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A B S T R A C T

In this research, we develop a stochastic framework for analysing tuberculosis (TB) evolution that includes new-
born immunization via the fractal–fractional (F–F) derivative in the Atangana–Baleanu sense. The population is
divided into four groups by this system: susceptibility 𝐒(𝜉), infectious 𝐈(𝜉), immunized infants 𝐕(𝜉), and restored
𝐑(𝜉). The stochastic technique is used to describe and assess the invariant region, basic reproduction number,
and local stability for disease-free equilibrium. This strategy has significant modelling difficulties since it
ignores the unpredictability of the system phenomena. To prevent such problems, we convert the deterministic
strategy to a randomized one, which seems recognized to have a vital influence by adding an element of
authenticity and fractional approach. Owing to the model intricacies, we established the existence-uniqueness
of the model and the extinction of infection was carried out. We conducted a number of experimental tests
using the F–F derivative approach and obtained some intriguing modelling findings in terms of (i) varying
fractional-order (𝜑) and fixing fractal-dimension (𝜔), (ii) varying 𝜔 and fixing 𝜑, and (iii) varying both 𝜑 and
𝜔, indicating that a combination of such a scheme can enhance infant vaccination and adequate intervention
of infectious patients can give a significant boost.
Introduction

Tuberculosis (TB) is a viral infection caused by mycobacterium that
is spread through the air when people with active TB (chronologi-
cally TB) breathe, inhale, converse, or shout [1,2]. It mostly affects
the lungs, and it can impact the endocrine circulation, circulatory
vessels, cranium, spinal cord, and renal, influenza, calorie restriction,
breathlessness, coughing uncontrollably, feeling fatigued all the time,
nocturnal sickness, lack of energy, and starvation are all indications
of chronic TB, (see, Fig. 1–Fig. 2). Bacterial infections are prevalent
nowadays. In impoverished areas, tuberculosis is a significant global
healthcare risk [3]. It impacts people of all ages and from all walks
of life. However, the current figures for 2018 show that 89 percent of
incidents were grownups (57 percent men, 32 percent older females)
and 11 percent were kids. Furthermore, 8.6 percent of the population
was HIV-positive (compared to 72 percent in Africa) [4]. In 2018, the
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WHO zones of Asian countries (44 percent), Africa (24 percent), and
Southern Asia (18 percent) had the highest proportion of Tb patients,
followed by the Eastern Gulf (8 percent), the Caribbean (3 percent),
and Europeans (3 percent). Furthermore, Pakistan (27 percent), Russia
(9 percent), the Netherlands (8 percent), Korea (6 percent), Argentina
(6 percent), Ethiopia (4 percent), Albania (4 percent), and Namibia
(4 percent each) contributed three-quarters of total production. These
states, along with 22 others in WHO’s classification of 30 areas with
strong TB burdens, represented 87 percent of global occurrences [5].

This is probably one of Ethiopia’s least significant environmental
safety problems, harming about 30,000 individuals every year [6].
According to the World Health Organization, Africa is the third most
tuberculosis-affected African country and the eighth most tuberculosis-
affected nation on the planet [7], accounting for 80 percent of tuber-
culosis infection globally. Youthful individuals are frequently affected:
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Fig. 1. Tuberculosis symptoms and their effects on the human body.
58 percent of all reported diagnoses in Pakistan are under 35 years old,
and 39 percent of the projected 32,000 fatalities annually were among
those aged 15 to 64, which led to the demise of household income
producers and caregivers of young children. This places a new internal
and external responsibility on Pakistan’s youth, who are the country’s
present and prospective financial foundation [8].

People can avoid contracting tuberculosis by following appropriate
therapeutic guidelines, such as accepting all practitioner medications
for the specified time-frame, adhering to all schedules, invariably pro-
tecting the throat with a parenchyma when breathing normally, assign-
ing used paper tissues in a trash container and putting them aside, not
being allowed to meet other humans and not encouraging them to meet
up, returning to the office, university, etc. Another preventive measure
is immunization [9]. Bacillus Calmette Guerin (BCG) inoculation is
administered to prevent tuberculosis. BCG vaccination was included in
the immunization schedule in 1973 [10]. The effectiveness of BCG in
controlling respiratory infections in individuals is hugely diverse [11].
The BCG immunization of infants diminishes the prevalence of tuber-
culosis by more than half in general [12]. The term ‘‘neonates born’’
generally refers to a baby who is between the ages of infancy and
twelve weeks [13].

Numerical modelling has been demonstrated to be an effective tech-
nique for analysing the transmission and prevention of communicable
infections, as well as for setting priorities for effective interventions
for vaccination programmes [13]. Identifying the patterns of virus
propagation in individuals, states, and continents can contribute to
improving measures to reduce communicable illness [9]. For further
information on TB, we refer the interested readers [14–18].

Recently, the investigation of Lévy motion, continuous random
walk, and banking data contributed to the development of fractional
calculus, which has a broad array of implementations in chemical
reactions, thermodynamics, mechanics, quantum dynamics, remote
sensing and systems identification, cognitive science, photon logistics,
rheology, data analysis, and other disciplines [19–21]. Both fractional
derivative/integral operators have been acknowledged as effective
computational instruments capable of acquiring inhomogeneities that
the classical differential and integral operators are incapable of cap-
turing. Furthermore, it is worth noting that fractal–fractional operators
record various sorts of heterogeneities and perform differently when
modelling biological and scientific phenomena. We can understand that
there are certainly numerous practical challenges that neither fractional
nor fractal formulations can adequately recreate on an individualized
level. As a result, scientists concluded that they were in desperate
need of innovative mathematical operators to simulate such complex
structures. Although some views hold that there is nothing new or
revolutionary, it is hard to conclude that integrating two current ideas
can lead to a revolutionary mechanism. A novel differential operator
was initially enacted in [22] to incorporate greater intricacies. The
2

combination of the fractal differentiation of a fractional derivative of
a particular mapping could be interpreted as this scientific expres-
sion. Obviously, it depends on the kernel, three interpretations were
proposed. The concept was challenged and applied to a variety of prob-
lems, including chaotic attractors, epidemics, and dispersion, among
others [23–25], and the majority of the articles included produced some
excellent simulated predictions.

