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Abstract: In this study, we investigate the validity of the purchasing power parity (PPP) proposition
for 34 European and selected global countries. For this purpose, we propose a new unit root test
for cross-sectionally dependent heterogeneous panels that allows for gradual structural breaks and
symmetric nonlinear adjustment toward the equilibrium level. The alternative hypothesis stationary
is obtained by symmetric adjustment due to exponential smooth transition autoregression (ESTAR)
around a nonlinear trend. Moreover, we provide small sample properties extensively for the newly
proposed test. Hence, this alternative hypothesis has been proven to characterize real exchange
rate data (REER) correctly. Thus, the newly proposed tests provide an essential basis for modeling
the REER series correctly. Finally, we also derive the approximate asymptotic distribution of the
proposed tests using new techniques.

Keywords: real exchange rate data; smooth break; nonlinear panel unit root; cross-section depen-
dency; factor model; CCE; sieve bootstrap; PPP

1. Introduction

Purchasing power parity (PPP) is one of the most commonly considered hypotheses in
economics. The foundation of the purchasing power parity hypothesis lies in the law of one
price, which expresses that the price of an asset (or a bunch of goods) should be the same
in every country when indicated in a single currency, meaning that the same goods are
sold for the same price in two distinct countries. Permitting the PPP hypothesis, nominal
exchange rates move one-to-one at relative prices in the long run. Thus, the theory can be
seen as a clustered version of the law of one price. The PPP theory assumes that there are
no transaction costs, taxes, and trade barriers in international trade, and for some markets,
it also assumes imperfect competition between two markets.

The importance of the PPP hypothesis for policymakers relies mainly on the following
reasons: First, it is an anchor for real exchange rates in the long-term equilibrium, allowing
policymakers to assess the balance in nominal exchange rates and take proper policy actions.
Next, policymakers need to know the degree of persistence of real exchange rates. Shocks
that have permanent effects on the economy are caused by the near unit root problem
in the exchange rate arising from the real economy (high persistency or near unit root
means that the autoregressive parameter takes a value close to 1) [1]. Conversely, if real
exchange rates are less persistent, i.e., if the autoregressive parameter is high, the shocks
come primarily from the total demand side. More importantly, as Taylor and Sarno [2]
argue, the stationarity of the real exchange rate is an essential assumption in open economy
macroeconomics; therefore, the nonstationarity of the real exchange rate renders open
economy macroeconomic theories questionable. One final point to consider is that real
exchange rates are used to compare the actual revenues of countries, and if there is no valid
PPP hypothesis, such comparisons will become invalid. Consequently, it is vital to test the
PPP hypothesis precisely.
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Empirical assessments of the PPP hypothesis are usually based on the unit root test of
the real exchange rate series. When looking at previous studies, it is clear that there is a
great deal of work that does not support the PPP hypothesis [2–4]. These negative results
stem from traditional unit root tests’ low power when used on a small sample. For this
reason, researchers have started to search for alternative methods to test the stationarity of
real exchange rates [5].

Three methods have been attempted to increase the power of traditional tests. The
first is to improve the structure of real exchange rates by developing unit root tests with
nonlinear forms. The second alternative is unit root tests that take into account the structural
breaks. The third way is to increase the power of unit root tests by expanding the data
sample size with panel methods. Finally, we come across nonlinear panel unit root test
methods that combine these three methodologies.

Purchasing power parity may show nonlinear behavior for many reasons. The transac-
tion costs might lead to the nonlinear convergence of real exchange rates to their mean [6–9].
Whereas minor deviations from the real exchange rate’s equilibrium level cannot be re-
moved by commodity arbitrage, a large deviation will cause the PPP to return to the
equilibrium level because it may cover the transaction costs. This behavioral structure
shows a band around the mean of PPP. Along with transaction costs and trade barriers,
official interventions in the foreign exchange markets, speculative attacks, the interaction
of heterogeneous traders and price stickiness, and the presence of target regions can also
lead to a nonlinear structure in the real exchange rate data-generating process. Most of
the nonlinear studies reported that the results support the PPP hypothesis after permitting
nonlinearity in unit root testing.

There was also some criticism of the PPP hypothesis, specifically for its long data
set. When considering a long sample, the linear models may once again be insufficient,
as the above-mentioned nonlinear structure may emerge in this long period. Hegwood
and Papell [10] state that a very long data range covers both fixed and flexible exchange
rate regimes, and therefore, linear models can produce false results due to regime changes.
In addition, various exogenous shocks can cause the real exchange rate’s mean value to
change over time. For example, oil price shocks in 1973 and the collapse of the socialist bloc
in the 1990s may have changed these countries’ equilibrium real exchange rates. Perron [11]
shows that when structural breaks occur, traditional unit root tests have yielded incorrect
unit root test results even though the data were stationary. Hegwood and Papell [10] and
Papell and Prodan [12] provide proof for approving the PPP hypothesis after permitting
probable structural breaks in the real exchange rate series. More recently, Lundbergh
et al. [13], Sollis et al. [14], and Christopoulos and Leon-Ledesma [15] debate that structural
breaks and nonlinearity are not mutually exclusive, and that synchronized structural breaks
and nonlinearity can better explain the realization of the real exchange rate. Indeed, Sollis
et al. [14], Koop and Potter [16], Omay et al. [17], and similar studies in the literature
reveal that both structural breaks and nonlinearity can adopt the time-series behavior of
many economic variables. In this sense, Leybourne et al. [18] (henceforth, LNV) model
the structural breaks in the real exchange rate with the logistic transition variable. The
advantage of this approach over other types of structural break tests lies in its ability to
capture a smooth transition from one regime to another, which may occur when individuals
or countries do not move simultaneously, and the sharp transition with which they move
together. Moreover, the nonlinear mean reversion explained above can best be captured by
the Kapetanios et al. [19] (henceforth, KSS) unit root test. These two models are combined
in the Omay and Yıldırım test [20] (hereafter, the OY test).

The first-generation panel unit root tests contribute to extending the sample size by
considering both cross section and time observations. However, O’Connell [21] state that
some deficiencies in the panel data approach were employed to test the PPP hypothesis.
Moreover, Banerjee et al. [22] evaluated the small sample efficiency of the existing tests
and found that once the errors were allowed to be correlated in the cross section, all the
tests had serious type 1 errors. Therefore, the unit root test null hypothesis is frequently
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rejected, which falsely serves empirical results such that the real exchange rate follows a
stationary process. Depending on the cross-section dependency (CSD), the asymptotic dis-
tributions of traditional panel unit root tests will be incorrect, and alternative distributions
must be provided since the cross-section dependency exists in the data. Therefore, new
(second-generation) panel tests have been developed for unit root tests that resolve this
CSD problem. Different methods have been implemented to overcome the cross-section
dependency problem in the testing process. Of these, unobserved and observed factors are
included as additional regressors in the regression equation (see Refs. [23–26]). Alterna-
tively, Maddala and Wu [27], Chang [28], Smith et al. [29], Cerrato and Sarantis [30], Ucar
and Omay [31] (henceforth, UO), and Palm et al. [32] all employed bootstrap methods to
solve the CSD problem and gather unbiased parameter estimations. The key idea behind
the bootstrap technique is to resample the residuals to preserve the cross-section depen-
dency pattern in the panel to converge to the sampling distribution of the original series
(see Ref. [26]). An advantage of the bootstrap method over factor-based methodologies
is the applicability to any unknown cross-section dependency form without knowing the
functional structure of cross-section dependency [32]. For instance, in the study of Omay,
Hasanov, and Shin [33] (henceforth, OHS), the advantages of using the sieve bootstrap
method instead of factor methods in the logistics smooth transition panel unit root test
are also extensively studied. One of the primary deficiencies of factor models is that the
factor variable interacts with structural break trends and decreases the power of the test.
In light of these issues, we used the sieve bootstrap methodology of Ucar and Omay [31];
Emirmahmutoğlu and Omay [34] (henceforth, EO); Çorakcı, Omay, and Emirmahmu-
toğlu [35] (henceforth, COE); Omay, Hasanov, and Shin [33]; and Omay, Çorakcı, and
Emirmahmutoğlu [36] (henceforth, OCE). As a follow-up to these studies, we propose a
new unit root testing procedure that considers both smooth transition structural breaks
and nonlinear adjustment toward equilibrium to test the stationarity of the REER series.
The proposed test solves the problems that may arise when testing the PPP hypothesis as
described so far.

Moreover, this newly proposed unit root test procedure has robust features compati-
ble with many economic time series’ theoretical and empirical dynamics, including real
exchange rates’ dynamics. Small sample performances of the proposed tests are examined
with Monte Carlo simulations; the results show that the proposed tests have very satis-
factory size and power characteristics and perform better than other similar tests in reel
exchange dynamics, which is extensively studied in the small sample performance section
(Section 3). We use these and other tests to examine the stationarity of the REER series
of selected world countries. The results provide evidence in favor of the PPP hypothesis
of the REER series for the period 2010:7–2020:3 and 1994:1–2020:3 when using the newly
proposed test. Moreover, the approximate limiting distribution of the newly proposed test
is obtained in Appendix A.

The subsequent sections are as follows: Section 2 of this study develops the proposed
test statistics and represents their critical values. Section 3 provides the small sample
performance of the newly proposed test compared with nonlinear and linear panel unit
root tests. Section 4 presents empirical applications, and Section 5 concludes.

2. The Model and Testing Framework

Let yi,t be a panel with changing trend function with smooth transition on the time
domain t = 1, 2, . . . , T for the entities i = 1, 2, . . . , N. yi,t produced by the subsequent model:

yi,t = µi + φi(t) + wi,t (1)

wi,t = θiwi,t−1 + εi,t (2)

where µi is the fixed effect. Here, φi(t) represents the smoothly changing nonlinear trend
function. Initially, we assume that the errors εi,t are a zero mean process distributed

independently across both i and t; that is, E(εi,t) = 0 and E
(

ε2
i,t

)
= σ2 cross-sectionally and
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serially uncorrelated, E
(
εi,t, ε j,s

)
6= 0 for i 6= j and t 6= s. Considering the null hypothesis

of unit root in θi = 1 for all i in Equation (2), we rewrite Equation (2) as

∆wi,t = ςiwi,t−1 + εi,t (3)

where ςi = −(1− θi). Now, the null hypothesis of unit root becomes: H0 : ςi = 0, for
all i, while the alternative hypothesis of stationarity H1 : ςi < 0 for some i. Following
Schmidt and Phillips [37], we represent the model as in Equation (1), which enables models
to maintain the same deterministic trend under the null and alternative. Until here, we
assume linear convergence to nonlinear trend; however, as stated in the introduction, we
propose nonlinear convergence following the Kapetanios et al. [19] test. We will derive
the nonlinear convergence to the nonlinear attractor in the second step using the ESTAR
function. For the nonlinear trends, we used the following forms:

MODELA
yi,t = φi(t) + wi,t
φi(t) = α1,i + α2,iSi,t(γi, τi)
yi,t = α1,i + α2,iSi,t(γi, τi) + wi,t

(4)

MODELB
yi,t = φi(t) + wi,t
φi(t) = α1,i + β1,it + α2,iSi,t(γi, τi)
yi,t = α1,i + β1,it + α2,iSi,t(γi, τi) + wi,t

(5)

MODELC
yi,t = φi(t) + wi,t
φi(t) = α1,i + β1,it + α2,iSi,t(γ, τ) + β2,itSi,t(γ, τ)
yi,t = α1,i + β1,it + α2,iSi,t(γ, τ) + β2,itSi,t(γ, τ) + wi,t

(6)

where Si,t(γi, τi) is a logistic smooth transition function defined as follows:

Si,t(γi, τi) = [1 + exp{−γi(t− τiT)}]−1, γi > 0 (7)

In this modeling methodology, the structural break is designed as a smooth transition
between different states rather than an instantaneous structural break (see [18]). (See also
Sandberg [38] for another type of nonlinear trend. It is also very useful in and flexible
in catching up to the smooth breaks.) The transition function Si,t(γi, τi) is a continuous
function bounded between 1 and 0. Therefore, the smooth transition (ST) regression can be
seen as a state-dependent model that permits for two regimes, accompanying the extreme
values of the transition function, Si,t(γi, τi) = 0 and Si,t(γi, τi) = 1, while the transition
from one regime to the other is slow. The parameter γi controls the smoothness of the
transition and, accordingly, the smoothness of transition from one state to the other. The
two states are related to small and large values of the transition variable t relative to the
threshold τi. For the large values of γi, Si,t(γi, τi) passes through the interval (0, 1) very
rapidly, and as γi approaches +∞, this function changes value from 0 to 1 rapidly at time
t = τiT. Therefore, if we assume that wi,t is a zero mean I(0) process, and in the model A,
yi,t is a stationary process around a mean that changes from initial value α1,i to final value
α1,i + α2,i; the LNV approach also provides the same conditions for the models B and C.
In these models, no change and one instantaneous structural change are limiting cases,
whereas this model is more general in that it includes a gradual structural break as well
(for further discussion, see [19]).

Thus, we adapt their approach to the panel data, and our test is to have a two-step
procedure.

Step 1. Run yi,t on the deterministic regressors via the nonlinear least squares (NLS)
procedure, and hold the residuals for models A, B, and C, respectively.

ŵi,t = yi,t − α̂1.i − α̂2,iSi,t(γi, τi) (8)
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ŵi,t = yi,t − α̂1,i − β̂1,it− α̂2,iSi,t(γi, τi) (9)

ŵi,t = yi,t − α̂1,i + β̂1,it + α̂2,iSi,t(γi, τi) + β̂2,itSi,t(γi, τi) (10)

Step 2. Construct panel logistic smooth transition trend model, i.e., LSTT-PESTAR (1),
by imposing the residuals into the regression as the variables given below:

ŵi,t = ϕ1,iŵi,t−1 + ϕ2,iŵi,t−1

[
1− exp

(
δiŵ2

i,t−1

)]
+ υi,t (11)

where δi > 0 speed of transition is positive for all i. Following the UO testing framework,
we set ϕ1,i = 0 for all i, which leads to a unit root process in the middle regime (please see
Ucar and Omay [31] for further details). Hence, the model becomes:

ŵi,t = ϕ2,iŵi,t−1

[
1− exp

(
δiŵ2

i,t−1

)]
+ υi,t (12)

Notice here that the nonlinear panel data unit root test based on Equation (12) is simply to
test δi > 0 for some i under the alternative. However, direct testing of δi > 0 is somewhat
problematic because δi is not identified under the null δi = 0 (see Ucar and Omay [31] and
Kapetanios et al. [19] for further details). This problem is achieved by applying first-order
Taylor series approximation to the PESTAR (1) model around δi = 0. This leads us to arrive
at the auxiliary regression as follows:

∆ŵi,t = ρ̂iŵ3
i,t−1 + ∑k

j=1 ψ̂i,j∆ŵit−j + η̂i,t (13)

where ρ̂i = δi ϕ2,i and η̂i,t = υi,t − Ri,t, where Ri,t is residuals from Taylor approximation.
Use the simple test statistics for each cross-section observation,

ti,BRNL =
∆ŵ′iMtŵ3

i,−1

σ̂î,BRNL

(
ŵ3′

i,−1Mtŵ3
i,−1

)1/2 (14)

to test the hypothesis ρi = 0 under the null, and the alternative is to be ρi < 0 as they can
be written formally,

H0 : ρi = 0, for all i (linear nonstationary)
Ha : ρi < 0, for some i (nonlinear and stationary around nonlinear trend and intercept)

where σ̂2
i,BRNL is the consistent estimator such that σ̂2

i,BRNL = ∆ŵ′iMt∆ŵi/(T − 1), Mt =

IT − τT(τ
′
TτT)

−1
τ′T . Notice here also that ∆ŵi = (∆ŵi,1, ∆ŵi,2, . . . ∆ŵi,T)

′, ŵ3
i,−1

=
(

ŵ3
i,0, ŵ3

i,1, . . . , ŵ3
i,T−1

)
and τT = (1, 1, . . . , 1).

