(P) = ker(I – P), with I being the identity
operator.

The equivalence theorem of Mawhin leads to the conclusion L u = N u for u ∈ �̄ which
is transformed to the fixed-point property u = φ(u) for u ∈ �̄ here φ = P +(JQ+KP ,Q N)
is a completely continuous operator.

Theorem 2.17 ([32]) Given two normed spaces, let us call them X and Y . Let an operator
L mapping from Dom(L ) ⊂ X to Y be a Fredholm operator with index zero and N :
X → Y be L -compact on �. Suppose that the conditions listed below are met:

(C1) L u �= ηN u for every (u,η) ∈ [(Dom (L )�kerL ) ∩ ∂�] × (0, 1);
(C2) N u /∈ ImL , for every u ∈ kerL ∩ ∂�;
(C3) deg(JQN |kerL ,� ∩ kerL , 0) �= 0 where Q : Y → Y is a projection such that

ImL = kerQ and J : ImQ→ kerL is a linear isomorphism with J(�) = �.
Then the equation L u = N u has at least one solution inDom(L ) ∩ �̄.

Remark 2.18 BVPs can be expressed in the form (1.1). Nonresonant problems are those in
which kerL is invertible orkerL = {0}. Otherwise, it is referred to as a resonant problem
if kerL is not a simple space.

The well-known nonlinear operator called the classical p-Laplacian is frequently used
in nonlinear structures. The nonlinear p-Laplacian operator is stated with 1

ϑ
+ 1

q = 1, thus
ψϑ (ρ) = |ρ|ϑ–2ρ,∞ > ϑ > 1,ρ ∈R, and ψq = ψ–1

ϑ .
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Lemma 2.19 ([36]) For any u,ω ∈R, we have
(i) If 1 < ϑ ≤ 2, uω is nonnegative, and |u|, |ω| ≥ l > 0, then

∣
∣ψϑ (u) – ψϑ (ω)

∣
∣ ≤ (ϑ – 1)lϑ–2|u – ω|. (2.12)

(ii) If ϑ > 2, |u|, |ω| < L then

∣∣ψϑ (u) – ψϑ (ω)
∣∣ ≤ (ϑ – 1)L ϑ–2|u – ω|. (2.13)

Lemma 2.20 ([36]) For any u,ω ≥ 0, we have
(i) If 1 < ϑ < 2 then

∣∣ψϑ (u + ω)
∣∣ ≤ ψϑ (ω) + ψϑ (ω). (2.14)

(ii) If ϑ ≥ 2 then

∣
∣ψϑ (u + ω)

∣
∣ ≤ 2ϑ–2(ψϑ (ω) + ψϑ (ω)

)
. (2.15)

The following will be our assumptions regarding the nonlinearity of A . Let A : [0, 1] ×
R

2 →R be continuous. We assume that
(A1) there exist nonnegative functions a, b, c ∈ Y such that

∣
∣A (θ , u,ω)

∣
∣ ≤ a(θ ) + b(θ )|u|ϑ–1 + c(θ )|ω|ϑ–1, ∀θ ∈ [0, 1], (u,ω) ∈R

2.

(A2) There is a B > 0 such that for every |u| > B, one of the following occurs:

uf (θ , u, 0) < 0, ∀θ ∈ [0, 1],

or

uf (θ , u, 0) > 0, ∀θ ∈ [0, 1].

(A3) For all |u| > E and ω ∈R, there is E > 0 such that either

A (θ , u,ω) < 0, ∀θ ∈ [0, 1],

or

A (θ , u,ω) > 0, ∀θ ∈ [0, 1].

For the sake of brevity, we use the notation Au := A (u) ≡ A (θ , u).

3 Solutions for the problem (1.11)–(1.12)
For the differential equation with fractional order which contains p-Laplacian (1.11), the
boundary conditions (1.12) are required to solve nonlocal BVPs, and the conditions we
establish in this section ensure that at least one such solution exists.
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We take Y = C[0, 1] and

X =
{

u : u ∈ C
(
[0, 1]

)
and ψϑ

(cDα,γ
0+θ [u]

) ∈ C
(
[0, 1]

)}
. (3.1)

As u ∈ C[0, 1], the pertinent norm is ‖u‖∞ = max{|u(θ )| : θ ∈ [0, 1]}. In addition, if u ∈X ,
then the pertaining norm is

‖u‖X = max
{‖u‖∞,

∥
∥cDα,γ

0+,θ [u]
∥
∥∞

}
. (3.2)