Historically, solutions of ordinary differential equations (DE) and
partial differential equations (PDE) have long been used to create
numerical simulations for complex interactions in pharmacological,
biomedical, electrical, and scientific methods. The prevalence and ex-
clusivity of numerical solution approaches serve as the foundation
for accuracy assessment and subsequent investigation of the relevant
nonlinear phenomena. The research has also broadened to frameworks
of temporal delay/functional nonlinear problems [26], which include
the inherited feature of complex interactions in fields of science and
engineering. For obvious computational purposes, the mechanisms of
ordinary Itô–Doob type stochastic DEs [27], stochastic PDEs [28],
stochastic fractional DEs [29], and stochastic fractional PDEs in abstract
environments [30] were characterized in the foundation of Itô–Doob
type stochastic integral equations around 1960. The normalization
Wiener procedure [31] describes the consequences of stochastic envi-
ronmental perturbations. This was developed extensively using local
martingale integrals [32]. We perceive that scientists increasingly pur-
sue improvements of essential component notions that consume the
understanding of initial guess to its corresponding integral equation
concern, predicated on the aforesaid contextualized creation of in-
teractive modelling and to implement additional functional and/or
randomized disturbance attributes of interaction into the mathematical
analysis outlined by DEs.

Recently, stochastic vibrant frameworks for financial documents
(capitalization) were developed using a combination of conventional
numerical techniques and stochastic approaches in [33]. We require
to update the emerging mathematical formulas by consciously im-
plementing specific considerable directly attributed specifications or
characteristics with system parameters in attempt to enhance this
framework to more massively intricate mechanisms in physical sciences
functioning under intrinsic functional and outer randomized interfer-
ence. In 2021, Atangana and Araz [34] introduced a revolutionary idea
of modelling and forecasting the spread of COVID-19 with stochastic
and deterministic approaches in Africa and Europe. Alkahtani and
Koca [35] presented the fractional stochastic SIR model via the frac-
tional calculus approach and Alkahtani and Alzaid [36] contemplated
the stochastic mathematical model of chikungunya spread with the
global derivative.

Simulation is required for contagious TB for a myriad of reasons,
including the reality that TB has an intricate and incompletely compre-
hended evolutionary legacy, the difficulty of performing endovascular
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Fig. 2. Initial colonization process of tuberculosis disease.
investigations due to the latency between infestation and illness, the ne-
cessity to better understand the behaviour of the especially vulnerable
community, fiscal problems in performing therapies in underdeveloped
and developed regions, and numerous lingering inquiries about the im-
plications of inter-country transmission. Because M. tuberculosis spread
and TB diagnosis are impacted by a lot of complicated biochemical
pathways, the occurrence of unpredictability in the vaccine’s spreading
characteristics could be assumed [37]. Taking most of these aspects
into account, a stochastic simulation of tuberculosis is now widely used,
with the characteristics perturbed.

In this paper, a new mechanism termed fractal–fractional is imple-
mented to construct an SVIRS stochastic system for TB transmission
that takes infant immunization into account. For clarity purposes,
Atangana–Baleanu derivative concept is taken into consideration with
the Browning motion. We designed a TB system and validated its prop-
erties using authentic propagation scenarios utilizing the F–F technique.
We apply F–F pattering to real-life data from TB patients and discover
3

a slew of surprising results when newborns have been vaccinated.
Eventually, we present a detailed description of the F–F operator, which
is subsequently adhered to our suggested framework with fascinating
numerical findings with varying fractal-dimension and fractional-order.
We have shown that when R𝐒

0 < 1 then the infection wipes out. Also, we
computed that if R𝐒

0 > 1, then there will be a persistence of disease in
the population. Existence-uniqueness analysis is also demonstrated with
the Lipschitiz conditions and linear growth requirements. Furthermore,
the extinction of disease has developed. Finally, the investigation is
encapsulated; (for parameter descriptions, see, Table 1).

Preliminaries

It is vital to investigate some basic F–F operator theories before
continuing on to the mathematical formulation. Consider the func-
tion 𝐲(𝜉), which is continuous and fractal differentiable on [𝑐, 𝑑] with
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Table 1
Parameter’s specifications.

Parameters Data estimated References

𝜋 2.8 [6]
𝛿1 0.0453 [15]
𝛿2 0.04 [16]
𝜗 0.07 [17]
𝜌2 0.1 [12]
𝜁 0.2 [10]
𝐪 0.5 [37]
𝛾 0.01 [18]
𝜌1 0.4 [12]
𝜒 0.1 [17]

fractal-dimension 𝜔 and fractional-order 𝜑, as well as the specifications
available in [22].

Definition 1 ([22]). The F-FO of 𝐲(𝜉) containing the PL kernel in the
context of Riemann–Liouville (RL) can be stated as follows for 𝜑 ∈
[0, 1]:

𝐹𝐹𝑃𝐃𝜑,𝜔
0,𝜉 (𝐲(𝜉)) =

1
𝛤 (𝐮 − 𝜑)

𝑑
𝑑𝜉𝜔 ∫

𝜉

0
(𝜉 − 𝐱)𝐮−𝜑−1𝐲(𝐱)𝑑𝐱, (1)

where 𝑑𝐲(𝐱)
𝑑𝐱𝜔 = lim𝜉↦𝐱

𝐲(𝜉)−𝐲(𝐱)
𝜉𝜔−𝐱𝜔 and 𝐮 − 1 < 𝜑,𝜔 ≤ 𝐮 ∈ N.

Definition 2 ([22]). The F-FO of 𝐲(𝜉) containing the ED kernel in the
context of RL can be stated as follows for 𝜑 ∈ [0, 1]:

𝐹𝐹𝐸𝐃𝜑,𝜔
0,𝜉 (𝐲(𝜉)) =

M(𝜑)
1 − 𝜑

𝑑
𝑑𝜉𝜔 ∫

𝜉

0
exp

(

−
𝜑

1 − 𝜑
(𝜉 − 𝐱)

)

𝐲(𝐱)𝑑𝐱, (2)

such that M(0) = M(1) = 1 having 𝜑 > 0, 𝜔 ≤ 𝐮 ∈ N.

