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ABSTRACT

Most developing countries such as Afghanistan, Pakistan, India, Bangladesh, and many more are still fighting
against poliovirus. According to the World Health Organization, approximately eighteen million people have
been infected with poliovirus in the last two decades. In Asia, still, some countries are suffering from the virus.
The stochastic behavior of the poliovirus through the transition probabilities and non-parametric perturbation
with fundamental properties are studied. Some basic properties of the deterministic model are studied, equilibria,
local stability around the stead states, and reproduction number. Euler Maruyama, stochastic Euler, and stochastic
Runge-Kutta study the behavior of complex stochastic differential equations. The main target of this study is to
develop a nonstandard computational method that restores dynamical features like positivity, boundedness, and
dynamical consistency. Unfortunately, the existing methods failed to fix the actual behavior of the disease. The
comparison of the proposed approach with existing methods is investigated.
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1 Introduction

Jenkins et al. in 2006 formulated a model in which he concluded that the use of monovalent is
better than other vaccines. It provides outstanding outbreak control [1]. Haldar et al. [2] introduced
the poliovirus vaccine in India. Kalkowska et al. in 2020 represent a differential equation-based
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stochastic model for poliovirus transmission. The model shows the poliovirus transmission for 2019
to 2023 with a strategic eradication plan [3]. Minor studied the types of polioviruses, vaccination, and
eradication of the virus worldwide [4]. Thompson [5] investigated the transmission dynamics of the
poliovirus in Nigeria. Duque-Marin et al. [6] studied two types of vaccines in the mathematical model.
Denes et al. [7] presented a model which describes polio transmission in tropical regions. Chenget al. [§]
discussed a polio vaccination model in two different age classes. Alba et al. [9] addressed the correlation
between climate and vaccination through a mathematical model. Shaghaghi et al. in 2018, studied
that the OPV and IVPPvs vaccine was helpful for the eradication of the virus last few years [10].
Shimizu in 2014 [11] explained IPV is very effective against the poliovirus, and the author reviewed
the introduction, development, and characterization of the OPV vaccine. In addition, his place in the
world was told. Rafique et al. in 2020 presented a mathematical model in which they discovered the
dynamics of poliovirus transmission using standard methods with vaccination [12]. Nidia et al. [13]
in 2007, examined the effects of the poliovirus on human life and the steps taken to eradicate the
virus and discussed what steps we could take in the future to get rid of it. Thompson et al. [14]
presented polio outbreaks in the USA. Kalkowska et al. introduced a model to identify poliovirus
and opportunities to increase population immunity [15]. Kim et al. [16] presented a model to examine
the transmission of virulent circulating vaccine-derived polioviruses. Hillis [17] formulated a model
in different regions before using artificial poliovirus vaccination. Mendrazitsky et al. [18] explained a
disease of epidemic development model. The model analyzed other properties of polio and its non-
equilibrium outbreak dynamics. Debanne et al. [19] presented a mathematical model of poliovirus in
America. Naik et al. [20,21] studied the fractional modeling of cancer and HIV infection with the
well-known results of stabilities.

The strategy of the paper is as follows. The first section goes to literature, and Section 2 goes
to stochastic modeling of poliovirus and its fundamental properties. Section 3 goes to the proposed
numerical method and its simulation with current approaches in the literature. Section 4 goes to the
paper’s conclusion and remarks.

2 Poliovirus Model

For any time ¢, S: represents the class that is influenced by infection, E: represents the class that is
disclosed by infection, I: represents an infective class, V: represents immunization class, A: represents
the constant immigration rate of the human population. 8: is the per unit time probability of infection
transmission by the infective population. r: is the reduction in the exposed class due to transmission
of infection. v: represents the proportion of recruits in the susceptible class moving to the vaccinated
class, v,: is the number of vaccinated exposed populations, b: number of exposed populations moving
to the infection class. w: natural death of the human population, «: disease death rate. The first order,
nonlinear, and coupled ordinary differential equations of the poliovirus epidemic model are assumed
as follows:

dS = (A — BSI — tBSE — (u + v) S) dt + 0,SdB (). (1)
dE = (BSI + rBSE — (b + u + v,) E)dt + 0, EdB (¢) . 2)
dl = (b4 v)E — (u+a))dt + o, IdB (1) . 3)

dV = (vS — uV)dt + o, VdB (1) . C)



CMES, 2023, vol.136, no.1 259

with initial condition S (0) > 0; E (0) > 0; I (0) > 0; V(0) > 0, and (0;: i = 1,2, 3, 4) is the peutrbation
term with B(¢) is the Brownian motion [22,23].