Calculate the data average t-statistic as below:

tBRNL,j = N−1∑N
i=1 ti,BRNL, j = {A, B, C} (15)

The asymptotic distribution of individual t-statistic is to be in the following theorem:

Theorem 1. Under the null hypothesis of unit root, the approximate asymptotic distribution of
tBRNL is as follows:

tm,nlD f f
d→

∫ 1
0 Wm

(
k f r

s = 0.11, k f r
c = 0.62, r

)3
dW(r)(∫ 1

0 Wm

(
k f r

s = 0.11, k f r
c = 0.62, r

)6
dr
)1/2 f or m = µ and τ
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where W(r) is the Wiener process as defined over the interval r ∈ [0, 1]. Wi

(
k f r

s , k f r
c , r

)
for

i = µ, τ is a de-meaned and de-trended Brownian motion, respectively.

Proof. See Appendix A. �

We serve the critical values of the average t-test for each model in the following
Tables 1–3. These critical values can be used appropriately for the case that the researchers
do not observe the cross-section dependency in the data.

Table 1. Exact critical values of tBRNL,A statistics model A without CSD.

T\N 5 10 15 20 25 50 100

1%
30 −3.537 −3.164 −3.054 −2.948 −2.869 −2.749 −2.678
50 −3.334 −3.048 −2.951 −2.880 −2.823 −2.717 −2.626
70 −3.287 −3.015 −2.924 −2.839 −2.823 −2.699 −2.623

100 −3.325 −3.026 −2.912 −2.866 −2.826 −2.694 −2.595
5%

30 −3.137 2.952 −2.863 −2.788 −2.762 −2.675 −2.619
50 −3.059 −2.860 −2.802 −2.746 −2.712 −2.619 −2.565
70 −3.058 −2.877 −2.790 −2.734 −2.697 −2.615 −2.551

100 −3.066 −2.854 −2.770 −2.734 −2.693 −2.612 −2.549
10%

30 −2.976 −2.861 −2.779 −2.718 −2.687 −2.625 −2.583
50 −2.909 −2.765 −2.711 −2.675 −2.642 −2.577 −2.536
70 −2.929 −2.813 −2.701 −2.651 −2.637 −2.567 −2.525

100 −2.902 −2.772 2.701 −2.662 −2.627 −2.564 −2.515

Table 2. Exact critical values of tBRNL,B, statistics model B without CSD.

T\N 5 10 15 20 25 50 100

1%
30 −3.972 −3.673 −3.533 −3.453 −3.429 −3.287 −3.225
50 −3.807 −3.532 −3.420 −3.356 −3.319 −3.166 −3.082
70 −3.722 −3.445 −3.380 −3.309 −3.266 −3.148 −3.041

100 −3.720 −3.452 −3.304 −3.298 −3.230 −3.126 −3.059
5%

30 −3.669 −3.466 −3.377 −3.310 −3.303 −3.193 −3.138
50 −3.525 −3.367 −3.257 −3.213 −3.180 −3.095 −3.032
70 −3.479 −3.308 −3.203 −3.183 −3.156 −3.065 −3.012

100 −3.455 −3.280 −3.196 −3.154 −3.126 −3.043 −2.992
10%

30 −3.514 −3.350 −3.280 −3.245 −3.226 −3.143 −3.109
50 −3.396 −3.257 −3.174 −3.130 −3.113 −3.051 −3.008
70 −3.329 −3.208 −3.131 −3.111 −3.089 −3.015 −2.982

100 −3.314 −3.187 −3.119 −3.089 −3.075 −3.008 −2.961

Table 3. Exact critical values of tBRNL,C statistics model C without CSD.

T\N 5 10 15 20 25 50 100

1%
30 −4.299 −3.970 −3.757 −3.702 −3.689 −3.518 −3.442
50 −4.032 −3.752 −3.595 −3.550 −3.522 −3.388 −3.275
70 −3.967 −3.687 −3.537 −3.494 −3.446 −3.310 −3.235

100 −3.888 −3.642 −3.494 −3.470 −3.402 −3.257 −3.207
5%

30 −3.947 −3.710 −3.611 −3.559 −3.545 −3.443 −3.355
50 −3.755 −3.559 −3.456 −3.406 −3.380 −3.292 −3.222
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Table 3. Cont.

T\N 5 10 15 20 25 50 100

70 −3.693 −3.501 −3.408 −3.360 −3.328 −3.221 −3.188
100 −3.599 −3.481 −3.334 −3.323 −3.297 −3.173 −3.153

10%
30 −3.758 −3.603 −3.524 −3.488 −3.473 −3.389 −3.327
50 −3.593 −3.438 −3.391 −3.335 −3.307 −3.239 −3.194
70 −3.536 −3.388 −3.325 −3.294 −3.262 −3.180 −3.162

100 −3.493 −3.369 −3.295 −3.253 −3.244 −3.120 −3.129

3. Finite Sample Performance

We evaluate the size of the test statistics by designing the following data generating
process (DGP):

yi,t = yi,t−1 + εi,t, with εi,0 = 0
εi,t = λi ft + ui,t,

(16)

where ft ∼ N(0, 1), ui,t ∼ iid.N
(
0, σ2

i
)

with σ2
i ∼ iid.U(0.5, 1.5).

We generate both the low and high levels of cross-section dependency with factor
loadings λi ∼ iid.U(0.0, 0.2) and λi ∼ iid.U(−1.0, 3.0). We present the empirical size of
the panel exponential smooth transition model with logistic smooth transition trend (i.e,
LSTTESTAR (1)) unit root test in the Table 4 given below.

The size analysis was conducted by following the methodology of Pesaran [25]. He
conducted the size analysis with employing of the IPS test [39], truncated IPS test, p-test DF,
and Z-test DF, and tried to show the size distortion resulting from these tests under cross-
section dependency. IPS, truncated IPS, p-test DF, and Z-test DF are first-generation panel
unit root tests that do not cover cross-section dependency remedies. As a result of his study,
Pesaran found that no size distortion results occur in weak cross-section dependency, but
all tests tend to over-reject, often by a substantial amount, in high cross-section dependency.
Likewise, the PLSTTESTAR (1) test also suffers from oversize problems when no remedy is
applied. However, this oversize situation is less than what is encountered in the study [25].
There are two reasons why the PLSTTESTAR (1) test has lesser size problems than the
tests in the paper [25]. The first reason is a nonlinear time-varying trend; the other is
state-dependent nonlinearity, which is included in the unit root testing model.

Table 4. The size of tBRNL,A unit root test with no CSD remedy for model A.

T/N 5 25 50 100

Strong Cross-Section Dependency (−1.0, 3.0)

30 0.089 0.198 0.258 0.304
50 0.091 0.212 0.264 0.328
70 0.098 0.217 0.271 0.339

100 0.099 0.219 0.282 0.361

Weak Cross-Section Dependency (0.0, 2.0)

30 0.047 0.049 0.052 0.054
50 0.046 0.051 0.053 0.055
70 0.049 0.052 0.053 0.056

100 0.049 0.051 0.054 0.058

No Cross-Section Dependency (0.0, 0.0)

30 0.045 0.045 0.046 0.045
50 0.047 0.048 0.049 0.048
70 0.052 0.050 0.049 0.051

100 0.051 0.052 0.051 0.050
Note: The Monte Carlo trials are taken as 2000.
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First of all, we discuss why the nonlinear treatment of the deterministic trend reduces
the cross-section dependency, and then it will be debated how the nonlinear modeling
of the stochastic part contributes to this. Looking at the size analysis of the work [25],
the null hypothesis rejection rate for nominal size 5% for the IPS test N = 50 is around
34%, and for N = 100, it is 39%. These rates are 25% for the PLSTTESTAR (1) model A
N = 50 and 30% for N = 100. As can be seen, the rate of rejecting the null hypothesis
has decreased. The above-mentioned time-varying nonlinear trend is the first reason for
reducing the oversize problem due to cross-section dependency. The explanations on this
subject were first discussed by Fuertes and Smith [40] and Omay et al. [33]. In the study
of [40], the cross-section dependency caused by common shocks can be confused with
structural breaks. On the other hand, in the work of [33], a unit root test of the panel LSTT
model type was proposed, and it was shown in simulation studies that the nonlinear trend
reduces cross-section dependency. To strengthen this argument, we applied the same size
analysis to PLSTTESTAR (1) models B and C. Interested researchers can see the results of
this study in Table 5 below. For N = 50 T = 30, it was 24% in model B and 23% in model C.
The most significant decrease occurred in N = 100 T = 100 model A at 36%, while model
B decreased to 34% and model C to 30%. Similar results to what we found here can also
be found in [33]. Therefore, we confirm the findings of the studies [33,40]. In addition to
this evidence, it is useful to know that there will be decreases due to the state-dependent
nonlinear model. Until here, we explain the time-dependent nonlinear structure that may
eliminate cross-section dependency, but other sources eliminate CSD, such as the panel
smooth transition model used in the study of Omay and Kan [41].

Table 5. The size of tBRNL,B, and tBRNL,C unit root tests with no CSD remedy for models B and C.

T/N 5 25 50 100

Strong CSD Model B (−1.0, 3.0)

30 0.084 0.176 0.242 0.302
50 0.088 0.194 0.247 0.321
70 0.092 0.207 0.268 0.335

100 0.093 0.209 0.278 0.349

Strong CSD Model C (−1.0, 3.0)

30 0.068 0.174 0.230 0.299
50 0.072 0.185 0.238 0.308
70 0.077 0.192 0.242 0.319

100 0.081 0.199 0.267 0.329
Note: The Monte Carlo trials are taken as 2000.

Their study is based on the model misspecification tests. They employed the Pe-
saran [42] CDLM test in the models, in which they put the linear model, linearized model,
nonlinear model, and the factors considered in the Pesaran [43] model into nonlinear PSTR
estimation. As a result of this model misspecification test, they showed that the degree of
cross-section dependency falls slightly when the model is to have a nonlinear structure.
However, it is seen from the diagnostic check that cross-section dependency cannot be
eliminated without adding factors to the nonlinear model. In the study [41], the linearized
model has the same structure as our proposed nonlinear panel unit root test’s ESTAR (1)
part. They have shown that the linearized nonlinear model slightly reduces cross-section
dependency. Therefore, it is evident that the linearized model will reduce cross-section
dependency without adding factors. The size analysis confirms the facts we have explained
here in light of this information.

Tables 6 and 7 report the rejection probabilities of the null hypothesis for the newly
proposed unit root test. Empirical sizes of both the panel LSTTESTAR (1) unit root test
with the common correlated effect estimator and the bootstrap procedure are reasonably
close to nominal size for weak and high cross-section dependency. The sieve bootstrap
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methodology tends to be slightly oversized concerning the CCE version of the proposed
test. Overall, the version of CCE-based test statistics tends to display better size properties.

Table 6. The size of tBRNL,C unit root test with CCE factor.

T/N 5 25 50 100

Strong CSD (−1.0, 3.0)

30 0.045 0.042 0.032 0.036
50 0.036 0.045 0.035 0.049
70 0.039 0.049 0.047 0.054

100 0.045 0.059 0.054 0.049

Weak CSD (0.0, 2.0)

30 0.046 0.048 0.054 0.051
50 0.051 0.053 0.049 0.049
70 0.048 0.050 0.047 0.053

100 0.052 0.049 0.051 0.050
Note: The Monte Carlo trials are taken as 2000.

Table 7. The size of tBRNL,C unit root test with sieve bootstrap.

T/N 5 25 50 100

Strong CSD (−1.0, 3.0)

30 0.049 0.054 0.058 0.055
50 0.056 0.055 0.059 0.057
70 0.058 0.058 0.060 0.061

100 0.059 0.059 0.061 0.064

Weak CSD (0.0, 2.0)

30 0.046 0.049 0.050 0.051
50 0.051 0.053 0.054 0.053
70 0.048 0.051 0.050 0.054

100 0.052 0.052 0.055 0.051
Note: The Mont Carlo trials are taken as 2000.

We perform simulation studies whose methodologies are summarized in the Technical
Annex Appendix A. Fortunately, we see almost the same size analysis results in Omay
et al. [33]. The size analysis employed here, Appendix A, and the analysis in [33] size
analysis are consistent. Considering this situation, if an adjusted power analysis is per-
formed, the proposed test’s sieve bootstrap and CCE versions will show the same power
characteristics.

Considering these reasons, it is thought that a comparison with other tests will con-
tribute more to the existing nonlinear panel unit root literature. In addition, this research
will shed better light on which tests can better test the PPP hypothesis we examined.

Therefore, we will concentrate on contributing to the economic theory of how the
proposed test behaves in different parameter regions by using very extensive parameter
regions. This power analysis is primarily designed to shed light on the alleged behavioral
pattern in financial markets. The economic events that cause financial markets’ nonlinear
convergence behavior are listed as market friction, transaction cost, spread between finan-
cial prices, short sales, borrowing restrictions, the interaction of heterogeneous agents, herd
behavior, and momentum trading. These economic events make arbitrage unprofitable in
small changes and converge to equilibrium for large arbitrages [19]. Therefore, a return
to equilibrium only occurs when the deviations from this equilibrium are large, and thus,
arbitrage activities are profitable [19]. That is to say, the dynamic behavior of financial
variables will differ according to the size of the deviation from equilibrium, regardless of
the sign of this deviation. Band TAR and ESTAR functions are available in the literature as
functional structures to consider such behaviors.
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For this reason, the ESTAR function has been used in many studies to test the exchange
rates and PPP hypothesis. Power analysis, which we will discuss below, is primarily
designed to compare this behavior at first. The advantages and disadvantages of the
proposed test in contrast to other panel unit root tests will be compared. This analysis will
be handled when there is a moderate break structure, and how the ESTAR model behaves
in high persistence and more nonlinear behavior regions or vice versa will be examined. In
order to make comparisons of the proposed new test, initially, the tests closest to the ESTAR
convergence containing the logistic trend were selected. The power analysis included
in [36] for the panel unit root test considers TAR convergence with a logistics smooth trend.
As can be seen, this study is the closest study to the band TAR study mentioned above.
In addition, it is the closest test to the proposed test in this study. The sieve bootstrap
method was used to eliminate the cross-section dependency as in [33]. Leybourne et al. [18]
suggested including intercept and trend test versions when they have not covered any
structural break in the UO test. The linear Im, Pesaran, and Shin [39] panel unit root
test, which is the initiator of panel unit root tests, was included in the power analysis to
compare the parameter regions where linearity increased. Finally, the analysis included the
Omay, Hasanov, and Shin [33] panel unit root test with the logistic trend. In this way, all
components of the proposed test were also included in the power comparison separately.
In their panel unit root test, sieve bootstrap and common correlated error methods were
used for remedying cross-section dependency, and it was discussed in detail that the sieve
bootstrap method is a better remedy. In light of these explanations, it is clear that if the
selected parameters provide high persistence and nonlinearity in power comparison, these
parameter regions are the regions where we observe real exchange behavior. When we
decrease the high persistence and nonlinearity parameters, the power of the proposed
test is expected to decrease and vice versa. Therefore, by using the below data-generating
process, we employ an extensive power analysis:

yit = α1,i + α2,iSi,t(γi, τi) + wi,t (17)

ŵit = ϕ2,iŵi,t−1

(
1− exp

[
−δiŵ2

i,t−1

])
+ υi,t (18)

The parameter regions are given in Table 8. This table is devoted to the ESTAR (1)
component of the newly proposed test: state-dependent nonlinear behavior around a
nonlinear attractor, namely, a logistic smooth transition trend. Therefore, in the first part of
the power analysis, we investigate the financial variable behaviors in high persistence and
nonlinearity regions.

