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Window length insensitive real-time
EMG hand gesture classification using
entropy calculated from globally
parsed histograms

Ayber Eray Algüner and Halit Ergezer

Abstract
Electromyography (EMG) signal classification is vital to diagnose musculoskeletal abnormalities and control devices by
motion intention detection. Machine learning assists both areas by classifying conditions or motion intentions. This paper
proposes a novel window length insensitive EMG classification method utilizing the Entropy feature. The main goal of this
study is to show that entropy can be used as the only feature for fast real-time classification of EMG signals of hand ges-
tures. The main goal of this study is to show that entropy can be used as the only feature for fast real-time classification
of EMG signals of hand gestures. Additionally, the entropy feature can classify feature vectors of different sliding window
lengths without including them in the training data. Many kinds of entropy feature succeeded in electroencephalography
(EEG) and electrocardiography (ECG) classification research. However, to the best of our knowledge, the Entropy
Feature proposed by Shannon stays untested for EMG classification to this day. All the machine learning models are
tested on datasets NinaPro DB5 and the newly collected SingleMyo. As an initial analysis to test the entropy feature,
classic Machine Learning (ML) models are trained on the NinaPro DB5 dataset. This stage showed that except for the K
Nearest Neighbor (kNN) with high inference time, Support Vector Machines (SVM) gave the best validation accuracy.
Later, SVM models trained with feature vectors created by 1 s (200 samples) sliding windows are tested on feature vec-
tors created by 250 ms (50 samples) to 1500 ms (300 samples) sliding windows. This experiment resulted in slight accu-
racy differences through changing window length, indicating that the Entropy feature is insensitive to this parameter.
Lastly, Locally Parsed Histogram (LPH), typical in standard entropy functions, makes learning hard for ML methods.
Globally Parsed Histogram (GPH) was proposed, and classification accuracy increased from 60.35% to 89.06% while win-
dow length insensitivity is preserved. This study shows that Shannon’s entropy is a compelling feature with low window
length sensitivity for EMG hand gesture classification. The effect of the GPH approach against an easy-to-make mistake
LPH is shown. A real-time classification algorithm for the entropy features is tested on the newly created SingleMyo
dataset.
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Introduction

EMG is a measurement of electric potentials on muscles
created by activation signals. The brain generates these
activation signals when there is an intention of muscle
contraction.1 It is primarily a method of medicine where
a specialist observes EMG signals after giving an electric
stimulation to the patient’s muscle and tries to diagnose
neuromuscular disorders.2 On the other hand, naturally
occurring EMG (without stimulating the muscles) con-
tains the intention of contraction for that muscle.3 This
information is crucial for applications such as exoskele-
tons, rehabilitation robots, prosthetics, orthotics, and

any other Human Machine Interface (HMI) that can be
operated by moving.4 However, EMG has a very low
voltage and low signal-to-noise ratio (0–10mV).5 Many
things, from equipment to the user’s body and other

Department of Mechatronics Engineering, Cankaya University, Ankara,

Turkey

Corresponding author:
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factors like friction, are sources of high noise for EMG.
Moreover, EMG changes from person to person and
sometimes for the same person. Lobov et al.6 said body
fat ratio and experience with muscle-related activities
are the major sources of difference. EMG signals show
high spatiotemporal variability within the same class.7

Fatigue and conditions like heart stroke have significant
effects on EMG signals. Because of these reasons, ML
algorithms have been tried on EMG signals to interpret
the meaning of any given record. Another alternative
method is to design controllers.8,9 However for both
condition diagnosis10,11 and motion intention detec-
tion12–16 it is shown that ML methods result in effective
models that overcome the difficulties of EMG.

In the most general term, ML is a complex mapping
of any given input to any desired output, while iterative
methods optimize the mapping parameters. In its base,
the difference between ML algorithms is mappings and
optimization methods. These methods optimize their
mapping parameters around patterns of a given dataset
to output correct values when an input is received. In
EMG training, ML models on recorded data anomalies
and motion intentions can be separated from healthy or
non-active signals. This way, patterns a human eye can-
not find are found and used for classification or regres-
sion. To the best of our knowledge, Bekey et al.1 is the
oldest source trying to separate EMG signals with pat-
tern recognition methods indicating that it has more
than 40 years of history. This area of research continues,
and today, many researchers continuously improve
EMG ML applications by approaching different prob-
lems and methods. Some of the publications that are the
output of such efforts are given here. In Oskoei and
Hu,17 SVM performs exceptionally for classifying EMG
upper limb motions compared with discriminant analy-
sis and multilayer perceptron. McIntosh et al.3 com-
bined EMG and pressure data from the wrist for
classifying the finger, wrist, and forearm movements
covering 96% of the motion range. They showed that a
smartwatch-like device could estimate these motions.
Hu et al.18 is proposed a hybrid Convolutional Neural
Network (CNN) – Recurrent Neural Network (RNN)
architecture resulting increase in classification accuracies
of five benchmark datasets from 0.2% to 9.2%. In
Simão et al.,19 Feed Forward Neural Network (FFNN),
RNN, Long Short-Time Memory (LSTM), and Gated
Recurrent Unit (GRU) are compared for the online
classification of hand gestures. Prediction speeds given
in windows per second were 90.82% 82k, 91.59% 62k,
90.82% 244k, and 92.07% 265k, respectively. Too
et al.20 developed a feature selection optimization algo-
rithm that made a 90% reduction and achieved high
classification accuracies. Olsson et al.21 classified a high
number of movements by defining them as combina-
tions of fundamental ones, each recognized by a binary
CNN in a multi-label classification. Zhang et al.22 tested
Particle Swarm Optimization (PSO) and Sequential
Forward Selection (SFS) methods for the feature selec-
tion on the EMG SVM classifier. According to Wang