2.1 Properties [24]
This section studies the positivity and boundedness of the system ((1)—(4)). Let us consider the
vector as follows:

U =0, ED,10),V ). )

And the norm |U(1)| = VSO + E2 D) + 0 + V().
dU (ty = H (U, tydt + K (U, 1) dW (0). (6)

2

————, where L is differential
aUU,

d s 1,
As, L= =+ 3 H(U, Z)a_u,. + 5 2im (K" (U, K (U,1)),, x

operator.
If L acts on a function V, € C*'(R* x (0, 00) ; R,) then we denote

Lv,ny =V, U+ VWU, tHU,t) + %Tmce (KT(U, H Ve (U, K (U, t)).

where transportation is denoted by 7.

Theorem 1: For model ((1)—(4)) and any given initial value (S(0), £(0), 1(0), V(0)) € R?, there is
a unique solution (S(?), E(¢), 1(#), V(¢)) on ¢t > 0 and will remain in R} with probability one.

Proof: By Ito’s formula, the model ((1)—(4)) admits a positive solution in the unique local on
[0, 7.], and explosion time is denoted by .. Because the local Lipschitz condition is satisfied by all the
coefficients of the model as mentioned earlier.

Next, let us show that the given model ((1)—(4)) admits this solution in the global sense; that is,
7, = 0o almost sure.

1
Let m, = 0 be sufficiently large for S (0), E (0), I (0), and V' (0) lying with the interval [—, m:|

m,
For each integer m > m,, define a sequence that is so-called stopping times as

T, = inf{te [0,7.]: S(?) ¢ (%,m) or E(t) ¢ (%,m) orI(1) ¢ (%,m) or V(t) ¢ (%,m)} . 7

where we set inf¢ = oo(¢ represents the empty set). Since T, is non-decreasing as m — oo,

7. = lim,. )]

m— 00

Then 7, < t,. To prove, 7, = 0.

In case of violation of statement, then 7 > 0 and ¢ (0, 1) such that
Plt, < T} > s. )
this, there is an integer m, > m, such that
Plt,<T}>¢e, Vm>=>m,. (10)
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Define a C*— function V': R} — R, by
Vi S,E,LYV)Y=S—1-InS+E—-1-mmE)y+I—-1—-InDH+ @V —-1—-InV). (11)

By using Ito’s formula, we calculate

1 1 1 1 o’

dV,(S,I,R) = (1 - é) ((A — BSI —1BSE — (1 4 v) S)dt 4+ 0,5dB (1))

1

E) x ((BSI + 1BSE — (b + u + v,) E) dt + 0, EdB (1))

1

+

~

1

#(1-7) x (o4 E - Gt it + outisio)
+(1-

2
) (V8 = uV)dt+ o VB (0)dt + -t

x| =

2

dV,(S,E,I,V) < [A Fu+vta+ %] dt +0,SdB (t) + +0,EdB () + 0,1dB () + +0,VdB () . (12)

2

o .
Let, N=A4+u+v+a+ ER Then Eq. (12) could be written as

dV,(S,E,I,V) < Ndt + 0,SdB (t) + +0,EdB (t) + 051dB (t) + +0,VdB (1) . (13)
By integrating from 0 to 7, A T, we get

/ dVi(S(s),Es),1(s),V(s)) < Nds +/ (1S + 0,E + 031 + 0, V)dB () . (14)
0 0

0
where 7,, A T = min (7, T), the taking the expectations to lead to

EVi ST, At) I, AT), E(T, AT), V (T, AT) =V (S(0),E(0),10),V(0)+NT (15)
Set 2,, = {r,, < T} for m > m,, and from (15), we have P (R2,, > ¢). For every v € ,, there are
some 7 such that u;(z,,, v) equals either m or i fori=1,2,3;
Hence, V, (S (2., V), E (€, V) , I (T, V), V (T,,,v)) is less than min {m — | —Inm, L —1—1In1}.

Then we obtain

Vl (S (O) ’E (O) 91 (O) s V (0)) + NT z E (IQm(V) Vl (S (rm) ) E (Tm) 51 (rm) s V (En)))
z{min(m—l—lnm,l—l—lnl)}. (16)
m

m



CMES, 2023, vol.136, no.1 261

I, of 2, represents the indicator function. Letting m — oo leads to the contradiction co =
Vi (S(0),E0),10),V(0))+ NT < oo.

