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Abstract
In this paper, the variable coefficients KdV equation with general power nonlinearities is proposed. Firstly, it is transformed

into a generalized KdV equation with constant coefficients using a point transformation. Then, the traveling wave transformation
is utilized to transform the obtained constant coefficients generalized KdV equation into a generalized ordinary differential
equation. We give a classification for the obtained generalized ordinary differential equation using a suitable integrating factor.
Some new solutions are obtained for the generalized KdV equation with constant coefficients. All the obtained solutions in this
paper for the variable coefficients KdV equation with general power nonlinearities are new.
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1. Introduction

Nonlinear evolution equations play a very vital role in modeling many engineering, physical, and
biological phenomena [10, 13, 20, 23]. Many methods have been proposed in the literature for getting
exact and approximate solutions to these equations. Examples of these methods are, (G’/G)-expansion
method [10, 13], generalized F-expansion Method [23], Lie symmetry analysis method [7, 8, 11, 14, 19],
generalized new auxiliary equation method [10-11], the invariant subspace method [3, 4, 15], homotopy
perturbation methods [9, 18], and reproducing Kernel Hilbert Space Method [17].

In this paper, we investigate a type of generalized variable coefficients KdV equation with general
power nonlinearities and variable coefficients which is given in the following form

ut + f (t) u
nux + g (t) u

2n ux + R (t)
(
uk(um)xx

)
x
= 0, (1.1)
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where, k,n,m are constants and f (t) ,g (t) ,R(t) are some smooth functions of the variable t. When
f (t) = const,g (t) = const,R (t) = 1,Eq. (1.1) is studied in [20] and some compact solutions, periodic
solutions and Jacobi elliptic functions solutions of Eq. (1.1) are obtained when k+m = n+ 1.

In this paper, we first transform Eq. (1.1) into an equation with constant coefficients. Then we inves-
tigate the traveling wave solutions of the resultant equation to get exact traveling wave solutions of Eq.
(1.1).

This paper has been organized as follows. In Section 2, we transform the variable coefficients KdV
equation (1.1) into itself but with constant coefficients. In Section 3, we use the traveling wave transfor-
mation to obtain some new solutions of the variable coefficients KdV equation.

2. Transforming Eq. (1.1) into its constant coefficients equation

Theorem 2.1. The generalized variable coefficients KdV equation (1.1) can be transformed into the generalized
constant coefficients KdV equation

ut + au
nux + bu

2nux +
(
uk(um)xx

)
x
= 0, (2.1)

under the transformation

t =

∫
R(t)dt, x = x, u = u , (2.2)

with the constraints:

f (t) = a R (t) , g (t) = b R (t) ,

where a,b are arbitrary constants.

Proof. The transformation (2.2) leads to the change of variables

∂

∂t
= R (t)

∂

∂t
,
∂

∂x
=
∂

∂x
. (2.3)

Applying the operators (2.3) to the function u
(
x,y, t

)
, we obtain

∂u

∂t
= R (t)

∂u

∂t
,
∂u

∂x
=
∂u

∂x
,
∂3u

∂x2 =
∂3u

∂x3 .

Using (2.2), we can get

ut = R (t)
∂u

∂t
, ux = ux , uxx = uxx. (2.4)

From Eq. (2.4) and Eq. (1.1), we can get

ut +
f(t)

R (t)
unux +

g (t)

R (t)
u2nux +

(
uk(um)xx

)
x
= 0. (2.5)

Equation (2.5) is an equation with constant coefficients, if and only if, f (t) = a R(t) and g (t) = b R(t).
Hence, Eq. (2.5) becomes

ut + au
nux + b u

2nux +
(
uk(um)xx

)
x
= 0. (2.6)

3. Solutions of the variable coefficients Eq. (1.1)

In this section, we obtain solutions of the variable coefficients Eq. (1.1) by solving the constant coeffi-
cients Eq. (2.6).

Consider the transformation given in [1, 6]:

u
(
x, t
)
= y (z) , z = αx−ω t. (3.1)
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Accordingly, Eq. (2.6) becomes,

(
−ω+ a αyn + bα y2n) dy

dz
+α3 d

dz

(
yk
d2ym

dz2

)
= 0. (3.2)

Integrating Eq. (3.2), we get,

−ω y+
aα

n+ 1
yn+1 +

bα

2n+ 1
y2n+1 +α3yk

d2ym

dz2 = c1, (3.3)

where c1 is a constant. Multiplying Eq. (3.3) by mym−k−1y
′
, we obtain

−ω m ym−ky ′ +
aα

n+ 1
m ym+n−ky ′ +

bα

2n+ 1
m ym+2n−ky ′ +α3m ym−1y ′

d2ym

dz2 = c1m ym−k−1y
′
.