Table 8. The power comparison of alternative tests.

α2,i = 5.0 γi = 0.5 τi = 0.5 ϕ2,i = −0.1 δi = 0.01

T/N N = 5 N = 25

tBRNL tNL tIPS tBR tBrTt FBrTF tBRNL tNL tIPS tBR tBrTt FBrTF

30 0.082 0.001 0.001 0.035 0.056 0.052 0.148 0.018 0.011 0.108 0.122 0.123
50 0.148 0.018 0.011 0.108 0.122 0.123 0.185 0.022 0.016 0.122 0.131 0.141
70 0.185 0.022 0.016 0.122 0.130 0.134 0.224 0.041 0.018 0.126 0.211 0.223
100 0.224 0.041 0.018 0.136 0.201 0.201 0.297 0.103 0.042 0.153 0.226 0.233

T/N N = 50 N = 100

tBRNL tNL tIPS tBR tBrTt FBrTF tBRNL tNL tIPS tBR tBrTt FBrTF

30 0.214 0.025 0.021 0.136 0.142 0.159 0.259 0.032 0.026 0.145 0.153 0.177
50 0.222 0.036 0.025 0.146 0.184 0.194 0.283 0.053 0.032 0.151 0.248 0.265
70 0.263 0.063 0.035 0.168 0.241 0.305 0.302 0.079 0.042 0.185 0.267 0.387
100 0.372 0.165 0.062 0.188 0.291 0.332 0.483 0.227 0.084 0.274 0.325 0.431
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Table 8. Cont.

α2,i = 5.0 γi = 0.5 τi = 0.5 ϕ2,i = −0.1 δi = 1.0

T/N N = 5 N = 25

tBRNL tNL tIPS tBR tBrTt FBrTF tBRNL tNL tIPS tBR tBrTt FBrTF

30 0.299 0.001 0.001 0.194 0.183 0.185 0.397 0.062 0.061 0.385 0.332 0.348
50 0.356 0.002 0.001 0.288 0.254 0.273 0.428 0.107 0.093 0.419 0.361 0.379
70 0.401 0.012 0.011 0.340 0.325 0.336 0.697 0.256 0.257 0.537 0.324 0.384
100 0.451 0.036 0.034 0.398 0.394 0.361 0.951 0.694 0.689 0.898 0.759 0.858

T/N N = 50 N = 100

tBRNL tNL tIPS tBR tBrTt FBrTF tBRNL tNL tIPS tBR tBrTt FBrTF

30 0.638 0.077 0.068 0.613 0.514 0.512 0.865 0.106 0.071 0.860 0.683 0.847
50 0.647 0.116 0.105 0.631 0.363 0.449 0.898 0.217 0.118 0.872 0.705 0.806
70 0.875 0.417 0.409 0.836 0.474 0.604 0.989 0.718 0.639 0.977 0.711 0.939
100 0.996 0.928 0.923 0.992 0.934 0.946 1.000 0.985 0.980 1.000 0.989 1.000

α2,i = 5.0 γi = 0.5 τi = 0.5 ϕ2,i = −1.0 δi = 0.01

T/N N = 5 N = 25

tBRNL tNL tIPS tBR tBrTt FBrTF tBRNL tNL tIPS tBR tBrTt FBrTF

30 0.301 0.001 0.001 0.238 0.235 0.237 0.566 0.134 0.102 0.474 0.401 0.406
50 0.366 0.005 0.004 0.338 0.332 0.337 0.707 0.344 0.174 0.647 0.422 0.439
70 0.478 0.017 0.015 0.387 0.378 0.385 0.957 0.681 0.426 0.795 0.573 0.648
100 0.718 0.081 0.045 0.488 0.474 0.484 1.000 0.982 0.951 0.986 0.982 0.985

T/N N = 50 N = 100

tBRNL tNL tIPS tBR tBrTt FBrTF tBRNL tNL tIPS tBR tBrTt FBrTF

30 0.677 0.178 0.168 0.621 0.517 0.543 0.958 0.436 0.151 0.956 0.819 0.927
50 0.898 0.548 0.281 0.862 0.666 0.719 0.997 0.839 0.374 0.992 0.905 0.972
70 0.996 0.909 0.732 0.975 0.834 0.882 0.999 0.997 0.929 0.999 0.963 0.996
100 0.999 0.994 0.986 0.999 0.996 0.997 1.000 1.000 1.000 1.000 1.000 1.000

α2,i = 5.0 γi = 0.5 τi = 0.5 ϕ2,i = −1.0 δi = 1.0

T/N N = 5 N = 25

tBRNL tNL tIPS tBR tBrTt FBrTF tBRNL tNL tIPS tBR tBrTt FBrTF

30 1.000 0.383 0.562 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
50 1.000 0.972 0.993 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
70 1.000 0.994 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
100 1.000 0.998 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

T/N N = 50 N = 100

tBRNL tNL tIPS tBR tBrTt FBrTF tBRNL tNL tIPS tBR tBrTt FBrTF

30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Note: tBRNL indicates the PLSTTESTAR newly proposed test, tNL is PESTAR UO (2009) test, tIPS is IPS (2003) test,
tBR is PLSTT OHS (2018) test, and tBrTt FBrTF are PLSTTTAR OCE (2018) tests. The Monte Carlo trials are 2000.

As the transition speed parameter delta δi in the ESTAR (1) part of the newly proposed
test becomes smaller, the power increases in the newly proposed test are greater than the
linear models. This situation increases the power of the panel unit root test, independent of
other parameters that determine the structure of the test. Kapetanios et al. [19] observed
this power relationship between the KSS and ADF tests. Among the panel unit root tests
we discussed here, this relationship is similar to that between the proposed and OHS
tests (panel logistic smooth transition trend). For example, power analysis results were
obtained as 0.224 and 0.136 for N = 5, T = 100, and δi = 0.01 values for PLSTTESTAR (1) and
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PLSTT unit root tests, respectively. Meanwhile, 0.451 and 0.398 were obtained for N = 5,
T = 100, and δi = 1.0 values. If the ratio of the power result obtained for the new test and the
OHS test results is 1.64 times higher when δi is small (N = 5, T = 100 and gamma 0.01), it
decreases to 1.13 times when δi is large (N = 5, T = 100 and gamma 1.0). This relationship is
seen in all parameters and N and T combinations. The generated series converges toward a
linear process as δi grows, so the remaining part in the nonlinear de-trend series becomes
linear. In addition, the persistence of the series increases as ϕ2,i increases. As the transition
rate parameter ϕ2,i in the ESTAR (1) part of the proposed test increases, the power increases
more than all other tests. This situation increases the power of the newly proposed panel
unit root test, independent of other parameters that determine the structure of the test.
Therefore, the proposed test has higher power in more persistent data generation areas. The
power analysis reveals that the proposed test captures the financial data’s high persistence
and nonlinear characteristics well. Power analysis will be continued within the framework
of the economic relationship of the PPP hypothesis with structural breaks. Most empirical
studies accepted the PPP hypothesis by using structural break unit root testing.

Regarding this issue, Hegwood and Papell [10] state that a very long data range covers
both fixed and floating exchange rate regimes and may produce spurious results due to
regime changes. In another example, Edison and Kloveland [44] note that, although the
homogeneity assumption behind the standard view of PPP is valid only in the long run,
long data streams can encounter regime changes in tastes and technology, which means
permanent movements in the equilibrium of exchange rates. However, they stated that
if the equilibrium reel exchange rate deviations are permanent, it will cause the quasi-
PPP hypothesis.

Nevertheless, they emphasize that the standard PPP will still be valid under the
temporary break condition. In addition, various external shocks may cause the equilibrium
value of the real exchange rate to change over time and continue at a different equilibrium
real exchange rate. For example, the oil price shocks of 1973 and the collapse of the socialist
bloc in the 1990s may have altered the equilibrium real exchange rates of oil-importing
and transition countries, respectively. Even though these structural changes come with
shocks, the changes in the exchange rate take time. Thus, they can be better captured by
smooth transition models. This power analysis section will show that the PPP hypothesis
can be tested more strongly with the correct structural break test. Hegwood and Papell [10]
stated that another crucial structural break model is the model in which the long-term
PPP hypothesis remains valid by proposing a temporary structural break instead of the
quasi-PPP hypothesis. Sollis [14] modeled the pre-appreciation and post-depreciation
periods with a temporary break using the exponential smooth transition trend (ESTT)
model. Çorakcı et al. [35] evaluated the ESTT model as a monotone function and criticized
the Fourier function used in the article [14]. The main goal of these studies is to determine
the long-term PPP hypothesis when there is a temporary break. However, since break
structures will be found in a wide variety of structures, they are insufficient to analyze
short-term data. For the long-run PPP hypothesis, the sample needs to be very long, and the
structural break is expected to cause a temporary change in the exchange rate equilibrium.
The validity of the test remains very limited under these restrictive assumptions. The
hypothesis of Hegwood and Papell [10] and their follower Sollis [14] that the real exchange
rate should have an equal, constant mean before and after the structural change is a
very limiting hypothesis compared with the quasi-PPP hypothesis. The logistic smooth
transition model C we use can capture such structures, albeit partially, and shows whether
the long-term PPP hypothesis is valid or not. In this respect, additional information on this
subject will be given in the empirical part. In the power analysis section, we will examine
the power performances of our test by comparing it with some other tests for different
logistic smooth transition parameters.

There are three parameters of the logistic smooth transition trend. The first of these
parameters, the α2,i parameter, determines the magnitude of the structural break; the
transition speed γi parameter determines the speed of the transition from one real exchange



Symmetry 2023, 15, 747 13 of 48

rate equilibrium to the next (it determines the duration); and, finally, the threshold τi
parameter determines the location of the structural break. Smooth, moderate, and sharp
breaks can be obtained from combinations of these three parameters. In addition, the
permanent break can be obtained with the LST trend, and the model C structure has the
flexibility to imitate the temporary break structure. As we mentioned above, the quasi-
PPP hypothesis is a more general hypothesis that reveals the superiority of the LSTT
function in testing this hypothesis. We mentioned that smooth-transition breaks have better
test properties than instant structural breaks because heterogeneous agents cannot take
action simultaneously in financial markets. Therefore, this structure leads to a smooth or
rather long-duration break structure. In the LSTT function, this feature is provided by the
transition speed parameter γi. As shown in Table 9, the power of unit root tests with the
LSTT function increases as the transition speed parameter γi becomes smaller. In addition,
as the size of the break parameter α2,i increases, the power performance of the tests with
the LSTT function increases, compared with the tests without structural breaks. Another
interesting result is that while the structural break parameters approach the middle of the
sample, the power performance of panel unit root tests, including LSTT, increases. In the
Table 9, we consider three different cases depending on the magnitudes of the structural
break parameter α2,i. For the small or moderate break with α2,i = 5.0, the IPS or any other
panel unit root test without any structural component has better power features than higher
structural break parameters. See also similar results documented in Leybourne et al. [18],
Sollis [14], and Omay and Yıldırım [20]. The power of all the tests is negatively associated
with the γi parameter. Furthermore, the threshold location parameter, τi, also negatively
affects the power of the smooth transition-type tests. In particular, when the threshold
is located at the beginning of the sample, LST trend unit root tests tend to display lower
power performance with respect to τi = 0.5. As expected, in all of the parameter region, the
panel LSTTESTAR (1) test becomes more powerful than the other tests in which the ESTAR
(1) parameter is selected to imitate the high persistency and nonlinear structure of financial
markets. Hence, we may conclude that the logistic smooth transition function can capture
the small, moderate, and sharper breaks. Finally, when the structural break parameter
is substantially large, the IPS and UO tests lose power. The performance of the smooth
transition-type de-trending tests improves when the value of the structural break parameter
increases. Therefore, the panel LSTTESTAR (1), PLSTT, and panel threshold autoregressive
with logistic smooth transition trend (i.e PLSTTTAR) test should become more powerful in
this region. Therefore, the PLSTTESTAR (1) test outperforms other tests for the cases with
moderate, high structural breaks and high transition speeds with the threshold located in
the middle. The unit root test procedures proposed in this article have excellent features
compatible with the theoretical and empirical dynamics of many economic time series,
including real exchange rates. The proposed tests allow for permanent and temporary
structural breaks, whereas shifts between regimes might be relatively gradual.

Table 9. The power comparison of alternative tests.

α2,i = 5.0 γi = 0.5 τi = 0.5 ϕ2,i = −1.0 δi = 1.0

T\N N = 5 N = 25

tBRNL tNL tIPS tBR tBrTt FBrTF tBRNL tNL tIPS tBR tBrTt FBrTF

30 0.065 0.008 0.005 0.053 0.053 0.048 0.147 0.107 0.101 0.141 0.129 0.111
50 0.088 0.009 0.007 0.082 0.083 0.079 0.194 0.118 0.111 0.158 0.149 0.122
70 0.095 0.014 0.008 0.088 0.086 0.082 0.380 0.190 0.181 0.274 0.242 0.193
100 0.143 0.054 0.026 0.149 0.118 0.104 0.807 0.345 0.338 0.532 0.359 0.349

T\N N = 50 N = 100

tBRNL tNL tIPS tBR tBrTt FBrTF tBRNL tNL tIPS tBR tBrTt FBrTF

30 0.185 0.120 0.119 0.145 0.138 0.121 0.241 0.186 0.179 0.219 0.216 0.205
50 0.199 0.154 0.151 0.197 0.184 0.175 0.298 0.201 0.198 0.285 0.262 0.258
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Table 9. Cont.