As desired.

2.2 Equilibria of Model

A
The disease-free equilibrium of the model is K, = (—, 0,0, 1S).
w4 w

The endemic equilibrium of the model is denoted by K, = (S*, E*, I*, V*).
. Otp+v)(p+ao E A—(n+vS b+
Bh+v)+rB(n+a) rﬁS*JrﬁS*(lm) w+a

*

nd ' = 1S*.
"

I E* a

nto

2.3 Local Stability of Model
A

Theorem 2: The disease-free equilibrium K, = (T
w4+

,0,0, 1S) is locally asymptotically stable
n

if R, < 1; otherwise, unstable if R, > 1.
Proof: Considering the function from the system ((1)—(4)) as follows:
F,=A—BSI—rBSE—(u+v)S.

The elements of the given Jacobean Matrix at K, is as follows:
[+ p— p— 0]
o w+V w+V
0 B b+pn+v) B .
J (Ko) = Tt ST 7
0 b+ —(u+a) O
I 0 0 i
(m+v)—2a B B 4 0
o w+V w+V
A
J(Ky — M) = 0 VﬂM+V_(b+M+V1)_)\ IB—M+V 0 =0.
0 b+ v, —(u+a)—A 0
V 0 0 —u— A
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A
—(w+v)—A - —
—(=p—1) 0 A b Y A =0.
rﬁ—/hLV b+ u+) ﬁMJrV
0 b+V1 —(/L—}—Ol)—)\.
)"l=_M<Oa
(L+v)—A B 4 B 4
H w+V w+V
A A =0
0 ——( - A  — '
rIB,bL-i-V b+u+n) ﬂM+V
0 b+ —(n+a)—2
B b+u+v)—x2 B -
r — V) — —
—(+v)—A u+v H : w+V =0.
b+, —(L+o)—2
AM=—(u+v) <0.
A A A
x2+k[(u+a)—i+x2}—i(u+a)—ﬂ—(b+v1)=0.
m+v n+v m+v

Rtrfw+o)+G+u+v)A—R)+w+a)b+um+v)(—R)=0.

We obtain the following results by applying Routh Hurwitz criteria for 2" order.

A, > 0,4, > 0,if R,R, < 1, where 4, = [(u+a)+b+pu+v)(1—-R)], 4, =
(w+a) b+ pu+v) (1 —=Ry.

Theorem 3: The endemic equilibrium K, = (S*, E*, I*, V*) is locally asymptotically stable if
R, > 1.

Proof: The Jacobean matrix at K, = (S*, E*, I*, *) is as follows:

T Bl — rBE" — (1 + V) —rBS* 8BS 0
BI* 4+ rBE* rBS*— b+ wu+v) BS* 0
J(K,) =
0 b+ —(u+a) O
L V 0 0 —
—BI* —rBE*— (u+v)— X —rpS* —-BS* 0
I+ rBE* rBS*—b+u+v)—»x S* 0
(K, = AD)| = prerp g ‘ P = 0.
0 b+ —(u+a)—A2r 0

|4 0 0 —u— A
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—BI* —rBE*— (u+v) — X —rpS* —-BS*
—(=p—2) pI" + rpE” rBS = (b +pn+v)—A pS
0 b+ —(u+a)—A2A
)‘41 =—Mn< Oa
—BI* —rBE*— (u+v) — X —rBS* —BS*
BI* + rBE* rBS*—(b+pu+v)—A BS* =0
0 b+ v, —(u+a)—A
I et (SO R
—pI" —rBE" — (n+v by, Cta) -
—rBS* —pS*

— (BI' + rBE") =0.

b+vi —(u+a)—21

263

= 0.

= BI' = rBE" = (1 +9) = A[(BS" = b+ i +9) = 1) (= (1 +a) = ) = (BS") (b+ )]

— (B +rBE) [(=rBS) (= ( + &) —A) — (=BS) (b +v)] =0.