Integrating above equation, we obtain,

y ′(z)
2
=

2c1

α3m(m− k)
y−k−m+2 +

2c2

α3m2y
2−2m +

2
α3m

y−k−m+3

×
(

ω

−k+m+ 1
−

aα

(n+ 1) (−k+m+n+ 1)
yn −

αb

(2n+ 1) (−k+m+ 2n+ 1)
y2n

)
,

(3.4)

where c2 is a constant. Equation (3.4) has the following solutions.
• For k = 1 −m, n = m and c1 = 0 and letting

y = H (z)
1
m , (3.5)

Eq. (3.4) becomes

(H ′)
2
=

2c2

α3 +
ω

α3H
2 −

2a
3 (1 +m)α2H

3 −
b

2 (1 + 2m)α2 H
4. (3.6)

Equation (3.6) has many solutions as mentioned in [2, 5, 16, 22]. One of the solutions is

H (z) =
3ω(1 +m)

2aα
+

3ωγ(1 +m)

aα
√

4γ2 − 2
cn

( √
ω

α
√

2α− 4αγ2
z,γ

)
, (3.7)

with

c2 =
−9ω3(1 +m)2

32a2α2(1 − 2γ2)2 , b = −
2αa2 (1 + 2m)

9ω(1 +m)2 ,

where cn is the Jacobi elliptic cosine function.
Substituting Eq. (3.7) into Eq. (3.5), we obtain

y =

(
3ω(1 +m)

2aα
+

3ωγ(1 +m)

aα
√

4γ2 − 2
cn

( √
ω

α
√

2α− 4αγ2
z,γ

) ) 1
m

. (3.8)

Substituting Eq. (3.8) into Eq. (3.1), we obtain

u
(
x, t
)
=

(
3ω(1 +m)

2aα
+

3ωγ(1 +m)

aα
√

4γ2 − 2
cn

(√
ω
(
αx−ω t

)
α
√

2α− 4αγ2
,γ

) ) 1
m

.
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Eventually, the solution of Eq. (1.1) can be expressed as

u (x, t) =

(
3ω(1 +m)

2aα
+

3ωγ(1 +m)

aα
√

4γ2 − 2
cn

(√
ω
(
αx−ω

∫
R(t)dt

)
α
√

2α− 4αγ2
,γ

) ) 1
m

. (3.9)

When γ = 1, solution (3.9) degenerates to

u (x, t) =

(
3ω(1 +m)

2aα
+

3ω(1 +m)

aα
√

2
sech

(√
ω
(
αx−ω

∫
R(t)dt

)
α
√
−2α

) ) 1
m

. (3.10)

For a < 0 and m > 0, we obtain bright soliton solutions. For a > 0 and m < 0, we obtain dark soliton
solutions.

(a) R(t) = 1 (b) R(t) = tet
2

Figure 1: Solution (3.10) when ω = 1,α = −9
2 ,m = 2,a = −1, and different forms of R (t) .

(a) R(t) = 1 (b) R(t) = tet
2

Figure 2: Solution (3.10) when ω = 1,α = −3
2 ,a = 1,m = −2, and different forms of R (t) .
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From Figures 1 and 2, it is clear that we can retrieve bright solitons, bright rogue waves, dark solitons,
and dark rouge waves from solution (3.10) according to the values of ω,α,a,m, and R (t) .

Also, Eq. (3.6) has the following solution

H (z) =
3ω(1 +m)

2aα
+

3ωγ(1 +m)

aα
√

2γ2 + 2
sn

( √
ω

α
√

2α+ 2αγ2
z,γ

)
, (3.11)

with

c2 =
−9ω3(1 +m)2(1 − γ2

)2

32a2α2(1 + γ2)2 , b = −
2αa2 (1 + 2m)

9ω(1 +m)2 ,

where sn is the Jacobi elliptic sine function.
Substituting Eq. (3.11) into Eq. (3.5), we get

y =

(
3ω(1 +m)

2aα
+

3ωγ(1 +m)

aα
√

2γ2 + 2
sn

( √
ω

α
√

2α+ 2αγ2
z,γ

) ) 1
m

. (3.12)

From Eqs. (3.12) and (3.1), we can get

u
(
x, t
)
=

(
3ω(1 +m)

2aα
+

3ωγ(1 +m)

aα
√

2γ2 + 2
sn

(√
ω (αx−ω t)

α
√

2α+ 2αγ2
,γ

) ) 1
m

.

