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A B S T R A C T

The SARSCoV-2 virus, also known as the coronavirus-2, is the consequence of COVID-19, a severe acute
respiratory syndrome. Droplets from an infectious individual are how the pathogen is transmitted from one
individual to another and occasionally, these particles can contain toxic textures that could also serve as an
entry point for the pathogen. We formed a discrete fractional-order COVID-19 framework for this investigation
using information and inferences from Thailand. To combat the illnesses, the region has implemented
mandatory vaccination, interpersonal stratification and mask distribution programs. As a result, we divided the
vulnerable people into two groups: those who support the initiatives and those who do not take the influence
regulations seriously. We analyze endemic problems and common data while demonstrating the threshold
evolution defined by the fundamental reproductive quantity R0. Employing the mean general interval, we
have evaluated the configuration value systems in our framework. Such a framework has been shown to be
adaptable to changing pathogen populations over time. The Picard Lindelöf technique is applied to determine
the existence-uniqueness of the solution for the proposed scheme. In light of the relationship between the R0
and the consistency of the fixed points in this framework, several theoretical conclusions are made. Numerous
numerical simulations are conducted to validate the outcome.
Introduction

Coronavirus disease 2019 (COVID-19) is a severe respiratory
pathogen brought on by an infestation with the SARS-CoV-2 virus.
The approved identity was awarded by the World Health Organiza-
tion (WHO), which defined it as CO for corona, VI for virus, D for
disease, and 19 representing the year of determination. The clinical
manifestations of an infection include the flu, a persistent cough,
exhaustion, a stomachache and breathing problems. On December 8,
2019, in Wuhan, Republic of China, COVID-19 was first identified
and characterized. On March 11, 2020, WHO designated COVID-19
as a disease outbreak due to the infectious agent’s quick propagation
to other states and continents. Coronavirus typically results in either
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virus-or bacteria-related pneumonia, whether explicitly or implicitly.
There are numerous discrepancies regarding the provenance of the
2019 coronavirus (COVID-19), despite the widespread conviction that
it is a viral vector inferred from bats. In this situation, the very first
concern that needs to be addressed relates to whether or not bats are
native to the entire planet; if they are, then why has not this outbreak
started previously? Why did not that pathogen infect humans sooner?
According to one hypothesis, the ailment was transmitted to individuals
by Chinese people consuming unpasteurized bats. It would have been
wonderful to get out and return to some of the African villages in which
individuals still eat junk food that has been mauled by bats. If this
theory is accurate, bats may be able to spread this illness. Given that
vailable online 28 April 2023
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bats are a major ingredient in the local regimen, there is a chance that
residents could contract the viral infection from other people. A variety
of magazines were released in 1981, ‘‘The Eyes of Darkness’’ being one
of them. This novel depicts the virus outbreak, or how it would start. In
addition, the pathogen is described in this book as a bioweapon. ‘‘The
End of the World Book’’, another novel, states very clearly when the
virus outbreak started.

By expressing the most probable consequence of an outbreak, dif-
ferential equations (DEs) can assist interventions in improving the
general population’s health. The reviewers summarized the concept
of scientific methods in epidemiological studies for genetic condi-
tions such as HIV/AIDS, rhinoviruses, chikungunya, hantavirus and
others in [1]. The influence of specific instances of specialized treat-
ment and its repercussions on lessening cholera propagation were
researched in [2]. In an additional investigation [3], therapies were
administered to those who were at risk in an effort to stop the dis-
semination of the Ebola virus. In [4], unconventional methods for
addressing the dynamical DE systems of the physically based infectious
disease configurations were designed using the reproducing kernel
scheme. Numerous algorithms have also been applied to determine
the complexities of COVID-19 in [5]. Three numerical strategies were
used to scrutinize the COVID-19 complexities in [6,7] utilizing the
methodologies of power and general kernel fractional operators. The
researchers developed a framework in [8] that combined the signifiers
taken from the Wuhan infestation (China). The idea of numerical
simulations was used in [9] to analyze the COVID-19 evolution in Italy.
The investigation [10] described a fractional, nearly incompressible
framework for the propagation of COVID-19 using Louisiana State
documents in the United States. In [11], a numerical framework was
employed to examine the modeling of COVID-19 dissemination in a
northeast Brazilian region. In the task [12], a proposed form of COVID-
19 was investigated utilizing stability hypotheses for DEs alongside
real-world documentation from Pakistan. In [13], a modified Adams–
Bashforth mechanism was implemented to rectify an innovative design
of COVID-19 that was properly considered by substituting a fractional
formulation with a Mittag-Leffler kernel for the ordinary derivatives. In
accordance with the findings in [14], evolutionary computation could
significantly lower the propagation and mortality rates of COVID-19
in Ghana. Furthermore, using a fractional framework for the lock-
down component, the authors investigated the lock-down impact on
COVID-19 propagation in Turkey [15]. Hermite wavelets were applied
to study the fractional COVID-19 methodology developed in [16],
and the outcomes were evaluated by comparing them to those ob-
tained employing the Adams–Bashforth–Moulton predictor–corrector
procedure. Safare et al. [17] used a collection of actual statistics to
broaden the COVID-19 framework while accounting for the effects of
detachment and phytosanitary. Lévy jump disturbances and white noise
were incorporated into all design components, and the random walk
solvent close to the computational governing equations was utilized
to investigate the dynamic systems’ stochastic features in [18], which
also presented and analyzed a stochastic COVID-19 framework for
Lévy noise. A subsequent study [19] used a fractional intensity adapt-
able Fourier structure to test the COVID-19 controllability alongside
multidimensional developments and fractional interconnection. Non-
pharmaceutical initiatives that relied on mathematical data analysis
were first invented to combat COVID-19 in [20], and the threshold
requirements for infection-free equilibrium were investigated. Koufi
and Koufi [21] investigated the use of non-standard estimations to
analyze the dynamical disease outbreak framework of COVID-19 based
on parameterized nonlinearities and associated uncertainties. The doc-
ument [22] furthermore glanced at the COVID-19 approach for bats,
presenters, reservoirs and individuals and employed the variational
iteration procedure to arrive at an approximation of its solution. Thai-
land has implemented precautions for individuals to secure themselves
by donning respirators, staying away from crowded areas, sanitizing
their hands frequently, and being encouraged to use alcohol gel to
2

Fig. 1. Highly infectious individuals from June to December 2021 (see; [23]).

cease the transmission of the virus. Because there are only so many
therapies available, the public health presidency expanded vaccination
programs for the elderly and those at risk. This is because treatments
are essential in the struggle against COVID-19 pathogens. The Sinovac
vaccine, which is the paramount vaccination, has been supplied in
Thailand in conjunction with the AstraZeneca/Oxford vaccine. Nu-
merous different pharmaceuticals like Johnson & Johnson, Moderna,
and Pfizer/BioNTech were not extensively utilized because individuals
were not readily available; however, they are presently available. The
number of reported affected individuals in Thailand from June to
December 2021 is depicted in Fig. 1.

Since fractional-order processes naturally exemplify memory con-
sequences, researchers have devised techniques to simulate important
considerations using them in recent years [24–33]. Additionally, it has
been demonstrated that fractional approaches are effective at analyz-
ing dynamic networks in a variety of disciplines, including banking,
neuroscience, and mechanical design [34–36]. Following is a cursory
overview of certain significant findings on the pragmatic and hypothet-
ical attributes of differential derivatives. In [37], authors used weak
topology to present the formation consequences for Caputo fractional
neutral inclusions that avoid compactness in Banach space. The re-
searchers in [38] furnished predictability under prescribed conditions
by considering fixed-point hypothesis and fractional calculus methodol-
ogy. The study [39] presented generalized Mittag-Leffler kernel-based
integro-differential equations relying on Atangana–Baleanu fractional
derivatives and analyzed the existence-uniqueness of the solutions in
Banach space. These research findings have taught us that the defen-
sive actions taken by those who are vulnerable affect how COVID-19
spreads.

Fractional difference equations are effective models for discrete
processes with memory effects. Several specific advancements, such as
the Riemann and Caputo fractional differences, the fundamentals of dis-
crete fractional calculus, numerical simulations, initial value problems,
etc., demonstrated the viewpoint [40]. Implementations of discrete
fractional calculus, such as those involving fractional chaotic maps,
image encryption, tumor growth and shock frequency, among others,
furthermore demonstrate its effectiveness and simplicity [41].

Another approach to determining the fractional sum is on the basis
of time scale [42,43]. Both the continuous and discrete-time incidences
were generalized. In addition to the 𝛥-integral on time scales, better
characterizations for the mathematical framework were provided [43].
The FDEs are frequently used to illustrate protracted manifestations
like fundamental interactions and resource deformability owing to
these innovative capabilities [40]. The fractional-order 𝛹 better de-
scribes the transitional state between interfacial tension and pliability.
A methodology based on FDE was indicated [41] because sodium
chloride exhibits long-term behavior. In addition, there are a few
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Table 1
List of parameters.
𝑆𝑦𝑚𝑏𝑜𝑙𝑠 Values References

𝜋 273 523 621/65 × 365 [49]
𝐯 0.2 Supposed
℘1 1.166×10−8 Supposed
℘2 2.101×10−8 Supposed
℘3 4.734×10−8 [49]
𝛿 0.8 Supposed
𝜍 0.25 Supposed
𝜚 0.6 [49]
𝜛 0.4 [50]
𝜐1 0.33 [50]
𝜐2 0.1 [50]
𝜂1 0.01 [51]
𝜂2 0.033 [52]
𝓁 0.4 Supposed
𝜎 0.2 Supposed
𝛾 0.1 Supposed
𝜃 0.05 Supposed
𝜌 1/35 × 365 [53]
𝜁 0.11 [54]
𝛽 0.7 [54]
𝜗1 0.7 Supposed
𝜗2 0.7 Supposed
𝜗3 0.7 Supposed
𝜗4 0.7 Supposed

other fascinating fields where fractional derivatives are used, including
finance, biology, and string theory. Several other fractional formulae
have been suggested, including fractional delay DEs, fractional im-
pulsive DEs, fractional interval-valued DEs and fractional difference
equations, (see; [42,44–48] and the references cited therein).

However, we are eager to create a fractional difference equations
framework to classify the behaviors of COVID-19 taking into account
this scenario because the majority of the earlier work has not concen-
trated on highly vulnerable individuals who follow prevention strate-
gies or do not follow the initiatives. Additionally, we performed an
equilibrium evaluation using the model’s simple, persistent restric-
tions. The ideal method to implement interference strategies was then
researched using the framework with time-dependent regulations by
assessing their effects and expenditures on the behavior of the COVID-
19 disease in actual circumstances in Thailand. It is worth emphasized
that each of the aforementioned research findings was formed based on
a continuous conduction mode in light of the aforementioned concerns.
This phenomenon definitely fascinated us enough to suggest a novel
fractional-order discrete model for prevalence and incidence. To the
extent we are aware, no research into fractional difference equations
for COVID-19 features has been conducted up to this point. In light of
the foregoing, the primary goal of this study is to advance the field of
epidemiological studies by presenting a novel fractional-order discrete-
time COVID-19 framework. Throughout this context, it is important
to note that we understand that this framework will, generally, have
a range of interesting implementations and standpoints because the
suggested framework is merely a discrete fractional version SIR-type
scheme and because global epidemic time series can be formed from
evolution.