Definition 3 ([21]). The F-FO of 𝐲(𝜉) containing the GML kernel in
the context of Riemann–Liouville (RL) can be stated as follows for
𝜑 ∈ [0, 1]:

𝐹𝐹𝑀𝐃𝜑,𝜔
0,𝜉 (𝐲(𝜉)) =

ABC(𝜑)
1 − 𝜑

𝑑
𝑑𝜉𝜔 ∫

𝜉

0
𝐸𝜑

(

−
𝜑

1 − 𝜑
(𝜉 − 𝐱)

)

𝐲(𝐱)𝑑𝐱, (3)

such that ABC(𝜑) = 1 − 𝜑 + 𝜑
𝛤 (𝜑) having 𝜑 > 0, 𝜔 ≤ 1 ∈ N.

Definition 4 ([22]). The corresponding F–F integral formulation of (1)
is defined as:

𝐹𝐹𝑃 J𝜑0,𝜉 (𝐲(𝜉)) =
𝜔

𝛤 (𝜑) ∫

𝜉

0
(𝜉 − 𝐱)𝜑−1𝐱𝜔−1𝐲(𝐱)𝑑𝐱. (4)

Definition 5 ([22]). The corresponding F–F integral formulation of (2)
is defined as:

𝐹𝐹𝐸J𝜑0,𝜉 (𝐲(𝜉)) =
𝜑𝜔
M(𝜑) ∫

𝜉

0
𝐱𝜔−1𝐲(𝐱)𝑑𝐱 + 𝜔(1 − 𝜑)𝜉𝜔−1𝐲(𝜉)

M(𝜑)
. (5)

efinition 6 ([22]). The corresponding F–F integral formulation of (3)
s defined as:

𝐹𝐹𝑀J𝜑0,𝜉 (𝐲(𝜉)) =
𝜑𝜔

ABC(𝜑) ∫

𝜉

0
𝐱𝜔−1(𝜉 − 𝐱)𝜑−1𝐲(𝐱)𝑑𝐱 + 𝜔(1 − 𝜑)𝜉𝜔−1𝐲(𝜉)

ABC(𝜑)
.

(6)

Definition 7 ([21]). Let 𝐲 ∈ 𝐻1(𝐜,𝐝), 𝐜 < 𝐝 and the Atangana–Baleanu
fractional derivative operator is defined as:

𝐴𝐵𝐶
𝐜 𝐃𝜑

𝜉 (𝐲(𝜉)) =
ABC(𝜑)
1 − 𝜑 ∫

𝜉

𝐜
𝐲′(𝐱)𝐸𝜑

(

−
𝜑(𝜉 − 𝐱)𝜑
1 − 𝜑

)

𝑑𝐱, 𝜑 ∈ [0, 1], (7)

where ABC(𝜑) denotes the normalization function.
4

Definition 8 ([38]). The Gaussian hypergeometric function 21, de-
scribed by

21(𝑦1, 𝑦2; 𝑦3, 𝑦4)

= 1
B(𝑦2, 𝑦3 − 𝑦2) ∫

1

1
𝜉𝑦2−1(1 − 𝜉)𝑦3−𝑦2−1(1 − 𝑦4𝜉)−𝑦1𝑑𝜉, (𝑦3 > 𝑦2 > 0, |𝑦1| < 1),

(8)

here B(𝑦1, 𝑦2) =
𝛤 (𝑦1)𝛤 (𝑦2)
𝛤 (𝑦1+𝑦2)

and 𝛤 (𝑦1) = ∫ ∞
0 exp(−𝜉)𝜉𝑦1𝑑𝜉 is the Gamma

unction.

onception and illustration of the model

The proposed framework divides the overall population into four
ohorts or categories based on clinical characteristics: susceptibility
(𝜉), infectious 𝐈(𝜉), immunized 𝐕(𝜉), and restored 𝐑(𝜉), respectively.

People of all generations who have not had productive interactions
ith the streptococcus are included in the susceptibility group, 𝐒(𝜉).
ersons of all categories diagnosed with tuberculosis in the process
f formation belong to the infectious group, 𝐈(𝜉); from the diseased
ategory, a person receives therapy and moves to the restored group,
(𝜉). People who were inoculated as neonates and only have a moder-
te susceptibility to tuberculosis (TB) are classified as inoculated, 𝐕(𝜉).
onsidering the enlistment 𝜋 of probability lies somewhere between
and 1, the inoculated category is augmented through birth. Birth

ncreases the recruitment yield of the highly vulnerable group to 𝜋 of
ossibility 1 − 𝐪, as well as from the immunocompetent category 𝐕 at
rate of 𝑏1(𝑏1 ≥ 0) and from the retrieved group 𝐑 at a rate of 𝜒 .

In this scenario, 𝛿1 represents the spontaneous mortality rate, 𝛿2
represents the illness fatality proportion for people in cohort 𝐈, and 𝜗
epresents the probability that one contaminated person per interaction
er unit of time infects susceptibility 𝐒 and immunized 𝐕 people. Then
here is 𝜗𝜌2, and that is the proportion where such susceptibility people
ecome infectious, and 𝛾𝜗𝜌2, which is the proportion at which immu-
ized people become contaminated. If 𝛾 = 0, inoculation prevention

effectiveness is 100 percent; if 𝛾 = 1, vaccination protective efficacy is
0; and 1−𝛾 indicates a decrease in contamination risk due to inoculation
performance. 𝜁 refers to the rate at which an affected person exits the
infection cohort (𝐈) and enters the group (𝐑). The propagation system is
predicated on the SVIRS concept. 𝐍(𝜉) represents the overall population
at time 𝜉, and thus 𝐍(𝜉) = 𝐒(𝜉) + 𝐕(𝜉) + 𝐈(𝜉) + 𝐑(𝜉).