—BI"—rBE " — (u+v) —A[-1BS" (u+a) —rBSA+b+pn+v)(n+a)+ O+un+v)A
+(u+a) A+ A2 —(BSY) (b+v1)] —BI* —rBE" [rBS" (n+a) +rBS A+ BS" b+ v, ]1=0.

rBS T (u+a) +rBPSTTA =Bl (b+u+v)(w+a)— Bl (b+u+v)h—BI (u+a)d—BI'A°
+ B82S I'(b+v) +PBE S (u+a) + PB*E*S*A —rBE*(b+ 1t + v) (0 + o)
—rBE(b+ p+v)h — rBE(u+ o)A — rBEA> + rBE*S*(b+ v)) + rBS* (u+a)(nu+v)
+rBS" (u+NA—O+u+v)(n+a)(mw+v)—(u+v)b+u+r)i
At a)(w+v)—(u+vA+ (w+v)BS (b+v) +rBS (1 + a)A + rBSA
—b+p+v) (A a)h— B+ A+ v)A — (e + A — A2+ (BSH(B + v
— 2SI (u+a) — rBPS T A — B2S T (b +v) — PBE'S" (u+a) — P BE*S*A

— 1B E* (b + v,) = 0.

=M =R [BI +rBE A+ (u+v) —rBS + (b + 4 v) + (1 + )]
—A[=rBSTT + I (b4 e+ v) + BI" (1w + @) +1BE" (b + pu+ v)

+rBE (u+a) —rBS (u+v)+(u+v) O+ u+v)+ (p+o)(nw+v) —rpS (u+a)
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+ b+p+v)(m+a)—(BS)bG+v)+rBST| = [-rBST (n+a)+ B (b+p+v) (u+ )
—rPBES (u+a)+rBE (b+u+v)(u+ao)—rBES (b+v)—rBS (u+a)(u+v)
+Ob+pu+v)(p+a)y(mw+v)—(n+v)BS (b+w)

+rBS T (u+a) + PBES (u+a)+rBSE (b+v)] =0.

—[¥+14+1C+D]=0.

M +2A+1C+D=0.
where A = BI* + rBE*+ (u+v) —rBS*+ b+ u+ v)) + (u + @),

B=—B’S'I' +BI*(b+pu~+v)+ Bl (u+a)+rBE (b+pu+v) +rBE (u+a) —rBS (u+v)
+u+vb+p+v)+p+a)(u+v)—rBS (u+a)+bB+u+v)(nw+a)—(BS) b+
+r’32s*1*,

C=—rp’S T (p+a)+BI'b+u+v)(n+a)—rpES (ut+a)+rE (b+pu+v) (u+a)
—rBES (b+v) —rBS  (u+ o) (u+V+b+u+v)(p+ao)(w+v)—(u+v)BS b+
+ RS T (u+ o) +PBPE'S* (u+ ) + rB*S*E*(b + ),

D=—rpS' T (n+a)+ Bl O+ p+v)(u+a)—rBES (u+a)+rBE (b+pn+v) (1+a)
—rBE'S" (b+v) —rBS" (u+o) (u+v)+ G+ pn+v)(n+a)n+v)—(u+v)BS (b+n)
+rB*S I (u+a) + PBE'S (u+a) +rBSTE*(b+ 7).

Applying Routh-Hurwitz Criterion for 3rd order, 4 > 0,D > 0, and AC > D, if R, > 1.

Hence the given system is locally asymptotically stable.
2.4 Reproduction Number

The idea of reproduction number is presented in [25] by considering Egs. (3) and (4), we get the
following matrices:

E rSB BS O|[E b+u+v, 0 O0][E
r'l=1|20 0 0 Il —-| -b—v, u+a 0 I].
P 0 0 of|V 0 0 wul|V]

rSg BS 0 b+ pn+v 0 0]
Here, F=| 0 0 O0landG=| -b—v, u+a 0

0 0 0 0 ——
rBA BA (D + ) pA
FG' = |+ O@+pu+v)  mw+v(wt+a)b+p+v) (w+v)(n+o)
0 0

0 0 0
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The spectral radius of the FG™ is called the reproduction number is as follows:
RO == R] + R2

~ BA b+ 1) . rpA
TG tutr)  (mE G+t
BA b+ ) _ rBA

where R, = , R, = .
(m+v)(n+o)b+p+ ) (m+v)(b~+pn+w)

3 Stochastic Poliovirus Epidemic Model

Let us consider the vector C = [S, E, I, V]" of stochastic differential equations (SDEs) of the
poliovirus epidemic model ((1)—(4)). We want to calculate the expectation and variance (see Table 1).