Motivated by the work [55], we initially present our mathematical
formula for the COVID-19 disease outbreak utilizing a community split
into twelve portions: overall vulnerable (), heavy vulnerable (10),
moderate vulnerable (20), heavy susceptible without safety criterion
(30), heavy vulnerable who pursue the precautionary action (40),
and limited vulnerable without a preventing disease (50), limited
vulnerable with immediate concentration on disease prevention (60),
immunized community (), exposed population (), contagious people
to minor side effects (1), contagious people who exhibit drastic ill-
nesses (10) and recovered people . This methodology is appropriate
for scenarios and public intervention and prevention surveillance pro-
3

grams in Thailand.  (𝜉) = (𝜉)+10(𝜉)+20(𝜉)+30(𝜉)+40(𝜉)+50(𝜉)+
60(𝜉)+(𝜉)+(𝜉)+1(𝜉)+10(𝜉)+(𝜉), with 𝜉 ∈ [0,T], represents the
entire community at any specific time. Furthermore, we assume that
the evolution between these classifications occurs in conformity with
the structure shown in Fig. 2.

The attributes of each criterion indicated in the existing scheme, as
depicted in Table 1, can be clarified in view of the aforesaid figure.

In fact, the suggested fractional-order discrete COVID-19 model’s
infection contamination flow which is depicted in Fig. 2 in its com-
partmental form can also be characterized by the respective dynamical
model:
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(𝐧 + 1) = (𝐧) + 𝜋 − (1 + 𝜌)(𝐧),
10(𝐧 + 1) = 10(𝐧) + 𝓁(𝐧) − (1 + 𝜌)10(𝐧),
20(𝐧 + 1) = 20(𝐧) + (1 − 𝓁)(𝐧) − (1 + 𝜌)20(𝐧),
30(𝐧 + 1) = 30(𝐧) + 𝐯10(𝐧) − (𝛶 + 𝜗1 + 𝜌)30(𝐧),
40(𝐧 + 1) = 40(𝐧) + (1 − 𝐯)10(𝐧) − 𝛾𝛶40(𝐧) − (𝜗2 + 𝜌)40(𝐧),
50(𝐧 + 1) = 50(𝐧) + 𝜎20(𝐧) − 𝛿𝛶50(𝐧) − (𝜗3 + 𝜌)50(𝐧),
60(𝐧 + 1) = 60(𝐧) + (1 − 𝜎)20(𝐧) − 𝜃𝛶60(𝐧) − (𝜗4 + 𝜌)60(𝐧),
(𝐧 + 1) = (𝐧) + 𝜗130(𝐧) + 𝜗240(𝐧) + 𝜗350(𝐧)
+𝜗460(𝐧) − (1 − 𝜚)𝜍𝛶(𝐧) − (𝜚 + 𝜌)(𝐧),
(𝐧 + 1) = (𝐧) + 𝛶

(

30(𝐧) + 𝛾240(𝐧) + 𝛿50(𝐧) + 𝜃60(𝐧)
)

+(1 − 𝜚)𝜍𝛶(𝐧) − (𝜛 + 𝜁 + 𝜌)(𝐧),
1(𝐧 + 1) = 1(𝐧) + 𝛽𝜛(𝐧) − (𝜂1 + 𝜐1 + 𝜌)1(𝐧),
10(𝐧 + 1) = 10(𝐧) + (1 − 𝛽)𝜛(𝐧) − (𝜂2 + 𝜐2 + 𝜌)10(𝐧),
(𝐧 + 1) = (𝐧) + 𝜚(𝐧) + 𝜁(𝐧) + 𝜐11(𝐧) + 𝜐210(𝐧) − 𝜌(𝐧),

(1)

supplemented with ICs:

(0),10(0),20(0),30(0),40(0),50(0),60(0),(0), (0),

1(0),10(0),(0) ≥ 0. (2)

Here, 𝜋 signifies the new hiring rate. The following additional factors:
𝓁 is the percentage of people who are high-risk vulnerable. 𝐯 is the
percentage of high-risk individuals who do not take precautionary
measures seriously. 𝜎 is the percentage of limited individuals who do
not adhere to the law’s legally required preventative medicine regula-
tions. We have focused on certain experiments that take conventional
prevalence, penetration and widespread intervention propagation into
account. If we employed the conventional prevalence rate, our vibrant
evaluations would have been extremely complicated due to the model’s
challenges. Assume that vulnerable people contract the disease at a 𝛶 (𝜉)
rate. The infectious disease strength is classified as 𝛶 (𝜉) = ℘1(𝜉) +
℘21(𝜉) + ℘310(𝜉), where ℘1,℘2 and ℘3 are the propagation levels
from  , 1 and 10, respectively. The impactful interaction levels of 40,
50, 60 and  are 𝛾, 𝛿, 𝜃 and 𝜍, respectively. Their natural fatality rate
is indicated by 𝜌. The value 𝜚 denotes a person’s vaccine effectiveness.
The percentage of people who heal normally from  . 𝜁 is the rate at
which people come into contact and are becoming highly contagious.
𝜛 is the proportion of those who are revealed and 𝛹 denotes those
who contract an infection. The percentages of healing from infected
people with mild signs (1) and infected individuals suffering from
serious illnesses (10) are 𝛾1 and 𝜐2, respectively. The rate increases of
disease-related moralities in 1 and 10 are 𝜂1 and 𝜂2, respectively. The
vaccination rates for 30,40,50,60 are 𝜗1, 𝜗2, 𝜗3 and 𝜗4, respectively.

The entirety of this article is organized in the following manner:
Section ‘‘Preliminaries’’ reviews several fundamental terminologies and
key information related to discrete fractional calculus. Section ‘‘Qual-
itative aspects of fractional difference equation model’’ demonstrates
the existence and uniqueness of the finding for the suggested discrete
fractional COVID-19 framework using the Picard Lindelöf technique
and the fixed point (𝐟𝑝) hypothesis. In Section ‘‘Existence and unique-
ness’’, we examine the qualitative analysis and stability of the suggested
system’s 𝐟𝑝s. Furthermore, the fundamental reproductive number R0 for

the COVID-19 model is determined. Following Section ‘‘Implementation
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Fig. 2. Schematic view of COVID-19 model.
to estimating COVID-19 behavior’’, which summarizes the insights of
this task, are certain numerical representations that were run to confirm
the mathematical inferences.

Preliminaries

In contrast to classical calculus, fractional calculus has proven to
be highly effective in producing quite useful results. This is definitely
because of its adaptability and capacity to offer more accurate approx-
imations of a variety of conditions than ever. Moreover, it is helpful to
highlight several interpretations and fundamental information related
to discrete fractional calculus in providing a more comprehensive view
to obtain a deeper comprehension of the fractional-order framework
presented in this task and its influence on practise. We will also surmise
that the set Ñ𝐜 ∶=

{

𝐜, 𝐜 + 1, 𝐜 + 2,…
}

, 𝐜 ∈ R contains definitions for all
processes.

Definition 1 ([56]). For 𝛹 > 0, then there is a mapping 𝐠 ∶ Ñ𝐜 ↦ R
with 𝛹 𝑡ℎ-fractional sum is described as
4

𝛥−𝛹
𝐜 𝐠(𝜉) = 1

𝛤 (𝛹 )

𝜉−𝛹
∑

𝛩=𝐜
(𝜉 − 𝛩 − 1)(𝛹−1)𝐠(𝛩), ∀ 𝜉 ∈ Ñ𝐜+𝛹 , (3)

where 𝛤 (, ) is the Euler’s Gamma function and 𝜉(𝛹 ) = 𝛤 (𝜉+1)
𝛤 (𝜉+1−𝛹 ) .

Definition 2 ([56]). For 𝛹 ∈ (0, 1) and there is 𝛹 𝑡ℎ-order Riemann–
Liouville fractional difference formulae of the mapping 𝐠 is described
on Ñ𝐜 is described as

𝛥𝛹
𝐜 𝐠(𝜉) ∶= 𝛥𝛥−(1−𝛹 )

𝐜 𝐠(𝜉) = 1
𝛤 (1 − 𝛹 )

𝛥
𝜉−(1−𝛹 )
∑

𝛩=𝐜
(𝜉 − 𝛩 − 1)(−𝛹 )𝐠(𝛩),

∀ 𝜉 ∈ Ñ𝐜+1−𝛹 . (4)

Definition 3 ([56]). For 𝛹 ∈ (0, 1] and there is 𝛹 𝑡ℎ-order Caputo
fractional difference formulae of the mapping 𝐠 is described on Ñ𝐜 is
described as

𝑐𝛥𝛹
𝐜 𝐠(𝜉) ∶=

⎧

⎪

⎨

⎪

𝛥𝛥−(1−𝛹 )
𝐜 𝐠(𝜉) = 1

𝛤 (1−𝛹 )
∑𝜉−(1−𝛹 )

𝛩=𝐜 (𝜉 − 𝛩 − 1)(−𝛹 )𝛥𝐠(𝛩),

∀ 𝜉 ∈ Ñ𝐜+1−𝛹 , 𝛹 ∈ (0, 1)
̃

(5)
⎩
𝛥𝐠(𝜉), 𝛹 = 1, 𝜉 ∈ N𝐜+1−𝛹 .
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Proposition 1 ([56]). For 𝛹 ∈ (0, 1] and suppose that there is a mapping
𝐠 defined on Ñ𝐜. Then

𝛥−𝛹
𝐜+(1−𝛹 )

𝑐𝛥𝛹
𝐜 𝐠(𝜉) = 𝐠(𝜉) − 𝐠(𝐜), ∀ 𝜉 ∈ Ñ𝐜. (6)

roposition 2 ([56]). For 𝛹 ∈ (0, 1) and suppose that there is a mapping
described on Ñ𝐜. Then

𝛥𝛹
𝐜 𝐠(𝜉) = 𝛥𝛹

𝐜 𝐠(𝜉) −
(𝜉 − 𝐜)(−𝛹 )

𝛤 (1 − 𝛹 )
𝐠(𝐜), ∀ 𝜉 ∈ Ñ𝐜−𝛹+1. (7)

Lemma 1 ([57]). For 𝛹 > 0, 𝛹 ∉ Ñ and there is a mapping 𝐠 defined on
̃ 𝐜. Then

(𝜉) = 𝐠 + 1
𝛤 (𝛹 )

𝜉−𝛹
∑

𝐫=𝐜+1−𝛹
(𝜉 − 𝐫 − 1)(𝛹−1) 𝑐𝛥𝛹

𝐜 𝐠(𝐫), ∀ 𝜉 ∈ Ñ𝐜+1. (8)

emark 1. The respective states could be seen:
∙ If 𝑐𝛥𝛹

𝐜 𝐠(𝜉) ≥ 0, then the mapping 𝐠 is increasing ∀ 𝜉 ∈ Ñ𝐜.
∙ If 𝑐𝛥𝛹

𝐜 𝐠(𝜉) ≤ 0, then the mapping 𝐠 is decreasing ∀ 𝜉 ∈ Ñ𝐜.

Theorem 1 ([58]). Assume that there are two real-valued mappings
𝕜1(𝜉, 𝛬) and 𝕜2(𝜉, 𝛬) described on [0,∞) × R. If the mapping 𝐤 holds the
Lipschitz assumption in 𝛬 having Lipschitz constant 𝜍 such that 𝜍 ∈
(0, 𝛹 ], then 𝛬1(𝜉) and 𝛬2(𝜉) are two unique solutions for the subsequent
IVP:
⎧

⎪

⎨

⎪

⎩

𝛥𝛹
𝐜 𝛬(𝜉) = 𝕜1

(

𝜉 + 𝛹 − 1, 𝛬(𝜉 + 𝛹 − 1)
)

, 𝜉 ∈ Ñ𝐜+1−𝛹 ,
𝛥𝛹−1
𝐜 𝛬(𝜉)||

|𝜉=𝐜
= 𝛬0,

(9)

and
⎧

⎪

⎨

⎪

⎩

𝛥𝛹
𝐜 𝛬(𝜉) = 𝕜2

(

𝜉 + 𝛹 − 1, 𝛬(𝜉 + 𝛹 − 1)
)

, 𝜉 ∈ Ñ𝐜+1−𝛹 ,
𝛥𝛹−1
𝐜 𝛬(𝜉)||

|𝜉=𝐜
= 𝛬0.