et al.23 modeled EMG signal assuming additive noise,
the Root Difference of Squares (RDS) represents EMG
best and has a Gaussian Distribution. In Cai et al.,24 an
SVM model drove a self-rehabilitation robot by apply-
ing mirror therapy by recognizing gestures of the
healthy arm. Lobov et al.6 investigated latent factors
behind EMG’s variation from person to person. They
found that body fat ratio and muscle coordination expe-
rience greatly affect the EMG application’s success.
Samadani7 investigated the performance of RNN, par-
ticularly LSTM and GRU methods, on EMG. This
study shows that bidirectional LSTM layers with atten-
tion mechanism and the stepwise learning rate is the best
among the tested combinations. Bu et al.13 tested Time
Delayed Feature (TDF) against Time-domain Features
(TF) for continuous estimation of upper limb angles
using the Random Forest (RF) algorithm. Tinoco
et al.16 controlled a simple remote device with a 52km
distance through the internet using EMG as a proof of
concept of an Internet of Things (IoT) application.
Also, this paper presents EMG as an HMI that anyone
with minimal education can use. Farago et al.10 applied
SVM, RF, and Linear Discriminant Analysis (LDA) to
distinguish patients with musculoskeletal injuries from
healthy people. In the end, LDA with majority voting
resulted in an 82.1% validation accuracy. General
Regression Neural Networks (GRNN)25 applied
Principal Component Analysis (PCA) over four features
and created models that can obtain a 95.1% recognition
rate within an average of 0.19 s. Doheny et al.14 com-
pared wearable devices with laboratory equipment for
fatigue state, 10% and 80% Maximum Voluntary
Contraction (MVC). They found that spectral and non-
linear features may show the difference between differ-
ent EMG recording devices. Fang et al.4 investigated
sensor fusion for EMG, kinetic and kinematic data sen-
sors. They say combining EMG with these sensors
increases recognition and results better. Rahman et al.26

made 2 hours long EMG readings on their participants’
biceps brachii muscles to recognize fatigue in drivers.
Barona-Lopez et al.27 worked on a statistical indicator
for optimized EMG feature set selection. In this context
sum of RES (sum of separation and compactness index)
and the sum of fuzzy entropies are investigated individu-
ally and together. MokhlesabadifarahaniVinit and
Gunjan28 developed fuzzy networks to classify EMG
patterns to distinguish neuro-muscular and skeletomus-
cular disorders and injuries. Hajian et al.12 tested CNN
with feature level fusion on elbow force estimation with
EMG signals and achieved a mean square error of
1.663.69% (mean 6SD). They say this method is better
than classic ML models, CNN, with input level fusion
in time and frequency domains. Wang et al.15 used
wavelet packet threshold denoising on EMG data from
four muscles and LSTM networks to classify fatigue in
lower limbs. They say that wavelet packet denoising
works better on EMG than hard or soft threshold func-
tions, and the resultant model can be used to monitor
muscle fatigue. Torres-Castillo et al.11 discriminated
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neuropathy and myopathy from healthy EMG data
using Hilbert-Huang Transform to extract time-
frequency features. Models with ensemble empirical
mode decomposition and kNN method.

The previous study29 found that different features
are effective in different applications, and introducing
new features to EMG ML literature can potentially
increase success in any such application. Entropy has
shown success in EEG and ECG classification.30–33

However, to our knowledge, entropy is a feature
unused in EMG research. Here it is tested for the classi-
fication of EMG signals of hand gestures. Entropy is
first proposed by Clausius34 to describe heat transfer in
thermodynamics. It has also been referred to as a mea-
surement of uncertainty, unordered, and chaos. Later
Shannon used entropy in information theory35 as a
direct indicator of the amount of information con-
tained within a dataset. For EMG signals which are
time series, entropy is again the amount of information
within a given window. First, it is used for a set of clas-
sic ML methods, and kNN showed 100% validation
accuracy despite having five-fold cross-validation indi-
cating overfitting. Also, while kNN gives a highly accu-
rate classification, it compares new feature vectors with
all others. Except for small datasets, this behavior
results in slow inference making it unsuitable for online
classification. Thus, SVM, the second-highest valida-
tion accuracy method, is selected for the rest of the
experiments.

SVM is a machine learning method that calculates a
hyperplane dividing two classes from each other. In the
process, the algorithm selects a certain number of fea-
ture vectors from both classes closest to the other. The
hyperplane is calculated with an equal distance from
these feature vectors called support vectors.36 It is
known to have high inference speed and is effective
with smaller datasets.24

The tests showed two aspects of entropy. At first,
due to unbalanced entropy outputs, feature space
became complex, and while some ML methods could
use it, many failed. Later it is discovered that in the
standard calculation of entropy, there is an easy mis-
take causing these results. LPH is the cause, a simple
solution of GPH is proposed, and its effects are shown.
Also, further analysis with SVM showed that entropy
has an ability. The models trained with entropy fea-
tures can classify feature vectors generated using win-
dow lengths different from those used for training. This
ability means that models with the Entropy feature can
classify with a window length insensitive manner with-
out specified training. As a result of changing LPH
with GPH, SVM models trained alone with 1 s (200
samples) long window length entropy features gave
89.06% validation accuracy.