By means of the linear functional analysis theory, we can prove that X is a Banach space.
The problem (1.11)–(1.12) is equivalent to the following problem:

cDα,γ
0+,θ [u] = ψq

(
I

�,γ
0+,θ

[
A

(
μ, u(μ), –cDα,γ

0+,μ[u]
)]

+ ψϑ

(cDα,γ
0+,μ[u](0)

))
, (3.3)

with the condition for (3.3) being (1.12).
Define the operator L :Dom(L ) ⊂X → Y by

L u = cDα,γ
0+,θ [u], (3.4)

where

Dom(L ) =
{

u ∈X : u(0) = u(1), cDα,γ
0+,μ[u](0) = 0

}
. (3.5)

Let N : X → Y be the Nemytski operator

N u = ψq
(
I

�,γ
0+,θ

[
A

(
μ, u(μ), –cDα,γ

0+,μ[u]
)])

, ∀θ ∈ [0, 1]. (3.6)

Then (3.3) is equivalent to the operator equation (1.1) for u ∈Dom(L ).
The main objective of C DT is to find a solution to the operator equation (3.3) with the

boundary conditions (1.12) in the Banach space of operators L , which are either linear or
nonlinear. In order to obtain the existence of solutions to (3.3) and (1.12), we require the
auxiliary lemmas listed below.

Lemma 3.1 If L is given by (3.4), then

kerL = {c : c ∈R} (3.7)

and

ImL =
{

y ∈ Y :
∫ 1

0

(
1 – μγ

)α–1y(μ)
dμ

μ1–γ
= 0

}
. (3.8)

Proof (i) By Lemma 2.10, we have

L u = 0 �⇒ cDα,γ
0+,μ[u] = 0, (3.9)
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which has solution

u(θ ) = u(0) = c, ∀θ ∈ [0, 1]. (3.10)

When the boundary value conditions of (1.12) are combined, (3.7) continues to hold.
(ii) Whenever y ∈ ImL , suppose a function u ∈Dom(L ) exists for which L u = y,

u(θ ) – u(0) = I
α,γ
0+,θ [y], (3.11)

u(θ ) =
∫ θ

0

(
θγ – μγ

γ

)α–1

y(μ)
dμ

μ1–γ
+ u(0). (3.12)

From the conditions we obtain

u(1) =
∫ 1

0

(
1 – μγ

γ

)α–1

y(μ)
dμ

μ1–γ
= u(0). (3.13)

As a result, now we obtain (3.8). On the other hand, assume that y ∈ Y and suppose it
satisfies (3.8).

Let u(θ ) = I
α,γ
0+,θ [y]. Then u ∈Dom(L ) and

(L u)(θ ) =
(cDα,γ

0+,θ
)[
I

α,γ
0+,μ[y]

]
= y(θ ) ∈Dom(L ). (3.14)�

Lemma 3.2 Let L be defined by (3.4). Then L is a Fredholm operator of index zero, and
the linear continuous projector operators P : X →X and Q : Y → Y can be defined as

(Pu)(θ ) = u(0), ∀θ ∈ [0, 1], (3.15)

and

(Qy)(θ ) = w(θ )
(
I

α,γ
0+,1

)
y(θ ), (3.16)

where

w(θ ) = γ α�(α + 1). (3.17)

Proof (i) We have for every u ∈X that

(Pu)(θ ) = u(0) and kerP =
{

u ∈X : u(0) = 0
}

. (3.18)

Obviously, ImP = kerL and it is clear that (P2u)(θ ) = (Px)(θ ), ∀u ∈X , and it follows
from u = (u – Pu) + Pu that X = kerL + kerP .

As a result, u ∈ kerL ∩ kerP �⇒ u = 0, implying kerL ∩ kerP = {0}. Thus

X = kerL ⊕ kerP . (3.19)
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(ii) We have the following, for any y ∈ Y ,

(
Q2y

)
(θ ) = Q(Qy)(θ ) = w(θ )

(
I

α,γ
0+,1

)
(Qy)(θ )

= (Qy)(θ )
w(θ )
�(α)

∫ 1

0

(
1 – μγ

)α–1 dμ

μ1–γ

= (Qy)(θ ),

(3.20)

with

w(θ )
�(α)

∫ 1

0

(
1 – μγ

)α–1 dμ

μ1–γ
= 1.