(10)

On the basis of the aforementioned hypothesis, the following find-
ings can be made:

∙ If 𝕜1(𝜉, 𝛬) < 𝕜2(𝜉, 𝛬), then 𝛬1(𝜉) ≤ 𝛬2(𝜉) for 𝜉 ∈ Ñ𝐜.
∙ If 𝕜1(𝜉, 𝛬) > 𝕜2(𝜉, 𝛬), then 𝛬1(𝜉) > 𝛬2(𝜉) for 𝜉 ∈ Ñ𝐜.

emark 2. Utilizing the fact of Proposition 1, observing that Theo-
em 1 is still valid when we transform 𝛥𝛹

𝐜 by 𝑐𝛥𝛹
𝐜 .

Furthermore, we can also describe the fractional-order framework in
erms of the dynamic system described in (1), which will be considered
n this task. The structure of this framework indicates:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑐𝛥𝛹
0 (𝜉 + 1 − 𝛹 ) = 𝜋 − (1 + 𝜌)(𝜉),

𝑐𝛥𝛹
0 10(𝜉 + 1 − 𝛹 ) = 𝓁(𝜉) − (1 + 𝜌)10(𝜉),

𝑐𝛥𝛹
0 20(𝜉 + 1 − 𝛹 ) = (1 − 𝓁)(𝜉) − (1 + 𝜌)20(𝜉),

𝑐𝛥𝛹
0 30(𝜉 + 1 − 𝛹 ) = 𝐯10(𝜉) − (𝛶 + 𝜗1 + 𝜌)30(𝜉),

𝑐𝛥𝛹
0 40(𝜉 + 1 − 𝛹 ) = (1 − 𝐯)10(𝜉) − 𝛾𝛶40(𝜉) − (𝜗2 + 𝜌)50(𝜉),

𝑐𝛥𝛹
0 50(𝜉 + 1 − 𝛹 ) = 𝜎20(𝜉) − 𝛿𝛶50(𝜉) − (𝜗3 + 𝜌)50(𝜉),

𝑐𝛥𝛹
0 60(𝜉 + 1 − 𝛹 ) = (1 − 𝜎)20(𝜉) − 𝜃𝛶60(𝜉) − (𝜗4 + 𝜌)60(𝜉),

𝑐𝛥𝛹
0 (𝜉 + 1 − 𝛹 ) = 𝜗130(𝜉) + 𝜗240(𝜉) + 𝜗350(𝜉) + 𝜗460(𝜉)

−(1 − 𝜚)𝜍𝛶(𝜉) − (𝜚 + 𝜌)(𝜉),
𝑐𝛥𝛹

0 (𝜉 + 1 − 𝛹 ) = 𝛶
(

30(𝜉) + 𝛾240(𝜉) + 𝛿50(𝜉) + 𝜃60(𝜉)
)

+(1 − 𝜚)𝜍𝛶(𝜉) − (𝜛 + 𝜁 + 𝜌)(𝜉),
𝑐𝛥𝛹

0 1(𝜉 + 1 − 𝛹 ) = 𝛽𝜛(𝜉) − (𝜂1 + 𝜐1 + 𝜌)1(𝜉),
𝑐𝛥𝛹

0 10(𝜉 + 1 − 𝛹 ) = (1 − 𝛽)𝜛(𝜉) − (𝜂2 + 𝜐2 + 𝜌)10(𝜉),
𝑐𝛥𝛹

0 (𝜉 + 1 − 𝛹 ) = 𝜚(𝜉) + 𝜁(𝜉) + 𝜐11(𝜉) + 𝜐210(𝜉) − 𝜌(𝜉),

(11)

supplemented with ICs:

(0), (0), (0), (0), (0), (0), (0),(0), (0), (0),
5

10 20 30 40 50 60 1
10(0),(0) ≥ 0, (12)

where 𝛹 ∈ (0, 1) and 𝜉 ∈ Ñ.
As we continue our investigation, we would like to remind you of

a significant finding that confirms the reliability of the model’s (11)
finding.

Theorem 2 ([59,60]).For 𝛹 ∈ (0, 1) and let

ℑ ∈
{

𝐳̃ ∈ C ∶ |𝐳̃| <
(

2 cos
| arg 𝐳̃| − 𝜋

2 − 𝛹

)𝛹
𝑎𝑛𝑑 | arg 𝐳̃| > 𝛹𝜋

2

}

, (13)

for all eigenvalues ℑ of J, then the 𝐟𝑝 of (11) is asymptotically stable.

Qualitative aspects of fractional difference equation model

In this section, we will discuss the boundedness, positivity, local and
global stability and bifurcation analysis of the proposed scheme.

Boundedness

Taking into consideration model (11), for the total populace  =
 +10 +20 +30 +40 +50 +60 + +  + 1 + 10 +, we can infer
the different consequences:

𝑐𝛥𝛹
𝐜  (𝜉 +1−𝛹 ) = 𝜋

1 + 𝜌
− 𝜌 (𝜉) − 𝜂11(𝜉) − 𝜂210(𝜉) ≤ 𝜋 − 𝜌 (𝜉). (14)

onsequently, this leads to

𝛥𝛹
𝐜  (𝜉 + 1 − 𝛹 ) ≤ 𝑐𝛥𝛹

𝐜 (𝜉 + 1 − 𝛹 ), (15)

here
𝑐𝛥𝛹

𝐜 (𝜉 + 1 − 𝛹 ) = 𝜋 − 𝜌𝑌1(𝜉),
(𝐜) =  (𝐜).

(16)

s a result, implementing Theorem 1 and Remark 2, it is evident that:

(𝜉) ≤ (𝜉), (17)

hat is mainly owing to  (𝐜) ≤ 𝜋
𝜌(1+𝜌) . Now, if we consider 𝜉∗ ∈ Ñ𝐜 to

be the first point where (𝜉∗) > 𝜋
𝜌(1+𝜌) , we get the following:

(𝜉∗) = (𝐜) + 1
𝛤 (𝛹 )

𝜉∗−𝛹
∑

𝐫=𝐜+1−𝛹
(𝜉∗ − 𝐫 − 1)(𝛹−1) 𝑐𝛥𝛹

𝐜 (𝐫)

= (𝐜) + 1
𝛤 (𝛹 )

𝜉∗−1−𝛹
∑

𝐫=𝐜+1−𝛹
(𝜉∗ − 𝐫 − 1)(𝛹−1) 𝑐𝛥𝛹

𝐜 (𝐫)

+
(𝛹 − 1)(𝛹−1)

𝛤 (𝛹 )
𝑐𝛥𝛹

𝐜 (𝜉∗ − 𝛹 )

= (𝜉∗ − 1) + 1
𝛤 (𝛹 )

𝜉∗−1−𝛹
∑

𝐫=𝐜+1−𝛹

(𝜉∗ − 𝐫 − 1)
(𝜉∗ − 𝐫 − 𝛹 )

(𝜉∗ − 𝐫 − 2)(𝛹−1) 𝑐𝛥𝛹
𝐜 (𝐫)

+
(𝛹 − 1)(𝛹−1)

𝛤 (𝛹 )
𝑐𝛥𝛹

𝐜 (𝜉∗ − 𝛹 )

≤ (𝜉∗ − 1) + 𝜋
1 + 𝜌

− 𝜌(𝜉∗ − 1)

≤ 𝜋
𝜌(1 + 𝜌)

, 𝜌 + 1 < 1. (18)

Finally, we have a contradiction. As a result of the preceding scenario,
we can also demonstrate that if 𝜌 < 0, then we have

(𝜉) ≥ 0. (19)

This definitely contends that the domain 𝛺 is responsible for the
model’s (11) solution:

𝛺 ∶=
{

𝐗 ∈ R12, 0 ≤ 𝐱𝜄 ≤
𝜋 , 𝜄 = 1, 2,… , 12.

}

(20)

𝜌(𝜌 + 1)
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,40,50,
It is significant to note that when 𝜌 is small enough, the framework
(11) solution is non-negative. The non-negative nature of the scheme
(11) solution, moreover, cannot be demonstrated. In fact, the system’s
solution so often has negative values, but those attributes can later rise
to become favorable. Let 𝜉∗, for instance, be the first point that  is
negative, and we get:

𝑐𝛥𝛹
0 (𝜉

∗ + 1 − 𝛹 ) = 𝜋 − (1 + 𝜌)(𝜉∗) > 0. (21)

As a result, it is evident that the class  will be directly raised in con-
formity with Remark 1. The remaining compartments can support this
claim in an analogous fashion. Despite the fact that such a situation is
paradoxical since this system’s values should not be negative, it is being
discovered that with time, this framework can generate more accurate
outcomes. But we shall talk about this supposition subsequently.

Disease-free equilibrium (DFE)

By identifying sufficient requirements associated with the system’s
(11) specifications to guarantee the stability of this moment, we will
also be involved in predicting the reliability of the disease-free fixed
point. In order to achieve this, we will start by identifying those DFE
points by trying to conflate the right side of framework (11) to zero.
Then, we have

𝐸̃0 =
(

0,0
10,

0
20,

0
30,

0
40,

0
50,

0
60,

0, 0, 0, 0,0), (22)

where 0 = 𝜋
1+𝜌 , 0

10 = 𝓁𝜋
(1+𝜌)2 , 0

20 = (1−𝓁)𝜋
(1+𝜌)2 , 0

30 = 𝓁𝜌𝜋
(𝜌+𝜗1)(1+𝜌)2

, 0
40 =

(1−𝐯)𝓁𝜋
(𝜌+𝜗2)(1+𝜌)2

, 0
50 = 𝜎(1−𝓁)𝜋

(𝜗3+𝜌)(1+𝜌)2
,0

60 = (1−𝜎)(1−𝓁)𝜋
(𝜗4+𝜌)(1+𝜌)2

, 0 = 𝜗1𝜌𝜋𝓁
(𝜌+𝜚)(𝜌+𝜗1)(1+𝜌)2

+
𝜗2(1−𝐯)𝜋𝓁

(𝜌+𝜚)(𝜌+𝜗2)(1+𝜌)2
+ 𝜗3𝜎(1−𝐯)𝜋𝓁

(𝜌+𝜚)(𝜌+𝜗3)(1+𝜌)2
+ 𝜗4(1−𝐯)(1−𝜎)𝜋𝓁

(𝜌+𝜚)(𝜌+𝜗4)(1+𝜌)2
, and

0 = 𝜗1𝜌𝜚𝜋𝓁
𝜌(𝜌+𝜚)(𝜌+𝜗1)(1+𝜌)2

+ 𝜚𝜗2(1−𝐯)𝜋𝓁
𝜌(𝜌+𝜚)(𝜌+𝜗2)(1+𝜌)2

+ 𝜚𝜗3𝜎(1−𝓁)𝜋
𝜌(𝜌+𝜚)(𝜌+𝜗3)(1+𝜌)2

+
𝜚𝜗4(1−𝜎)(1−𝓁)𝜋

𝜌(𝜌+𝜚)(𝜌+𝜗4)(1+𝜌)2
.