Additionally, when the same models are used to
classify features, vectors generated with window lengths
down to 650ms (130 samples) prediction accuracies
were above 80%. In the testing with classic ML meth-
ods and analyzing entropy NinaPro DB5 dataset taken

from Pizzolato et al37 of NinaPro Project38 collected
with two MYOTM Armbands39 and a Cyberglove2TM40

is utilized. After that, a real-time simulation of the
newly collected SingleMyo dataset is used. In sections
of ‘‘Methods’’ and ‘‘Experiments’’ datasets and real-
time classification are presented. In both datasets, the
case of fatigue is prevented by making participants rest
between recordings; thus, the effects of fatigue are not
investigated here. Also, EMG does not change with
joint angles except electrode distance with muscle activ-
ity.41 This change is negligible when the electrodes are
at the unchanging forearm and can be omitted. Here, it
is preferred to classify hand and wrist motions through
an armband placed on the forearm close to the elbow.

Contributions to the work can be listed as follows:

� The entropy feature is tested for classifying hand
gestures from EMG signals, and its ability of
window length insensitivity is discovered.

� A problem with the entropy feature and possibly
other histogram-based features is discovered.
While LPH is an easily solvable mistake, it can
incorrectly increase variation and make the
feature space clusters of classes inseparable.

� A novel real-time classification algorithm based
on the entropy feature is tested on the newly cre-
ated dataset.

The rest of the paper is organized as follows: The
following ‘‘Methods’’ Section presents data collection
methods, datasets, and methods used in the study.
After that, experiments and results are given in the
‘‘Experiments’’ Section. Next, the Comparison of
‘‘Results’’ Section contains the results of similar works.
Finally, the study is summarised in the ‘‘Conclusion’’
Section with comments on the results.

Methods

Datasets

Data collection devices
MYOTM Armband. MYOTM Armband is an end-

user-targeted wireless EMG sensor array created by
Thalmic Labs. It has eight dry electrodes arranged as
an armband that does not need shaving or applying a
gel. Additionally, the armband has a 3D Inertial
Measurement Unit (IMU) sensor. The armband has an
embedded preprocessing unit, battery, and wireless
transmission circuit. Sampling frequencies are 200Hz
for EMG sensors and 50Hz for 3D IMU sensors.37

Cyberglove2. Cyberglove2 from CyberGlove Systems
is a glove with 23 strain gauges placed at various loca-
tions to measure 23 angles of the hand. The sampling
frequency is 90Hz for all 23 sensors.40

NinaPro DB5 dataset. NinaPro is an EMG dataset
project to foster artificial intelligence research on
robotic and prosthetic hands.42 Various data collection
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systems are utilized within its 10 datasets with different
participants, including patients with related conditions.
Here the Data Base five (DB5) from the NinaPro proj-
ect is used to evaluate the entropy feature. In DB5,
EMG signals are collected by two MYOTM Armbands
placed on the forearm, while a CyberGlove2TM is used
to track hand motions37 simultaneously. In the record-
ing of NinaPro DB5, participants repeated 52 gestures
(divided into exercises, as shown in Figure 1 listed in
Table 1 displayed on a laptop screen.

DB5 contained data from 16 EMG sensors, 23 strain
gauges, 3-direction data from the 3D IMU sensor, and
two labeling systems synched with EMG data. While
the first one (stimulus) is the gestures shown on the
screen, The gesture performed by the user ‘‘re-stimulus’’
is given as the second label system, where the difference
can be observed in Figure 2. In this study, features are
created from the 16-channel EMG data, and re-
stimulus labels of exercise 1 are used as target classes.
During experiments, no preprocessing is applied to the
readings of the MYOTM Armband.

SingleMYO dataset
Participants and collection process. SingleMYO Dataset

is created for this study to have a dataset from the
available equipment. This way, after developed meth-
ods give satisfying results on this dataset, the models
can be tested in real-life applications. The data collec-
tion process is approved by the Research and
Publication Ethics Committee of Cankaya University,
written consent is taken from all participants, and con-
ducted according to Helsinki Declaration.

In SingleMYO, EMG signals are collected by an
MYOTM Armband placed on the forearm and guiding
the participant while collecting data, as shown in

Figure 3. Nineteen motions are given in Table 2, and
the rest state is recorded. The recorded motions are
selected as fundamental motions of the hand and wrist
by inspiration from Olsson et al.21 In data collection,
each participant repeated each motion in separate
sessions. Motions are repeated six times for 5 s while
resting 5 s in between repetitions. Only EMG data from
eight sensors and the labels given by the collection
process are recorded. In the experiments preprocessing
is not applied.

Entropy

Entropy is a calculated property brought into computer
science by Shannon35 through information theory.

Figure 1. Images of movements in the three exercises.38

Table 1. List of movements for three exercises of NinaPro
DB5 dataset.38

Exercise 1: Basic Finger Movements

1–2 Index finger flexion and extension
3–4 Middle finger flexion and extension
5–6 Ring finger flexion and extension
7–8 Slight finger flexion and extension
9–10 Thumb abduction and adduction
11–12 Thumb flexion and extension

Exercise 2: Hand Positions and Basic Wrist Movements

1 Thumbs Up
2 Flexion of the ring and little fingers; thumb flexed

over middle and little fingers.
3 Flexion of the ring and little finger
4 Thumb opposing the base of the little finger
5 Abduction of fingers
6 Fingers flexed together
7 Pointing index finger
8 Fingers closed together
9–10 Wrist supination and pronation (rotation axis on

middle finger)
11–12 Wrist supination and pronation (rotation axis on

little finger)
13–14 Wrist flexion and extension
15–16 Wrist radial and ulnar deviation
17 Wrist extension with a closed hand

Exercise 3: Grips and Functional Movements

1–2 Large and small diameter
3 Fixed hook
4 Index finger extension
5 Medium wrap
6 Ring
7 Prismatic four fingers
8 Stick
9 Writing tripod
10–12 Power, three fingers, and a precision sphere
13 Tripod
14–15 Prismatic and tip pinch
16 Quadpod
17 Lateral
18–19 Parallel extension and flexion
20 Power disk
21 Open Bottle with Tripod Grasp
22 Turn the screw with stick grasping screwdriver (8)
23 Cut something (holding a knife with ‘‘index finger

extension’’ (4))
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While it is always related to scatteredness and uncer-
tainty, it is also used to measure the amount of infor-
mation. After Shannon, different equations are
proposed to estimate entropy. Some useful ones are
logarithmic energy, approximate, sample, permutation,
fuzzy, and spectral entropy.43,44 In this study, entropy
is used as given by Shannon since it is the first form in
Information Theory.