By virtue of Lemma 2.11, we get (3.17).
The subsequent step is just to demonstrate kerQ = ImL . It is indeed evident that

ImL ⊂ kerQ. If y ∈ kerQ⊂ Y then

Qy = 0 �⇒ γ α�(α + 1)
∫ 1

0

(
1 – μγ

)α–1y(μ)
dμ

μ1–γ
= 0. (3.21)

Thus we get

y ∈ ImL and kerQ = ImL . (3.22)

Let y ∈ Y , y = (y – Qy) + Qy where (y – Qy) ∈ kerQ = ImL ,Qy ∈ ImQ.
Accordingly, y ∈ kerQ + ImL = ImL + kerQ.
If y ∈ ImL ∩ ImQ then

∫ 1

0

(
1 – μγ

)α–1y(μ)
dμ

μ1–γ
= 0, (3.23)

which implies that

y(θ )
∫ 1

0

(
1 – μγ

)α–1 dμ

μ1–γ
= 0, ∀θ ∈ [0, 1]. (3.24)

Thus, we even have

y ≡ 0.

We can get that ImL ∩ ImQ = {0}. Then, we now have

Y = ImL ⊕ ImQ. (3.25)

Hence

dimkerL = dimImQ = codimImL = 1.
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This indicates that the Fredholm operator L has index zero,

IndL = dimkerL – codimL = 1 – 1 = 0.

Moreover, for the operator KP : ImL →Dom(L ) ∩ kerP , it is possible to write

KPy = I
α,γ
0+,θ [y] (3.26)

and

LP : L \Dom(L ) ∩ kerP → ImL ,

LPu = L x.
(3.27)

The next step is to demonstrate that KP is the inverse of (L |Dom(L )∩kerP)–1. It is clear
again from the definitions of P ,KP that the generalized inverse of L is KP .

In fact, for y ∈ ImL , we have

LPKPy = cDα,γ
0+,θ

[
I

α,γ
0+,μ[y]

]
= y. (3.28)

Furthermore, for u ∈Dom(L ) ∩ kerP , we now have

u ∈Dom(L ) ∩ kerP �⇒ u(0) = 0 and Px = 0.

We can deduce from Lemma 2.9 that

KPLPu = I
α,γ
0+,θ

[cDα,γ
0+,μ[u]

]
= u(θ ) – u(0), (3.29)

which, together with u(0) = 0, yields that

I
α,γ
0+,θ [LPu] = u(θ ). (3.30)

Combining (3.28) with (3.30), we know that KP = L –1
P . �

Lemma 3.3 Assume � ⊂X is a bounded open subset,Dom(L ) ∩ �̄ �= ∅. Then N is L -
compact on �̄.

Proof Consider

KP,Q = KP(I – Q)N . (3.31)

Considering the definition of the operator N and in virtue of continuity of A , it can be
shown that there is a constant M > 0 such that

∣
∣A

(
θ , u(θ ), –cDα,γ

0+,θ [u]
)∣∣ ≤ M (3.32)

and

∣∣I�,γ
0+,θ

[
A

(
μ, u(μ), –cDα,γ

0+,μ[u]
)]∣∣ ≤ M . (3.33)
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Then

∥∥(N u)(θ )
∥∥ ≤ M , ∀u ∈ �̄, θ ∈ [0, 1] (3.34)

and

∣
∣(QN u)(θ )

∣
∣ ≤ γ α�(α + 1)

∫ 1

0

(
1 – μγ

)α–1∣∣(N u)(μ)
∣
∣ dμ

μ1–γ
≤ ∣

∣N u(θ )
∣
∣ ≤ M . (3.35)

As a result, we can conclude that QN (�̄) is bounded:

∣
∣KP(I – Q)N u

∣
∣ ≤ M , ∀u ∈ �̄, θ ∈ [0, 1]. (3.36)

So, we get that KP,Q(�̄) is bounded. Since KP,Q(�̄) = KP(I – Q)N (�̄) ⊂ X , we
only need to demonstrate the equicontinuity of this operator in light of the Arzelà–Ascoli
theorem. For 0 ≤ θ1 < θ2 ≤ 1, u ∈ �̄, we have

∣∣KP,Qu(θ2) – KP,Qu(θ1)
∣∣

≤ ∣∣KPN u(θ2) – KPN u(θ1)
∣∣ +

∣∣KPQN u(θ2) – KPQN u(θ1)
∣∣,

(3.37)