Basic reproduction number

Here, we intend to calculate the basic reproduction number for
system (11) using van den Driessche and Watmough’s [61] technique.
Considering the next-generation matrix as follows:

𝐸̃0
=

⎛

⎜

⎜

⎜

⎜

⎝

℘1𝜒 ℘2𝜒 ℘3𝜒
0 0 0
0 0 0
0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

𝑎𝑛𝑑

𝐸̃0
=
⎛

⎜

⎜

⎝

𝜛 + 𝜁 + 𝜌 0 0
−𝛹𝜛 𝜐1 + 𝜂1 + 𝜌 0

−(1 − 𝛹 )𝜛 0 𝜐2 + 𝜂2 + 𝜌

⎞

⎟

⎟

⎠

, (23)

where 𝜒 = 0
30 + 𝛾0

40 + 𝛿0
50 + 𝜃0

60 + (1 − 𝜚)𝜍0. The spectral radius of
−1 is then used to calculate the fundamental reproductive number,
which results in

R0 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜌𝓁(𝜌+𝜚+𝜗1(1−𝜚)𝜍)
(𝜌+𝜚)(𝜌+𝜗1)(1+𝜌)2

+ (1−𝐯)𝓁𝜋(𝛾(𝜌+𝜚)+𝜗2(1−𝜚)𝜍)
(𝜌+𝜚)(𝜌+𝜗2)(1+𝜌)2

+ 𝜎(1−𝓁)𝜋(𝛿(𝜌+𝜚)+𝜗3(1−𝜚)𝜍)
(𝜌+𝜚)(𝜌+𝜗3)(1+𝜌)2

+ (1−𝜎)(1−𝓁)𝜋(𝜃(𝜌+𝜚)+𝜗4(1−𝜚)𝜍)
(𝜌+𝜚)(𝜌+𝜗4)(1+𝜌)2

+
(𝜐2+𝜂2+𝜌)

(

℘1(𝜐1+𝜂1+𝜌)+℘2𝛹𝜛
)

+℘3𝜛(1−𝛹 )(𝜌+𝜐1+𝜂1)
(𝜌+𝜐1+𝜂1)(𝜌+𝜐2+𝜂2)(𝜌+𝜛+𝜁 ) .

(24)

In terms of biology, if R0 < 1, then the infection will disappear
otherwise, if R0 > 1, the illness will dispersed.

Local and global stability of DFE

In this subsection, we look at the DFE’s global asymptotic stability
(GAS). In order to achieve this, we highlight the findings presented by
Castillo-Chavez et al. [62].
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Lemma 2. Surmise that the framework (11) can be expressed in the form

𝐗̇1(𝜉) = 𝐹1(𝐗1,𝐗2),

𝐗̇2(𝜉) = (𝐗1,𝐗2), (𝐗1.0) = 0, (25)

where 𝐗1 ∈ R𝐧 signifies the uninfected people and 𝐗2 ∈ R𝐧 presents the
infected people involving latently infectious. Also, 𝐗0 = (𝐗∗

1) indicates the
DFE of the model (11). Furthermore, suppose that the hypothesis (𝐻1) and
(𝐻2) presented as

(𝐻1) For 𝐗̇1(𝜉) = 𝐹1(𝐗∗
1 , 0), 𝐗

∗ is GAS;
(𝐻2) (𝐗1,𝐗2) = 𝜒𝐗2 − ̂(𝐗1,𝐗2), ̂(𝐗1,𝐗2) ≥ 0 for (̂(𝐗1,𝐗2)) ∈ 𝐗,

where the Jacobian  = 𝜕
𝜕𝐗2

(𝐗∗
1 , 0) is an -matrix and 𝐗1 is the domain

when the framework is biologically plausible.
Thus, the DFE 𝐗0 = (𝐗∗, 0) is GAS.

Now, we put this lemma to use with our framework. It is worth
mentioning that from (11), we notice that ̇30 ≤ 𝐯10 − (𝜌 + 𝜗1)30,
produces 30 ≤ 𝐯𝓁𝜋

(𝜗1+𝜌)(1+𝜌)2
= 0

30, 40 ≤ (1−𝐯)𝓁𝜋
(𝜗2+𝜌)(1+𝜌)2

= 0
40, 50 ≤

𝜎(1−𝓁)𝜋
(𝜗3+𝜌)(1+𝜌)2

= 0
50, 60 ≤ (1−𝜎)(1−𝓁)𝜋

(𝜗4+𝜌)(1+𝜌)2
= 0

60,  ≤ 𝜗1𝐯𝓁𝜋
(𝜌+𝜚)(𝜗1+𝜌)(1+𝜌)2

+
𝜗2(1−𝐯)𝓁𝜋

(𝜌+𝜚)(𝜗2+𝜌)(1+𝜌)2
+ 𝜗3𝜎(1−𝓁)𝜋

(𝜌+𝜚)(𝜗3+𝜌)(1+𝜌)2
+ 𝜗4(1−𝜎)(1−𝓁)𝜋

(𝜌+𝜚)(𝜗4+𝜌)(1+𝜌)2
= 0.

Theorem 3. The DFE of the model (11) is GAS if R0 < 1.

Proof. Justifying Lemma 3 and confirming the assumptions (𝐻1) and
(𝐻2). In accordance with the ordinary DEs, we have 𝐗1 = ( ,10,20,30
( ,1,10)T and 𝐗∗

1 = (0,0
10,

0
20,

0
30,

0
40,

0
50,

0
60,

0)T. Since 𝛶 (𝜉) = ℘1(𝜉) +℘21(𝜉) +℘310(𝜉), so that at the
DFE point 𝛶 = 0. Observe that

𝐗̇1 = 𝐹1(𝐗1, 0) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜋 − (1 + 𝜌)
𝓁 − (1 + 𝜌)10

(1 − 𝓁) − (1 + 𝜌)20
𝐯10 − (𝜗1 + 𝜌)30

(1 − 𝐯)10 − (𝜗2 + 𝜌)40
𝜎20 − (𝜗3 + 𝜌)50

(1 − 𝜎)20 − (𝜗4 + 𝜌)60
𝜗130 + 𝜗240 + 𝜗350 + 𝜗460 − (𝜌 + 𝜚)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(26)

is linear and its response is simple to find as follows:

(𝜉) = 0 + 𝑐0 exp(−(1 + 𝜌)𝜉), 10(𝜉) = 0
10 + (𝑐0𝓁𝜉 + 𝑐1) exp(−(1 + 𝜌)𝜉),

20(𝜉) = 0
20 +

(

(1 − 𝓁)𝑐0𝜉 + 𝑐2
)

exp(−(1 + 𝜌)𝜉),

30(𝜉) = 0
30 +

{

∫ (𝑐0𝓁𝛩 + 𝑐1)𝐯 exp(−(1 − 𝜗1)𝛩)𝑑𝛩
}

exp(−(𝜗1 + 𝜌))𝜉,

40(𝜉) = 0
40 +

{

∫ (𝑐0𝓁𝛩 + 𝑐1)(1 − 𝐯) exp(−(1 − 𝜗2)𝛩)𝑑𝛩
}

exp(−(𝜗2 + 𝜌))𝜉,

50(𝜉) = 0
50 +

{

∫ ((1 − 𝓁)𝑐0𝛩 + 𝑐2)𝜎 exp(−(1 − 𝜗3)𝛩)𝑑𝛩
}

exp(−(𝜗3 + 𝜌))𝜉,

60(𝜉) = 0
60+

{

∫ ((1 − 𝓁)𝑐0𝛩 + 𝑐2)(1 − 𝜎)

exp(−(1 − 𝜗4)𝛩)𝑑𝛩
}

exp(−(𝜗4 + 𝜌))𝜉,

(𝜉) = 0+
{

∫ ∫ (𝑐0𝓁𝛩 + 𝑐1)𝜗1𝐯 exp(−(1 − 𝜗1)𝛩)𝑑𝛩

exp(−(𝜗1 − 𝜚)𝐫)𝑑𝐫
}

exp(−(𝜚 + 𝜌))𝜉

+
{

∫ ∫ (𝑐0𝓁𝛩 + 𝑐1)𝜗2(1 − 𝐯) exp(−(1 − 𝜗2)𝛩)𝑑𝛩 exp(−(𝜗2 − 𝜚)𝐫)𝑑𝐫
}

exp(−(𝜚 + 𝜌))𝜉

+
{

∫ ∫ (𝑐0(1 − 𝓁)𝛩 + 𝑐2)𝜗3𝜎 exp(−(1 − 𝜗3)𝛩)𝑑𝛩 exp(−(𝜗3 − 𝜚)𝐫)𝑑𝐫
}

exp(−(𝜚 + 𝜌))𝜉

+
{

∫ ∫ (𝑐0(1 − 𝓁)𝛩 + 𝑐1)𝜗4(1 − 𝜎) exp(−(1 − 𝜗4)𝛩)𝑑𝛩

exp(−(𝜗 − 𝜚)𝐫)𝑑𝐫
}

exp(−(𝜚 + 𝜌))𝜉. (27)
4
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

W

0
c

ℏ

a
a
c
t

E
𝛶

c
t

L

Evidently,
(

(𝜉),10(𝜉),20(𝜉),30(𝜉),40(𝜉),50(𝜉),60(𝜉),(𝜉)
)

↦
(

0,0
10,

0
20,

0
30,

0
40,

0
50,

0
60,

0), as 𝜉 ↦ ∞ and 𝑐0, 𝑐1, 𝑐2 are fixed
constants. Therefore, 𝐗∗

1 =
(

0,0
10,

0
20,

0
30,

0
40,

0
50,

0
60,

0) is GAS for
(11).

Furthermore, we have

(𝐗1,𝐗2) =
⎛

⎜

⎜

⎝

(30 + 𝛾40 + 𝛿50 + 𝜃60 + (1 − 𝜚)𝜍)𝛶 − (𝜛 + 𝜁 + 𝜌)
𝛽𝜛 − (𝜐1 + 𝜂1 + 𝜌)1

(1 − 𝛽)𝜛 − (𝜐2 + 𝜂2 + 𝜌)10

⎞

⎟

⎟

⎠

.

(28)

Suppose that 𝐴̄ = 0
30 + 𝛾0

40 + 𝛿50 + 𝜃0
60 + (1 − 𝜚)𝜍0.

Consequently, we can get

𝐴̃ =
⎛

⎜

⎜

⎝

℘1𝐴̄ − (𝜛 + 𝜁 + 𝜌) ℘2𝐴̄ ℘3𝐴̄
𝛽𝜛 −(𝜐1 + 𝜂1 + 𝜌) 0

(1 − 𝛽)𝜛 0 −(𝜐2 + 𝜂2 + 𝜌)

⎞

⎟

⎟

⎠

(29)

that is straightforwardly an -matrix. In the meantime, we know that

(𝐗1,𝐗2) =

⎛

⎜

⎜

⎜

⎝

(

(0
30 − 30) + 𝛾(0

40 − 40) + 𝛿(0
50 − 50) + 𝜃(0

60 − 60) + (1 − 𝜚)𝜍(0 − )
)

𝛶
0
0

⎞

⎟

⎟

⎟

⎠

.

(30)

This is indeed the case 0
30 ≥ 30 ≥ 0, 0

40 ≥ 40 ≥ 0, 0
50 ≥ 50 ≥

0, 0
60 ≥ 20 ≥ 0, 0 ≥  ≥ 0. Therefore, the DFE 𝐗0 = (𝐗∗, 0) is

GAS. □

Endemic equilibrium (EE)

While the stability at the EE is for the long-term complexities when
the illness lingers and R0 > 1, the stability at the DFE is for the
short-term outbreaks of the ailment. We will examine the systemic
characteristics of our framework in this portion.