We surmise that there is a cohesive group of people in the commu-
nity. That indicates that each un-immunized person has a fair proba-
bility of becoming contaminated when they come into contact with a
potentially infected person and that pathogen propagation appears at a
regular prevalence speed. Furthermore, we expect certain applicants to
emerge at a rate of 1 − 𝐪 in the highly vulnerable class 𝐒 and at a rate
of 𝐪 in the inoculated class 𝐕. Because the BCG medication’s usefulness
is not perfect, several immunized people will become infectious with
microbes. Because the inoculated presenter’s protection is decreasing,
certain immunized people will be exposed to pathogens exhibiting an
incidence 𝜌1. We suppose that restored people migrate to the vulnerable
group at a pace of 𝜒 resulting in a loss of immunization. We also
presume that all of the system’s characteristics are non-negative.

The fundamental complexities of tuberculosis to newborn inocula-
tion are depicted in Fig. 3 as a process flow, taking into account the
concepts, suppositions, and inter-dependencies between the factors and
specifications. The model is presented as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝐒(𝜉)
𝑑𝜉 = (1 − 𝐪)𝜋 + 𝜌1𝐕 + 𝜒𝐑 − 𝛿1𝐒 − 𝜗𝜌2𝐒𝐈,

𝑑𝐕(𝜉)
𝑑𝜉 = 𝐪𝜋 − 𝛾𝜌2𝜗𝐕𝐈 − (𝜌1 + 𝛿1)𝐕,

𝑑𝐈(𝜉)
𝑑𝜉 = 𝜗𝜍𝐒𝐈 + 𝛾𝜗𝜌2𝐕𝐈 − (𝛿1 + 𝛿2 + 𝜁 )𝐈,

𝑑𝐑(𝜉)
𝑑𝜉 = 𝜁𝐈 − 𝜒𝐑 − 𝛿1𝐑,

(9)

subject to ICs 𝐒(0) = 𝐒0 ≥ 0, 𝐕(0) = 𝐕0 ≥ 0, 𝐈(0) = 𝐈0 ≥ 0, 𝐑(0) =
𝐑 ≥ 0.
0
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Fig. 3. Flow chart for tuberculosis model.

Even though physiological mechanisms implicated in the complexi-
ties of tuberculosis are stochastic instead of prescriptive, ignoring their
constructed unpredictability might indeed result in misrepresentative
and inaccurate outcomes [37]. The classification algorithm seems to
have some restrictions in numerical simulations of virus propagation.
Stochastic DES systems exert an important influence in a variety of
fields because they offer a higher sense of authenticity than their pre-
dictable equivalents. Several writers have successfully investigated the
behaviour of modelling techniques that include variable modification.
As a result, to account for the influence of sporadic dynamic capabil-
ities, we include white noise in every component of the framework in
this work. Assume that a probabilistic environmental condition affects
every single person in the community at the same time. The completely
exclusive ordinary Brownian motions with 𝐵𝚥(0) = 0 are denoted by
𝐵𝚥(𝜉) and 𝜎𝚥, 𝚥 = 1, 2, 3, 4, the white noise sensitivities. The stochastic
analogue of the deterministic framework (9) assumes the appropriate
structure when stochastic disturbance is introduced:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝐒(𝜉) =
(

(1 − 𝐪)𝜋 + 𝜌1𝐕 + 𝜒𝐑 − 𝛿1𝐒 − 𝜗𝜌2𝐒𝐈
)

𝑑𝜉 + 𝜎1𝐒𝐵1(𝜉),
𝑑𝐕(𝜉) =

(

𝐪𝜋 − 𝛾𝜌2𝜗𝐕𝐈 − (𝜌1 + 𝛿1)𝐕
)

𝑑𝜉 + 𝜎2𝐕𝐵2(𝜉),
𝑑𝐈(𝜉) =

(

𝜗𝜍𝐒𝐈 + 𝛾𝜗𝜌2𝐕𝐈 − (𝛿1 + 𝛿2 + 𝜁 )𝐈
)

𝑑𝜉 + 𝜎3𝐈𝐵3(𝜉),
𝑑𝐑(𝜉) =

(

𝜁𝐈 − 𝜒𝐑 − 𝛿1𝐑
)

𝑑𝜉 + 𝜎4𝐑𝐵4(𝜉).

(10)

Qualitative analysis

Invariant region

To find the invariant region for (10), we surmise the over population
𝐍(𝜉) = 𝐒(𝜉) + 𝐕(𝜉) + 𝐈(𝜉) + 𝐑(𝜉).

Theorem 1. Suppose there be a domain 𝛬 =
{

(𝐒,𝐕, 𝐈,𝐑) ∈ R4
+ ∶ 0 ≤

𝐍(𝜉) ≤ 𝜋∕𝛿1
}

at which the stochastic system equation’s (10) is almost
probably positive invariant.

Proof. Suppose 0 supposed to be the largest integer. Therefore, if
(𝐒0,𝐕0, 𝐈0,𝐑0) ∈ R4

+, then each factor of (𝐒0,𝐕0, 𝐈0,𝐑0) stays in
[ 1
𝕜0
, 1
]

For every integer  ≥ 𝕜0 Stopping time can be defined as follows:

𝛺𝕜 = inf
{

𝜉 ∈ [0, 𝛺𝜖] ∶ 𝐒(𝜉) ≤ 1
𝕜
, 𝑜𝑟𝐈(𝜉) ≤ 1

𝕜
, 𝐑(𝜉) ≤ 1

𝕜

}

,

𝛺∞ = inf
{

𝜉 ∈ [0, 𝛺𝜖] ∶ 𝐒(𝜉) ≤ 0, 𝑜𝑟𝐈(𝜉) ≤ 0, 𝐑(𝜉) ≤ 0
}

. (11)

Our aim is to illustrate that 𝐏(𝛺 = ∞), i.e., 𝐏(𝛺 < 𝛹 ), 𝑓𝑜𝑟 𝛹 > 0, so
that we can demonstrate lim sup𝐏(𝛺 < 0) = 0.
5

𝜉↦∞ 𝕜
Define a Lyapunov functional  as

(𝜉) = ln 1
𝐒(𝜉)

+ ln 1
𝐕(𝜉)

+ ln 1
𝐈(𝜉)

+ ln 1
𝐑(𝜉)

.