∣
∣KPN u(θ2) – KPN u(θ1)

∣
∣

≤ 1
�(α)

∣
∣∣∣

∫ θ2

0

(
θ

γ
2 – μγ

γ

)α–1

N u(μ)
dμ

μ1–γ

–
∫ θ1

0

(
θ

γ
1 – μγ

γ

)α–1

Nu(μ)
dμ

μ1–γ

∣∣
∣∣

≤ 1
�(α)

∣∣
∣∣

∫ θ1

0

[(
θ

γ
2 – μγ

γ

)α–1

–
(

θ
γ
1 – μγ

γ

)α–1]
N u(μ)

dμ

μ1–γ

∣∣
∣∣

+
1

�(α)

∣∣
∣∣

∫ θ2

θ1

(
θ

γ
2 – μγ

γ

)α–1

N u(μ)
dμ

μ1–γ

∣∣
∣∣,

(3.38)

∣∣KPN u(θ2) – KPN u(θ1)
∣∣

≤ M

�(α)

∣
∣∣
∣

∫ θ1

0

[(
θ

γ
2 – μγ

γ

)α–1

–
(

θ
γ
1 – μγ

γ

)α–1] dμ

μ1–γ

∣
∣∣
∣

+
M

�(α)

∣
∣∣
∣

∫ θ2

θ1

(
θ

γ
2 – μγ

γ

)α–1 dμ

μ1–γ

∣
∣∣
∣

≤ M

γ α�(α + 1)
∣∣[θαγ

2 –
(
θ

γ
2 – θ

γ
1
)α – θ

αγ
1

]
+

(
θ

γ
2 – θ

γ
1
)α∣∣

≤ M

γ α�(α + 1)
∣∣∣∣θαγ

2 – θ
αγ
1

∣∣ + 2
∣∣θγ

2 – θ
γ
1
∣∣α∣∣

≤ M

γαγ �(α)
∣∣θαγ

2 – θ
αγ
1

∣∣,

(3.39)
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∣∣KP,Qu(θ2) – KP,Qu(θ1)
∣∣

=
∣∣KPQN u(θ2) – KPQN u(θ1)

∣∣

≤ 1
�(α)

∣∣
∣∣

∫ θ2

0

(
θ

γ
2 – μγ

γ

)α–1

QN u(μ)
dμ

μ1–γ

–
∫ θ1

0

(
θ

γ
1 – μγ

γ

)α–1

QN u(μ)
dμ

μ1–γ

∣∣
∣∣

≤ M

γ α�(α + 1)
∣∣∣∣θαγ

2 – θ
αγ
1

∣∣ + 2
∣∣θγ

2 – θ
γ
1
∣∣α∣∣.

(3.40)

Since θαγ is uniformly continuous on [0, 1], we are able to get that KP,Q(�̄) ⊂ C[0, 1]
is equicontinuous.

Analogous findings suggest that cDα,γ
0+,μ[KP(I – Q)N (�̄)] ⊂ C[0, 1] is equicontinuous.

Now, by virtue of uniformly continuity,

cDα,γ
0+,μ

[
KP,Q(�̄)

]
= ψq

(cDα,γ
0+,μ

[
KP(I – Q)N

)
(�̄))

] ⊂ C[0, 1]

is equicontinuous.
Below we mention the two cases representing how we divide the proof.
Case 1. 1 < ϑ ≤ 2. According to Lemma 2.19 and from (3.31)–(3.36), we have

∣∣cDα,γ
0+,μ[KP,Qu](θ2) – cDα,γ

0+,μ[KP,Qu](θ1)
∣∣

≤ ∣∣N u(θ2) – N u(θ1)
∣∣ +

∣∣QN u(θ2) – QN u(θ1)
∣∣,

(3.41)

where

∣∣N u(θ2) – N u(θ1)
∣∣

≤ ∣∣ψq
(
I

�,γ
0+,μ[Au] + ψϑ

(cDα,γ
0+,μ[u]

)
(0)

)
– ψq

(
I

�,γ
0+,μ[Au] + ψϑ

(cDα,γ
0+,μ[u]

)
(0)

)∣∣

≤ (q – 1)M q–2

�(�)

∣∣
∣∣

∫ θ2

0

(
θ

γ
2 – μγ

γ

)γ �–1

Au(μ)
dμ

μ1–γ

–
∫ θ1

0

(
θ

γ
1 – μγ

γ

)�–1

Au(μ)
dμ

μ1–γ

∣∣∣
∣

≤ (q – 1)M q–1

γ ��(� + 1)
[
2
∣∣θγ

2 – θ
γ
1
∣∣� +

∣∣θ�γ
2 – θ

�γ
1

∣∣].