We start by investigating to determine whether the non-negative EE
exists. Suppose that

ϝ1(∗) = ℘1∗ +
℘2𝛽𝜛∗

𝜐1 + 𝜂1 + 𝜌
+

℘3(1 − 𝛽)𝜛∗

𝜐2 + 𝜂2 + 𝜌
,

𝑓ϝ2(∗) =
(

ϝ1(∗) + 𝜌 + 𝜗1
)

(1 + 𝜌)2,

ϝ3(∗) =
(

𝛾ϝ1(∗) + 𝜌 + 𝜗2
)

(1 + 𝜌)2, ϝ4(∗) =
(

𝛿ϝ1(∗) + 𝜌 + 𝜗3
)

(1 + 𝜌)2,

ϝ5(∗) =
(

𝜃ϝ1(∗) + 𝜌 + 𝜗4
)

(1 + 𝜌)2, ϝ6(∗) =
(

𝜍(1 − 𝜚)ϝ1∗) + 𝜌 + 𝜚, . (31)

The system’s (11) EE is represented by 𝐸̃∗ =
(

∗,∗
10,

∗
20,

∗
30,

∗
40,

∗
50,

∗
60,

∗,∗
1 ,

∗
10,

∗)T, where

∗ = 𝜋
1 + 𝜌

, ∗
10 =

𝓁𝜋
(1 + 𝜌)2

, ∗
20 =

(1 − 𝓁)𝜋
(1 + 𝜌)2

, ∗
30 =

𝐯𝓁𝜋
ϝ2(∗)

,

∗
40 =

(1 − 𝐯)𝓁𝜋
ϝ3(∗)

,

∗
50 =

𝜎(1 − 𝓁)𝜋
ϝ4(∗)

, ∗
60 =

(1 − 𝜎)(1 − 𝓁)𝜋
ϝ5(∗)

,

∗ =
(∗

30 + 𝛾∗
40 + 𝛿∗

50 + 𝜃∗
60 + (1 − 𝜚)𝜍∗)

𝜛 + 𝜁 + 𝜌
,

∗ = 1
ϝ6(∗)

{

𝜗1
𝐯𝓁𝜋
ϝ2(∗)

+ 𝜗2
(1 − 𝐯)𝓁𝜋
ϝ3(∗)

+ 𝜗3
𝜎(1 − 𝓁)𝜋
ϝ4(∗)

+𝜗4
(1 − 𝜎)(1 − 𝓁)𝜋

ϝ5(∗)

}

,

∗
1 =

𝛽𝜛∗

𝜌 + 𝜂1 + 𝜐1
, ∗

10 =
(1 − 𝛽)𝜛∗

𝜌 + 𝜂2 + 𝜐2
. (32)

Also, we suppose that ϝ1(),

ϝ () =
7

1

{℘1(𝜌 + 𝜂1 + 𝜐1)(𝜌 + 𝜂2 + 𝜐2) +℘2𝛽𝜛(𝜌 + 𝜂2 + 𝜐2) +℘3(1 − 𝛽)𝜛(𝜌 + 𝜂1 + 𝜐1)
(𝜌 + 𝜂1 + 𝜐1)(𝜌 + 𝜂2 + 𝜐2)

}

 .

(33)
hen we transform (33) into ∗ for  = ∗, we have ℏ1() = ℏ2(),

where

ℏ1() =
(𝜌 + 𝜂1 + 𝜐1)(𝜌 + 𝜂2 + 𝜐2)(𝜛 + 𝜁 + 𝜌)

℘1(𝜌 + 𝜂1 + 𝜐1)(𝜌 + 𝜂2 + 𝜐2) +℘2𝛽𝜛(𝜌 + 𝜂2 + 𝜐2) +℘3(1 − 𝛽)𝜛(𝜌 + 𝜂1 + 𝜐1)
,

ℏ2() =
𝐯𝓁𝜋
ϝ2(∗)

+
𝛾(1 − 𝐯)𝓁𝜋
ϝ3(∗)

+
𝛿𝜎(1 − 𝓁)𝜋
ϝ4(∗)

+
𝜃(1 − 𝜎)(1 − 𝓁)𝜋

ϝ5(∗)

+
(1 − 𝜚)𝜍
ϝ6()

{

𝜗1
𝐯𝓁𝜋
ϝ2(∗)

+ 𝜗2
(1 − 𝐯)𝓁𝜋
ϝ3(∗)

+ 𝜗3
𝜎(1 − 𝓁)𝜋
ϝ4(∗)

+𝜗4
(1 − 𝜎)(1 − 𝓁)𝜋

ϝ5(∗)

}

. (34)

Obviously, both ℏ1 and ℏ2 are differentiable mappings for  ≥ 0.
Clearly, ϝ2() > 0, ϝ3() > 0, ϝ4() > 0, ϝ5() > 0 also, ϝ′2() >
, ϝ′3() > 0, ϝ′4() > 0, ϝ′5() > 0. Following is the outcome of
omputing the derivative of ℏ1 and ℏ2:

ℏ′1() = 0,

′
2() =

𝐯𝓁𝜋ϝ′2()
(ϝ2())2

−
𝛾(1 − 𝐯)𝓁𝜋ϝ′3()

(ϝ3())2
−

𝛿𝜎(1 − 𝓁)𝜋ϝ′4()
(ϝ4())2

−
𝜃(1 − 𝜎)(1 − 𝓁)𝜋ϝ′5()

(ϝ5())2

+
(1 − 𝜚)𝜍
ϝ6()

{ 𝜗1𝐯𝓁𝜋ϝ′2()
(ϝ2())2

+
𝜗2(1 − 𝐯)𝓁𝜋ϝ′3()

(ϝ3())2

+
𝜗3𝜎(1 − 𝓁)𝜋ϝ′4()

(ϝ4())2
+

𝜗4(1 − 𝜎)(1 − 𝓁)𝜋ϝ′5()

(ϝ5())2
}

−
(1 − 𝜚)𝜍ϝ′6()

ϝ6(∗)

{ 𝜗1𝐯𝓁𝜋
ϝ2()

+
𝜗2(1 − 𝐯)𝓁𝜋

ϝ3()
+

𝜗3𝜎(1 − 𝓁)𝜋
ϝ4()

+
𝜗4(1 − 𝜎)(1 − 𝓁)𝜋

ϝ5()

}

< 0. (35)

Therefore, ℏ1() is an increasing straight line on [0,∞], and ℏ2() is
nonincreasing one. To evaluate whether the two curves interconnect

nd, consequently, whether a non-negative EE persists, we can make
omparisons of their vertical intercepts. We can conveniently see that
here is a particular EE of 𝐸̄ = 𝐸̄∗ if R0 > 1, then ℏ1(0) < ℏ2(0). There

is no EE, though, if R0 ≤ 1 because ℏ1(0) > ℏ2(0).

Global stability of EE

Next, we will analyze the GAS of the EE using the geometric
methodology first put forth by Lyapunov and La Salle–Lyapunov [63].
In order to achieve this, we begin by presenting the following outcome
in accordance with the geometric technique:

Theorem 4. The unique EE 𝐸̄∗ of (11) is GAS whenever R0 > 1.

Proof. We will demonstrate that 𝐸̄∗ is globally stable. We begin by
contemplating about the respective expression:

L(𝛬) = 𝛬 − 𝛬∗ + 𝛬∗ ln
( 𝛬
𝛬∗

)

(36)

for 𝛬,𝛬∗ > 0. Replacing 𝛬 by the all cohorts of the model (11).
vidently, L(𝛬) ≥ 0 form the identity if and only if 𝛬 = 𝛬∗. Suppose
= ℘1 +℘21 +℘310.
Performing differentiation of the function L(𝛬) after inserting all

ompartments of the model (11) and employing the equilibrium condi-
ions produces

̇ ()(𝜉) = (1 + 𝜌)
( − ∗



)

(∗ − ) + 𝓁
(10 − ∗

10
10

)(∗
10 − ∗10

∗
10

)

+(1 − 𝓁)
(20 − ∗

20
)(∗

20 − 20∗
)

20 ∗
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Fig. 3. Graphical view for all initial exposed peoples. It is evident that every graph leads to an EE point. This modeling was functioning. We furthermore ran a test run for a
longer time frame, and the outcome was equivalent. Graphical view of (a)  vs.  (b)A phase comparison of  and .
≤ (1 + 𝜌)∗
( 2∗ − ∗2 − 2

∗

)

+𝓁∗
( 210∗∗

10 − ∗
10

22 − 2
10

∗2

10∗∗
10

)

+(1 − 𝓁)∗
( 220∗∗

20 − ∗
20

22 − 2
20

∗2

20∗∗
20

)

. (37)

he final variant results from the suppositions that

10∗ ≤ ∗
10 𝑎𝑛𝑑 ∗ ≥  .

herefore, getting it is simple

10∗ − ∗
10
)

(∗ − ) ≤ 0, 𝑎𝑠  > 0. (38)

ssume that
𝑑L(30)

𝑑𝜉
=
(∗

30 − 30

30

){

𝐯10 − 𝛶30 − 𝐯∗
10

∗
30

30
+ 𝛶 ∗30

}

≤ 𝐯∗
10

(10
∗
10

−
10∗

30
∗
1030

−
30
∗
30

+ 1
)

+𝛶 ∗∗
30

(30
∗
30

−
𝛶30
𝛶 ∗∗

30
+ 𝛶

𝛶 ∗ − 1
)

. (39)

nalogously, we have

𝑑L(40)
𝑑𝜉

≤ (1 − 𝐯)∗
10

(10
∗
10

−
10∗

40
∗
1040

−
40
∗
40

+ 1
)

+𝛾𝛶 ∗∗
40

(40
∗
40

−
𝛶40
𝛶 ∗∗

40
+ 𝛶

𝛶 ∗ − 1
)

,

𝑑L(50)
𝑑𝜉

≤ 𝜎∗
20

(20
∗
20

−
20∗

40
∗
2040

−
50
∗
50

+ 1
)

𝛿𝛶 ∗∗
50

(50
∗
50

−
𝛶50
𝛶 ∗∗

50
+ 𝛶

𝛶 ∗ − 1
)

,

𝑑L(60)
𝑑𝜉

≤ (1 − 𝜎)∗
20

(20
∗
20

−
20∗

60
∗
2060

−
60
∗
60

+ 1
)

𝜃𝛶 ∗∗
60

(60
∗
60

−
𝛶60
𝛶 ∗∗

60
+ 𝛶

𝛶 ∗ − 1
)

,

𝑑L()
𝑑𝜉

≤ 𝜗1∗
30

(30
∗
30

−
30∗

∗
30

− 
∗ + 1

)

+𝜗2∗
40

(40
∗ −

40∗

∗ − 
∗ + 1

)

8

40 40 
+𝜗3∗
50

(50
∗
50

−
50∗

∗
50

− 
∗ + 1

)

+𝜗4∗
60

(60
∗
60

−
60∗

∗
60

− 
∗ + 1

)

+(1 − 𝜚)𝜍𝛶 ∗∗
( 
∗ − 𝛶

𝛶 ∗∗ − 𝛶
𝛶 ∗ − 1

)

,

𝑑L()
𝑑𝜉

≤ 𝛶 ∗∗
30

( 𝛶30
𝛶 ∗∗

30
−

𝛶30∗

𝛶 ∗∗
30

− 
∗ + 1

)

+𝛾𝛶 ∗∗
40

( 𝛶40
𝛶 ∗∗

40
−

𝛶40∗

𝛶 ∗∗
40

− 
∗ + 1

)

+𝛿𝛶 ∗∗
50

( 𝛶50
𝛶 ∗∗

50
−

𝛶50∗

𝛶 ∗∗
50

− 
∗ + 1

)

+𝜍𝛶 ∗∗
60

( 𝛶60
𝛶 ∗∗

60
−

𝛶60∗

𝛶 ∗∗
60

− 
∗ + 1

)

+(1 − 𝜚)𝜍𝛶 ∗∗
( 𝛶
𝛶 ∗∗ − 𝛶∗

𝛶 ∗∗
− 

∗ + 1
)

,

𝑑L(1)
𝑑𝜉

≤ 𝛽𝜛∗
( 2∗1∗

1 − 2(∗
1 )

2 − (∗)2(1)2

∗1∗
1

)

,

𝑑L(10)
𝑑𝜉

≤ (1 − 𝛽)𝜛∗
( 2∗10∗

10 − 2(∗
10)

2 − (∗)2(10)2

∗10∗
10

)

. (40)

In view of the Lyapunov candidate, we have

L(𝜉) = L() + L(10) + L(20) + L(30) + L(40) + L(50)

+L(60) + L() + L()