In view of Itô’s approach, for 𝛹 > 0, 𝜉 ∈ [0, 𝛹 ∧ 𝛺𝕜] to 𝐘(𝜉) =
(

𝐒(𝜉),𝐕(𝜉), 𝐈(𝜉),𝐑(𝜉)
)

, we find

𝑑(𝜉) = −
(

1
𝐒(𝜉)

𝑑𝐒(𝜉) + 1
𝐕(𝜉)

𝑑𝐕(𝜉) + 1
𝐈(𝜉)

𝑑𝐈(𝜉) + 1
𝐑(𝜉)

𝑑𝐑(𝜉)

− 1
𝐒2(𝜉)

𝑑𝐒2(𝜉) − 1
𝐈2(𝜉)

𝑑𝐈2(𝜉)
)

.

Thus, we have

𝑑(𝜉) = − 1
𝐒(𝜉)

{

(

(1 − 𝐪)𝜋 + 𝜌1𝐕 + 𝜒𝐑 − 𝛿1𝐒 − 𝜗𝜌2𝐒𝐈
)

𝑑𝜉 + 𝜎1𝐒𝐵1(𝜉)
}

− 1
𝐈(𝜉)

{

(

𝜗𝜍𝐒𝐈 + 𝛾𝜗𝜌2𝐕𝐈 − (𝛿1 + 𝛿2 + 𝜁 )𝐈
)

𝑑𝜉 + 𝜎3𝐈𝐵3(𝜉)
}

− 1
𝐕(𝜉)

{

(

𝐪𝜋 − 𝛾𝜌2𝜗𝐕𝐈 − (𝜌1 + 𝛿1)𝐕
)

𝑑𝜉 + 𝜎2𝐕𝐵2(𝜉)
}

(12)

− 1
𝐑(𝜉)

{

(

𝜁𝐈 − 𝜒𝐑 − 𝛿1𝐑
)

𝑑𝜉 + 𝜎4𝐑𝐵4(𝜉)
}

− 1
𝐒2(𝜉)

{

(

(1 − 𝐪)𝜋 + 𝜌1𝐕 + 𝜒𝐑 − 𝛿1𝐒 − 𝜗𝜌2𝐒𝐈
)

𝑑𝜉 + 𝜎1𝐒𝐵1(𝜉)
}2

+ 1
𝐈2(𝜉)

{

(

𝜗𝜍𝐒𝐈 + 𝛾𝜗𝜌2𝐕𝐈 − (𝛿1 + 𝛿2 + 𝜁 )𝐈
)

𝑑𝜉 + 𝜎3𝐈𝐵3(𝜉)
}2

. (13)

Setting 1 = (1 − 𝐪)𝜋 + 𝜌1𝐕 + 𝜒𝐑 − 𝛿1𝐒 − 𝜗𝜌2𝐒𝐈 ,2 = 𝜎1𝐒(𝜉), 3 =
𝜗𝜍𝐒𝐈 + 𝛾𝜗𝜌2𝐕𝐈 − (𝛿1 + 𝛿2 + 𝜁 )𝐈 and 4 = 𝜎2𝐈(𝜉), then (12) reduces to

𝑑(𝜉) = − 1
𝐒(𝜉)

{

(

(1 − 𝐪)𝜋 + 𝜌1𝐕 + 𝜒𝐑 − 𝛿1𝐒 − 𝜗𝜌2𝐒𝐈
)

𝑑𝜉 + 𝜎1𝐒𝐵1(𝜉)
}

− 1
𝐈(𝜉)

{

(

𝜗𝜍𝐒𝐈 + 𝛾𝜗𝜌2𝐕𝐈 − (𝛿1 + 𝛿2 + 𝜁 )𝐈
)

𝑑𝜉 + 𝜎3𝐈𝐵3(𝜉)
}

− 1
𝐕(𝜉)

{

(

𝐪𝜋 − 𝛾𝜌2𝜗𝐕𝐈 − (𝜌1 + 𝛿1)𝐕
)

𝑑𝜉 + 𝜎2𝐕𝐵2(𝜉)
}

− 1
𝐑(𝜉)

{

(

𝜁𝐈 − 𝜒𝐑 − 𝛿1𝐑
)

𝑑𝜉 + 𝜎4𝐑𝐵4(𝜉)
}

− 1
𝐒2(𝜉)

{

2
1𝑑

2𝜉 +12𝑑𝜉𝑑𝐵1(𝜉) +2
2𝑑

2𝐵1(𝜉)
}

+ 1
𝐈2(𝜉)

{

2
3𝑑

2𝜉 +34𝑑𝜉𝑑𝐵3(𝜉) +4𝑑
2𝐵3(𝜉)

}

.

It follows that

𝑑(𝜉) = −
{( (1 − 𝐪)𝜋

𝐒(𝜉)
+

𝜌1𝐕(𝜉)
𝐒(𝜉)

+
𝜒𝐑(𝜉)
𝐒(𝜉)

− 𝛿1 − 𝜗𝜌2𝐈(𝜉)
)

𝑑𝜉 + 𝜎1𝑑𝐵1(𝜉)
}

−
{

(

𝜗𝜌2𝐒(𝜉) + 𝛾𝜗𝜌2𝐕(𝜉) − (𝛿1 + 𝛿2 + 𝜁 )
)

+ 𝜎3𝐵3(𝜉)
}

−
{( 𝐪𝜋

𝐕(𝜉)
− 𝛾𝜌2𝜗𝐈(𝜉) − (𝜌1 + 𝛿1)

)

+ 𝜎2𝑑𝐵2(𝜉)
}

−
{( 𝜁𝐈(𝜉)

𝐑(𝜉)
− (𝜒 + 𝛿1)

)

𝑑𝜉 + 𝜎4𝑑𝐵4(𝜉)
}

−
{

𝜎21 + 𝜎22 + 𝜎23 + 𝜎24
}

𝑑𝜉

−
{

𝜎1𝑑𝐵1(𝜉) + 𝜎2𝑑𝐵2(𝜉) + 𝜎3𝑑𝐵3(𝜉) + 𝜎4𝑑𝐵4(𝜉)
}

.