(3.42)

Case 2. ϑ > 2. By (3.31)–(3.36), we have
(i) Suppose that

I
�,γ
0+,θ1

[Au] = 0,

then ∃δ1 > 0, for θ2 ∈ [0, 1], such that 0 < θ2 – θ1 < δ1 and u ∈ �̄, and we have

I
�,γ
0+,θ2

[Au] > 0
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and

∣∣cDα,γ
0+,μ[KP,Qu](θ2) – cDα,γ

0+,μ[KP,Qu](θ1)
∣∣

≤ ∣∣N u(θ2) – N u(θ1)
∣∣ +

∣∣QN u(θ2) – QN u(θ1)
∣∣

≤ ∣∣N u(θ2) – N u(θ1)
∣∣,

(3.43)

where

∣
∣N u(θ2) – N u(θ1)

∣
∣

≤ ∣
∣N u(θ2)

∣
∣

≤ ∣∣ψq
(
I

�,γ
0+,θ2

[Au]
)∣∣

≤ ∣
∣I�,γ

0+,θ2
[Au]

∣
∣q–1

≤ ∣
∣I�,γ

0+,θ2
[Au] – I

�,γ
0+,θ1

[Au]
∣
∣q–1

≤ 1
(�(�))q–1

∣
∣∣
∣

∫ θ2

0

(
θ

γ
2 – μγ

γ

)�–1

Au(μ)
dμ

μ1–γ

–
∫ θ1

0

(
θ

γ
1 – μγ

γ

)�–1

Au(μ)
dμ

μ1–γ

∣
∣∣∣

≤ M q–1

γ (q–1)(�–1)(�(�))q–1

×
∣
∣∣
∣

∫ θ1

0

[(
θ

γ
2 – μγ

)�–1 –
(
θ

γ
1 – μγ

)�–1] dμ

μ1–γ

+
∫ θ2

θ1

(
θ

γ
2 – μγ

)�–1 dμ

μ1–γ

∣
∣∣
∣

q–1

≤ M q–1

γ (q–1)�(�(� + 1))q–1

∣
∣θ�γ

2 – θ
�γ

1
∣
∣q–1.

(3.44)

(ii) If

I
�,γ
0+,θ1

[Au] �= 0,

then there are two positive constants, δ2 and l > 0, which together ensure that

I
�,γ
0+,θ2

[Au] ≥ l > 0, ∀θ2 ∈]θ1 – δ2, θ1 + δ2[. (3.45)

By Lemma 2.19, we have

∣
∣cDα,γ

0+,μ[KP,Qu](θ2) – cDα,γ
0+,μ[KP,Qu](θ1)

∣
∣

≤ ∣
∣N u(θ2) – N u(θ1)

∣
∣

+
∣
∣QN u(θ2) – QN u(θ1)

∣
∣

≤ ∣
∣N u(θ2) – N u(θ1)

∣
∣,

(3.46)
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where

∣
∣N u(θ2) – N u(θ1)

∣
∣

≤ ∣
∣ψq

(
I

�,γ
0+,θ2

[Au]
)

– ψq
(
I

�,γ
0+,θ1

[Au]
)∣∣

≤ (q – 1)lq–2∣∣I�,γ
0+,θ2

[Au] – I
�,γ
0+,θ1

[Au]
∣∣

≤ (q – 1)lq–2 M

γ �+1(�(�))
∣
∣θ�γ

2 – θ
�γ

1
∣
∣, ∀θ2 ∈]θ1, θ1 + δ2[.

(3.47)

Taking δ = max{δ1, δ2}, the needed inequality holds for θ2 ∈]θ1 – δ, θ1 + δ[.
(iii) If

I
�,γ
0+,θ1

[Au] < 0,

our proof is similar.
From (3.44) and (3.47), we see that KP,Q : �̄ → X is equicontinuous. Thus, we get that
KP(I – Q)N : �̄ →X is compact. �

Lemma 3.4 Suppose (A1), (A2), and (A3) hold. Then the set

�1 =
{

u ∈Dom(L )\kerL : L u = ηN u for some η ∈ (0, 1)
}

(3.48)

is bounded.