In Algüner and Ergezer,29 combinations of a set of
nine features are tested for three different EMG classi-
fication problems. There it is shown that feature perfor-
mances vary from application to application. After
that, in search for new features, authors found that in
studies of EEG and ECG classification, the entropy
feature is used with success.30–32 However, despite its
success in other fields, the entropy feature is unused for
EMG classification to the best of our knowledge.

The entropy feature of any data window is calculated
as equation (1). The probability of occurrence pi is cal-
culated as in equation (2) by using a histogram. Here i
is one of the M values in a histogram, b is the mod of
the information, ai is the number of the ith values occur-
rence, N is the length of the data window and the total
amount of data. Window length N, logarithm base b,
and histogram partition number M are design para-
meters.M is kept as same as the EMG sensor resolution
(256), and b is selected as its most common value, 2. As
in ‘‘If the base of the logarithm is b, we denote the
entropy asHb(X). If the logarithm base is e, the entropy
is measured in nats. Unless otherwise specified, we will
take all logarithms to base 2; all the entropies will be
measured in bits.’’45 Lastly, N is first selected as 200
samples (1 s) and later changed for experiments.

Hdata =2
XM

i=1

pi logb(pi) ð1Þ

pi = ai=N ð2Þ

Here pi is the rate of occurrence of one value within all
signal windows. These probabilities can be obtained by
dividing the histogram by the length of the input win-
dow. Then, as in equation (1), calculating and summing
entropies of each value will result in total entropy,
which is the feature analyzed in this study. An essential
point since log(0) is ‘‘not a number’’ during histogram
calculations; zero values are discarded before entropy
calculation.

For example, entropy is calculated for five 10-ele-
ment long X vectors shown in Table 3 with log base 2.
Entropies calculated as in equation (3.a);(3.e) for five
cases of X progressed from equal probability to cer-
tainty and showed decreasing results. Furthermore as
log 1ð Þ=0 at 100% certainty, there will be no entropy.
Random integers from 1 to 1000 are created to form a
vector to visualize this fact better. Each iteration
changes one value to 1, gradually filling the vector with
a single value. For each iteration, a random part is

Figure 2. Stimulus and re-stimulus have been shown in two
instances of motion.

Figure 3. Data collection setup for SingleMyo dataset.

Table 2. List of movements for three exercises of SingleMyo
dataset.

Exercise 1: Basic Finger Movements

1–2 Index finger flexion and extension
3–4 Middle finger flexion and extension
5–6 Ring finger flexion and extension
7–8 Slight finger flexion and extension
9–10 Thumb abduction and adduction
11–12 Thumb flexion and extension
13 Thumb opposition
14–15 Wrist supination and pronation

(rotation axis on middle finger)
16–17 Wrist flexion and extension
18–19 Wrist radial and ulnar deviation
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recreated, total entropy is calculated 10 times, and their
average is given in Figure 4.

� 10 0:1log20:1ð Þ=3:3219 ð3:aÞ

� 3 0:2log20:2ð Þ � 7 0:1log20:1ð Þ=2:7219 ð3:bÞ

� 5 0:2log20:2ð Þ=2:3219 ð3:cÞ

� 0:4log20:4ð Þ�2 0:2log20:2ð Þ�2 0:1log20:1ð Þ=2:1219

ð3:dÞ

� 2 0:5log20:5ð Þ=1 ð3:eÞ

In time many modifications are proposed to change
entropy to suit better for specific problems. In the
experiments of this study, one of the entropy variants is
also used at one point. This variant is known as
Logarithmic Entropy ðLogEnÞ and is calculated as in
equation (4).31

HLogEn =2
XM

i=1

(log2 pið Þ)2 ð4Þ

In Figure 5, EMG sensor output and entropy values are
calculated from the same EMG recordings drawn at the
same timeline. It visualizes the correlation between

EMG activity and entropy values. EMG has low ampli-
tude in the rest state, and readings change within a
small band, resulting in low entropy values. On the
other hand, when there is activity in the muscles, the
readings spread through a much larger band, resulting
in higher entropy values. Different motions result in dif-
ferent combinations of high and low entropy values.
This difference allows machine learning algorithms to
distinguish one gesture signal from others.

SVM for evaluation

To investigate the Entropy feature for EMG classifica-
tion, a simple but complete classification application is
required as a testing ground.

In general, a complete supervised classification appli-
cation should have the following parts:

� Creating or taking a dataset, selecting features
to be used, and dividing the dataset into training
and testing.

� Generating feature vectors from raw measure-
ments for training and test parts, then training a
model using the features of the training dataset.

� Apply the model to the testing set, then calculate
performance parameters by comparing real and
predicted labels.

All these parts should be working as well as possible
to show only the effects of the experimented part. The

Table 3. Vectors for entropy calculation example.