70 0.404 0.224 0.219 0.396 0.387 0.239 0.578 0.326 0.322 0.557 0.406 0.401
100 0.863 0.505 0.502 0.848 0.562 0.551 0.989 0.697 0.692 0.979 0.724 0.954

α2,i = 5.0 γi = 5.0 τi = 0.5 ϕ2,i = −0.1 δi = 1.0

T\N N = 5 N = 25

tBRNL tNL tIPS tBR tBrTt FBrTF tBRNL tNL tIPS tBR tBrTt FBrTF

30 0.109 0.005 0.001 0.081 0.021 0.024 0.127 0.009 0.003 0.098 0.025 0.035
50 0.132 0.010 0.005 0.102 0.072 0.085 0.249 0.029 0.025 0.117 0.080 0.098
70 0.146 0.015 0.010 0.117 0.065 0.079 0.772 0.417 0.402 0.574 0.479 0.505
100 0.239 0.027 0.021 0.232 0.138 0.158 0.957 0.645 0.633 0.806 0.716 0.791

T\N N = 50 N = 100

tBRNL tNL tIPS tBR tBrTt FBrTF tBRNL tNL tIPS tBR tBrTt FBrTF

30 0.181 0.011 0.005 0.109 0.044 0.048 0.262 0.014 0.009 0.130 0.063 0.073
50 0.434 0.039 0.031 0.164 0.149 0.155 0.671 0.051 0.039 0.252 0.218 0.236
70 0.798 0.428 0.424 0.552 0.518 0.536 0.963 0.621 0.612 0.848 0.713 0.798
100 0.971 0.914 0.905 0.992 0.741 0.844 1.000 0.996 0.992 1.000 0.998 1.000

α2,i = 5.0 γi = 5.0 τi = 0.2 ϕ2,i = −0.1 δi = 1.0

T\N N = 5 N = 25

tBRNL tNL tIPS tBR tBrTt FBrTF tBRNL tNL tIPS tBR tBrTt FBrTF

30 0.032 0.005 0.002 0.006 0.009 0.007 0.058 0.024 0.022 0.028 0.037 0.033
50 0.059 0.017 0.010 0.019 0.018 0.029 0.085 0.042 0.040 0.045 0.055 0.052
70 0.081 0.053 0.024 0.055 0.064 0.062 0.380 0.270 0.255 0.278 0.289 0.284
100 0.147 0.123 0.064 0.128 0.132 0.130 0.813 0.710 0.701 0.718 0.725 0.722

T\N N = 50 N = 100

tBRNL tNL tIPS tBR tBrTt FBrTF tBRNL tNL tIPS tBR tBrTt FBrTF

30 0.078 0.035 0.033 0.058 0.067 0.063 0.078 0.035 0.033 0.058 0.067 0.063
50 0.177 0.151 0.148 0.165 0.175 0.171 0.177 0.151 0.148 0.165 0.175 0.171
70 0.468 0.377 0.356 0.395 0.401 0.399 0.468 0.377 0.356 0.395 0.401 0.399
100 0.898 0.824 0.820 0.856 0.868 0.865 0.978 0.911 0.901 0.946 0.958 0.956

α2,i = 10.0 γi = 5.0 τi = 0.5 ϕ2,i = −0.1 δi = 1.0

T\N N = 5 N = 25

tBRNL tNL tIPS tBR tBrTt FBrTF tBRNL tNL tIPS tBR tBrTt FBrTF

30 0.138 0.000 0.000 0.024 0.026 0.023 0.144 0.000 0.000 0.056 0.059 0.046
50 0.149 0.000 0.000 0.029 0.038 0.034 0.245 0.030 0.000 0.114 0.124 0.111
70 0.197 0.000 0.000 0.081 0.085 0.079 0.817 0.062 0.000 0.306 0.326 0.302
100 0.238 0.019 0.000 0.220 0.225 0.201 0.986 0.098 0.000 0.724 0.729 0.721

T\N N = 50 N = 100

tBRNL tNL tIPS tBR tBrTt FBrTF tBRNL tNL tIPS tBR tBrTt FBrTF

30 0.185 0.009 0.000 0.086 0.089 0.085 0.294 0.028 0.001 0.178 0.198 0.177
50 0.599 0.056 0.000 0.217 0.221 0.216 0.819 0.076 0.005 0.305 0.316 0.304
70 0.879 0.083 0.000 0.506 0.511 0.504 0.984 0.124 0.011 0.722 0.734 0.730
100 0.996 0.102 0.000 0.815 0.823 0.814 1.000 0.206 0.017 0.933 0.936 0.932

Note: tBRNL indicates the PLSTTESTAR newly proposed test, tNL is PESTAR UO (2009) test, tIPS is IPS (2003)
test, tBR is PLSTT OHS (2018) test, and tBrTt and FBrTF are PLSTTTAR OCE (2018) tests. The Monte Carlo trials
are 2000.

4. Cross-Section Dependency (CSD)

A generally faced problem in panel regression models is the presence of CSD. CSD can
arise because of spatial correlations, spill-over effects, economic distance, omitted global
variables, and common unobserved shocks. Correlated errors through individuals make
the classical unit root and cointegration testing procedure invalid in panel data models.
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Banerjee et al. [22] assess the finite sample performance of the available tests and find
that all tests experience severe size distortions when panel members are cointegrated. To
overcome this issue, some tests based on the regression equation, including the unobserved
or observed factors as the additional regressors, have been suggested in recent years
(e.g., [23–25,41,45,46]).

On the other hand, Maddala and Wu [27], Chang [28], and Ucar and Omay [31]
consider the bootstrap-based tests to obtain good size properties. In this study, we used two
methods to deal with the cross-section dependency problem. One is the common correlated
effect (henceforth, CCE) estimator proposed by Pesaran [25], and the other is the bootstrap
method. In the bootstrap method, we impose the methodology of the UO test.

The CCE estimation procedure has the advantage that the least number of squares
can compute it to auxiliary regression, where the observed regressors are augmented with
cross-sectional averages of the dependent variable, individual-specific regressors, and
state-dependent variables. This augmentation leads to a new set of estimators mentioned
in Pesaran (2006), referred to as the common correlated effects (CCE) estimators, that can
be computed by running smooth transition panel regressions augmented with cross-section
averages of the dependent and independent variables. The CCE procedure applies to
panels with single or multiple unobserved factors so long as the number of unobserved
factors is fixed.

Let ŵi,t be a panel exponential smooth transition autoregressive process de-trended by
the logistic smooth transition trend of order 1 (PESTAR (1)) on the time domain t = 1, 2,
. . . , T for the cross-section units i = 1, 2, . . . , N. Consider ŵi,t generated by the following
PESTAR (1) process:

∆ŵit = ϕ1,iŵi,t−1 + ϕ2,iŵi,t−1

(
1− exp

[
−δiŵ2

i,t−1

])
+ υi,t (19)

where d = 1 is the delay parameter and δi ≥ 0 represents the speed of transition for all
units, and υi,t is a serially and cross-sectionally uncorrelated disturbance term with zero
mean and variance σ2

i .
By considering the previous literature, Ucar and Omay [31] set ϕ1,i = 0 for all i and

d = 1, which gives the specific PESTAR (1) model:

∆ŵit = ϕ2,iŵi,t−1

(
1− exp

[
−δiŵ2

i,t−1

])
+ υi,t (20)

A nonlinear panel data unit root based on regression (19) with augmented lag variables
in empirical application is simply to test the null hypothesis δi = 0 for all i against δi ≥ 0
for some i under the alternative.

However, directly testing the null is problematic since δi is not identified under the null.
This problem can be solved by taking first-order Taylor series expansion to the PESTAR (1)
model around δi = 0 for all i. Hence, the obtained auxiliary regression is given by:

∆ŵi,t = ρiŵ3
i,t−1 + ∑k

j=1 δi,j∆ŵi,t−j + η̂i,t (21)

In empirical application, Equation (18) was augmented by lagged variables of a
dependent variable by using Akaike information criteria (AIC) and Schwarz–Bayesian
information criteria (SBC). Now, if we include the factor structure into the nonlinear model
with a single factor:

∆ŵi,t = ρiŵ3
i,t−1 + ηi,t (22)

ηi,t = λi ft + ui,t (23)

ui,t ∼ iid.N
(

0, σ2
i

)
, and ft ∼ N

(
0, σ2

f

)
(24)

Notice here that ft is the unobserved common factor, λi are the factor loadings, and ui,ts are
idiosyncratic error terms assumed to be independently distributed across i and t. Note that
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ŵi,t are de-trended series from Equations (8)–(10). Thus, following the article of Pesaran [25],
we obtain the below auxiliary regression for approximating the unobserved factors:

∆ŵi,t = ρiŵ3
i,t−1 + Φiŵ

3
t−1 + ιi∆ŵt + ηi,t (25)

Now we can obtain the critical values by using this transformation to eliminate cross-section
dependency for the statistic:

tCCE
BRNL,j = N−1∑N

i=1 tCCE
i,BRNL j = {A, B, C} (26)

Tables 10–12 provide the critical values for different models since the true DGP is
generated with cross sectionally dependent data.

Table 10. Exact critical values of tCCE
BRNL,A statistics model A under CSD.

T\N 5 10 15 20 25 50 100

1%
30 −3.426 −3.071 −2.955 −2.888 −2.843 −2.731 −2.659
50 −3.420 −3.051 −2.952 −2.882 −2.829 −2.728 −2.655
70 −3.346 −3.042 −2.950 −2.879 −2.817 −2.726 −2.653

100 −3.296 −3.028 −2.943 −2.873 −2.812 −2.725 −2.636
5%

30 −3.033 −2.854 −2.797 −2.736 −2.709 −2.635 −2.577
50 −3.018 −2.848 −2.782 −2.729 −2.699 −2.630 −2.560
70 −3.017 −2.844 −2.777 −2.724 −2.694 −2.629 −2.550

100 −3.015 −2.839 −2.770 −2.716 −2.689 −2.626 −2.548
10%

30 −2.879 −2.751 −2.700 −2.666 −2.650 −2.586 −2.577
50 −2.864 −2.743 −2.698 −2.659 −2.635 −2.581 −2.534
70 −2.860 −2.712 −2.690 −2.655 −2.627 −2.578 −2.556

100 −2.853 −2.703 −2.687 −2.652 −2.621 −2.576 −2.551

Table 11. Exact critical values of tCCE
BRNL,B statistics model B under CSD.

T\N 5 10 15 20 25 50 100

1%
30 −3.882 −3.577 −3.491 −3.448 −3.369 −3.208 −3.170
50 −3.863 −3.496 −3.374 −3.295 −3.251 −3.183 −3.090
70 −3.832 −3.416 −3.369 −3.271 −3.212 −3.123 −3.056

100 −3.730 −3.447 −3.356 −3.249 −3.248 −3.118 −3.056
5%

30 −3.588 −3.366 −3.285 −3.229 −3.214 −3.121 −3.075
50 −3.498 −3.301 −3.189 −3.152 −3.134 −3.069 −3.007
70 −3.466 −3.249 −3.186 −3.146 −3.119 −3.059 −3.007

100 −3.426 −3.242 −3.178 −3.141 −3.118 −3.050 −3.000
10%

30 −3.384 −3.260 −3.196 −3.152 −3.139 −3.073 −3.035
50 −3.326 −3.186 −3.109 −3.078 −3.076 −3.015 −2.981
70 −3.294 −3.158 −3.094 −3.077 −3.058 −3.011 −2.973

100 −3.291 −3.136 −3.025 −3.076 −3.058 −3.010 −2.973
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Table 12. Exact critical values of tCCE
BRNL,C statistics model C under CSD.

T\N 5 10 15 20 25 50 100

1%
30 −4.102 −3.852 −3.691 −3.627 −3.556 −3.449 −3.320
50 −4.043 −3.745 −3.613 −3.499 −3.458 −3.331 −3.228
70 −3.945 −3.636 −3.544 −3.479 −3.424 −3.329 −3.198

100 −3.875 −3.612 −3.509 −3.457 −3.399 −3.217 −3.108
5%

30 −3.664 −3.592 −3.521 −3.455 −3.416 −3.352 −3.296
50 −3.656 −3.493 −3.430 −3.375 −3.336 −3.264 −3.210
70 −3.590 −3.434 −3.378 −3.345 −3.302 −3.234 −3.152

100 −3.517 −3.426 −3.348 −3.320 −3.281 −3.192 −3.081
10%

30 −3.497 −3.479 −3.412 −3.366 −3.342 −3.298 −3.256
50 −3.486 −3.378 −3.332 −3.295 −3.266 −3.217 −3.182
70 −3.457 −3.323 −3.287 −3.256 −3.237 −3.192 −3.124

100 −3.427 −3.316 −3.269 −3.243 −3.215 −3.178 −3.001

In this paper, we also examine the UO test and hence apply the sieve bootstrap method
to deal with the cross-section dependency problem. Note that ŵi,t are de-trended series
from Equations (8)–(10); therefore, the deterministic term φi(t) is also included in our
computations.

i. The following OLS regression is considered for each entity, which allows for differ-
ent lag orders pi

∆ŵi,t = ρiŵ3
i,t−1 + ∑pi

j=1 ψi,j∆ŵi,t−j + ηi,t (27)

ii. The null of no unit root is imposed to generate samples of residuals. Errors are
estimated as below:

η̂i,t = ∆ŵi,t −∑pi
j=1 vi,j∆ŵi,t−j (28)

iii. Stine (1987) offers that the residuals have to be centered with

η̃t = η̂t −
1

(T − p− 2)∑
T
t=p+2 η̂t (29)

where η̂t = (η̂1,t, η̂2,t, . . . , η̂N,t)
′ and p = max

i
(pi). Moreover, we construct the

NxT[η̃i,t] matrix from these residuals. We select the residuals column randomly
with replacement at a time to preserve the cross-section structure of the errors. The
bootstrap residuals are denoted as η̃∗i,t, where t = 1, 2, . . . ., T∗ and T∗ = 2T.

iv. We first generate stationary bootstrap samples ∆ŵ∗i,t recursively from

∆ŵ∗i,t = ∑pi
j=1 κi,j∆ŵ∗i,t−j + η̃∗i,t (30)

where the initial values of ∆w∗i,t−j are set to zero. We then generate w∗i,t as the partial
sum process

ŵ∗i,t = ∑t
k=1 ∆ŵ∗i,k (31)

The bootstrap statistics t∗BRNL,j j = {A, B, C} are computed for each bootstrap replica-
tion by running the regression equation

∆ŵ∗i,t = ρiŵ3∗
i,t−1 +

pi

∑
j=1

ϑi,j∆ŵ∗i,t−j + vi,t (32)

The empirical distribution of these statistics is produced through 2000 replications.
Thus, their p-values are generated using this methodology.
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5. Empirical Application

In this study, we selected European and worldwide countries to represent the cate-
gories of developed and developing countries. The 34 countries selected are as follows: Ar-
gentina, Australia, Austria, Belgium, Brazil, Canada, Colombia, Denmark, France, Germany,
Greece, Hungary, Iceland, India, Ireland, Italy, Japan, Malaysia, Mexico, Netherlands, New
Zealand, Poland, Portugal, Romania, Russia, Saudi Arabia, South Korea, Slovakia, Spain,
Sweden, Switzerland, Thailand, Turkey, and the UK, covering the period 2010:7–2020:3
for the short T panel and 1994:1–2020:3 for the long T panel. Our primary concern in
this section is to assess the unit root features of the European and selected representative
countries’ real exchange rate, thereby, the PPP hypothesis.

The base year is 2010, which is obviously depicted from Figure 1. We used the sample
period of 2010:7–2020:3 in order to remove the base year effect for the short T panel. In the
empirical part of the study, we will use different types of panel unit root tests. In addition
to the tests we employ in the power analysis section, other panel unit root tests already
recommended in the literature will better reveal the REER series structure. In addition to
the test we proposed in this study, we will make some comparisons using EO, UO, IPS,
OHS, and OCE tests. The EO test does not use the CCE estimator for remedying cross-
section dependency. In addition, as stated in Omay et al. [33] (OHS), the CCE estimator
catches structural breaks if there are homogeneous structural breaks. In short, it captures
the structural break instead of correcting the cross-section dependency. The problem of
incorrect decomposition in this estimator (CCE) will lead to difficulties in interpreting the
results. Ultimately, a test without a structural break will work as a test with a structural
break, giving us false information about the real exchange rate series under consideration.
For these reasons, we will compare the results of tests using the sieve bootstrap method in
the empirical part to control the cross-section dependency problem.
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Figure 1. The real exchange rates of 34 countries covering the period of 1994:1–2020:3. Source: Federal
Reserve Bank of St. Louis FRED.
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As can be seen from Table 13, all tests accepted the PPP hypothesis except for the linear
sieve bootstrap IPS test. However, it is not known from these results which countries cause
significant stationarity. For this reason, it is necessary to understand which test captures
the dynamics of the real exchange rate series more meaningfully and differentiates the
countries as stationary and nonstationary. Abuaf and Jorion [47], Frankel and Rose [48],
Oh [49], Wu [50], and Papell [51], among others, used panel data to increase the number of
observations and, thus, the power of the unit root tests. However, Taylor [3] pointed out
that conventional panel unit root tests do not provide explicit guidance on the identity of
the stationary panel members. They argue that rejecting the null hypothesis of a unit root
in panel data implies that at least one of the series is mean reverting but not that all the
series under consideration are stationary. In addition, testing stationarity in panels may
be complicated by cross-sectional correlation and possible cross-unit cointegration. It is
now well established that ignoring cross-sectional correlation or cross-unit cointegration
may lead to severe size and power distortions, invalidating inferences drawn from panel
tests [52]. In time-series unit root tests, which will be considered individually, common
shocks or spillover effects can be seen as structural breaks or nonlinear data generation
processes, since they do not control cross-section dependency. Therefore, time-series
analysis poses a problem due to this cross-section dependency, which is not controlled by
the real exchange rate dynamics.