Eventually, the solution of Eq. (1.1) can be expressed as

u (x, t) =

(
3ω(1 +m)

2aα
+

3ωγ(1 +m)

aα
√

2γ2 + 2
sn

(√
ω

(
αx−ω

∫
R(t)dt

)
α
√

2α+ 2αγ2
,γ

) ) 1
m

. (3.13)

When γ = 1, solution (3.13) degenerates to

u (x, t) =

(
3ω(1 +m)

2aα
+

3ω(1 +m)

2aα
tanh

(√
ω

(
αx−ω

∫
R(t)dt

)
2α
√
α

) ) 1
m

. (3.14)

• For k = 1 −m, n = 2m, and c1 = 0 and letting

y = G (z)
−1
2m , (3.15)

substituting Eq. (3.15) into Eq. (3.4), we get

G ′(z)
2
= −

4b
3α2 (4m+ 1)

−
2a

α2 (2m+ 1)
G (z) +

4ω
α3 G (z)2 +

8c2

α3 G (z) 3. (3.16)

Many solutions of Eq. (3.16) are mentioned in [2, 5, 16, 22]. One of them is

G (z) =
aα(ω+α3(1 − 2γ2)β2

3)

2 (1 + 2m)
(
ω2 −α6 (1 − γ2 + γ4)β4

3

) + β2 cn2 (β3 z,γ) , (3.17)

with

β2 =
3aα4γ2β2

3

2 (1 + 2m)
(
ω2 −α6 (1 − γ2 + γ4)β4

3

) ,
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c2 =
(1 + 2m)(−ω2 +α6(1 − γ2 + γ4)β4

3)

3aα
,

b =
a2 (1 + 4m)α

(
−ω3 + 3α6

(
1 − γ2 + γ4

)
ωβ4

3 +α
9
(
2 − 3γ2 − 3γ4 + 2γ6

)
β6

3

)
4(1 + 2m)2(ω2 −α6(1 − γ2 + γ4)β4

3)
2 ,

where β3 is an arbitrary constant. Substituting Eq. (3.17) into Eq. (3.15), we get

y =

(
aα(ω+α3(1 − 2γ2)β2

3)

2 (1 + 2m)
(
ω2 −α6 (1 − γ2 + γ4)β4

3

) + β2 cn2 (β3 z,γ)

) −1
2m

. (3.18)

From Eq. (3.18) and Eq. (3.1), we can get

u
(
x, t
)
=

(
aα(ω+α3(1 − 2γ2)β2

3)

2 (1 + 2m)
(
ω2 −α6 (1 − γ2 + γ4)β4

3

) + β2 cn2 (β3 (αx−ω t),γ
)) −1

2m

.

Using Eq. (2.2), we obtain

u (x, t) =

(
aα
(
ω+α3

(
1 − 2γ2

)
β2

3
)

2 (1 + 2m)
(
ω2 −α6 (1 − γ2 + γ4)β4

3

) + β2 cn2
(
β3

(
αx−ω

∫
R (t) dt

)
,γ
)) −1

2m

. (3.19)

When γ = 1, the solution (3.19) degenerates to

u (x, t) =

(
aff

2 (2m+ 1)
(
α3β2

3 +ω
) + 3aα4β2

3

2 (1 + 2m)
(
ω2 −α6β4

3

) sech2
(
β3

(
αx−ω

∫
R (t) dt

)) ) −1
2m

.

(3.20)

(a) R(t) = 1 (b) R(t) = tet
2

Figure 3: Solution (3.20) when β3 = α = a = 1,m = ω = 2, and different forms of R (t) .

From Figures 3 and 4, it is clear that we can retrieve bright solitons, bright rogue waves, dark solitons,
and dark rouge waves from solution (3.20) according to the values of ω,β3,α,a,m, and R (t) . Also, Eq.
(3.16) has the following solution

G (z) =
aα(ω+α3(1 + γ2)β2

3)

2(1 + 2m)(ω2 −α6(1 − γ2 + γ4)β4
3)

+ β2 sn
2 (β3 z,γ) , (3.21)
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(a) R(t) = 1 (b) R(t) = tet
2

Figure 4: Solution (3.20) when β3 = α = 1,a = −1,m = −2,ω = 2, and different forms of R (t) .

with

β2 =
3aα4γ2β2

3

2(1 + 2m)(−ω2 +α6(1 − γ2 + γ4)β4
3)

,

c2 =
(1 + 2m)(−ω2 +α6(1 − γ2 + γ4)β4

3)