Case Elements of X

1 1 2 3 4 5 6 7 8 9 10
2 1 1 2 3 3 4 5 5 6 7
3 1 2 3 4 5 1 2 3 4 5
4 1 1 1 1 2 2 3 3 4 5
5 2 1 2 1 2 1 2 1 2 1

Figure 4. Uncertainty – The entropy graph is drawn by
incrementally changing random numbers with known numbers.

Figure 5. EMG versus time and entropy versus time drawn
together for the first sensor of the 10th participant.
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dataset NinaPro DB5 and the newly created SingleMyo
datasets are used for the data collection. Since the
experiments are about the performance of the entropy
feature, it alone is selected as the feature set. While gen-
erally, training and testing sets are defined as 70%–
80% for training and the rest for validation and testing.
Here for model training and validation accuracy calcu-
lation, feature vectors created with 1 s (200 samples)
long window lengths are separations as 80% for train-
ing and 20% for validation.

Testing is done on a different experiment where win-
dow length sensitivity is measured. For those experi-
ments, feature vectors are created with window
length=50, 60, 70, ., 300 samples long, and the mod-
els trained in the previous experiment made predictions.

Here it is important to clarify that the efficiency of
the ML method is not the goal; however, a good
enough method should be selected for classification.
Other vise performance of the model will be affected by
components other than the tested part. After tests with
classical ML algorithms (given in ‘‘Experiments’’
Section), SVM is selected as it is best after kNN. kNN
models are computationally expensive, and they show
over-fitting even after cross-validation, thus unsuitable
for real-time estimations.

Besides this test, there are three other reasons why
SVM is selected. SVM has much fewer parameters than
deep learning methods. Its more demanding nature
makes it better for smaller datasets. Also, as shown by
many studies in literature, it can distinguish EMG signals
of different gestures. These properties make SVM an
easy-to-use, fast resulting and comparable research
method. Additionally, as EMG patterns are highly
variant,6 they require calibration and retraining, making
SVM a better fit for a faster-to-train method. Quadratic
SVM is selected as a method with better results as it rep-
resents a midpoint between first and third-order kernels.

The most basic form of SVM is separating two line-
arly separable data clusters of two different classes. Let
xi be a feature vector of training set X that contains a
total of N samples from classes c1 and c2. An SVM clas-
sifier aims to define a hyperplane expressed at equation
(5) that can separate all training vectors belonging to
the two classes. v and v0 are the direction and position
in space characteristics of a hyperplane.36

g xð Þ=vT x+ v0 = 0 ð5Þ

The solution to this problem is not unique, and other
methods, such as an Artificial Neural Network (ANN),
will output any line that separates sample clusters of
two classes. However, an engineering decision on the
classification model should also demand the ability to
classify the classes’ feature vectors outside the training
set. In SVM, these criteria result in a hyperplane,
defined as in equation (5), at an equal distance from
vectors of the two classes closest to the other class,
called support vectors. However, the scaling factor

might not be the same for different directions and nor-
malized using the formula in equation (6). After scaling
g xð Þ into 1 and 21 for feature vectors of c1 and c2 the
optimization problem becomes as in equations (7) and
(8). Here yi are class indicators of each feature vector,
valued as 1 for c1 and 21 for c2.

z= g xð Þj j= vj jj j ð6Þ

Minimize : J v,v0ð Þ[ vj jj j2 =2 ð7Þ

s:t: yi vTxi +v0

� �
51, i=1, 2, . . . , N ð8Þ

The resultant direction is vR with smallest possible
vj jj j, meaning it also has the largest possible margin.

Also, the problem is a nonlinear optimization task sub-
ject to a set of linear inequality constraints so that the
minimizer must satisfy Karush-Kuhn-Tucker (KKT)
conditions given in equations (9);(12). In equations
(9);(12) li, i= 1, 2, . . . ,N are Lagrange multipliers
and L v,v0, lð Þ is the Lagrangian function defined as
in equation (13). Using the constraints v0 will be calcu-
lated together with v.

∂

∂v
L v,v0,lð Þ=0 ð9Þ

∂

∂v0
L v,v0,lð Þ=0 ð10Þ

li50 ð11Þ

li yi vTxi +v0

� �
� 1

� �
=0 ð12Þ

L v,v0, lð Þ= 1

2
vTv�

XN

1

li yi vTxi +v0

� �
� 1

� �

ð13Þ

GPH

When entropy is tested with multiple classic ML meth-
ods, while some give high results, many give low
accuracies. Additionally, the lack of articles using
entropy for EMG classification might indicate a prob-
lem with the feature.

Initial analysis of the entropy feature showed a wide
variety even within EMG signal windows of the same
gesture preventing SVM from properly learning. One
possibility for this instability was histogram parcels being
recalculated for each window, making incorrectly vary-
ing probabilities. Calculations of probabilities are shown
at ‘‘Entropy’’ Section under the ‘‘Methods’’; however, in
reality, histograms are formed not for all values but for
intervals called parcels.

Built-in histogram functions should answer all input
vectors, and because of that, they recalculate parcels
for each input vector every time. When these vectors
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are sliding windows of a time series signal, this recrea-
tion of parcels can create instability. As the window
slides, values within the input vector change, thus the
boundaries and parcels. As the parcels change, their
probabilities will vary incorrectly, leading to entropy
values also varying incorrectly. This variation causes
incorrectly high variation of feature values even within
classes making the difference between feature vectors
of different classes blur. As a result, ML algorithms
can’t learn and misclassify feature vectors leading to
low classification accuracy.