Table 13. Panel unit root test results for short T panel: 2010:1–2020:3.

Intercept Intercept and Trend

IPS (Linear) −1.596 (0.572) −2.477 (0.299)

UO (ESTAR (1)) −2.284 (0.043) −2.700 (0.047)

EO (AESTAR (1)) 3.539 (0.079) 4.670 (0.063)

Model A Model B Model C

OHS (PLSTT) −3.444 (0.022) −3.725 (0.102) −4.014 (0.021)
OCE (PLSTT_TAR) 6.471 (0.065) 7.198 (0.150) 8.832 (0.000)
PLSTT_ESTAR −3.526 (0.000) −3.742 (0.000) −3.837 (0.000)

Note: The p-values are obtained with 2000 bootstrap draws.

To consider the cross-section dependency problem, we will continue the empirical part
by combining the sequential panel selection method (SPSM) suggested by Chortareas and
Kapetanios [53] for our sieve bootstrap estimation. If the panel unit root test finds the full
sample stationary, we can continue with SPSM. First, we applied the SPSM method to the
tests without a break. Since the sieve bootstrap IPS test without a break in the test procedure
did not have a stationary, the SPS method was abandoned, and it was concluded that it did
not accept the PPP hypothesis. Fortunately, state-dependent tests were stationary in the full
sample for only intercept, intercept, and trend cases. For the validity of the PPP hypothesis,
the intercept-only case is consistent with the theory; hence, we continue SPSM with the
intercept-only case. As seen from the UO test, only the test, including the intercept, gave
more significant results than the intercept and trend case. Selecting a more significant test
value for the SPS methodology will increase the number of stationary countries obtained.
However, we considered it appropriate to include the SPS methodology to test structures
following economic theory rather than statistical significance. Therefore, while the intercept
and trend form of the EO test is more significant than the intercept-only case, we performed
SPSM by considering the case with intercept-only, as we explained above.

For the short T panel, the UO test with symmetrical state-dependent size nonlinearity
ESTAR (1) matched with more country data than the EO test, including asymmetric state-
dependent size nonlinearity AESTAR (1), and the validity of the PPP hypothesis was
accepted for 5 countries with the EO test and for 12 countries with the UO test. By applying
the SPS methodology, we saw how many countries in the ESTAR (1)-type state-dependent
size nonlinearity panel sample are compatible with this functional structure. This good
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fit, provided in 12 of 34 countries, corresponds to approximately 35% of the entire sample.
Distributions of empirical test results are given in the bottom row of each test in Table 14.
Among these distributions, the nonlinearity of the ESTAR (1) structure explains the real
exchange rate dynamics better than the nonlinearity of the AESTAR (1) type, which shows
itself with the UO test results being closer to the normal distribution, while the EO test
results are skewed to the left.

Table 14. State-dependent nonlinear SPSM results for short T panel: 2010:1–2020:3.

UO EO

Switzerland −2.285 (0.043) Switzerland 3.539 (0.079)
Netherlands −2.175 (0.055) Portugal 3.098 (0.089)
Portugal −2.145 (0.059) New Zealand 3.004 (0.091)
Germany −2.113 (0.064) Malaysia 2.922 (0.098)
Spain −2.081 (0.071) Netherlands 2.839 (0.111)
Malaysia −2.047 (0.077) Germany 2.767
Italy −2.018 (0.085) Spain 2.696
Russia −1.988 (0.088) Italy 2.623
Denmark −1.958 (0.091) Russia 2.556
Romania −1.934 (0.096) Romania 2.502
Iceland −1.909 (0.098) France 2.445
Ireland −1.885 (0.102) Ireland 2.403
France −1.862 UK 2.359
S. Korea −1.837 Denmark 2.312
New Zealand −1.811 Iceland 2.262
Austria −1.784 S. Korea 2.214
Poland −1.754 Greece 2.162
Turkey −1.725 Australia 2.107
Belgium −1.703 Thailand 2.051
Slovakia −1.678 Austria 2.000
Mexico −1.652 Poland 1.951
S. Arabia −1.621 India 1.901
Greece −1.593 Belgium 1.861
India −1.567 S. Arabia 1.820
Japan −1.540 Slovakia 1.776
Argentina −1.507 Turkey 1.733
Hungary −1.470 Mexico 1.681
Brazil −1.434 Hungary 1.624
Colombia −1.394 Japan 1.556
Canada −1.351 Argentina 1.472
UK −1.288 Canada 1.435
Australia −1.206 Brazil 1.383
Thailand −1.151 Sweden 1.382
Sweden −1.074 Colombia 1.380

12 5

In Section 3, where we detailed the small sample characteristics, we explained why
tests with structural breaks should be used, and the quasi-PPP and PPP hypotheses were
met in the case of permanent and temporary breaks. The PPP hypothesis is valid under
the fixed mean condition depending on the theoretical findings. It is well known that
the quasi-PPP hypothesis may emerge if the sample data faced crises or other economic
phenomena, such as rapid technology change, leading to a structural break in the real
exchange rate variable.

This structural break change leads to permanent long-run mean change as well. Finally,
it is also discussed in Sollis’s [14] study that a temporary break structure due to appreciation
and depreciation of the real exchange rate that returns to the same fixed long-run means
can provide the original PPP hypothesis. In this study, we tried to evaluate the results by
model C of the logistic smooth transition trend that best captures temporary and permanent



Symmetry 2023, 15, 747 21 of 48

breaks. The model C structure, by its nature, can model the permanent break, while it
can also model temporary break behaviors. Therefore, the model C structure will better
compare the obtained results, such as original PPP, quasi-PPP (permanent break), or quasi-
PPP (temporary break), which can be classified as original PPP. Therefore, the SPS method
employed model C of the panel unit root test, including the structural break in their testing
procedure. In Table 15, SPSM results of the tests based on model C, including the structural
break, are given as mentioned above. The full sample results show that the PLSTTESTAR
and PLSTTTAR models are significant at 1%, and the PLSTT unit root test is significant at
the 5% level. However, when the SPS methodology is applied, the number of stationary
and nonstationary countries shows that the PLSTTESTAR test fits the data much better
than the other two tests.

Table 15. Time-dependent and hybrid SPSM results for short T panel: 2010:1–2020:3.

PLSTTESTAR (1) PLSTTTAR PLSTT

Greece −3.837 (0.000) Greece 8.833 (0.000) Greece −3.992 (0.000)
Malaysia −3.768 (0.000) Iceland 8.335 (0.000) Sweden −3.900 (0.000)
Switzerland −3.699 (0.000) Canada 8.094 (0.002) Malaysia −3.871 (0.042)
Portugal −3.634 (0.000) UK 7.909 (0.033) India −3.842 (0.072)
India −3.586 (0.000) Sweden 7.741 (0.087) Russia −3.814 (0.096)
Argentina −3.540 (0.000) India 7.597 (0.103) Portugal −3.790 (0.128)
Turkey −3.501 (0.000) Turkey 7.448 Canada −3.763
Iceland −3.464 (0.000) Portugal 7.293 Mexico −3.737
S. Korea −3.431 (0.000) Malaysia 7.144 Brazil −3.711
Sweden −3.400 (0.000) S. Arabia 7.001 New Zealand −3.684
Canada −3.369 (0.000) Mexico 6.858 UK −3.655
Colombia −3.342 (0.000) New Zealand 6.729 S. Arabia −3.625
S. Arabia −3.315 (0.000) Hungary 6.621 Turkey −3.595
Russia −3.287 (0.000) Slovakia 6.510 Hungary −3.564
Spain −3.261 (0.002) Russia 6.406 Slovakia −3.531
Slovakia −3.236 (0.018) Spain 6.308 Spain −3.500
Thailand −3.213 (0.026) Poland 6.208 Thailand −3.468
Belgium −3.188 (0.039) Thailand 6.107 Netherlands −3.433
UK −3.160 (0.045) Argentina 5.994 Poland −3.394
New Zealand −3.132 (0.057) Netherlands 5.900 S. Korea −3.359
Austria −3.099 (0.068) Brazil 5.809 Argentina −3.324
Mexico −3.062 (0.085) Ireland 5.705 Ireland −3.294
Italy −3.024 (0.095) S. Korea 5.584 Australia −3.264
Hungary −2.993 (0.121) Belgium 5.498 Japan −3.233
Australia −2.960 Italy 5.430 Italy −3.205
Poland −2.932 Denmark 5.361 Switzerland −3.178
Brazil −2.897 Australia 5.278 Austria −3.144
Ireland −2.854 Austria 5.183 Denmark −3.103
Denmark −2.800 Switzerland 5.100 Colombia −3.057
Germany −2.758 Japan 5.002 Romania −3.001
Japan −2.705 Romania 4.878 Germany −2.930
Netherlands −2.671 Germany 4.732 Belgium −2.827
Romania −2.608 Colombia 4.558 France −2.629
France −2.560 France 4.178 Iceland −2.477

23 5 5

Although it is also seen that the logistic smooth transition model C structure better
captures the features of the real exchange rate data as represented graphically in Figure 2,
this good fit is not general enough to cover all countries. In addition, it is seen that TAR-
type nonlinearity is very insufficient to explain the real exchange rate dynamics compared
with ESTAR (1) nonlinearity. While the PLSTTESTAR test found 23 stationary countries,
five-country stationary is found in the PLSTTTAR unit root test. These countries are almost
identical to those in the PLSTT test (Greece, Canada, Sweden, and the UK). Here, TAR
nonlinearity had a significant effect only on Iceland, and while it was the worst significant
in the PLSTT test, it ranked the second-best significant test result in the PLSTTTAR test.
Therefore, it is seen that the TAR structure is only a good fit for the Icelandic real exchange
rate data. If we compare the SPSM results of the UO and EO tests with the PLSTTESTAR
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test, the situation does not change much; it is understood that the model or functional
structures that provide the best compatibility with the real exchange rate series are in the
PLSTTESTAR unit root test. PLSTTESTAR explains about 67% of the full sample, while
its closest follower, the UO test, explains 35%. In order to better interpret these results,
it is useful to make nonlinear parameter estimations of the sample at hand. If we show
its consistency with the results in the section where we discussed the power analysis, it
will be evident that the unit root test we propose fits better with the real exchange rate
dynamics than the current linear or nonlinear panel unit root tests. For this purpose, the
break parameters obtained from the structural break tests will be evaluated according
to the results we obtained in the power analysis. Later, whether the PLSTTESTAR test
in power analysis is close to the estimated parameters in the high-power regions will be
discussed. Depending on the two-stage test procedure, in the second stage, after removing
the nonlinear trend, how well the real exchange series fit the ESTAR (1)-type structure will
be investigated by making nonlinear parameter estimations.
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Figure 2. Logistic smooth transitions for model C.

In the power analysis section, we saw that different parameters of the logistic smooth
transition trend increase the power of the proposed test. A break size of 5 units is used for
the moderate break and 10 for the higher break in the power analysis. When we look at the
country-by-country estimates here, the value of the break parameter is very high in almost
all countries as shown in Table 16.

The average of 34 countries for the break parameter was 23.983. The result obtained in
Table 16 signifies to a high break parameter vlue. With this break parameter, it is evident
that the tests without a structural break, especially the IPS test, have very little power
against this data structure. As a matter of fact, as a result of the test, the bootstrap IPS test
could not provide stationarity either in the intercept or in the intercept and trend models.
The second parameter we will examine is the transition rate parameter. As the transition
speed parameter decreases, the power of the tests with logistic smooth transition increases.
The first thing to note here is that the larger the break parameter, the higher the value of
the gamma parameter, which adjusts the smoothness of this transition speed. For break
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magnitude values of 5 and 10, 5 transition slopes correspond to a relatively high transition
speed, while in the case of a higher break size such as 24, 5 transition slopes correspond
to a relatively low value. In this sense, 2.259 average transition speeds indicate a smooth
transition according to the size of the break.

Table 16. Logistic smooth transition (model C) parameter estimates.

^
α1,i

^
α2,i

^
β1,i

^
β2,i

γi τi |
^
α2,i−

^
α1,i| Difference

Arg. 25.354 15.463 −0.503 −0.085 1.256 0.473 9.891 52.801
Aust. 4.995 −0.689 0.468 −0.596 0.169 0.280 5.684 16.044
Austria * −1.883 −3.599 0.051 0.017 13.027 0.469 1.716 −4.338
Belgium * 0.069 −8.397 0.019 0.074 0.734 0.447 8.465 −2.436
Brazil 19.895 −25.261 −0.383 0.350 12.882 0.479 45.156 28.733
Canada 11.789 −21.080 −0.008 0.025 0.144 0.410 32.870 19.088
Col. 11.764 −20.521 −0.014 0.003 0.523 0.463 32.285 21.742
Den * 1.985 −5.113 −0.030 0.054 13.143 0.470 7.099 2.215
France 3.442 −8.202 −0.046 0.080 1.981 0.466 11.644 4.211
Germany 1.648 −7.716 −0.012 0.070 3.711 0.467 9.364 0.988
Greece 8.146 −11.245 −0.132 0.125 1.036 0.456 19.391 12.028
Hungary 7.633 −11.394 −0.117 0.122 0.476 0.420 19.027 10.708
Iceland −26.267 220.933 −1.261 −0.193 0.044 0.517 247.200 −21.400
India * 6.875 −7.017 −0.417 0.451 0.274 0.423 13.892 2.598
Ireland 6.499 −9.785 −0.071 0.065 1.060 0.458 16.284 10.404
Italy 1.872 −4.371 0.012 −0.004 0.814 0.454 6.242 3.428
Japan 27.417 −27.159 −0.701 0.638 0.539 0.554 54.576 33.806
Malaysia 7.326 −18.016 −0.056 0.108 1.212 0.521 25.342 11.799
Mexico 7.454 −30.928 0.056 0.092 0.256 0.529 38.381 13.588
Neth * −0.249 −5.903 0.036 0.028 1.428 0.463 5.654 −1.601
New Z * −5.170 9.684 0.272 −0.348 0.533 0.465 14.854 −0.543
Poland 5.161 −16.725 −0.077 0.172 0.391 0.527 21.885 5.483
Portugal 1.712 −2.417 −0.019 0.017 1.021 0.422 4.129 2.646
Rom * 1.778 −9.199 0.007 0.050 0.258 0.535 10.977 2.477
Russia 11.825 −34.130 0.030 0.116 1.551 0.445 45.956 17.108
S. Arabia −10.665 26.363 0.124 −0.230 0.334 0.481 37.028 −13.787
S. Korea −7.790 13.155 0.019 −0.040 0.245 0.340 20.945 −10.692
Slovakia * 0.077 −6.037 0.045 0.011 0.524 0.464 6.115 −0.503
Spain * 2.118 −7.657 −0.006 0.051 1.294 0.461 9.775 2.336
Sweden 6.208 2.826 0.091 −0.266 0.404 0.390 3.383 17.755
Swit * 1.000 10.128 −0.060 −0.063 13.267 0.466 9.127 4.201
Thailand −4.681 −22.362 0.098 0.222 0.548 0.543 17.680 −14.882
Turkey 15.924 18.955 −0.232 −0.272 1.141 0.437 3.031 39.741
UK * −6.127 −5.752 0.260 −0.183 0.598 0.604 0.376 −2.921

Total 76.817 15.799 815.423

Average 2.259 0.465 23.983

Note: (*) indicates the countries having temporary breaks.