3aα
,

b =
a2(1 + 4m)α(−ω3 + 3α6(1 − γ2 + γ4)ωβ4

3 +α
9(2 − 3γ2 − 3γ4 + 2γ6)β6

3)

4(1 + 2m)2(ω2 −α6(1 − γ2 + γ4)β4
3)

2 ,

where β3 is an arbitrary constant. Substituting Eq. (3.21) into Eq. (3.15), we get

y =

(
aα(ω+α3(1 + γ2)β2

3)

2(1 + 2m)(ω2 −α6(1 − γ2 + γ4)β4
3)

+ β2 sn2 (β3 z,γ)
) −1

2m

. (3.22)

From Eq. (3.22) and Eq. (3.1), we can get

u
(
x, t
)
=

(
aα(ω+α3(1 + γ2)β2

3)

2 (1 + 2m)
(
ω2 −α6 (1 − γ2 + γ4)β4

3

) + β2 sn2 (β3 (αx−ω t),γ
)) −1

2m

.

Using Eq. (2.2), we obtain

u (x, t) =

(
aα
(
ω+α3

(
1 + γ2

)
β2

3
)

2 (1 + 2m)
(
ω2 −α6 (1 − γ2 + γ4)β4

3

) + β2 sn2
(
β3

(
αx−ω

∫
R (t) dt

)
,γ
)) −1

2m

. (3.23)

When γ = 1, the solution (3.23) degenerates to

u (x, t) =

(
aα(ω+α3(1 + γ2)β2

3)

2 (1 + 2m)
(
ω2 −α6 (1 − γ2 + γ4)β4

3

) + β2 tanh2
(
β3

(
αx−ω

∫
R (t) dt

))) −1
2m

. (3.24)
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• For k = 1 −m, c1 = c2 = 0, Eq. (3.4) becomes

(y ′)
2
=

−b

α2m (2n+ 1) (m+n)
y2
(
a (2n+ 1) (m+n)

b (n+ 1) (2m+n)
+ yn

)2

, (3.25)

with the constraint

ω = −
a2m (m+n) (1 + 2n)α

b(1 +n)2(2m+n)2 ,

(3.25) has the solution

y =

(
a (2n+ 1) (m+n)

2b (n+ 1) (2m+n)
tanh

(
an
√

2n+ 1
√
m+n

2α (n+ 1)
√
−bm (2m+n)

z

)
−
a (2n+ 1) (m+n)

2b (n+ 1) (2m+n)

) 1
n

. (3.26)

From Eq. (3.26) and Eq. (3.1), we can get

u
(
x, t
)
=

(
a (2n+ 1) (m+n)

2b (n+ 1) (2m+n)
tanh

(
an
√

2n+ 1
√
m+n

2α (n+ 1)
√
−bm (2m+n)

(
αx−ωt

) )
−
a (2n+ 1) (m+n)

2b (n+ 1) (2m+n)

) 1
n

.

Using Eq. (2.2), we obtain

u (x, t) =

(
a (2n+ 1) (m+n)

2b (n+ 1) (2m+n)
tanh

(
an
√

2n+ 1
√
m+n

2 (n+ 1)
√
−bm (2m+n)

×

(
x+

a2m (m+n) (1 + 2n)

b(1 +n)2(2m+n)2

∫
R (t)dt

))
−
a (2n+ 1) (m+n)

2b (n+ 1) (2m+n)

) 1
n

.

(3.27)

(a) R(t) = 1 (b) R(t) = tanh t

Figure 5: Solution (3.27), when n = 2, m = 1, b = −1, a = 1 and different forms of R (t) .

Figure 5 represents the kink wave solution (3.27) .
• For m+ k = 2n+ 1, c1 = c2 = 0, letting

y = H(z)
−1
n , (3.28)

and substituting Eq. (3.28) in Eq. (3.4), we get

H ′(z)
2
=

−bn2

α2m2(2n+ 1)
H(z)2 −

2an2

α2m (n+ 1) (2m−n)
H (z) 3 +

n2ω

α3m (m−n)
H (z) 4. (3.29)
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Equation (3.29) can be solved easily to get

H (z) =
c2 (1 +n)

(
2m2 −mn

)
α2

an2
1

1 +Becz
, (3.30)

when

ω = −
a2n2 (−m+n)

c2m(1 +n)2(−2m+n)2α
, b = −

c2m2 (1 + 2n)α2

n2 ,

where B, c are constants. Substituting Eq. (3.30) into Eq. (3.28), we obtain

y =

(
c2 (1 +n)

(
2m2 −mn

)
α2

an2
1

1 +Becz

)−1
n

. (3.31)

From Eqs. (3.31) and (3.1), we can get

u
(
x, t
)
=

(
c2 (1 +n)

(
2m2 −mn

)
α2

an2
1

1 +Bec(αx−ω t)

)−1
n

.