GPH proposes to use static parcels defined outside
the entropy calculation for statistical usage of the histo-
gram. Here the parcels are defined as boundaries and
resolution of the data collection apparatus. When an
SVM is trained and compared with LPH, classification
accuracy increases from 60.35% to 89.06%. Since par-
cels became static, Algorithm 1 was developed using a
more algorithmic than conditional base approach. In
Algorithm 1, variables scaled into [0 Nparcels] integers
are then used as index values for a vector for the histo-
gram. This method was tested against MATLAB for
the same 10,000 randomly generated vectors and
decreased total time from 431 to 69ms.

In Aydın and Akın,46 finite impulse response (FIR)
filters are used to extract some information extract sub-
bands of EEG signals. It is possible to design FIR filters
of EMG signals, but our main motivation is to show
entropy feature can be used in real-time gesture classifica-
tion. Since FIR filters cause some latency and eliminate
some components of the EMG signal, the performance
of the real-time gesture classifier is reduced. We designed
filters during our initial trials, which increases offline
gesture classification performance, but the effect is the
opposite for real-time applications.

Activation detection for real-time classification

In the entropy analysis, the rest case is excluded to
focus on the separation of gestures. Activity detection

is developed to separate gestures from the rest class to
make these models real-time applicable. In the real-time
experiments mentioned in the ‘‘Experiments’’ Section),
this criterion is utilized in the overall process and speeds
up histogram calculation.

Activation criterion kept as a threshold for low time
complexity for a function maps window sections of

active and rest groups into linearly separable clusters.

A two-step filtering is applied to speed up the process

further, as given in Algorithm 2 is used. When such a

function is found, a quick calculation can determine

the activity state of the window. Active and non-active

measurement vectors are separated, and different func-

tions are tested to determine the criterion.
In the algorithm, natural numbers t14t2 are two sec-

tion lengths decided for pre-detect and then fully detect
activity. Real numbers t14t2 are threshold values of
the criterion function to pass for pre-detection and full.

Many functions are tested for Algorithm 2 by com-
paring distributions of functions of both cases.

However, high variance is always causing the mixing of

results of both sides, indicating that linear separation is

impossible. For example, the total energy is one of the

functions tested for activation detection. It is calculated

as in equation (14), and the total energy distribution of

activity and the rest cases are given in Figure 6.

Total Energy=
XW

j=1

XNch

i=1

w2
ij ð14Þ

Since linear separation seems impossible, PSO is used
to find the best t1, t2, t1, t2 values. The total energy is
used as the selected function, and the objective function
is given in equation (15). The constraints of the particle
swarm optimization are given in equations (16.a);
(16.e). The optimization concluded with t1 =0 for
t1 =3 and t2 =5822:2 for t2 =14.

Algorithm 1 GPH Calculation

MAIN PROGRAM
1: Input: W: Window Length
2: Output: h: entropy
3: maxVal is the static maximum value of the dataset.
4: minVal is the static minimum value of the dataset.
5: Nparcel is the number of parcels.
6: Normalize and scale window elements from [minVal,maxVal]
7: into [0,Nparcel]
8: Roll-downs scaled elements into integers.
9: p is a zero vector of size Nparcel x1
10: for each element of W
11: Increment element of p pointed by the element of W
12: end
13: clear zero values of h
14: p = p/length of W
15: h = 21 � sum(p� log2(p))

Algorithm 2 Activation Detection

MAIN PROGRAM
1: Input: Data Base, W: Window length, t1: first section length,

t2 : second section length, t1: the first threshold, t2: the
second threshold.

2: for each W-long window of Data Base
3: if the output criterion function of first t1 elements of

the window are larger than t1

4: if the output criterion function of first t2 elements of
the window are larger than t2

5: window is active
6: else
7: window is non-active
8: end if
9: else
10: window is non-active
11: end if
12: end for
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Minimize :�( TP+TN�FP�FNð Þ�(t21+t22+t1+t2)

ð15Þ

s:t: t14t2 +1 ð16:aÞ

14t14101 ð16:bÞ

04t2 � t1415 ð16:cÞ

04t143x104 ð16:dÞ

04t2 � t14104 ð16:eÞ

Experiments

Experiment protocols

This study uses three kinds of experiment protocols to
analyze the entropy feature. The first type is the sim-
plest ML application, only with feature calculation and
model training. The second type of experiment is test-
ing a model for window length sensitivity. The last type
is the ‘‘Real-Time Experiments’’ given in the next part.

The first type generates features from EMG signals
with 1 s (200 samples) long windows. With a given
method, the ML model is trained. To measure training
an ML model with these feature vectors, calculate the

confusion matrix and validation accuracy (ACC) as in
equation (17), where K is the number of classes.

In the second type of experiment, features are gener-
ated with a range of window lengths. Then SVM model
is used to predict labels of feature vectors for each win-
dow length separately. Each window length’s accuracy
is calculated as in equation (17). Later window length
sensitivity is calculated as in equation (18). Where W is
window length, the subscript original indicates ACC
and W of the trained model’s window length,
respectively.

ACC=

PK
k=1 ConfusionMatrixkk

N
x 100 ð17Þ

S=
(ACC� ACCOriginal)

(W�WOriginal)
ð18Þ

Real-time experiments

To let SVM focus on the gestures while analyzing the
entropy feature with Nina Pro DB 5 rest state is dis-
carded. However, this is not applicable for real-time
tests, and Algorithm 3, utilizing the activation detection
given under the ‘‘Methods’’ Section is developed. To
make it even faster histogram is created only for the
first window and then updated at each iteration. This
overall process is expressed in Figure 7.

The system designed for a real-time environment is
given in Algorithm 3. In real-time experiments, Data
Bases are used as recorded; measurements are fed into
the system one by one. For this experiment, time com-
plexity and overall classification accuracies are
measured.