Table 1: Transition probabilities of polio epidemic model

Transition Probabilities
T,=[1 0 0 0]" P, = AAt
T,=[-1100]" P, = BSIAt
Ty=[-10 0 0] P; = rBSEAt
T,=[-10 0 0] P, = uSAt
Ts=[-100 17 P; = VSAt
T,=[0 —110] P, = bEAt
T,=[0 —1 1 0]" P, = uEAt

A—BSI—rBSE —nuS—-VS
BSI +rBSE — bE — uE —vE

Drift = G (C,t) = bE + v E — ul +al At.
A—uV
A + BSI+ tBSE + uS +vS —BSI — tBSE 0 —vS
e —BSI — rBSE BSI + rBSE + bE + uE + v E —bE — v E 0
Diffusion = 0 —bE — nE BE + viE + ul + ol 0
—S 0 0 vS+uV

The equation of poliovirus epidemic model ((1)—(4)) can be written as

A— BSI — rBSE — uS — VS
BSI + rBSE — bE — uE — v E

—bE — v E bE 4+ viE+ ul + ol 0
0 0 vS + uV

S
E
diy bE + v E — ul + ol de
y A—pV
A + BSI+ tBSE + 1S + VS —BSI — rBSE 0 —vS
—/SSI — rBSE BSI + rASE + bE + 4E + v E —bE — »E 0 |us (17)
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The Euler Maruyama approach is cast-off to determine the numerical result of the Eq. (17) by
using the values of the parameters given in Table 2 as follows:

Table 2: Values of parameter [20]

Parameters DFE EE

A 0.5 0.5

" 0.5 0.5

\ 0.6 0.6

o 0.0001 00.0001
v 0.001 0.001

b 0.9 0.9

r 0.5 0.5

0, 0.04 0.04

B 1.002 2.002

Cn+1 = Cn +f (Cna Z) At + L (Cna Z) dB

Nag sn A— BS"I" — rBSME" — puS" — yS"
EMtL] | En BS'I" + rBS"E" — bE" — uE" —viE" | |
| T |t DE" + v\ E" — uI" + aI"
Vn+1 o A— MV"
A+ BS"I" 4+ rBS"E" + uS" 4 vS" —BS"I" — 1BS"E" 0 —vs"
" _ﬂsnln_rﬂsnE" ﬂS”I”—l—r,BS"En+bEn+/LEn+le” —bEn—le” 0 AB
0 —bE" — v E" BE" + v E" + puI" + oI 0 n
—yS" 0 0 vS" 4 u ¥
(13)
where C (0) = C, =1[0.5,0.3,0.2,0.1,]",0 < t < Cand Brownian motion is denoted as B.
3.1 Stochastic Nonstandard Finite Difference Method
The stochastic NSFD can be developed for the system ((1)—(4)) as
ds
= A= BSI—rBSE— (u+)S.
The breakdown of the proposed method for the above equation.
Sn+1 — Sn + h[A _ IBSVHrlIn _ rﬂSIerlEn _ (M + V1) Sn+1 +O'1SnABl].
il S" + hA + hoS"AB, (19)

T 14+ hBI"+ hrBE"+ h(u+ )’

Similarly, we break the remaining system into a proposed method like (19), as follows:
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o _ BN hBS'T + hrBS'E" + hooE'AB, 20)
1+ h(b+p+v)
I — I"+ h((b + v)E" + 031" AB; . 1)
14+h(u+oa)
V4 hy,s" V'AB
gt _ L vis;; Z4 . (22)

where, n =0, 1, 2,..., and discretization gap is denoted by “h”.

3.2 Stability Analysis

Theorem 5: The stochastic NSFD method is stable if the eigenvalues of Eqs. (19)—(22) lie in the
unit circle for any n > 0.

Proof: Let the functions L,, L,, L;, L, by assuming AB, = 0, from the system ((19)—(22)) as
follows:

I - S+ hA _ E+hBSI+ hrBSE I+ +v)E _V+hnS
YT hBI+hBE+h(u4v) T 1+hb+p+v) 0 l+h(p4a) T 14hu
The elements of the Jacobean matrix are given as
—oL, oL, 0L, 0L,
0S O0E ol OV
oL, 0L, 0L, 0L,
oS OoE ol 3V
J(S,EI,V) =
( )= 1oL, oL, oL, 9L,
oS O0E 9l oV
oL, 0L, 0L, 0L,
LoS OoE 9l oV-
) . A .
The given Jacobean matrix at K, = (—, 0,0, XS) 1s as follows:
w+v w
_ y y _
1 - (m +/’lA) rhp —hp (m +/’l/3) .
L7+ v1) [+ A+ v [+ 4+ v)P
A A
J(K)_ . i | /1ﬂ(u+v)(1+rZﬂ(W)+h(b+u2—§—vl))
o) = 1—rhﬁ(m)+h(b+ﬂ+"1) |:1—rh/3(m)+h(b+lt+vl)i|
h(b+vy)
0 1+ h(n+a) 0 0
hvy 1
L 1+ hu 0 0 1+ hp
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A A
L, () (i) 0
L7 (e +vp) [1+h G +v)P [+ h(u+ )P
| hﬁ(i)(lwhﬁ(i)+h(b+u+v1))
n+v m+v
0 Y — A y 3 0 -0
1—"hﬁ(m)+h(b+ﬂ«+vl) [l—rhﬂ(m)—i—h(})—i-u—i-vl)] )
0 h(b+vy) s 0
1+h(n+oa)
hvy 1
1+ hu 0 0 T+hn
1 . —(A+hA(u+v)rhp —hBA —hB (u+v)
L+h(u+v) W+ +hw+vP G+ +h @+ )P
1 _y 0 wy Ly MBA A £ AT A bt ut ) |
1+ hu (w+v) —rhBA+ (w4 v)h(b+ p+vy) [(w+v) —rhBA+@+Whb+u+v)P |
0 /’l(b-‘rvl) _x
L+hp+a)
1
A= <1,
T L+l
1 . —(A+hA (u+v) rhB —hBA —hB (u+v)
Ll (u+vy) (A0 +hp+vpP w4+ +h@+ )P
0 n+v ., hBA((uw+v) +rhBA+ (w+v)h(b+ pn+vy)) —0
(m+v) —rhBA+ (u+vhb+p+vp) [(w+v) —rhBA+ (w+ vV h®B+u+v)P
0 h(b+vy) Y
1+h(p+a)

st et e )
1+h(u—+v) (w+v)—rhBA+(pu+vVVhb+pn+n)

_(hﬂA((,u+v)+rh,8A+(,u+v)h(b+,u+v1)))( h(b+v) )}_0
[(+v) —rhBA + (u+v)h (b4 p 4+ )T l+h(u+a))]
1

=— <
RN IR

I -
(w+v)—rhBA+ u+v)hd+upn+n)

_(hﬁA((u+V)+rhﬂA+(M+V)h(b+u+v1)))( h(b+ ) )}:0
[(+v) —rhBA+ (u+v) h (b4 pw+ )] L4 h(u+ a)



CMES, 2023, vol.136, no.1 269

: et

(w4 V) —rhBA+ (V) b+ + V) ()

h(b+ ) ) .
l+h(p+a))
Hence, by using the Mathematica software all the eigen values of the above Jacobean matrix lie in
the unit circle if Ry < 1. Thus, the system ((19)—(22)) is stable.
Now, for endemic equilibrium (EE) K, = (S*, E*, I*, V*). The given Jacobean matrix is

B (h,BA((u—i—v)+rhﬂA+(u+v)h(b+u+v1)))(
[(+v) —rhBA+ (w+ ) h(b+p+v)I
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1
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hBS* (1 —rhBS* +h(b+ pu+vy))

[1 = rhBS* +h (b+u+ )]
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h(b+vy) -
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Using Mathematica software, the most many eigenvalues of the Jacobean is less than one when
R, > 1. Thus, endemic equilibrium is stable.
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Figure 1: (Continued)
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4 Results and Conclusion

Fig. 1 admits the comparative analyses of the proposed approach with current methods in
the sense of stochastic. The numerical experimentations can easily conclude that other stochastic
numerical methods are conditionally convergent or diverge with larger time step values. The nature of
biological properties is not consistent with existing literature methods. For this sake, the nonstandard
finite difference is designed to restore the structure of continuous models. Computational methods like
stochastic Euler, stochastic Runge Kutta, and Euler Maruyama are presented. Unfortunately, these
methods are only applicable for the small step size. These methods diverge when we increase the time
and do not obey the dynamical properties (positivity, stability, consistency, and boundedness). The
stochastic nonstandard finite difference (SNSFD) method is appropriate for all complex and nonlinear
stochastic epidemic models. The stochastic model is a reliable and efficient technique to handle highly
nonlinear problems close to nature. The stochastic model is the extension of the deterministic model.
We present the non-parametric perturbation technique for the said model. Our focus is to propose
an always dynamically consistent, positive, and bounded scheme. That is why we investigate the
nonstandard finite difference method in the sense of the stochastic. A comparison section is presented
for the efficiency of the processes. Furthermore, we extend this idea to other types of models in the
future, as shown in [27-31].
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