After simplification, the aforesaid equation reduced to

𝑑(𝜉) = 𝑑𝜉 −
{

𝜎1𝑑𝐵1(𝜉) + 𝜎2𝑑𝐵2(𝜉) + 𝜎3𝑑𝐵3(𝜉) + 𝜎4𝑑𝐵4(𝜉)
}

,

where  = − (1−𝐪)𝜋
𝐒(𝜉) − 𝜌1𝐕(𝜉)

𝐒(𝜉) − 𝜒𝐑(𝜉)
𝐒(𝜉) + 𝛿1 +𝜗𝜌2𝐈(𝜉)−𝜗𝜌2𝐒(𝜉)− 𝛾𝜗𝜌2𝐕(𝜉)+

(𝛿1+𝛿2+𝜁 )−
𝐪𝜋
𝐕(𝜉) +𝛾𝜌2𝜗𝐈(𝜉)+(𝜌1+𝛿1)−

𝜁𝐈(𝜉)
𝐑(𝜉) +(𝜒+𝛿1)+𝜎

2
1+𝜎

2
2+𝜎

2
3+𝜎

2
4 = .

Thus, we have

𝑑(𝜉) ≤ 𝑑𝜉 −
{

𝜎1𝑑𝐵1(𝜉) + 𝜎2𝑑𝐵2(𝜉) + 𝜎3𝑑𝐵3(𝜉) + 𝜎4𝑑𝐵4(𝜉)
}

.

Performing integration from 0 𝑡𝑜 𝛺𝕜∧𝛹 , it can be deduced that

∫

𝛺𝕜∧𝛹

0
𝑑(𝐘(𝜉)) ≤ ∫

𝛺𝕜∧𝛹

0
𝑑𝜉 −

{

∫

𝛺𝕜∧𝛹

0
𝜎1𝑑𝐵1(𝜉)

+
𝛺𝕜∧𝛹

𝜎2𝑑𝐵2(𝜉) +
𝛺𝕜∧𝛹

𝜎3𝑑𝐵3(𝜉)
∫0 ∫0
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+∫

𝛺𝕜∧𝛹

0
𝜎4𝑑𝐵4(𝜉)

}

,

sing the fact that 𝛺𝕜∧𝛹 = min
{

𝛺n, 𝜉
}

. Implementing the expectation
on the aforesaid variants gives


(

𝐘(𝛺𝕜∧𝛹 )
)

≤ (𝐘(0)) +  ∫

𝛺𝕜∧𝛹

0
𝑑𝜉 −

{

∫

𝛺𝕜∧𝛹

0
𝜎1𝑑𝐵1(𝜉)

+ ∫

𝛺𝕜∧𝛹

0
𝜎2𝑑𝐵2(𝜉) + ∫

𝛺𝕜∧𝛹

0
𝜎3𝑑𝐵3(𝜉)

+∫

𝛺𝕜∧𝛹

0
𝜎4𝑑𝐵4(𝜉)

}

.

This implies that


(

𝐘(𝛺𝕜∧𝛹 )
)

≤ (𝐘(0)) +  ≤ (𝐘(0)) + 𝛹. (14)

As 
(

𝐘(𝛺𝕜∧𝛹 )
)

> 0, then


(

𝐘(𝛺𝕜∧𝛹 )
)

= 
[


(

𝐘(𝛺𝕜∧𝛹 )
)

𝐱(𝛺𝕜≤𝛹 )
]

+ 
[


(

𝐘(𝛺𝕜∧𝛹 )
)

𝐱(𝛺𝕜>⊺)
]

≥ 
[


(

𝐘(𝛺𝕜∧𝛹 )
)

𝐱(𝛺𝕜≤𝛹 )
]

. (15)

Further, for 𝛺𝕜, since certain factors of 𝐘(𝛺𝕜), 𝑠𝑎𝑦 (𝐒(𝛺𝕜)) including
0 < 𝐒(𝛺𝕜) ≤

1
𝕜 < 1.

Thus, (𝐘(𝛺𝕜)) ≥ − ln
(

1
𝕜

)

, this allow us to write (𝐘(𝛺𝕜)) =

n
(

𝐒(𝛺𝕜)
)

≤ ln
(

1
𝕜

)

.
As a result, from (15) and the previous expression, we have


(

𝐘(𝛺𝕜∧𝛹 )
)

≥ 
[


(

𝐘(𝛺𝕜∧𝛹 )
)

𝐱(𝛺𝕜≤𝛹 )
]

≥
{

− ln
( 1
𝕜

)}

. (16)

ombining (14)–(16), we have


(

𝐘(𝛺𝕜∧𝛹 )
)

≥ − ln
( 1
𝕜

)

𝐏(𝛺𝕜∧𝛹 ). (17)

It follows that

𝐏(𝛺𝕜∧𝛹 ) ≤


(

𝐘(𝛺𝕜∧𝛹 )
)

ln 𝕜

≤

(

𝐘(0)
)

+ 𝛹
ln 𝕜

..

Applying limit sup 𝕜 ↦ ∞ on (17), ∀ 𝛹 > 0, we find

𝐏(𝛺𝕜∧𝛹 ) ≤ 0 ⟹ lim
𝜉↦∞

𝐏(𝛺𝕜∧𝛹 ) = 0.

This is the desired result. □

Basic reproduction number (R𝐒
0 )

Here, the fundamental reproductive factor in this case is the mean
alue of secondary infectious diseases generated by an infectious person
uring his contagious phase. In addition, we intend to demonstrate
hat stochastic (R𝐒

0) reproduction is a distinct type of fundamental
eproduction.