For this reason, the power of the PLSTTESTAR test and the other tests, including
logistic smooth transition, is increasing. Finally, we observed that the threshold value being
relatively in the middle of the sample increases the power of the tests containing the logistic
smooth transition trend. Therefore, we see that almost all countries experience a break
around 0.5, that is, at the midpoint of the sample. As for the threshold location, the country
with the break structure at the beginning of the sample is Australia, at 0.280 points of the
sample, while the latest break day belongs to UK data with 0.604. The average of the 34
countries was found to be 0.465. The break size is 23.983, the transition rate is 2.259, and the
threshold value is 0.465. According to these results, the power of the tests, including logistic
smooth transition, will be high. If we look at the empirical test results, the tests, including
logistic smooth transition, have rejected the null hypothesis more significantly than any
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other test structure. The most significant of these tests is the model C structure, in which
they reject the null hypothesis. PLSTT, PLSTTAR, and PLSTESTAR tests rejected the null
hypothesis at 0.021, 0.000, and 0.000 significance levels. Likewise, while the state-dependent
unit root tests UO and EO rejected the null hypothesis at 0.047 and 0.063 significance levels,
the IPS test could not reject the PPP hypothesis with 0.299. These results show us that
logistic smooth transition alone can capture the dynamics of the PPP hypothesis or real
exchange data. In addition, when we compare the tests that include structural breaks with
those that do not, it is understood that the tests containing breaks yield results in line with
the above-mentioned power analysis and reject the null hypothesis at a higher significance
level. The EO and UO tests are asymmetrical and symmetrical versions of the ESTAR (1)
structure. When the test results are examined, it is seen that the EO test can reject the null
hypothesis at a 0.063 significance level, while the UO test provides a better fit with the data
with a 0.047 significance level. The explanation for this situation shows that the behavior of
the real exchange rate variable is more suitable for the symmetrical ESTAR (1) structure
and the power of the EO test is lower than the UO test, which has the ESTAR (1) structure
in the symmetrical structure since unnecessary parameter estimation is made. The rejection
of the null hypothesis by the UO test indicates that some countries in the panel sample can
be modeled with the ESTAR (1) structure, and thus, the PPP hypothesis can be confirmed
for these countries.

The fact that six countries are stationary in the PLSTTTAR model C with SPS method-
ology shows that nonlinearity in TAR type does not comply with exchange rate dynamics.
In addition, the UO test, which includes the ESTAR (1) model, showed that 12 countries
have stationary in SPSM analysis and better adapt to exchange rate dynamics. For this
reason, it is useful to investigate how much ESTAR (1)-type nonlinear structure remains
in the remaining part after the logistic smooth transition de-trend series is estimated. Ac-
cordingly, estimations were performed as suggested in the article [19] and discussed in the
power analysis of the ESTAR (1) structure. The results obtained in Table 17 support the
power analysis.

Table 17. ESTAR parameter estimates.

Countries δi t−stat for δi

Argentina 7.51 × 10−4 2.831
Australia 0.004 3.340
Austria 0.037 2.453
Belgium 0.018 2.907
Brazil 3.81 × 10−4 2.372
Canada 0.007 2.489
Colombia 0.003 3.567
Denmark 0.019 3.155
France 0.023 3.032
Germany 0.011 2.258
Greece 0.062 5.142
Hungary 0.002 1.725
Iceland 6.34 × 10−4 1.799
India 0.008 4.086
Ireland 0.012 3.083
Italy 0.030 3.338
Japan 6.78 × 10−4 2.073
Malaysia 0.017 5.604
Mexico 0.003 2.875
Netherlands 0.012 2.423
New Zealand 0.003 3.273
Poland 0.003 1.966
Portugal 0.077 4.396
Romania 0.002 2.094
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Table 17. Cont.

Countries δi t−stat for δi

Russia 7.07 × 10−4 2.411
S. Arabia 0.007 3.421
S. Korea 0.006 3.832
Slovakia 0.095 3.773
Spain 0.023 3.106
Sweden 0.008 3.077
Switzerland 0.001 2.431
Thailand 0.002 1.507
Turkey 7.55 × 10−4 2.000
UK 0.005 3.089
Average 1.48 × 10−2

The transition rate parameter δi estimate average is 0.01 for 34 countries. This situation
corresponds to the area of high power of the proposed test. In addition, the low transition
speed rate in nonlinearity in the state-dependent structure increases the power of the tests
with ESTAR (1) nonlinearity. The graphs of the ESTAR (1) estimations given in Figure 3
strikingly demonstrate this low transition speed (slope) rate. As discussed in Kapetanios
et al. [19], it has been shown that for low transition speed rates, the power is low for Enders
and Granger [54] (EG) tests, which deal with TAR-type nonlinearity, and the ADF test,
which has a linear structure. In the analysis here, the linear ADF test corresponds to the
PLSTT test, while the EG test corresponds to the PLSTTAR test. In line with the nonlinear
model estimates obtained in Tables 16 and 17, it can be easily understood that both the
PLSTT test and the PLSTTAR test face data with a low power structure, with their testing
procedure including linear and TAR-type nonlinearity for the stochastic process. SPSM test
results also confirm this result.
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Figure 3. ESTAR (1) graphics of the countries after de-trending LSTT model C.

With the sequential panel selection method (SPSM), although the null hypothesis was
rejected at the border, the number of countries rejecting this hypothesis can be determined.
Thus, it can be concluded that other methodologies should be proposed to enable more
realistic testing of the PPP hypothesis. How many countries contributed to rejecting the
null hypothesis in a panel data sample that concludes that the model under consideration
increases the power of explaining economic events that much? In this sense, whether or
not the newly proposed test has undertaken this task, it has tried to examine it using SPSM
methodology. It is evident from the test results (Tables 13–17) that the functional structures
of both the logistics smooth transition trend and the exponential smooth transition type
play an active role in the real exchange rate dynamics. However, more importantly, the
PLSTTESTAR test, which includes both functional structures at a significance level of less
than 1%, leads to the acceptance of the PPP hypothesis that supports the proposed test. We
cannot see the same success from its closest competitor, the PLSTTTAR model. When the
SPSM comparison of these two tests is made, it is understood that the PLSTTTAR test is
high due to the individual test results obtained in Greece, Iceland, and Canada, which are
27,084, 15,699, and 14,776, respectively.

On the other hand, when we return back to the Table 16, it is indeed serving empiriacal
distribution which is a left-skewed so that many test values are small. The last two rows of
Table 16 show the distribution of empirical test results for PLSTTESTAR and PLST tests.
Since these two tests are t-tests, higher test values are seen as values that go to the left
of the distribution. PLST empirical test results are also relatively right-skewed and have
extreme values. The empirical test value distribution of the PLSTTESTAR test is nearly
normally distributed and has no extreme value. This empirical test value distribution
shows that the PLSTTESTAR test homogeneously obtains empirical test value results
close to high values, thus conducive to the stationarity of many more countries in the
SPSM methodology. The UO test is relatively high in all countries, with a balance similar
to the empirical test result distribution in the PLSTTESTAR test, and provided the PPP
hypothesis in 12 countries, while the PLSTT model provided the PPP hypothesis in only
6 countries. While the PLSTT and UO tests separately provided the PPP hypothesis in
6 and 12 countries, the PLSTTESTAR test, which was used together, provided the PPP
hypothesis in 23 countries. This case shows us that the functional structures proposed in
the PLSTTESTAR test in the short T panel better adapt to the real exchange rate dynamics.
In order to better illustrate this situation, the ESTAR (1) model estimates and nonlinear
parameter estimates of the PLSTT model are discussed in [18]. In the section where we
explained the small sample characteristics, we explained why tests with structural breaks
should be used, and the quasi-PPP and PPP hypotheses were met in the case of permanent
and temporary breaks. We mentioned this issue at the beginning of the empirical part.

In order to better understand this issue, we add a column named as“difference” in
Table 16. Estimates in this column are obtained by subtracting the start and endpoints of the
nonlinear trends for the logistic smooth transition model C. As this difference value grows,
it is understood that the nonlinear trend catches a permanent break, and as it becomes
smaller, a temporary break occurs. Moreover, examples of the temporary break structure
can be seen in Figure 3. Belgium, India, Slovakia, and the UK are a good example of
this temporary break situation. If we look at the logistics and smooth transition trends of
these countries, they all have a temporary break structure in such a way that the starting
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and ending points are close to each other and form a U shape. To illustrate this better,
we compute the differences of the logistic smooth transition start and endpoints from
the last column of Table 16, which are −2.436, 2.598, −0.503, and −2.921 for Belgium,
India, Slovakia, and the UK, respectively. While these countries exhibit a temporary
break structure, Canada and Colombia are good examples of the permanent break, with
difference values of 28,733 and 19,088, respectively. Although countries such as Belgium,
India, Slovakia, and the UK are stationary with the PLSTTESTAR (1) model, it can be
concluded that the original PPP hypothesis is met within the temporary break structure
proposed in the article. The results obtained based on these distinctions are summarized in
Table 18.

Table 18. Summary of SPSM results for short T panel: 2010:1–2020:3.

PLSTESTAR ESTAR AESTAR PLSTTAR PLSTT

Argentina + Quasi-PPP
Australia Not
Austria + Quasi-PPP

Belgium * + Quasi-PPP *
Brazil Not

Canada + + Quasi-PPP
Colombia + Quasi-PPP
Denmark + PPP

France Not
Germany + PPP

Greece + + + Quasi-PPP
Hungary Not
Iceland + + + Quasi-PPP
India * + + + Quasi-PPP *
Ireland + PPP

Italy + + PPP
Japan Not

Malaysia + + + + PPP
Mexico + Quasi-PPP

Netherlands + + PPP
New Zealand + + PPP

Poland Not
Portugal + + + + PPP
Romania + PPP

Russia + + + PPP
S. Arabia + Quasi-PPP
S. Korea + Quasi-PPP

Slovakia * + Quasi-PPP *
Spain + + PPP

Sweden + + + Quasi-PPP
Switzerland + + + PPP

Thailand + Quasi-PPP
Turkey + Quasi-PPP
UK * + + Quasi-PPP *

Note: (+) indicates the convenient models for each country and (*) implies that Belgium, India, Slovakia, and the
UK are stationary with the PLSTTESTAR (1) model with having temporary break.

We repeated the short T panel analysis in the long T panel, provided as Appendix A.
The results for this period covering the years 1994:1–2020:3 are the same as those obtained
for the short T panel. In the long term, the significance levels of all tests increased, and
even in the linear model, the sieve-bootstrap IPS test resulted in the acceptance of the PPP
hypothesis in 11 countries. If we look at the summary tables, PLSTTESTAR accepted the
PPP hypothesis in 31 of 34 countries, while its closest follower, the UO test, remained in
25 countries. In terms of ranking, the status of the other tests remained the same as in the
short panel T. The EO test results increased from 5 to 25 stationary countries, while the
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PLSTT test result went from 6 to 17 stationary countries, and the PLSTTTAR test results
from 6 to 17 countries. Estimations for the nonlinear parameters of the logistic smooth
transition gave results similar to those of the short T panel. The mean break size was found
to be 15,152 for 34 countries, the mean of the transition speed parameter was 0.688, and the
mean of the threshold was 0.443. This parameter combination belongs to a more powerful
PLSTTESTAR test region; hence, the acceptance rate increased from 23 countries to 31
countries. All the comments we made in the short T panel are valid in the long T panel.
The transition speed of the ESTAR (1) function is also almost the same as the 0.01 value
we found for the short T panel. It is evident that the PLSTTESTAR test reflects the real
exchange rate dynamics better than other tests. In the long T panel, the temporary break
search is performed over the difference value. The results are indicated as quasi-PPP* in
the Table 18. The results obtained from the long T panel show that the unit root test in
the PLSTTESTAR structure we recommend best captures the real exchange rate dynamics,
regardless of whether they are short (local) or long term. Therefore, we have clearly shown
that the quasi-PPP* hypothesis and the logistic smooth transition trend structure can be
used in theoretical and empirical studies for the real exchange rate dynamics. In addition
to the ESTAR (1) structure, this logistic smooth transition model C structure has been
identified as a significant complementary functional structure for testing the validity of
PPP hypothesis.

6. Concluding Remarks

This study examines the validity of the PPP proposition for 34 European and selected
global countries. For this purpose, we propose a new unit root test for cross-sectionally de-
pendent heterogeneous panels that allows for both gradual structural breaks and symmetric
nonlinear adjustment toward the equilibrium level.

The alternative hypothesis stationary is obtained by symmetric adjustment due to
exponential smooth transition autoregression (ESTAR) around a nonlinear trend. This
alternative hypothesis characterized the main features of the REER data. Moreover, we
provided small sample properties for the newly proposed test. Therefore, the newly pro-
posed tests fulfill the gaps in obtaining wrong conclusions due to the mismodeling of
the REER series. Furthermore, cross-section dependency is another primary source of
misspecifications in testing the PPP hypothesis. Open economies are faced with spillover
effects, common shocks, and other sources of cross-section dependency. Therefore, by intro-
ducing a common correlated estimation and bootstrap algorithm for this highly nonlinear
structure, we also gave solutions for these misspecifications in testing the PPP hypothesis.
For further research, the researcher may employ our newly proposed test for different
countries and sample periods for the REER series or other financial variables. Lastly and
more importantly, we gave the approximate limiting distribution of the newly proposed
test for the first time in the literature.
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Appendix A. Asymptotic Distribution of Approximate PLSTTESTAR (1) Test with
Double Fractional Frequency Fourier Form

It is almost impossible to obtain unit root asymptotic distributions of some nonlinear
functional forms analytically. In other words, a classical asymptotic theory cannot fully
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obtain the unit root test with any nonlinear function. Therefore, a more flexible method
should be proposed to obtain the asymptotic distribution of functions with more complex
nonlinearity. To overcome this difficult problem of asymptotic theory, we used a very flexi-
ble method. The methodology we recommend approximates the Fourier function, which
is one of the essential functions of classical harmonic analysis, to any unknown nonlinear
function. The first study with the Fourier function in stationarity testing conducted is the
Becker, Enders, and Lee [55] Fourier stationarity test, namely, Fourier KPSS. Their studies
obtained a new structural break stationarity test by adding the smooth transition break
structure to the stationarity test. Then, they obtained the asymptotic distribution of the
Fourier KPSS test. Enders and Lee [56] used the same structure in the LM and ADF test
form. Following these studies, Omay [57] proposed the fractional flexible Fourier form of
the ADF test. His article showed that this version has better power performance than the
integer version of the Fourier ADF test.