+L(1) + L(10). (41)

The system’s (11) solutions are determined by L’s derivative, which
results in

𝑑L
𝑑𝜉

≤ (1 + 𝜌)∗
( 2∗ − ∗2 − 2

∗

)

+𝓁∗
( 210∗∗

10 − ∗
10

22 − 2
10

∗2

10∗∗
10

)

+(1 − 𝓁)∗
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Fig. 4. Phase portraits of EE 𝐸̄1 for various fractional-order derivatives having stability R0 > 1.
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𝑑
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R
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+𝜗2∗
40

(40
∗
40

−
40∗

∗
40

− 
∗ + 1

)

+𝜗3∗
50

(50
∗
50

−
50∗

∗
50

− 
∗ + 1

)

+𝜗4∗
60

(60
∗
60

−
60∗

∗
60

− 
∗ + 1

)

+(1 − 𝜚)𝜍𝛶 ∗∗
( 
∗ − 𝛶

𝛶 ∗∗ − 𝛶
𝛶 ∗ − 1

)

+𝛶 ∗∗
30

( 𝛶30
𝛶 ∗∗

30
−

𝛶30∗

𝛶 ∗∗
30

− 
∗ + 1

)

+𝛾𝛶 ∗∗
40

( 𝛶40
𝛶 ∗∗

40
−

𝛶40∗

𝛶 ∗∗
40

− 
∗ + 1

)

+𝛿𝛶 ∗∗
50

( 𝛶50
𝛶 ∗∗

50
−

𝛶50∗

𝛶 ∗∗
50

− 
∗ + 1

)

+𝜍𝛶 ∗∗
60

( 𝛶60
𝛶 ∗∗

60
−

𝛶60∗

𝛶 ∗∗
60

− 
∗ + 1

)

+(1 − 𝜚)𝜍𝛶 ∗∗
( 𝛶
𝛶 ∗∗ − 𝛶∗

𝛶 ∗∗
− 

∗ + 1
)

+𝛽𝜛∗
(2∗1∗

1 − 2(∗
1 )

2 − (∗)2(1)2

∗1∗
1

)

+(1 − 𝛽)𝜛∗
(2∗10∗

10 − 2(∗
10)

2 − (∗)2(10)2

∗10∗
10

)

. (42)

n view of the arithmetic–geometric mean variant, which indicates that
L∕𝑑𝜉 ≤ 0. When R0 > 1, the argument 𝑑L∕𝑑𝜉 < 0. The equality
L∕𝑑𝜉 = 0 satisfies iff for ( ,10,20,30,40,50,60, ,  ,1,10) =
∗,∗

10,
∗
20,

∗
30,

∗
40,

∗
50,

∗
60,

∗, ∗,∗
1 ,

∗
10). Thus, the EE 𝐸̄∗ is GAS if

0 > 1. This completes the proof. □

xistence and uniqueness

Here, we will use the 𝐟𝑝 hypothesis and the Picard–Lindelöf tech-
ique on the model (11) to demonstrate the existence and uniqueness
f the system (11) solution. To achieve this, we could reformat the
ramework in its following classic form:
𝑐𝛥𝛹

0 𝐗(𝜉) = ℧(𝜉 − 1 + 𝛹,𝐗(𝜉 − 1 + 𝛹 )),
𝐗(0) = 𝐗0,

(43)

here 𝜉 ∈ ÑTmax
1−𝛹 in which (Tmax−1+𝛹 ) ∈ Ñ, 𝐗(𝜉) =

(

(𝜉),10(𝜉),20(𝜉),
30(𝜉),40(𝜉),50(𝜉),60(𝜉),(𝜉), (𝜉),1(𝜉),10(𝜉),(𝜉)

)T and the map-
ping ℧(𝜉,𝐗(𝜉)) is described as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

℧1(𝜉,) = 𝜋 − (1 + 𝜌)(𝜉),
℧2(𝜉,10) = 𝓁(𝜉) − (1 + 𝜌)10(𝜉),
℧3(𝜉,20) = (1 − 𝓁)(𝜉) − (1 + 𝜌)20(𝜉),
℧4(𝜉,30) = 𝜌10(𝜉) − (𝛶 + 𝜗1 + 𝜌)30(𝜉),
℧5(𝜉,40) = (1 − 𝐯)10(𝜉) − 𝛾𝛶40(𝜉) − (𝜗2 + 𝜌)50(𝜉),
℧6(𝜉,50) = 𝜎20(𝜉) − 𝛿𝛶50(𝜉) − (𝜗3 + 𝜌)50(𝜉),
℧7(𝜉,60) = (1 − 𝜎)20(𝜉) − 𝜃𝛶60(𝜉) − (𝜗4 + 𝜌)60(𝜉),
℧8(𝜉,) = 𝜗130(𝜉) + 𝜗240(𝜉) + 𝜗350(𝜉)
+𝜗460(𝜉) − (1 − 𝜚)𝜍𝛶(𝜉) − (𝜚 + 𝜌)(𝜉),
℧9(𝜉, ) = 𝛶

(

30(𝜉) + 𝛾240(𝜉) + 𝛿50(𝜉) + 𝜃60(𝜉)
)

+(1 − 𝜚)𝜍𝛶1(𝜉) − (𝜛 + 𝜁 + 𝜌)(𝜉),
℧10(𝜉,1) = 𝛽𝜛(𝜉) − (𝜂1 + 𝜐1 + 𝜌)1(𝜉),
℧11(𝜉,10) = (1 − 𝛽)𝜛(𝜉) − (𝜂2 + 𝜐2 + 𝜌)10(𝜉),
℧12(𝜉,) = 𝜚(𝜉) + 𝜁(𝜉) + 𝜐11(𝜉) + 𝜐210(𝜉) − 𝜌(𝜉).

(44)

To conduct the E-U exploration, we use the IC 𝐗(0) and Proposition 1. It
would immediately result in the following sum formulae for framework
10

(11):
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(𝜉) − (0) = 𝛥−𝛹
1−𝛹

(

𝜋 − (1 + 𝜌)(𝜉)
)

,
10(𝜉) − 10(0) = 𝛥−𝛹

1−𝛹
(

𝓁(𝜉) − (1 + 𝜌)10(𝜉)
)

,
20(𝜉) − 20(0) = 𝛥−𝛹

1−𝛹
(

(1 − 𝓁)(𝜉) − (1 + 𝜌)20(𝜉)
)

,
30(𝜉) − 30(0) = 𝛥−𝛹

1−𝛹
(

𝜌10(𝜉) − (𝛶 + 𝜗1 + 𝜌)30(𝜉)
)

,
40(𝜉) − 40(0) = 𝛥−𝛹

1−𝛹
(

(1 − 𝐯)10(𝜉) − 𝛾𝛶40(𝜉) − (𝜗2 + 𝜌)50(𝜉)
)

,
50(𝜉) − 50(0) = 𝛥−𝛹

1−𝛹
(

𝜎20(𝜉) − 𝛿𝛶50(𝜉) − (𝜗3 + 𝜌)50(𝜉)
)

,
60(𝜉) − 60(0) = 𝛥−𝛹

1−𝛹
(

(1 − 𝜎)20(𝜉) − 𝜃𝛶60(𝜉) − (𝜗4 + 𝜌)60(𝜉)
)

,
(𝜉) − (0) = 𝛥−𝛹

1−𝛹
(

𝜗130(𝜉) + 𝜗240(𝜉) + 𝜗350(𝜉)
+𝜗460(𝜉) − (1 − 𝜚)𝜍𝛶(𝜉) − (𝜚 + 𝜌)(𝜉)

)

,
(𝜉) − (0) = 𝛥−𝛹

1−𝛹
(

𝛶
(

30(𝜉) + 𝛾240(𝜉) + 𝛿50(𝜉) + 𝜃60(𝜉)
)

+(1 − 𝜚)𝜍𝛶1(𝜉) − (𝜛 + 𝜁 + 𝜌)(𝜉)
)

,
1(𝜉) − 1(0) = 𝛥−𝛹

1−𝛹
(

𝛽𝜛(𝜉) − (𝜂1 + 𝜐1 + 𝜌)1(𝜉)
)

,
10(𝜉) − 10(0) = 𝛥−𝛹

1−𝛹
(

(1 − 𝛽)𝜛(𝜉) − (𝜂2 + 𝜐2 + 𝜌)10(𝜉)
)

,
(𝜉) −(0) = 𝛥−𝛹

1−𝛹
(

𝜚(𝜉) + 𝜁(𝜉) + 𝜐11(𝜉) + 𝜐210(𝜉) − 𝜌(𝜉)
)

,

(45)

for 𝜉 ∈ ÑTmax
1−𝛹 . In view of (45) and Definition 1, we can find the state

variables in contexts of ℧𝜄(𝜉,𝐗(𝜉)), where 𝜄 = 1, 2,… , 12. Accordingly,
we have

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

(𝜉) = (0) + 1
𝛤 (𝛹 )

𝜉−𝛹
∑

𝛩=1−𝛹
(𝜉 − 𝛩 − 1)(𝛹−1)℧1

(

𝛩 − 1 + 𝛹,

(𝛩 − 1 + 𝛹 )
)

,

10(𝜉) = 10(0) +
1

𝛤 (𝛹 )

𝜉−𝛹
∑

𝛩=1−𝛹
(𝜉 − 𝛩 − 1)(𝛹−1)℧2

(

𝛩 − 1 + 𝛹,

10(𝛩 − 1 + 𝛹 )
)

,

20(𝜉) = 20(0) +
1

𝛤 (𝛹 )

𝜉−𝛹
∑

𝛩=1−𝛹
(𝜉 − 𝛩 − 1)(𝛹−1)℧3

(

𝛩 − 1 + 𝛹,

20(𝛩 − 1 + 𝛹 )
)

,

30(𝜉) = 30(0) +
1

𝛤 (𝛹 )

𝜉−𝛹
∑

𝛩=1−𝛹
(𝜉 − 𝛩 − 1)(𝛹−1)℧4

(

𝛩 − 1 + 𝛹,

30(𝛩 − 1 + 𝛹 )
)

,

40(𝜉) = 40(0) +
1

𝛤 (𝛹 )

𝜉−𝛹
∑

𝛩=1−𝛹
(𝜉 − 𝛩 − 1)(𝛹−1)℧5

(

𝛩 − 1 + 𝛹,

40(𝛩 − 1 + 𝛹 )
)

,

50(𝜉) = 50(0) +
1

𝛤 (𝛹 )

𝜉−𝛹
∑

𝛩=1−𝛹
(𝜉 − 𝛩 − 1)(𝛹−1)℧6

(

𝛩 − 1 + 𝛹,

50(𝛩 − 1 + 𝛹 )
)

,

60(𝜉) = 60(0) +
1

𝛤 (𝛹 )

𝜉−𝛹
∑

𝛩=1−𝛹
(𝜉 − 𝛩 − 1)(𝛹−1)℧7

(

𝛩 − 1 + 𝛹,

60(𝛩 − 1 + 𝛹 )
)

,

(𝜉) = (0) + 1
𝛤 (𝛹 )

𝜉−𝛹
∑

𝛩=1−𝛹
(𝜉 − 𝛩 − 1)(𝛹−1)℧8

(

𝛩 − 1 + 𝛹,

(𝛩 − 1 + 𝛹 )
)

,

(𝜉) = (0) + 1
𝛤 (𝛹 )

𝜉−𝛹
∑

𝛩=1−𝛹
(𝜉 − 𝛩 − 1)(𝛹−1)℧9

(

𝛩 − 1 + 𝛹,

(𝛩 − 1 + 𝛹 )
)

,
1(𝜉) = 1(0) +

1
𝛤 (𝛹 )

∑𝜉−𝛹
𝛩=1−𝛹 (𝜉 − 𝛩 − 1)(𝛹−1)℧10

(

𝛩 − 1 + 𝛹,

1(𝛩 − 1 + 𝛹 )
)

,

10(𝜉) = 10(0) +
1

𝛤 (𝛹 )

𝜉−𝛹
∑

𝛩=1−𝛹
(𝜉 − 𝛩 − 1)(𝛹−1)℧11

(

𝛩 − 1 + 𝛹,

10(𝛩 − 1 + 𝛹 )
)

,

(𝜉) = (0) + 1
𝛤 (𝛹 )

𝜉−𝛹
∑

𝛩=1−𝛹
(𝜉 − 𝛩 − 1)(𝛹−1)℧12

(

𝛩 − 1 + 𝛹,

(𝛩 − 1 + 𝛹 )
)

.