Proof Take u ∈ �1, then L u = ηN u and N u ∈ ImL = kerQ.
By (3.8), we have

I
α,γ
0+,1[Au] = 0,

consequently, according to the integral mean value theorem,

A
(
ξ , u(ξ ), –cDα,γ

0+,ξ [u]
)

= 0, where ξ ∈ (0, 1).

According to (A3), we now have

∣∣u(ξ )
∣∣ ≤ E .

As u ∈Dom(L ), we now have

I
α,γ
0+,θ

[cDα,γ
0+,μ[u]

]
– I

α,γ
0+,ξ

[cDα,γ
0+,μ[u]

]
= u(θ ) – u(ξ ) (3.49)

and

∣
∣Iα,γ

0+,θ
[cDα,γ

0+,μ[u]
]∣∣ =

1
�(α)

∣∣
∣∣

∫ θ

0

(
θγ – μγ

γ

)α–1(cDα,γ
0+,μ[u]

) dμ

μ1–γ

∣∣
∣∣

≤ θγα

γ α�(α + 1)
∥
∥cDα,γ

0+,θ [u]
∥
∥∞.
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Thus, we have

∣∣u(θ )
∣∣ =

∣∣u(ξ ) + I
α,γ
0+,θ

[cDα,γ
0+,μ[u]

]
– I

α,γ
0+,ξ

[cDα,γ
0+,μ[u]

]∣∣

≤ E +
2

γ α�(1 + α)
∥∥cDα,γ

0+,θ [u]
∥∥∞,

(3.50)

and then

‖u‖∞ ≤ E +
2

γ α�(1 + α)
∥∥cDα,γ

0+,θ [u]
∥∥∞. (3.51)

By L u = ηN u, we get

cDα,γ
0+,θ [u] = ηψq

(
γ
I

�

0+,θ [Au]
)
. (3.52)

When the two sides of (3.52) are subjected to the operator ψϑ , one has

ψϑ

(cDα,γ
0+,θ [u]

)
= ψϑ

(
ηψq

(
I

�,γ
0+,θ [Au]

))

= ψϑ (η)
(
I

�,γ
0+,θ [Au]

)

= ηϑ–1
I

�,γ
0+,θ [Au].

(3.53)

From (A1) and (3.53), we get

∣∣ψϑ

(cDα,γ
0+,θ [u]

)∣∣

= ηϑ–1∣∣I�,γ
0+,θ [Au]

∣∣

≤ ηϑ–1

�(�)

∫ θ

0

(
θγ – μγ

γ

)�–1

[Au](μ)
dμ

μ1–γ

≤ ηϑ–1

�(�)
[‖a‖∞ + ‖b‖∞‖u‖ϑ–1

∞

+ ‖c‖∞
∥∥cDα,γ

0+,θ [u]
∥∥ϑ–1

∞
] ∫ θ

0

(
θγ – μγ

γ

)�–1 dμ

μ1–γ

≤ 1
γ ��(� + 1)

(
‖a‖∞ + ‖b‖∞

(
E +

2‖cDα,γ
0+,θ [u]‖∞

γ α�(α + 1)

)ϑ–1

+ ‖c‖∞
∥
∥cDα,γ

0+,θ [u]
∥
∥ϑ–1

∞

)
.

(3.54)

If 1 < ϑ < 2, from Lemma 3.4, we have

∣
∣ψϑ

(cDα,γ
0+,θ [u]

)∣∣

≤ (‖a‖∞ + ‖b‖∞E ϑ–1)
γ ��(� + 1)

+
1

γ ��(� + 1)

[(
‖b‖∞

(
2

γ α�(α + 1)

)ϑ–1

+ ‖c‖∞
)∥∥cDα,γ

0+,θ [u]
∥∥ϑ–1

∞

]
.

(3.55)
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Moreover, |ψϑ (cDα,γ
0+,θ [u])| = |cDα,γ

0+,θ [u]|ϑ–1 and then

∥∥cDα,γ
0+,θ [u]

∥∥ϑ–1
∞ ≤ ‖a‖∞ + ‖b‖∞E ϑ–1

γ ��(� + 1)
(3.56)

+
1

γ ��(� + 1)

[(
‖b‖∞

(
2

γ α�(α + 1)

)ϑ–1

+ ‖c‖∞
)∥

∥cDα,γ
0+,θ [u]

∥
∥ϑ–1

∞

]
.