On the other hand, fractional frequencies open a new outlet for researchers. The
fractional frequency Fourier form in classical harmonic analysis increases the convergence
rate. In the Omay [57] study, the fractional frequency was used to achieve a smooth
structural break with higher precision and reduced type 2 error. The faster convergence of
the Fourier function without using its cumulative structure also affects the methodology
we will propose for the asymptotic theory. Therefore, Cai and Omay [58] suggested
converging to the existing structure faster without using the cumulative structure. Their
study estimated the frequencies of the sine and cosine functions, which form the Fourier
function independently of one another, and increased the convergence rate considerably in
the singular frequency structure.

For this reason, they described their study as the double frequency Fourier ADF test.
Hence, based on the studies of [56–58], Omay and Baleanu [59] and Omay et al. [60] sug-
gested fractional frequency Fourier ADF, integer frequency Fourier IPS, integer frequency
Fourier KSS, fractional frequency Fourier fractional integration, and fractional frequency
Fourier KSS tests, respectively, and developed their asymptotic theory. The results obtained
here will show us that the convergence rates of the fractional frequency and the double
fractional frequency are faster than the integer frequency. In classical harmonic analysis,
the cumulative version of Fourier functions converges one-to-one, uniform, absolute, norm,
and convergence almost everywhere. Using double fractional frequency instead of cumula-
tive frequency will show that a nonlinear trend structure can be achieved quickly by using
only two frequencies and avoiding using an unknown number of cumulative frequencies.
After this simulation study, we will show a similar convergence in the distribution space
with simulation, since it has been shown that any distribution function in the distribution
function space of the unit root tests obtained with nonlinear functions will converge with
cumulative Fourier functions. Again, this convergence can be with the pointwise, uniform,
absolute, norm, and convergence almost everywhere; we will show here with the simula-
tion that a reasonably successful approximate convergence can be achieved with double
fractional frequencies.

The formal asymptotic distribution will be derived after showing that the asymptotic
distribution function of the unit root test of any nonlinear function will be obtained approx-
imately by inserting the double fractional frequency Fourier form via extensive simulation
studies. The most similar time-series unit root test to the LSTTTESTAR (1) structure is
the ESTAR (1) fractional frequency Fourier form (ESTAR_FFF). Since this test is proposed
within the framework of fractional frequency Fourier, we will first extend the asymptotic
as this test’s asymptotic T goes to infinity into a double fractional frequency Fourier form.

Appendix A.1. Approximating Logistic Smooth Transition Function with Integer, Fractional, and
Double Fractional Fourier Form

yi,t = α1,i + α2,iSi,t(γi, τi) + wi,t (A1)
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where Si,t is defined as Equation (7). For the Si,t model, different parameters change the
shape of nonlinear curves as shown in the figures below.

As we can see from Table A1, it is clear from the SSR value that the double fractional
frequency Fourier method is superior to other methods. The single fractional frequency
Fourier model imitates logistic smooth transition trends and the double fractional frequency
Fourier function for the low break magnitude and transition speeds.

Table A1. Convergence of single and double frequency Fourier function to LST trend.

α2,i γi τi kfr
s kfr

c SSR kI
s kI

c SSR kfr SSR kI SSR

2 0.1 0.5 1.0 0.49 0.125 1.0, 1.0 10.568 0.66 0.177 1.0 10.568
2 0.5 0.5 1.0 0.47 5.879 1.0, 1.0 12.062 0.82 6.322 1.0 12.062
2 0.1 0.7 0.24 1.0 0.125 1.0, 1.0 12.342 0.46 0.531 1.0 12.342
2 0.5 0.7 0.37 0.99 4.503 1.0, 1.0 22.492 0.55 8.991 1.0 22.492
2 0.1 0.3 0.01 0.93 0.123 1.0, 1.0 12.420 0.41 0.532 1.0 12.420
2 0.5 0.3 0.63 1.0 5.733 1.0, 1.0 24.013 0.46 8.951 1.0 24.013
5 0.1 0.5 1.0 0.49 0.784 1.0, 1.0 66.050 0.66 1.103 1.0 66.050
5 0.5 0.5 1.0 0.47 36.743 1.0, 1.0 75.385 0.82 39.510 1.0 75.385
5 0.1 0.7 0.24 1.0 0.781 1.0, 1.0 77.137 0.46 3.317 1.0 77.137
5 0.5 0.7 0.37 0.99 28.144 1.0, 1.0 140.572 0.55 56.191 1.0 140.572
5 0.1 0.3 0.01 0.93 0.772 1.0, 1.0 77.624 0.41 3.326 1.0 77.624
5 0.5 0.3 0.63 1.0 35.829 1.0, 1.0 150.083 0.46 55.942 1.0 150.083

Note: Time dimension is selected to be 100.

Since the break size and the transition speed increase for the LST trend, the convergence
performance of the single fractional Fourier form decreases significantly compared with the
double frequency. The two nonlinear parameters of the logistic smooth transition function,
threshold and transition speed, capture smooth, medium, and even sharp breaks very
easily. Therefore, it is a typical result that the single fractional frequency Fourier function is
successful in smoother transitions than the logistic smooth transition and remains weak
in medium and sharp breaks. In this sense, double fractional frequency has a flexible
structure like logistic smooth transition and achieves smooth, medium, and even sharp
breaks [60]. Two frequencies are estimated for convergence in the double frequency Fourier
function, while in the single frequency, a single frequency is estimated for the sine and
cosine functions; hence, the convergence speed is high in double frequency. Therefore,
convergence to the desired function is slower in the single frequency Fourier function.
Thus, double frequency Fourier acts as the flexibility of the two parameters of the logistic
smooth transition. LNV have clearly indicated that the analytical representation of the
invariance property is impossible under the proposed de-trending methods. They note that:
“As NLS estimation of the parameters gamma and threshold does not admit closed-form
solutions, it would be extremely difficult to establish an analytical relationship between
the dependent variable and de-trended series. This, of course, makes the determination
of the null asymptotic distribution of the test statistics by analytical means more or less
intractable”. As shown in Table A1 above, the highly flexible structure of the double
fractional frequency and the very good imitation or convergence of these functions to the
logistic smooth transition function provide an opportunity to solve the problem [18]. In
fact, it is well known in classical harmonic analysis that the cumulative frequency Fourier
function converges to any function under certain conditions. As a well-behaved function,
the logistics smooth transition function has these conditions Since this subject has been
studied in classical harmonic analysis, the subject of convergence to the logistic function
has not been examined. Additionally, detailed analyses have been made in the article of
Galant [61]. This subject will be examined in more detail in future studies. Our primary goal
is to produce the asymptotic theory of a unit root test of a nonlinear function). However,
solutions to asymptotic distribution with cumulative frequency Fourier function also have
problems such as how many cumulative frequencies should be included. As a result, the
cumulative frequency Fourier can span all nonlinear unit root distribution spaces without
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any gaps. However, it can be seen from the simulation analysis given in Table A1 and
Figure A1 that the double fractional frequency Fourier function will be the second-best
spanning functional form for this distribution space. Although the cumulative frequency
Fourier function converges almost everywhere to each distribution function, it is evident
that the double fractional frequency will be the best approximation even though it does
not capture some distributions exactly. This convergency to the unknown functional form
with two parameters (ks and kc) and a well-established distribution theory makes double
Fourier function the most suitable functional structure for the approximate LSTTESTAR
asymptotic distribution. In light of this information, the approximate distribution of the
PLSTTESTAR unit root test will be derived using the double fractional Fourier frequency.
The algorithm of the methodology developed for this purpose is as follows:

Step 1. The density function of the PLSTTESTAR unit root test as N and T go to infinity
will be obtained (here, the density function for N = 100 and T = 100 is sufficient for the
condition that N and T go to infinity).
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Figure A1. Cont.
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Figure A1. Convergence of single and double integer/fractional frequency Fourier function to logistic
smooth trends.

Step 2. PLSTTESTAR density function can be approximated by using the PDFF-ESTAR
structure with the grid searches. For this purpose, 0.1 increments of ks and kc frequencies
will be used, and a rough convergence will be sought in the first stage. When this grid
search is performed for two parameters, it will be called a two-dimensional grid search
analysis. We developed the following formula to measure pointwise convergence:

Error = f
(
τLSTTESTAR; γ, c

)
− f

(
τDFFESTAR; ks, kc

)
Total_Error = ∑N

i=1|Errori|
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where

f
(
τLSTTESTAR; γ, c

)
: PLSTTESTAR distribution or density function

f
(
τDFFESTAR; ks, kc

)
: DFFESTAR distribution or density function

Step 3. After the basic structure is obtained, the degree of convergence will be in-
creased by 0.01 increments.

Step 4. The number of increment digits can be increased for better convergence.
This increase is interrupted where divergence from the density function begins. When
the appropriate digits of ks and kc are found, the best approximation of the asymptotic
distribution of PLSTTESTAR formed by the transition rate and threshold parameter will
be obtained.

Error = f
(
τPLSTTESTAR; γ, c

)
− f

(
τPDFFESTAR; ks, kc

) ∼= 0

f
(
τPLSTTESTAR; γ, c

) ∼= f
(
τPDFFESTAR; ks, kc

)
We used the algorithm discussed above for single fractional frequency in 0.01 in-

crements and then 0.001 increments. As expected, these analyses resulted in the single
fractional frequency Fourier form ESTAR function approximating the PLSTTESTAR density
function better in the analysis handled with 0.01 increments than with 0.1 increments. The
results are given in Tables A2 and A3 and Figures A2 and A3.

Table A2. Convergence pattern of fractional frequency in 0.01 increments.

k T_Error k T_Error

0.85 98.532 0.54 206.099
0.84 99.941 0.57 206.131
0.87 102.123 0.59 206.476
0.86 102.967 0.53 207.191
0.83 104.383 0.56 208.549
0.82 106.227 0.96 209.363
0.88 108.202 0.97 225.636
0.89 111.989 0.98 245.177
0.81 114.292 0.99 272.526
0.8 117.301 1 287.329

Table A3. Convergence pattern of fractional frequency in 0.001 increments.

k T_Error k T_Error

0.848 96.383 0.990 267.285
0.856 97.642 0.994 268.716
0.866 98.050 0.989 268.784
0.845 98.552 0.992 271.882
0.85 99.194 0.995 273.832
0.837 99.348 0.997 274.713
0.841 99.868 0.996 281.483
0.849 99.874 1.000 282.471
0.874 100.097 0.998 282.976
0.853 100.158 0.999 283.161

While 98,532 was found for k = 0.85, the error was 96,383 for k = 0.848. We conclude
that the increments should decrease (i.e., the investigated area should be increased) to
obtain the most precise convergence from these results. We see that the relationship between
the single integer frequency and the fractional frequency in the time domain is similar
in the distribution space. Figure A4 below shows the convergence pattern of the single
fractional frequency PFFESTAR distribution to the PLSTTESTAR distribution.
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figures from Figures A5–A10 below. ks = 0.7 and kc = 0.2, 0.1 increment double fractional
frequency two-dimensional grid search achieved the best convergence frequencies with
91,358 errors. On the other hand, single-frequency fractional frequency found the most
optimal frequency, k = 0.848 in 0.001 increments, and reached 96,383 errors. However,
although k = 0.848 is a more detailed grid search, the convergence total error rate of ks = 0.7
and kc = 0.2, which is a much rougher search, is lower. As can be understood from this
result, the double fractional frequency in the asymptotic distribution space converges more
precisely to the distribution of the PLSTT test. As can be seen, the error made decreases as
the double fractional frequency is used instead of the single, so a more precise convergence
is obtained. Likewise, as research intervals (increments) become smaller, a more precise
convergence (ks, kc) pair is reached. ks = 0.7 and kc = 0.2, 0.1 increment double fractional
frequency two-dimensional grid search found 91,358 errors, while ks = 0.11 and kc = 0.62,
0.01 increment double fractional frequency two-dimensional grid search found 88,190. The
accuracy of convergence increases as increments become smaller, that is, as the investigated
area expands.

The dark-blue area indicates the lowest points for the total error, and the light-yellow
area shows the highest total error. Therefore, ks = 0.11 and kc = 0.62 give the global minima
of the total error function, located in dark-blue areas.

Table A4. Convergence pattern of double fractional frequency in 0.1 increments.

ks kc T_Error ks kc T_Error

0.7 0.2 91.358 0.5 0.3 187.089
1 0.1 91.558 0.4 0.4 194.336

0.1 0.6 91.884 1 0.6 201.911
0.9 0.2 92.153 0.6 0.6 201.959
0.3 0.6 92.443 0.5 0.5 207.403
0.9 0.6 92.465 1 0.9 211.330
0.9 0.4 92.651 1 0.7 212.142
0.3 0.8 93.396 0.5 1 212.414
0.1 0.8 93.591 1 0.8 250.911
0.6 0.4 93.721 1 1 285.094

Table A5. Convergence pattern of double fractional frequency in 0.01 increments.

ks kc T_Error ks kc T_Error

0.11 0.62 88.190 1 0.98 272.598
1 0.07 89.170 1 0.97 274.492
1 0.09 90.177 1 0.96 276.409

0.69 0.46 90.624 1 0.95 279.511
0.31 0.81 90.861 1 0.99 282.496
0.71 0.2 91.357 1 1 282.925
0.70 0.20 91.358 0.5 0.97 283.305

1 0.10 91.558 0.5 0.98 290.008
0.10 0.60 91.884 1 0.75 292.519
0.21 0.42 91.903 0.5 0.99 304.959

We show the PLSTTESTAR convergence of single fractional frequency in Figure A4.
Similarly, we plot the asymptotic distributions of the global minimum total error function
obtained in 0.1, 0.01, and 0.001 increments for single and double frequencies in Figure A9.
These graphs visualize the positive effects of decreasing increments and using more than
one frequency in the convergence process of the density function. In Figure A10, we clearly
show that the best choice is ks = 0.11, kc = 0.62 by drawing these graphics in the same
density space.
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We provide the critical value comparison of the density functions obtained in
Figure A10 for PLSTTESTAR N = 100 and T = 100. As shown from this figure, the critical
values obtained from ks = 0.11 and kc = 0.62 double fractional frequency are almost the
same as PLSTTESTAR critical values. We know that if we increase the increment digit, the
convergence will be better, but it is clear from the critical values that we obtain a very good
convergence even in two digits.