Firstly, in view of the second cohort of system’s (10), that is

𝐈(𝜉) =
(

𝜗𝜍𝐒𝐈 + 𝛾𝜗𝜌2𝐕𝐈 − (𝛿1 + 𝛿2 + 𝜁 )𝐈
)

𝑑𝜉 + 𝜎3𝐈𝑑𝐵3(𝜉). (18)

Considering the Itô’s technique for twice differentiation mapping 𝐅(𝐈) =
n(I), the Taylor series representation is

𝐅(𝜉, 𝐈(𝜉)) = 𝜕𝐅
𝜕𝜉

𝑑𝜉 + 𝜕𝐅
𝜕𝐈

𝑑𝐈 + 1
2
𝜕2𝐅
𝜕𝐈2

(𝑑𝐈)2 + 𝜕2𝐅
𝜕𝐈𝜕𝜉

𝑑𝜉𝑑𝐈 + 1
2
𝜕2𝐅
𝜕𝜉2

(𝑑𝜉)2.

his implies that

𝐅(𝜉, 𝐈(𝜉)) = 1
𝐈(𝜉)

{

(

𝜗𝜍𝐒𝐈 + 𝛾𝜗𝜌2𝐕𝐈 − (𝛿1 + 𝛿2 + 𝜁 )𝐈
)

𝑑𝜉 + 𝜎3𝐈𝑑𝐵3(𝜉)
}

− 1
2𝐈2(𝜉)

{

(

𝜗𝜍𝐒𝐈 + 𝛾𝜗𝜌2𝐕𝐈 − (𝛿1 + 𝛿2 + 𝜁 )𝐈
)

𝑑𝜉 + 𝜎3𝐈𝑑𝐵3(𝜉)
}2

+ 𝜕𝐅 𝑑𝜉
{ 1 {

(

𝜗𝜍𝐒𝐈 + 𝛾𝜗𝜌2𝐕𝐈 − (𝛿1 + 𝛿2 + 𝜁 )𝐈
)

𝑑𝜉
6

𝜕𝜉𝜕𝐈 𝐈(𝜉)
+ 𝜎3𝐈𝑑𝐵3(𝜉)
}}

.

t follows that

𝐅(𝜉, 𝐈(𝜉)) =
{

(

𝜗𝜍𝐒 + 𝛾𝜗𝜌2𝐕 − (𝛿1 + 𝛿2 + 𝜁 )
)

𝑑𝜉 + 𝜎3𝑑𝐵3(𝜉)
}

− 1
2𝐈2(𝜉)

{

2
1(𝑑𝜉)

2 + 212𝑑𝜉𝑑𝐵2(𝜉) +2
2(𝑑𝐵2(𝜉))2

}

,

here 1 = 𝜗𝜍𝐒𝐈 + 𝛾𝜗𝜌2𝐕𝐈 − (𝛿1 + 𝛿2 + 𝜁 )𝐈 and 2 = 𝜎3𝐈, then can be
ritten as

𝐅(𝜉, 𝐈(𝜉)) =
{

(

𝜗𝜍𝐒 + 𝛾𝜗𝜌2𝐕 − (𝛿1 + 𝛿2 + 𝜁 )
)

𝑑𝜉 + 𝜎3𝑑𝐵3(𝜉)
}

− 1
2𝐈2(𝜉)

{

2
2(𝑑𝐵2(𝜉))2

}

=
{

(

𝜗𝜍𝐒 + 𝛾𝜗𝜌2𝐕 − (𝛿1 + 𝛿2 + 𝜁 )
)

𝑑𝜉 + 𝜎3𝑑𝐵3(𝜉)
}

− 1
2𝐈2(𝜉)

{

(𝜎3𝐈)2
}

𝑑𝜉. (19)

s 𝑑𝜉 ↦ 0, (𝑑𝜉)2, 𝑑𝜉𝑑𝐵2(𝜉) ↦ 0 and (𝑑𝐵2(𝜉))2 can be converted to 𝑑𝜉
By the variance of Wiener technique), we have

𝐅(𝜉, 𝐈(𝜉))

=
{

(

𝜗𝜍𝐒 + 𝛾𝜗𝜌2𝐕 − (𝛿1 + 𝛿2 + 𝜁 )
)

𝑑𝜉 + 𝜎3𝑑𝐵3(𝜉)
}

− 1
2
(𝜎3)2𝑑𝜉

=
{

(

𝜗𝜍𝐒 + 𝛾𝜗𝜌2𝐕 − (𝛿1 + 𝛿2 + 𝜁 )
)

𝑑𝜉 − 1
2
(𝜎3)2

}

𝑑𝜉 + 𝜎3𝑑𝐵3(𝜉)

=
{

(

𝜗𝜍𝐒 + 𝛾𝜗𝜌2𝐕 − 1
2
(𝜎3)2

)

− (𝛿1 + 𝛿2 + 𝜁 )
}

𝑑𝜉 + 𝜎3𝑑𝐵3(𝜉). (20)

aking into consideration the next generation matrices [39] are as
ollows

= 𝜗𝜍𝐒 + 𝛾𝜗𝜌2𝐕 − 1
2
(𝜎3)2 𝑎𝑛𝑑 𝐕 = 𝛿1 + 𝛿2 + 𝜁.

herefore, 𝐅 and 𝐕 at disease-free equilibrium 0 =
(

(

(1−𝐪)+𝑏∕𝛿1
)

𝜋
𝛿1+𝜌1

, 𝐪𝜋
𝛿1+𝜌1

, 0, 0
)

, we find

𝐅 = 𝜗𝜍

(

(1 − 𝐪) + 𝑏∕𝛿1
)

𝜋
𝛿1 + 𝜌1

+ 𝛾𝜗𝜌2
𝐪𝜋

𝛿1 + 𝜌1
− 1

2
(𝜎3)2 𝑎𝑛𝑑 𝐕 = 𝛿1 + 𝛿2 + 𝜁.

he characteristic polynomial can be written as

𝜗𝜍𝜋
(

(1 − 𝐪) + 𝜌1∕𝛿1 + 𝛾𝐪
)

(𝜌1 + 𝛿1)(𝛿1 + 𝛿2 + 𝜁 )
−

𝜎23
2(𝛿1 + 𝛿2 + 𝜁 )

− 𝜆
|

|

|

|

|

= 0.