(46)
⎩
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⎪

⎪

⎨
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⎪
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Consequently, we can arrive at the respective formulas using Picard
iterations:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝐧+1(𝜉) = (0) + 1
𝛤 (𝛹 )

𝜉−𝛹
∑

𝛩=1−𝛹
(𝜉 − 𝛩 − 1)(𝛹−1)℧1

(

𝛩 − 1 + 𝛹,

(𝛩 − 1 + 𝛹 )
)

,

10𝐧+1(𝜉) = 10(0) +
1

𝛤 (𝛹 )

𝜉−𝛹
∑

𝛩=1−𝛹
(𝜉 − 𝛩 − 1)(𝛹−1)℧2

(

𝛩 − 1 + 𝛹,

10(𝛩 − 1 + 𝛹 )
)

,

20𝐧+1(𝜉) = 20(0) +
1

𝛤 (𝛹 )

𝜉−𝛹
∑

𝛩=1−𝛹
(𝜉 − 𝛩 − 1)(𝛹−1)℧3

(

𝛩 − 1 + 𝛹,

20(𝛩 − 1 + 𝛹 )
)

,

30𝐧+1(𝜉) = 30(0) +
1

𝛤 (𝛹 )

𝜉−𝛹
∑

𝛩=1−𝛹
(𝜉 − 𝛩 − 1)(𝛹−1)℧4

(

𝛩 − 1 + 𝛹,

30(𝛩 − 1 + 𝛹 )
)

,

40𝐧+1(𝜉) = 40(0) +
1

𝛤 (𝛹 )

𝜉−𝛹
∑

𝛩=1−𝛹
(𝜉 − 𝛩 − 1)(𝛹−1)℧5

(

𝛩 − 1 + 𝛹,

40(𝛩 − 1 + 𝛹 )
)

,

50𝐧+1(𝜉) = 50(0) +
1

𝛤 (𝛹 )

𝜉−𝛹
∑

𝛩=1−𝛹
(𝜉 − 𝛩 − 1)(𝛹−1)℧6

(

𝛩 − 1 + 𝛹,

50(𝛩 − 1 + 𝛹 )
)

,

60𝐧+1(𝜉) = 60(0) +
1

𝛤 (𝛹 )

𝜉−𝛹
∑

𝛩=1−𝛹
(𝜉 − 𝛩 − 1)(𝛹−1)℧7

(

𝛩 − 1 + 𝛹,

60(𝛩 − 1 + 𝛹 )
)

,

𝐧+1(𝜉) = (0) + 1
𝛤 (𝛹 )

𝜉−𝛹
∑

𝛩=1−𝛹
(𝜉 − 𝛩 − 1)(𝛹−1)℧8

(

𝛩 − 1 + 𝛹,

(𝛩 − 1 + 𝛹 )
)

,

𝐧+1(𝜉) = (0) + 1
𝛤 (𝛹 )

𝜉−𝛹
∑

𝛩=1−𝛹
(𝜉 − 𝛩 − 1)(𝛹−1)℧9

(

𝛩 − 1 + 𝛹,

(𝛩 − 1 + 𝛹 )
)

,

1𝐧+1(𝜉) = 1(0) +
1

𝛤 (𝛹 )

𝜉−𝛹
∑

𝛩=1−𝛹
(𝜉 − 𝛩 − 1)(𝛹−1)℧10

(

𝛩 − 1 + 𝛹,

1(𝛩 − 1 + 𝛹 )
)

,

10𝐧+1(𝜉) = 10(0) +
1

𝛤 (𝛹 )

𝜉−𝛹
∑

𝛩=1−𝛹
(𝜉 − 𝛩 − 1)(𝛹−1)℧11

(

𝛩 − 1 + 𝛹,

10(𝛩 − 1 + 𝛹 )
)

,

𝐧+1(𝜉) = (0) + 1
𝛤 (𝛹 )

𝜉−𝛹
∑

𝛩=1−𝛹
(𝜉 − 𝛩 − 1)(𝛹−1)℧12

(

𝛩 − 1 + 𝛹,

(𝛩 − 1 + 𝛹 )
)

.

(47)

ccordingly, we can construct the preceding sum formula from frame-
ork (45) and its IC:

(𝜉) = 𝐗(0)+ 1
𝛤 (𝛹 )

𝜉−𝛹
∑

𝛩=1−𝛹
(𝜉−𝛩−1)(𝛹−1)℧

(

𝛩−1+𝛹,𝐗(𝛩−1+𝛹 )
)

, (48)

here 𝜉 ∈ Ñ1. The subsequent mathematical conclusions about the E-U
f a solution for the present structure can be deduced as a consequence
f the earlier research.

emma 3. The mapping ℧(𝜉,𝐗(𝜉)) stated in (44) holds the subsequent
ipschitz assumption:

℧(𝜉,𝐗(𝜉)) − ℧(𝜉,𝐗∗(𝜉))| ≤ 𝛯‖𝐗(𝜉) − 𝐗∗(𝜉)‖, (49)
11

|

|

‖

‖

‖

‖

where

𝛯 = max

⎧

⎪

⎪

⎨

⎪

⎪

⎩

‖1 + 𝜌‖, ‖1 + 𝜌‖, ‖1 + 𝜌‖, ‖𝛶 + 𝜗1 + 𝜌‖, ‖𝛾𝛶 + 𝜗2 + 𝜌‖,
‖𝛿𝛶 + 𝜗3 + 𝜌‖, ‖𝜃𝛶 + 𝜗4 + 𝜌‖,
‖(1 − 𝜚)𝜍𝛶 + (𝜚 + 𝜌)‖, ‖(𝜛 + 𝜁 + 𝜌)‖, ‖𝜂1 + 𝜐1 + 𝜌‖,
‖𝜂2 + 𝜐2 + 𝜌‖, ‖𝜌‖.

(50)

roof. By surmising (𝜉) and ∗(𝜉) as two coupled mappings, we find

℧1(𝜉,) − ℧1(𝜉,∗)‖‖
‖

= ‖

‖

‖

(1 + 𝜌)( − ∗)‖‖
‖

. (51)

n addition time, by considering

1 =
‖

‖

‖

(1 + 𝜌)‖‖
‖

, (52)

rrive at

℧1(𝜉,) − ℧1(𝜉,∗)‖‖
‖

≤ 𝛯1
‖

‖

‖

 − ∗‖
‖

‖

. (53)

he identical process leads to the following variants:

‖

‖

‖

℧2(𝜉,10) − ℧2(𝜉,∗
10)

‖

‖

‖

≤ 𝛯2
‖

‖

‖

10 − ∗
10
‖

‖

‖

,
‖

‖

‖

℧3(𝜉,20) − ℧3(𝜉,∗
20)

‖

‖

‖

≤ 𝛯3
‖

‖

‖

20 − ∗
20
‖

‖

‖

,
‖

‖

‖

℧4(𝜉,30) − ℧4(𝜉,∗
30)

‖

‖

‖

≤ 𝛯4
‖

‖

‖

30 − ∗
30
‖

‖

‖

,
‖

‖

‖

℧5(𝜉,40) − ℧5(𝜉,∗
40)

‖

‖

‖

≤ 𝛯5
‖

‖

‖

40 − ∗
40
‖

‖

‖

,
‖

‖

‖

℧6(𝜉,50) − ℧6(𝜉,∗
50)

‖

‖

‖

≤ 𝛯6
‖

‖

‖

50 − ∗
50
‖

‖

‖

,
‖

‖

‖

℧7(𝜉,60) − ℧7(𝜉,∗
60)

‖

‖

‖

≤ 𝛯7
‖

‖

‖

60 − ∗
60
‖

‖

‖

,
‖

‖

‖

℧8(𝜉,) − ℧8(𝜉,∗)‖‖
‖

≤ 𝛯8
‖

‖

‖

 − ∗‖
‖

‖

,
‖

‖

‖

℧9(𝜉, ) − ℧9(𝜉, ∗)‖‖
‖

≤ 𝛯9
‖

‖

‖

 − ∗‖
‖

‖

,
‖

‖

‖

℧10(𝜉,1) − ℧10(𝜉,∗
1 )
‖

‖

‖

≤ 𝛯10
‖

‖

‖

1 − ∗
1
‖

‖

‖

,
‖

‖

‖

℧11(𝜉,10) − ℧11(𝜉,∗
10)

‖

‖

‖

≤ 𝛯11
‖

‖

‖

10 − ∗
10
‖

‖

‖

,
‖

‖

‖

℧12(𝜉,) − ℧12(𝜉,∗)‖‖
‖

≤ 𝛯12
‖

‖

‖

 −∗‖
‖

‖

,

(54)

where 𝛯2 = ‖1 + 𝜌‖, 𝛯3 = ‖1 + 𝜌‖, 𝛯4 = ‖𝛶 + 𝜗1 + 𝜌‖, 𝛯5 = ‖𝛾𝛶 + 𝜗2 +
𝜌‖, 𝛯6 = ‖𝛿𝛶+𝜗3+𝜌‖, 𝛯7 = ‖𝜃𝛶+𝜗4+𝜌‖, 𝛯8 = ‖(1−𝜚)𝜍𝛶+(𝜚+𝜌)‖, 𝛯9 =
‖(𝜛 + 𝜁 + 𝜌)‖, 𝛯10 = ‖𝜂1 + 𝜐1 + 𝜌‖, 𝛯11 = ‖𝜂2 + 𝜐2 + 𝜌‖, 𝛯12 = ‖𝜌‖.