So

(
1 –

1
γ ��(� + 1)

(
‖b‖∞

(
2

γ α�(α + 1)

)ϑ–1

+ ‖c‖∞
))∥

∥cDα,γ
0+,θ [u]

∥
∥ϑ–1

∞

≤ ‖a‖∞ + ‖b‖∞E ϑ–1

γ ��(� + 1)
.

If 0 < R1 = (1 – 1
γ ��(�+1) (‖b‖∞( 2

γ α�(α+1) )ϑ–1 + ‖c‖∞)) then

∥
∥cDα,γ

0+,θ [u]
∥
∥∞ ≤ L1 =

(‖a‖∞ + ‖b‖∞E ϑ–1

γ ��(� + 1)R1

)1–ϑ

(3.57)

and

‖u‖∞ ≤ L2 = E +
2

γ α�(α + 1)
L1. (3.58)

If ϑ ≥ 2 then

∥∥cDα,γ
0+,θ [u]

∥∥ϑ–1
∞ ≤ ‖a‖∞ + 2ϑ–2‖b‖∞E ϑ–1

γ ��(� + 1)
(3.59)

+
1

γ ��(� + 1)

[(
‖b‖∞

(
2ϑ–2

γ α�(α + 1)

)ϑ–1

+ ‖c‖∞
)∥∥cDα,γ

0+,θ [u]
∥∥ϑ–1

∞

]
.

So

(
1 –

1
γ ��(� + 1)

(
‖b‖∞

(
2

γ α�(α + 1)

)ϑ–1

+ ‖c‖∞
))∥∥cDα,γ

0+,θ [u]
∥∥ϑ–1

∞

≤ ‖a‖∞ + 2ϑ–2‖b‖∞E ϑ–1

γ ��(� + 1)
.

If 0 < R2 = (1 – 1
γ ��(�+1) (‖b‖∞( 2ϑ–2

γ α�(α+1) )ϑ–1 + ‖c‖∞)) then

∥
∥cDα,γ

0+,θ [u]
∥
∥∞ ≤ l1 =

(‖a‖∞ + 2ϑ–2‖b‖∞E ϑ–1

γ ��(� + 1)R2

)1–ϑ

(3.60)

and

‖u‖∞ ≤ l2 = E +
2

γ α�(α + 1)
l1. (3.61)
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Using (3.57), (3.58), (3.60), and (3.61), we have

‖u‖X ≤ max
{‖u‖∞,

∥
∥cDα,γ

0+,μ[u]
∥
∥∞

} ≤ max{L2, L1, l2, l1} = L3. (3.62)

Therefore, �1 is bounded. �

Lemma 3.5 Suppose (A2) holds. Then the set

�2 = {u : u ∈ kerL ,N u ∈ ImL } (3.63)

is bounded.

Proof For u ∈ �2, we now have u(θ ) = c, c ∈ R and N u ∈ ImL = kerQ. Furthermore, we
have

QN (u) = γ α�(α + 1)
∫ 1

0

(
1 – μγ

)α–1|N u| dμ

μ1–γ
= 0. (3.64)

According to the hypothesis, a constant ξ ∈ (0, 1) exists such that N u(ξ ) = 0. This can be
written as

∫ ξ

0

(
ξγ – μγ

)α–1
A (μ, c, 0)

dμ

μ1–γ
= 0.

By the above-stated hypothesis, we get ρ ∈ (0, ξ ) so that A (ρ, c, 0) = 0, which, in addition
to (A2), essentially means |c| ≤ B. As a result,

‖u‖X ≤ max{B, 0} = B. (3.65)

Hence, �2 is bounded. This completes the proof. �

Lemma 3.6 Assume the first part of (A2) is satisfied. Then

�+
3 =

{
u ∈ kerL : ηx + (1 – η)QN u = 0,η ∈ [0, 1]

}
(3.66)

is bounded.