Figure 6. Total energy distributions of active and non-active
250 ms (50 samples) long data windows.

Algorithm 3 Real-Time Experiment

MAIN PROGRAM
1: Input: Data Base, W: Window length, t1: first section length,

t2 : second section length, t1: the first threshold, t2: the
second threshold.

2: Calculate histogram for first W long window of Data Base
3: for each W-long window of Data Base
4: if the total energy of first t1EMG measurements of the

window is larger than t1

5: if the total energy of first t2 EMG measurements of
the window is larger than t2

6: Calculate the entropy for each channel.
7: Prediction using SVM
8: end if
9: end if
10: Remove the first measurements of the window from the

histogram
11: Remove the first measurement from the window
12: Add the next measurement to the histogram
13: Add the next measurements to the window
14: end for
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Experiment results

Testing classic ML methods on entropy feature. ANN, discri-
minant analysis, Ensemble, KNN, Naı̈ve Bayes, SVM,
and Random Tree (RT) algorithms are used with the
entropy feature alone to test the performance of
entropy for EMG classification. The models are trained
with fivefold cross-validation, and average validation
accuracies are given in Table 4. As can be observed in

Table 4, kNN and SVM gave the best results. The best
method was kNN, but it is known to be slow when pre-
dicting feature vectors, and it showed over-fitting
despite cross-validation. For these reasons and the ones
given in the SVM title of the ‘‘Methods’’ Section, SVM
is selected for the rest of the analysis. The SVM models
also had quadratic kernels and were trained with a five-
fold validation process for one-to-one classification.
These SVM classifiers test GPH and real-time classifi-
cation with entropy features.

Window length sensitivity and GPH compared with
LogEn. While SVM showed higher results than most
other methods, 60.35% validation accuracy is not
enough. While trying to increase accuracy with differ-
ent modifications second type of experiment is con-
ducted as an indicator to show generalization. At this
point, low window length sensitivity is discovered while
using a quadratic SVM model trained with feature vec-
tors generated by 1 s (200 samples) long windows.

As shown in Figure 8, accuracy dropped only from
60.35% to 53.53% when window lengths were
decreased to 130-time steps. Furthermore, when win-
dow lengths are increased even after the original win-
dow length, accuracies continue to increase.

After that, it is thought that the source of the low
accuracies might be the recalculation of histogram

Table 4. Validation accuracy of classical ML methods trained with entropy feature.

Method Validation accuracy Method Validation accuracy

ANN 1 HL with 10 Neurons 53.6 KNN: Medium 100
ANN 1 HL with 20 Neurons 59.4 KNN: Weighted 100
Discriminant: Linear 38.4 Naı̈ve Bayes: Gaussian 30.4
Discriminant: Quadratic 44.5 Naı̈ve Bayes: Kernel 32.9
Ensemble: Bagged Trees 100 SVM: Coarse Gaussian 51
Ensemble: Boosted Trees 42.9 SVM: Cubic 86
Ensemble: RUSBoosted Trees 40 SVM: Fine Gaussian 100
Ensemble: Subsapce KNN 99.9 SVM: Linear 41.8
Ensemble: Subspace Discriminant 37.2 SVM: Medium Gaussian 77.3
KNN: Coarse 94.5 SVM: Quadratic 63.7
KNN: Cosine 100 Tree: Coarse 32.5
KNN: Cubic 100 Tree: Fine 49.2
KNN: Fine 100 Tree: Medium 41

Figure 7. Data flow of model training and testing process.

Figure 8. Accuracy vs. window-length graph of entropy feature
with LPH.
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boundaries. To investigate that GPH feature extraction
is written and tested. In Figures 9 and 10, the results of

the LPH and GPH versions of the second experiment

are given together. In these figures, the SVM model’s

accuracy is significantly increased (from 60.35% to

89.06% for the original window length of 1 s (200 sam-

ples)). In contrast, the low window length sensitivity is

maintained. These two results may indicate those classi-

fication models trained with entropy as the only feature

that can be used in cases of varying window lengths.
The comparatively same test is done by pairing

entropy with LogEn to show the entropy feature’s low
window length sensitivity ability. As can be observed in
Figures 11 and 12, when LogEn is used, classification
accuracy reaches 99.35%. However, as window lengths
change, classification accuracy decreases much more
than when entropy is used alone.

Overall real-time accuracy and time complexity. After satis-
fying results with GPH, this study moved to real-time

tests. These experiments are performed consecutively

using the real-time environment created using activa-

tion detection, GPH, and trained SVM models. At this

point, three concerns are most important for the analy-

sis. They are total and average time complexity, activa-

tion detection filtering, and overall classification

accuracy. The real-time environment is executed for 1 s

(200 samples) long windows. The total and average

times spent for activation detection, entropy calcula-

tion, and classification are given in Table 5. The activa-

tion detection correctly distinguished 71.4% of all

windows, while the rate of false alarms was 10.32%.

With the rate of inputs incorrectly sent to SVM at

19.45%, the overall system with activation detection

integrated inside accuracy is 49.02%.

Figure 12. Accuracy change versus window-length change
graph of features LPH entropy, GPH entropy, and LPH entropy
and LogEn models.

Figure 9. The accuracy versus window length graph of LPH
and GPH entropy feature models.

Figure 10. Accuracy change versus window-length change
graph of LPH and GPH entropy feature models.