With the analyses we have done so far, we show that the PLSTTESTAR asymptotic
distribution can be approximated with the PDFFESTAR distribution. The realization of this
convergence in both the time domain and the distribution space confirms that we can obtain
the approximate asymptotic of the PLSTTESTAR test with the PDFFESTAR structure.
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Omay et al. [62] (henceforth, COH) studied how to handle the unit root test in ESTAR
type using a single fractional frequency Fourier form with the deterministic nonlinear trend.
In addition, asymptotic distributions of the COH test were obtained. As for the test we
developed for the approximate asymptotic distribution, we saw that the COH test is a
Fourier function using double fractional frequency and a panel structure. For this reason,
the asymptotic distribution that we will produce here mostly shows the COH test features.
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Appendix A.2. Approximate Asymptotic Distribution of PLSTTESTAR Unit Root Test via
PDFFESTAR

The Omay et al. [62] study proposes an ESTAR-type state-dependent nonlinear process
with a single fractional Fourier trend as follows:

yi,t = µi + dD f f
i (t) + wi,t (A2)

ŵi,t = yi,t −
(

µi + dD f f
i (t)

)
ŵi,t = φ1,iŵi,t−1 + φ2,iŵi,t−1

[
1− exp

(
δiŵ2

i,t−1

)]
+ εi,t

(A3)

where we use the double fractional Fourier function dD f f
i (t) such that

dD f f
i (t) = α0 + αksin

(
2πk f r

s t
T

)
+ βkcos

(
2πk f r

s t
T

)

As we can follow COH and the main text, the linearized auxiliary regression is to be

∆ŵi,t = ρiŵ3
i,t−1 + εi,t (A4)

∆yi,t = µi + ρiy3
i,t−1 + dD f f

i (t) + εi,t (A5)

where ρi = 1− φi and parameter in regression (A4) is obviously estimated, while the
parameter estimation of ρi in (A5) is handled directly. Moreover, testing the null of ρi = 0
is performed by the following statistics:

tnlD f f
i (N, T) =

∆ŵ′iMzŵ3
i,−1

σ̂i

(
ŵ3’

i,−1Mzŵ3
i,−1

)1/2 (A6)

tnlD f f
i (N, T) =

∆y′iMzy3
i,−1

σ̂i,D f r

(
y3′

i,−1Mzy3
i,−1

)1/2 (A7)

where noticing that variables are defined as follows:

∆yi = (∆yi,1, ∆yi,2, . . . , ∆yi,T) y3
i,−1 =

(
y3

i,0, y3
i,1, . . . , y3

i,T−1

)′
, Mz = IT − Z(Z′Z)−1Z′, Z =

(τ,Υ1,Υ2), τ = (1, 1, . . . , 1)′, Υ1 =

(
sin
(

2πk f r
s 1

T

)
, sin

(
2πk f r

s 2
T

)
, . . . , sin(2πks),

)
, Υ2 =(

cos
(

2πk f r
c 1

T

)
, cos

(
2πk f r

c 2
T

)
, . . . , cos(2πkc),

)
, and σ̂i, f r is the consistent estimator such that

σ̂2
i,D f r = ∆y′iMi,z∆yi/(T − 4) in which Mi,z = IT −Gi

(
G′iGi

)−1G′i where Gi = (Z, yi,−1).
Since the two-stage asymptotic notation is more pedagogical than the one-stage

test, we will continue as in [63]. In order to obtain the asymptotic distribution of the
ti,nlD f f (k)(i = µ, τ) test, we need the subsequent outcomes, where we let [rT], r ∈ [0, 1] be
an integer close to rT. During the derivation,→ implies weak convergence as T approaches
to ∞.

Proposition A1.

(i) T−3/2∑T
t=1 ŵt → σ

∫ 1
0 W(r)dr = σ f1

(ii) T−5/2∑T
t=1 tŵt → σ

∫ 1
0 rW(r)dr = σ f2

(iii) T−3/2∑T
t=1 sin

(
2πk f r

s t
T

)
ŵt = σ f3

(iv) T−3/2∑T
t=1 cos

(
2πk f r

c t
T

)
ŵt = σ f4
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(v) T−1∑T
t=1 sin

(
2πk f r

s t
T

)
→

1−cos
(

2πk f r
s

)
2πk f r

s
≡ s0

(vi) T−1∑T
t=1 cos

(
2πk f r

c t
T

)
→

sin
(

2πk f r
c

)
2πk f r

c
≡ c0

(vii) T−2∑T
t=1 tsin

(
2πk f r

s t
T

)
→

sin
(

2πk f r
s

)
(

2πk f r
s

)2 −
cos
(

2πk f r
s

)
2πk f r

s
≡ s1

(viii) T−2∑T
t=1 tcos

(
2πk f r

c t
T

)
→

cos
(

2πk f r
c

)
−1(

2πk f r
c

)2 +
sin
(

2πk f r
c

)
2πk f r

c
≡ c1

(ix) T−1∑T
t=1 sin2

(
2πk f r

s t
T

)
→ 1

2 −
sin
(

4πk f r
s

)
8πk f r

s
≡ s2

(x) T−1∑T
t=1 cos2

(
2πk f r

c t
T

)
→ 1

2 +
sin
(

4πk f r
c

)
8πk f r

c
≡ c2

(xi) T−1∑T
t=1 sin

(
2πk f r

s t
T

)
cos
(

2πk f r
c t

T

)
→

1
4π

(
1

k f r
c −k f r

s

[
cos
(

2π
(

k f r
c − k f r

s

))
− 1
]
+ 1

k f r
s +k f r

c

[
1− cos

(
2π
(

k f r
c − k f r

s

))])
≡ m0

(xii) T−2∑T
t=1 ŵ3

t−1ηt → σ4∫ 1
0 Wi

(
k f r

s , k f r
c , r

)3
dW(r)

(xiii) T−4∑T
t=1 ŵ6

t−1 → σ6∫ 1
0 Wi

(
k f r

s , k f r
c , r

)6
dr

Proof of Proposition A1.
The proofs of (i) and (ii) are known (see [63]. p. 486). By using the continuous mapping

theorem, we can attain the proofs of (iii) and (iv) as follows:

T−3/2∑T
t=1 sin

(
2πk f r

s t
T

)
ŵt → σ

∫ 1

0
sin
(

2πk f r
s r
)

W(r)dr ≡ σ f3

T−3/2∑T
t=1 cos

(
2πk f r

c t
T

)
ŵt → σ

∫ 1

0
cos
(

2πk f r
c r
)

W(r)dr = σ f4

T−1∑T
t=1 sin

(
2πk f r

s t
T

)
→
∫ 1

0
sin
(

2πk f r
s r
)

dr =
1− cos

(
2πk f r

s

)
2πk f r

s
≡ s0

T−1∑T
t=1 cos

(
2πk f r

c t
T

)
→
∫ 1

0
cos
(

2πk f r
c r
)

dr =
sin
(

2πk f r
c

)
2πk f r

c
≡ c0

T−2∑T
t=1 tsin

(
2πk f r

s t
T

)
→
∫ 1

0
rsin

(
2πk f r

s r
)

dr =
sin
(

2πk f r
s

)
(

2πk f r
s

)2 −
cos
(

2πk f r
s

)
2πk f r

s
≡ s1

T−2∑T
t=1 tcos

(
2πk f r

c t
T

)
→
∫ 1

0
rcos

(
2πk f r

c r
)

dr =
cos
(

2πk f r
c

)
− 1(

2πk f r
c

)2 +
sin
(

2πk f r
c

)
2πk f r

c
≡ c1

T−1∑T
t=1 sin2

(
2πk f r

s t
T

)
→
∫ 1

0
sin2

(
2πk f r

s r
)

dr =
1
2

∫ 1

0

[
1− cos

(
4πk f r

s r
)]

dr =
1
2
−

sin
(

4πk f r
s

)
8πk f r

s
≡ s2

T−1∑T
t=1 cos2

(
2πk f r

c t
T

)
→
∫ 1

0
cos2

(
2πk f r

c r
)

dr =
1
2

∫ 1

0

[
1 + cos

(
4πk f r

c r
)]

dr =
1
2
+

sin
(

4πk f r
c

)
8πk f r

c
≡ c2

T−1∑T
t=1 sin

(
2πk f r

s t
T

)
cos
(

2πk f r
c t

T

)
→ 1

2

[∫ 1
0 sin

(
2π
(

k f r
s + k f r

c

)
r
)

dr−
∫ 1

0 sin
(

2π
(

k f r
c − k f r

s

)
r
)

dr
]

= 1
4π

(
1

k f r
c −k f r

s

[
cos
(

2π
(

k f r
c − k f r

s

))
− 1
]
+ 1

k f r
s +k f r

c

[
1− cos

(
2π
(

k f r
c − k f r

s

))])
≡ m0



Symmetry 2023, 15, 747 45 of 48

�

Proof of Theorem 1. Let sin(t) = sin
(

2πk f rt/T
)

and cos(t) = cos
(

2πk f rt/T
)

. We first

examine the de-meaned case and let yµ
t be the OLS residuals from the de-meaned case in

the text with dt = (1, sin(t) , cos(t))′:

yµ
t = ωt − d′t

(
θ̂ − θ

)
(A8)

where θ = (α0, α1, α2)
′, θ̂ is the OLS estimator of θ. We let d = (d1, d2, . . . , dT)

′, ŵ =

(ŵ1, ŵ2 . . . , ŵT)
′, and MT = diag

(√
T,
√

T,
√

T
)

to have:

MT
(
θ̂ − θ

)
=
[
M−1

T d′dM−1
T

]−1
M−1

T d′ŵ (A9)

Applying some simple algebra to (A8) and (A9) to obtain the following:

T−1/2yµ

[rT] = T−1/2ŵµ

[rT] − T−1d′[rT]

[
M−1

T d′dM−1
T

]−1
M−1

T dŵ (A10)

Depending on FCLT, the first term of (A10) becomes:

T−1/2ŵ[rT] → σW(r) (A11)

The second component in (A10) becomes:[
M−1

T d′dM−1
T

]−1
=

1 T−1
T
∑

t=1
sin(t) T−1

T
∑

t=1
cos(t)

T−1
T
∑

t=1
sin(t) T−1

T
∑

t=1
sin2(t

)
T−1

T
∑

t=1
sin(t)T−1

T
∑

t=1
cos(t)

T−1
T
∑

t=1
cos(t) T−1

T
∑

t=1
sin(t)T−1

T
∑

t=1
cos(t) T−1

T
∑

t=1
cos2(t

)



−1

→

 1 s0 c0
s0 s2 m0
c0 m0 c2

−1

= 1
∆1

a11 a12 a13
a21 a22 a23
a31 a32 a33



(A12)

where ∆1 = s2c2 − s2c2
0 − s2

0c2 −m2
0, a11 = s2c2 −m2

0, a12 = a21 = c0m0 − s0c2, a13 = a31 =
s0m0 − s2c0, a22 = c2 − c2

0, a23 = a32 = s0c0 −m0, and a33 = s2 − s2
0

T−1M−1
T d′ŵ =



T−1/2
T
∑

t=1
ωt

T−1/2
T
∑

t=1
sin(t)ωt

T−1/2
T
∑

t=1
cos(t)ωt


→


σ f1

σ f3

σ f4

 (A13)

Then,

T−1d′[rT]

[
M−1

T d′dM−1
T

]−1
M−1

T d′ŵ→ 1
∆1

[
1 sin

(
2πk f r

s r
)

cos
(

2πk f r
c r
)]a11 a12 a13

a21 a22 a23
a31 a32 a33

σ f1
σ f3
σ f4

 (A14)



Symmetry 2023, 15, 747 46 of 48

Finally, with joint outcomes in both Equations (A12) and (A14), we attain the de-
meaned Brownian motion by

1
σ
√

T
yµ

[rT] →Wµ

(
k f r

s , k f r
c , r

)
=

W(r)− σ
∆1


(a11 f1 + a12 f3 + a13 f4)

+(a21 f1 + a22 f3 + a23 f4)sin
(

2πk f r
s r
)

+(a31 f1 + a32 f3 + a33 f4)cos
(

2πk f r
c r
)
 (A15)

For the de-trended case, similar arguments follow, so we skip the same algebra. Using
the above-given results, under the null, we can obtain the de-meaned Brownians. Now we
can proceed with the ESTAR (1) part in the second step. Under the null hypothesis, that is
a random walk and hence directly applies the results of Proposition A1.

By the KSS test, it follows directly from the continuous mapping theorem, the weak
convergence of stochastic integrals, and the semimartingale property of ηt, we have

T−2
T

∑
t=1

ŵ3
t−1ηt → σ4

∫ 1

0
Wi

(
k f r

s , k f r
c , r

)3
dW(r) (A16)

Furthermore,

T−4
T

∑
t=1

ŵ6
t−1 → σ6

∫ 1

0
Wi

(
k f r

s , k f r
c , r

)6
dr

Therefore, we can conclude that the asymptotic distribution of ESTAR-DFF is as follows:

tm,nlD f f
d→

∫ 1
0 Wm

(
k f r

s , k f r
c , r

)3
dW(r)(∫ 1

0 Wm

(
k f r

s , k f r
c , r

)6
dr
)1/2 for m = µ and τ (A17)

Thus, this completes the proof for m = µ and τ. �
Notice that the asymptotic distribution is also handled via the traditional demean

Brownian method. See also Omay and Baleanu [59] for further derivations of the asymptotic
distribution. Hence, an approximation to this limiting distribution of the newly proposed
test would be as follows:

tm,nlD f f
d→

∫ 1
0 Wm

(
k f r

s = 0.11, k f r
c = 0.62, r

)3
dW(r)(∫ 1

0 Wm

(
k f r

s = 0.11, k f r
c = 0.62, r

)6
dr
)1/2 f or m = µ and τ (A18)

Hence, the fractional Fourier form of the UO test should mimic distributions of Equation
(A18). The asymptotic properties of the bootstrap test statistics of (A18) can be derived in a
similar way of the approach Palm et al. [32].

References
1. Rogoff, K. The purchasing power parity puzzle. J. Econ. Lit. 1996, 34, 647–668.
2. Taylor, M.P.; Sarno, L. The Behavior of Real Exchange Rates during the Post-Bretton Woods Period. J. Int. Econ. 1998, 46, 281–312.

[CrossRef]
3. Corbae, D.; Ouliaris, S. Cointegration and tests of purchasing power parity. Rev. Econ. Stat. 1988, 70, 508–511. [CrossRef]
4. Fisher, E.O.N.; Park, J.Y. Testing purchasing power parity under the null hypothesis of co-integration. Econ. J. 1991, 101, 1476–1484.

[CrossRef]
5. Froot, K.A.; Rogoff, K. Perspectives on PPP and long-run real exchange rates. Handb. Int. Econ. 1995, 3, 1647–1688.
6. Dumas, B. Dynamic equilibrium and the real exchange rate in a spatially separated world. Rev. Fin. Stud. 1992, 5, 153–180.

[CrossRef]



Symmetry 2023, 15, 747 47 of 48

7. Sercu, P.; Uppal, R.; Van Hulle, C. The exchange rate in the presence of transaction costs: Implications for tests of purchasing
power parity. J. Financ. 1995, 50, 1309–1319. [CrossRef]

8. Michael, P.; Nobay, A.R.; Peel, D.A. Transactions costs and nonlinear adjustment in real exchange rates; An empirical investigation.
J. Polit. Econ. 1997, 105, 862–879. [CrossRef]

9. Taylor, A.M.; Taylor, M.P. The purchasing power parity debate. J. Econ. Perspect. 2004, 18, 135–158. [CrossRef]
10. Hegwood, N.D.; Papell, D.H. Quasi purchasing power parity. Int. J. Fin. Econ. 1998, 3, 279–289. [CrossRef]
11. Perron, P. The great crash, the oil price shock, and the unit root hypothesis. Econometrica 1989, 57, 1361–1401. [CrossRef]
12. Papell, D.H.; Prodan, A. Additional Evidence of Long-Run Purchasing Power Parity with Restricted Structural Change. J. Money

Credit Bank. 2006, 38, 1229–1349. [CrossRef]
13. Lundbergh, S.; Teräsvirta, T.; Van Dijk, D. Time-varying smooth transition autoregressive models. J. Bus. Econ. Stat. 2003, 21,

104–121. [CrossRef]
14. Sollis, R.; Leybourne, S.; Newbold, P. Tests for Symmetric and Asymmetric Nonlinear Mean Reversion in Real Exchange Rates.

J. Money Credit Bank. 2002, 34, 686–700. [CrossRef]
15. Christopoulos, D.K.; Leon-Ledesma, M.A. Smooth breaks and non-linear mean reversion: Post-Bretton Woods real exchange

rates. J. Int. Money Fin. 2010, 29, 1076–1093. [CrossRef]
16. Koop, G.; Potter, S. A flexible approach to parametric inference in nonlinear and time varying time series models. J. Econ. 2010,

159, 134–150. [CrossRef]
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