Proof For u ∈ �+
3 , we have u(θ ) = c, c ∈ R and this suggests ψϑ (cDα,γ

0+,θ [u])(0) = 0 and

N u = N c = ψq
(
I

�,γ
0+,θ

[
A (μ, c, 0)

])
. (3.67)

Whenever η = 1, we obtain u = c = 0.
Whenever η = 0, and following the lines of Lemma 3.3, we now have that �+

3 is bounded,
i.e., |c| ≤ B due to first part of (A2). We now have for η ∈ (0, 1) the equality

ηc + (1 – η)Q
(
ψq

(
I

�,γ
0+,θ

[
A (μ, c, 0)

]))
= 0, (3.68)
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and as a result Q(ψq(I�,γ
0+,θ [A (μ, c, 0)])) = 0. Following the lines of the proof of Lemma 3.3,

we now have that �+
3 is bounded and, moreover, we can get |c| ≤ B. Indeed, given the first

part of (A2), if |c| > B, one will have

ηc2 + (1 – η)
∫ 1

0

(
1 – μγ

)�–1cf (μ, c, 0)
dμ

μ1–γ
> 0, (3.69)

which contradicts (3.68). Finally, we arrived at a conclusion that �+
3 is bounded. This com-

pletes the proof. �

Remark 3.7 If second part of (A2) continues to hold, then the set

�–
3 =

{
u ∈ kerL : –ηIx + (1 – η)JQN u = 0,η ∈ [0, 1]

}
(3.70)

is bounded.

Theorem 3.8 Assume that A : [0, 1] × R → R is continuous. Assume that (A1) and (A2)
hold. Then the BVP (1.11)–(1.12) has at least one solution, implying that

1
γ ��(� + 1)

(
‖b‖∞

(
2ϑ–2

γ α�(α + 1)

)ϑ–1

+ ‖c‖∞
)

< 1, if ϑ ≥ 2,

or

1
γ ��(� + 1)

(
‖b‖∞

(
2

γ α�(α + 1)

)ϑ–1

+ ‖c‖∞
)

< 1, whenever 1 < ϑ < 2.

Proof Set

� =
{

u ∈X : ‖u‖X < κ = max{L3,B} + 1
}

. (3.71)

Evidently, �1 ∪�2 ∪�3 ⊂ �, or �1 ∪�2 ∪�–
3 ⊂ �. It follows from Lemmas 3.1 and 3.2

that L (defined by (3.4)) is a Fredholm operator of index zero and N (defined by (3.6))
is L -compact on �. By Lemmas 3.3 and 3.4, we get that the following two conditions are
satisfied:

(i) L u �= ηN u,∀(u, y) ∈ [(Dom(L )/kerL ) ∩ ∂�] × (0, 1);
(ii) N u /∈ ImL ,∀u ∈ kerL ∩ ∂�.

Condition (C3) of Theorem 2.17 still needs to be verified. To accomplish this, let

H (u,η) = ±ηx + (1 – η)QN u. (3.72)

By Lemma 3.5, we have

H (u,η) �= 0, ∀u ∈ ∂� ∩ kerL . (3.73)

Thus, by the homotopy property of degree, we have

deg(QN |kerL ,� ∩ kerL , 0) = deg
(
H (·, 0),� ∩ kerL , 0

)

= deg
(
H (·, 1),� ∩ kerL , 0

)

= deg(±I,� ∩ kerL , 0) �= 0.

(3.74)
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Consequently, by using Theorem 2.17, the operator equation L u = N u has at least one
solution inDom(L ) ∩�. Thus, the BVP (1.11)–(1.12) has at least one solution in X . The
proof is complete. �

We give one example to illustrate how our theorem can be used to solve real-world
problems as we wrap up this section. Consider the FDE at resonance shown below:

cD2/3,1/2
0+

[
ψ3

(cD3/4,1/2
0+,μ [u]

)]
= –

1
2
θ +

θ

2
u2(θ ) +

θ

4
sin2(cD3/4,1/2

0+,θ [u]
)
. (3.75)

For the BVP (1.11)–(1.12), we take ϑ = 3,γ = 2,� = 2/3, and α = 3/4.
Choose a(θ ) = – 1

2θ , b(θ ) = θ
2 , c(θ ) = 1

4θ , and B = E = 1. We can determine, using some
basic calculation, that ‖a‖∞ = ‖b‖∞ = 1/2,‖c‖∞ = 1/4, and

0 <
1

γ ��(� + 1)

(
‖b‖∞

(
2ϑ–2

γ α�(α + 1)

)ϑ–1

+ ‖c‖∞
)

= 0.76 < 1. (3.76)

Consequently, the BVP (3.75) and (1.12) satisfies all conditions of Theorem 3.8. Hence,
it has at least one solution.

4 Conclusion
By using Mawhin’s continuation theorem, we have provided some necessary conditions
that, when applied to a particular kind of generalized fractional Caputo derivative and
a specific type of boundary value problem with a p-Laplacian, ensure that at least one
solution will exist.
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