Figure 11. Accuracy versus window-length graph of features
LPH entropy, GPH entropy, and LPH entropy and LogEn models.
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Comparison of results

In this study, classification accuracy was the metric for
developing methods. However, some studies use preci-
sion, recall, and F1 score, and the range of these values
calculated for each gesture are 81.27%;88.29%,
77.08%;89.36%, 82.94%;87.73% in the same order
by equations (19);(21). Here TP, FP, TN, and FN are
True Positive, False Positive, True Negative, and False
Negative.

precission= TP=(TP+FP) ð19Þ

recall= TP=(TP+FN) ð20Þ

F1 =2 � precision � recall
precision+ recall

ð21Þ

Oskoei and Hu17 optimized SVM for data segmenta-
tion, feature set, model selection approach, and post-
processing; achieved 94%299% classification accuracy
for six gestures. Cai et al.24 drive a self-rehabilitation
robot with SVM EMG classification of five gestures.
Precision, recall, and F1 ranges were 90.5%;99.1%,
85.8%; 99.1%, 88.1%;99.1% respectively. Zhang
et al.22 used SFS and PSO for feature selection. Over
11 arm gestures, classification accuracy and average
prediction times are 98% 430ms, 98% 230ms, and
99% 180ms for models with non-optimized SVM,
SFS, and PSO. Qi et al.25 applied PCA for feature
dimension reduction on GRNN, resulting in 95.1%
classification accuracy with 0.19 s average prediction
time. Too et al.20 proposed P-Best Guided Binary
Particle Swarm Optimization (PBPSO) for feature
selection. Precision and F1 of gestures ranges are
45.52%;97.45% and 41.20%;95.92%, with a 49.27%
average feature reduction rate. Hu et al.18 proposed a
CNN-RNN hybrid architecture and image representa-
tion of EMG signals to increase the best results of five
benchmarking datasets from 82.8% to 99.7%.

Lastly, two of these studies used NinaPro DB5. In
Algüner and Ergezer,29 18 features are tested on
NinaPro DB5. Classification accuracies for finger ges-
tures were 91.6% for all features and 26.4% to 84.9%
for two feature combinations. In Simão et al.,19 FFNN,
RNN, LSTM, and GRU for online classification of
hand gestures and prediction speeds given in windows

per second were 90.82% 82k, 91.59% 62k, 90.82%
244k, and 92.07% 265k, respectively. On NinaPro
DB5, they received 91.59%, 91.07%, and 90.82%
accuracies on the test set with RNN, GRU, and LSTM
methods, respectively.

Conclusions

Entropy is a core concept in information theory which
is a calculated property that directly indicates the
amount of information and complexity. It is also asso-
ciated with uncertainty and disorder. In the bio-signal-
related machine learning literature, including EMG,
entropy is frequent; and is used as a feature for EEG
and ECG signal classification. However, to the best of
our knowledge, the entropy feature is not used to clas-
sify EMG signals of gestures before. Here entropy fea-
ture is tested for the EMG classification for the first
time. First, the previously used entropy feature is tested
with many classical ML methods. When entropy and
EMG signals are drawn together at the same timeline,
a close correlation between EMG activity and entropy
amplitude is observed. In later experiments, SVM with
a quadratic kernel is used. Even SVM gave the highest
validation accuracy after KNN Quadratic SVM’s result
was only 60.35%. Its reason was that LPH creates a
wide variety, resulting in classifiers being unable to dis-
tinguish feature vectors from each other. It is solved by
introducing the GPH approach, lifting accuracy to
89.06%. It was also discovered that models trained
with entropy features could classify feature vectors
extracted with windows with different lengths. For
example, models trained with windows of 200ms classi-
fied feature vectors created from 130 long windows
with 53.53% and 81.52% accuracy when using LPH
and GPH, respectively. A real-time entropy calculation
algorithm utilizing the parcels being constant and acti-
vation detection is designed. When 1,459,030 EMG
measurements were fed into this real-time version,
including activation detection and SVM, the average
time for one prediction was 28.1ms and accuracy was
49.02%. Next, this method should be tested with a live
classification application and real-life device control.
Also, GPH might show improvement in statistical fea-
tures based on histograms. In the end, this work shows
that the entropy feature makes low window length sen-
sitive classifiers when GPH is used. In the future per-
formances of other entropy features, such as sample
entropy, approximate entropy is planned to be mea-
sured similarly. Measuring the difference between LPH
and GPH on the different entropy features is also
planned.
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Table 5. Total and average time spent in real-time environment
test.

Total time (s) Average time (s)
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Total 41.049 3 103 2.81 3 1022
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ñeda MA. Neuromuscular disorders detection through

time-frequency analysis and classification of multi-

muscular EMG signals using Hilbert-Huang transform.

Biomed Signal Process Control 2022; 71: 103037.
12. Hajian G, Etemad A and Morin E. Generalized EMG-

based isometric contact force estimation using a deep

learning approach. Biomed Signal Process Control 2021;

70: 103012.
13. Bu D, Guo S and Gao W. Continuous estimation of a

sEMG-based upper limb joint. In: IEEE International

conference on mechatronics and automation (ICMA),

Guilin, 2019.
14. Doheny EP, Goulding C, Flood MW, et al. Feature-

based evaluation of a wearable surface EMG sensor

against laboratory standard EMG during force-varying

and fatiguing contractions. IEEE Sens J 2020; 20(5):

2757–2765.
15. Wang J, Sun S and Sun Y. A muscle fatigue classification

model based on LSTM and improved wavelet packet

threshold. Sensors 2021; 21(19): 6369.
16. Tinoco Varela D, Gudiño Peñaloza F and Villaseñor
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31. Aydin S, Saraoğlu HM and Kara S. Log energy

entropy-based EEG classification with multilayer
neural networks in seizure. Ann Biomed Eng 2009;
37(12): 2626–2630.
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