Using Eq. (2.2), we obtain

u (x, t) =

c2 (1 +n)
(
2m2 −mn

)
α2

an2
1

1 +Bexp
(
c
(
αx+ a2n2(−m+n)

c2m(1+n)2(−2m+n)2α

∫
R (t) dt

) )
−1

n

. (3.32)

(a) R(t) = cos t (b) R(t) = tanh t

Figure 6: Solution (3.32) when α = B = c = 1,a = −1,m = 2,n = −2 and different forms of R (t) .

Figure 6 represents the kink wave solution (3.32).
• For c1 = c2 = 0, Eq. (3.4) becomes

(y ′)
2
=

−2b
α2m (2n+ 1) (−k+m+ 2n+ 1)

y−k−m+3
(
a (2n+ 1) (−k+m+ 2n+ 1)
2b (n+ 1) (−k+m+n+ 1)

+ yn
)2

, (3.33)

with the constraint

ω =
a2(1 − k+m)(−1 + k−m− 2n)(1 + 2n)α

4b(1 +n)2(1 − k+m+n)2 .
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Equation (3.33) has the implicit solution:

c3 + z =
2
√

2
√
−bm(1 +n)(1 − k+m+n)α

a(−1 + k+m)
√

(1 + 2n)(1 − k+m+ 2n)
y

1
2 (k+m−1)

× 2F1

(
1,
k+m− 1

2n
;
k+m− 1

2n
+ 1;

2b (n+ 1) (−k+m+n+ 1)yn

a (k−m− 2n− 1) (2n+ 1)

)
.

(3.34)

From Eqs. (3.34) and (3.1), we can get

c3 +αx−ω t =
2
√

2
√
−bm (1 +n) (1 − k+m+n)α

a (−1 + k+m)
√

(1 + 2n) (1 − k+m+ 2n)
u

1
2 (k+m−1)

× 2F1

(
1,
k+m− 1

2n
;
k+m− 1

2n
+ 1;

2b (n+ 1) (−k+m+n+ 1)un

a (k−m− 2n− 1) (2n+ 1)

)
.

Using Eq. (2.2), we can retrieve

c3 +αx−
a2 (1 − k+m) (−1 + k−m− 2n) (1 + 2n)α

4b(1 +n)2(1 − k+m+n)2

∫
R (t)dt

=
2
√

2
√
−bm (1 +n) (1 − k+m+n)α

a (−1 + k+m)
√

(1 + 2n) (1 − k+m+ 2n)
u

1
2 (k+m−1)

× 2F1

(
1,
k+m− 1

2n
;
k+m− 1

2n
+ 1;

2b (n+ 1) (−k+m+n+ 1)un

a (k−m− 2n− 1) (2n+ 1)

)
.

(3.35)

In case of m+ k = n+ 1, the implicit solution (3.35) becomes

u (x, t) =

(
a (2n+ 1) (−2m−n)

4bm (n+ 1)
tanh2

( √
an

2
√

2αm
√
n+ 1

×

(
−
αa2 (2n+ 1) (2m−n) (2m+n)

16bm2(n+ 1)2

∫
R (t) dt+ c3 +αx

))) 1
n

.

(3.36)

4. Conclusions

In this paper, using the transformation (2.2), the variable coefficients generalized KdV equation (1.1)
is transformed into the constant coefficients KdV equation (2.1). Then we used the traveling wave trans-
formation (3.1) to investigate the exact solutions of the KdV equation (2.1). We have obtained some new
solutions for Eq. (2.1) that are not reported in [20]. The new obtained solutions are given by Eq. (3.10)
and Eq. (3.14) when k = 1 −m, n = m, Eq. (3.20) and Eq. (3.24) when k = 1 −m, n = 2m, Eq. (3.27),
when k = 1 −m, c1 = c2 = 0, Eq. (3.32) k+m = 2n+ 1, c1 = c2 = 0 and Eq. (3.35) for arbitrary n, m
and k. Using the function R(t) we can get many types of solutions for Eq. (1.1). Some of these types are
bright solitons (Figure 1 (a) and Figure 4 (a)), dark solitons (Figure 2 (a) and Figure 3 (a)), bright rogue
wave solution (Figure 1 (b) and Figure 4 (b)), dark rogue wave solution (Figure 2 (b) and Figure 3 (b)),
and kink solution (Figures 5 and 6). To our knowledge, the obtained solutions in this paper for Eq. (1.1)
are new.
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