From the aforesaid criteria, we can verify that the Lipschitz require-
ment is fulfilled by kernels ℧𝜄, 𝜄 = 1, 2,… , 12. Also, if 𝛯𝜄 < 1, then kernel
℧𝜄 is a contraction for 𝜄 = 1,… , 12. □

Theorem 5. Surmise that assumption (49) is fulfilled, then ∃ a unique
solution of the model (11) if

(Tmax − 1 + 𝛹 )(𝛹 )

𝛤 (𝛹 + 1)
𝛯 < 1. (55)

roof. In fact, the solution of the framework (11) can be described as

(𝜉) = 𝑃1(𝐗(𝜉)), (56)

here 𝑃1 signifies the Picard operator stated by:

1(𝐗(𝜉)) = 𝐗(0)+ 1
𝛤 (𝛹 )

𝜉−𝛹
∑

𝛩=1−𝛹
(𝜉−𝛩−1)(𝛹−1)℧

(

𝛩−1+𝛹,𝐗(𝛩−1+𝛹 )
)

. (57)

onsidering the preceding justifications, we can write

𝑃1(𝐗1(𝜉)) − 𝑃1(𝐗2(𝜉))
‖

‖

‖

= ‖

‖

‖

1
𝛤 (𝛹 )

𝜉−𝛹
∑

𝛩=1−𝛹
(𝜉 − 𝛩 − 1)(𝛹−1) ( ℧(𝛩 − 1

+𝛹,𝐗1(𝛩 − 1 + 𝛹 ))
)

‖
−℧(𝛩 − 1 + 𝛹,𝐗2(𝛩 − 1 + 𝛹 )) ‖

‖
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Fig. 5. Graphical view of the fractional-order model (11) (a) uninfected and infected class (b) time dependent graph for various compartments.
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d

≤ 1
𝛤 (𝛹 )

𝜉−𝛹
∑

𝛩=1−𝛹
(𝜉 − 𝛩 − 1)(𝛹−1)‖

‖

‖

℧(𝛩 − 1 + 𝛹,

𝐗1(𝛩 − 1 + 𝛹 ))

−℧(𝛩 − 1 + 𝛹,𝐗2(𝛩 − 1 + 𝛹 ))‖‖
‖

≤ 1
𝛤 (𝛹 )

𝜉−𝛹
∑

𝛩=1−𝛹
(𝜉 − 𝛩 − 1)(𝛹−1) max

𝛩∈Ñ𝜉−𝛹
1−𝛹

‖

‖

‖

℧(𝛩 − 1

+𝛹,𝐗1(𝛩 − 1 + 𝛹 ))

−℧(𝛩 − 1 + 𝛹,𝐗2(𝛩 − 1 + 𝛹 ))‖‖
‖

≤
(Tmax − 1 + 𝛹 )(𝛹 )

𝛤 (𝛹 + 1)
𝛯‖

‖

‖

𝐗1(𝜉) − 𝐗2(𝜉)
‖

‖

‖

. (58)

As (Tmax−1+𝛹 )(𝛹 )

𝛤 (𝛹+1) 𝛯 < 1, then the operator 𝑃1 is contraction, where Tmax ≥
𝜉. Therefore, model (11) has a unique solution. □

mplementation to estimating COVID-19 behavior

To validate the conclusions drawn in the preceding sections, we
ill run a number of simulation studies in this portion. We will use
ur research for this purpose to forecast how the infection will behave
n Thailand. We shall use a million-person sample size, which also
mplies we shall use 273523621 as the initial total population  (0).
hus according [64], it is simple to determine that the mortality rate is
.4 and that there are 7.8277886𝑒−5 innovative births per day for every
illion people. The statistics can also be found on the website [64,65].

According to [49], we have performed numerical computations with
ifferent criteria and various time preferences, and in all scenarios, we
ave found a distinguishable solution. Table 1 contains an overview
f the parameter estimation, information and value systems used in
ur simulation analysis. We determined the initial infectious disease
umber to compartment using the information obtained in Thailand
s (0) = 40, 000, 000, 10(0) = 0, 20(0) = 0, 30(0) = 0, 40(0) =
, 50(0) = 0, 60(0) = 0, (0) = 0, (0) = 60, 000, 1(0) = 26, 000, 10 =
4, 000 and (0) = 0 and the whole time span is T = 200.

Eq. (24) requires that we first determine the fundamental reproduc-
ion number:

0 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜌𝓁(𝜌+𝜚+𝜗1(1−𝜚)𝜍)
(𝜌+𝜚)(𝜌+𝜗1)(1+𝜌)2

+ (1−𝐯)𝓁𝜋(𝛾(𝜌+𝜚)+𝜗2(1−𝜚)𝜍)
(𝜌+𝜚)(𝜌+𝜗2)(1+𝜌)2

+ 𝜎(1−𝓁)𝜋(𝛿(𝜌+𝜚)+𝜗3(1−𝜚)𝜍)
(𝜌+𝜚)(𝜌+𝜗3)(1+𝜌)2

+ (1−𝜎)(1−𝓁)𝜋(𝜃(𝜌+𝜚)+𝜗4(1−𝜚)𝜍)
(𝜌+𝜚)(𝜌+𝜗4)(1+𝜌)2

+
(𝜐2+𝜂2+𝜌)

(

℘1(𝜐1+𝜂1+𝜌)+℘2𝛹𝜛
)

+℘3𝜛(1−𝛹 )(𝜌+𝜐1+𝜂1)
(𝜌+𝜐1+𝜂1)(𝜌+𝜐2+𝜂2)(𝜌+𝜛+𝜁 )

= 0.567819 < 1,
12
Mentioning that the DFE point is locally asymptotically stable, the
requirements of (24) are satisfied. However, using these, we plot Figs. 5
and 6, which show simulation studies and demonstrate the framework
(11) is reliable.

Use the incommensurate order system to get a prediction accuracy
of as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑐𝛥𝛹1
0 (𝜉 + 1 − 𝛹 ) = 𝜋 − (1 + 𝜌)(𝜉),

𝑐𝛥𝛹2
0 10(𝜉 + 1 − 𝛹 ) = 𝓁(𝜉) − (1 + 𝜌)10(𝜉),

𝑐𝛥𝛹3
0 20(𝜉 + 1 − 𝛹 ) = (1 − 𝓁)(𝜉) − (1 + 𝜌)20(𝜉),

𝑐𝛥𝛹4
0 30(𝜉 + 1 − 𝛹 ) = 𝜌10(𝜉) − (𝛶 + 𝜗1 + 𝜌)30(𝜉),

𝑐𝛥𝛹5
0 40(𝜉 + 1 − 𝛹 ) = (1 − 𝐯)10(𝜉) − 𝛾𝛶40(𝜉) − (𝜗2 + 𝜌)50(𝜉),

𝑐𝛥𝛹6
0 50(𝜉 + 1 − 𝛹 ) = 𝜎20(𝜉) − 𝛿𝛶50(𝜉) − (𝜗3 + 𝜌)50(𝜉),

𝑐𝛥𝛹7
0 60(𝜉 + 1 − 𝛹 ) = (1 − 𝜎)20(𝜉) − 𝜃𝛶60(𝜉) − (𝜗4 + 𝜌)60(𝜉),

𝑐𝛥𝛹8
0 (𝜉 + 1 − 𝛹 ) = 𝜗130(𝜉) + 𝜗240(𝜉) + 𝜗350(𝜉) + 𝜗460(𝜉)

−(1 − 𝜚)𝜍𝛶(𝜉) − (𝜚 + 𝜌)(𝜉),
𝑐𝛥𝛹9

0 (𝜉 + 1 − 𝛹 ) = 𝛶
(

30(𝜉) + 𝛾240(𝜉) + 𝛿50(𝜉) + 𝜃60(𝜉)
)

+(1 − 𝜚)𝜍𝛶(𝜉) − (𝜛 + 𝜁 + 𝜌)(𝜉),
𝑐𝛥𝛹10

0 1(𝜉 + 1 − 𝛹 ) = 𝛽𝜛(𝜉) − (𝜂1 + 𝜐1 + 𝜌)1(𝜉),
𝑐𝛥𝛹11

0 10(𝜉 + 1 − 𝛹 ) = (1 − 𝛽)𝜛(𝜉) − (𝜂2 + 𝜐2 + 𝜌)10(𝜉),
𝑐𝛥𝛹12

0 (𝜉 + 1 − 𝛹 ) = 𝜚(𝜉) + 𝜁(𝜉) + 𝜐11(𝜉) + 𝜐210(𝜉) − 𝜌(𝜉),

(59)

where 𝛹𝜄 ∈ [0, 1], 𝜄 = 1, 2,… , 12. Comparatively to defining a simple
condition that interacts with the consistency of the interactions as-
sociated, it is challenging and possibly inconceivable in this scenario
to create a straightforward and simple condition that interacts with
the reliability of the system (59) in discussion (11). By identifying the
significance of 𝛹𝜄, 𝜄 = 1, 2,… , 12, it is possible to examine the reliability
of the 𝐟𝑝s for framework (59) though. The following corollary must be
reported in such a situation.

Corollary 1 ([59]). Assume that 𝛹𝜄 ∈ (0, 1), 𝜄 = 1, 2, ..12, and 𝑀̄ is the
least common multiple of 𝑢̄𝜄 and 𝑣̄𝜄, hence, 𝛹𝜄 =

𝑣̄𝜄
𝑢̄𝜄

having 𝑔𝑐𝑑(𝑢̄𝜄, 𝑣̄𝜄) = 1
nd 𝜄 = 1, 2,… , 12, where 𝑔𝑐𝑑(., .) indicates the greatest common divisor. If
ne or more roots of the subsequent formulae:

et
(

𝑑𝑖𝑎𝑔
(

ℑ𝑀̄𝛹1 ,ℑ𝑀̄𝛹2 ,… ,ℑ𝑀̄𝛹12
)

− (1 −ℑ𝑀̄ )J
)

= 0 (60)
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Fig. 6. Graphical view of the Covid-19 model (11) (a) the integer-order, the commensurate and the incommensurate order incorporating the real data (b) Time-dependent graph
for the integer order and real data.
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stays within the set C ⧵ 1∕𝑀̄ , then the trivial solution of model (59)
respective to

(

(0),10(0),20(0),30(0),
40(0),50(0),60(0),(0), (0),1(0),10(0),(0)

)

is locally asymptoti-
cally stable, where

1∕𝑀̄ =
{

𝐳̃ ∈ C ∶ |𝐳̃| ≤
(

2 cos(𝑀̄| arg 𝐳̃|)
)1∕𝑀̄ 𝑎𝑛𝑑 | arg 𝐳̃| ≤ 𝜋∕2𝑀̄

}

. (61)

We will take into consideration that 𝛹1 = 0.242, 𝛹2 = 0.243, 𝛹3 =
.244, 𝛹4 = 0.245, 𝛹5 = 0.246, 𝛹6 = 0.247, 𝛹7 = 0.248, 𝛹8 = 0.249, 𝛹9 =
.250, 𝛹10 = 0.251, 𝛹11 = 0.252, 𝛹12 = 0.253. When R0 == 2.1126 > 1,
hen the phase portrait for all initial exposed peoples is presented
n Fig. 3. It is evident that every graph leads to an EE point. This
odeling was functioning. We furthermore ran a test run for a longer

ime frame and the outcome was equivalent. Graphical view of (a) 
s.  . (b) A comparison plot of  and . One of the crucial elements
s vaccination, as shown in Fig. 4. Despite the fact that vaccines are
nly 50% efficacious, it is evident that immunization reduce can the
umber of pathogens. Additionally, given that they may hold the key
o halting the disease’s propagation, our research suggests that at-risk
ndividuals without any preventative measures be among the first in
ine for a comprehensive vaccination. It is significant to observe that the
obust regulatory recommendations endorse vaccination at an elevated
evel of adherence for both high-risk and low-risk individuals who have
ot taken any measures to protect themselves from an ailment. Low-risk
ndividuals who are attentive to safeguarding themselves, moreover,
o not require any vaccination at all. The numerical simulations could
e used to maintain vaccine transmission programs with constrained
unding. Other precautions are still required because the illness can still
nfect those who have received the vaccine.

In contrast to the commensurate order situation, we get a more
recise estimation in this illustration. A mathematical model (11) of
his scenario is shown in Fig. 5, and comparisons between specific
nstances and factual facts are shown in Figs. 5 and 6, respectively.
ig. 6 also compares the integer order argument, the commensurate
rder specific instance, the incommensurate order example, and the
actual facts. It is evident that the program gets quite precise with each
pplication.

onclusion

To capture the dynamics of COVID-19 in this study, a scheme
f fractional difference equations was created. The population was
egmented by the approach into those who adhere to preventive care
13
nitiatives versus those who do not. The complexities of the framework
hat are free of infection and those that are prevalent were then
xamined. In specific, using the fundamental reproductive number R0,
e determined the local and global stability. With the aid of Picard
indlöf approach, the existence-uniqueness of the solution for the sug-
ested system have been examined. Several supportive mathematical
onclusions have also been identified in illumination of the correlation
etween the predictability of the fixed points in this framework and the
undamental reproductive quantity. Numerous quantifiable modeling
sing MATLAB commands have been carried out to confirm such
indings. In broad sense, we claim that the framework utilized in this
esearch can be used to investigate the COVID-19 global epidemic
n several parts of the globe, regardless of whether it is constructed
sing the fractional-order backward operator in either commensurate
r incommensurate contexts.
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