This yields

𝜆 =
𝜗𝜍𝜋

(

(1 − 𝐪) + 𝜌1∕𝛿1 + 𝛾𝐪
)

(𝜌1 + 𝛿1)(𝛿1 + 𝛿2 + 𝜁 )
−

𝜎23
2(𝛿1 + 𝛿2 + 𝜁 )

.

According to the [39] approach, the dominating eigenvalue is the R𝐒
0 .

Thus

R𝐒
0 =

𝜗𝜍𝜋
(

(1 − 𝐪) + 𝜌1∕𝛿1 + 𝛾𝐪
)

− 𝜎23
2(𝜌1 + 𝛿1)(𝛿1 + 𝛿2 + 𝜁 )

,

which is the required stochastic fundamental reproduction number.

Local stability of diseases-free equilibrium point (DFEP) in stochastic sense

Theorem 2. For a community’s infection to be eradicated, then R𝐒
0 < 1.

If R𝐒
0 < 1, then for any provided ICs

(

𝐒(0),𝐕(0), 𝐈(0),𝐑(0)
)

=
(

𝐒0,𝐕0, 𝐈0,𝐑0
)

∈ R4
+. Therefore, 𝐈(𝜉) admits lim𝜉↦∞ sup ln(𝐈(𝜉))

𝜉 ≤ (𝛿1 +
𝛿2 + 𝜁 )(R𝐒

0 − 1) almost surely.

Proof. Taking into consideration (18), we have

𝑑𝐅(𝜉, 𝐈(𝜉)) =
(

𝜗𝜍𝐒 + 𝛾𝜗𝜌2𝐕 − 1
2
𝜎23 − (𝛿1 + 𝛿2 + 𝜁 )

)

𝑑𝜉 + 𝜎3𝑑𝐵3(𝜉).

t follows that

ln(𝐈) =
(

𝜗𝜍𝐒 + 𝛾𝜗𝜌 𝐕 − 1𝜎2 − (𝛿 + 𝛿 + 𝜁 )
)

𝑑𝜉 + 𝜎 𝑑𝐵 (𝜉).
2 2 3 1 2 3 3
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a

𝜉

t

d
s

ℎ

W
t
{

𝜛

0

A

ℎ

F
t
a

(

l

T

s

E

v

𝜉

a

|

|

|

T

L
‖

‖

‖

F

|

|

|

After performing integration, we have

ln(𝐈) = ln(𝐈0) + ∫

𝜉

0

(

𝜗𝜍𝐒 + 𝛾𝜗𝜌2𝐕 − 1
2
𝜎23 − (𝛿1 + 𝛿2 + 𝜁 )

)

𝑑𝜉

+ 𝜎3 ∫

𝜉

0
𝑑𝐵3(𝜉)

≤ ln(𝐈0) +
(

𝜗𝜍
𝜋
(

(1 − 𝐪) + 𝜌1∕𝛿1 + 𝛾𝐪
)

𝛿1 + 𝜌1
− 1

2
𝜎23 − (𝛿1 + 𝛿2 + 𝜁 )

)

𝜉
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑎𝑡 𝐷𝐹𝐸𝑃 0

+ 𝜎3 ∫

𝜉

0
𝑑𝐵3(𝜉)

≤ ln(𝐈0) +
(

𝜗𝜍
𝜋
(

(1 − 𝐪) + 𝜌1∕𝛿1 + 𝛾𝐪
)

𝛿1 + 𝜌1
− 1

2
𝜎23 − (𝛿1 + 𝛿2 + 𝜁 )

)

𝜉

+𝛬(𝜉), (21)

where 𝛬(𝜉) = 𝜎3 ∫
𝜉
0 𝑑𝐵3(𝜉) is the martingale. therefore, by the strong

principal of large values for 𝛬(𝜉), see [40], we get lim𝜉↦∞ sup 𝛬(𝜉)
𝜉 = 0

lmost probably.
After dividing by 𝜉 and applying limit 𝜉 ↦ ∞, then (21) reduces to

lim
↦∞

sup
ln(𝐈)
𝜉

≤ 𝜗𝜍
𝜋
(

(1 − 𝐪) + 𝜌1∕𝛿1 + 𝛾𝐪
)

𝛿1 + 𝜌1
− 1

2
𝜎23 − (𝛿1 + 𝛿2 + 𝜁 )

= (𝛿1 + 𝛿2 + 𝜁 )
(

𝜗𝜍
𝜋
(

(1 − 𝐪) + 𝜌1∕𝛿1 + 𝛾𝐪
)

(𝛿1 + 𝜌1)(𝛿1 + 𝛿2 + 𝜁 )

− 1
2(𝛿1 + 𝛿2 + 𝜁 )

𝜎23

)

= (𝛿1 + 𝛿2 + 𝜁 )(R𝐒
0 − 1) < 0.

This indicates that R𝐒
0 < 1.

Finally, R𝐒
0 should be smaller than 1 for disease elimination in a

population. □

Theorem 3. For prevalence of disease in the population R𝐒
0 > 1. If R𝐒

0 > 1,
herefore for the provided initial data 𝐈(0) ∈ (0, 𝜋∕𝑑1), then the solution of

(10) admits

lim
𝜉↦∞

sup(𝐈(𝜉)) ≥ 𝜂 (22)

almost probably, where 𝜂 is the root of ℎ1(𝐈) = 𝜗𝜍(𝐍−(𝐕+𝐈+𝐑))+𝛾𝜗𝜍(𝐍−

(𝐒 + 𝐈 + 𝐑)) −
𝜎23
2 − (𝛿1 + 𝛿2 + 𝜁 ) = 0.

Proof. Since R𝐒
0 > 1, we have

ℎ1(0) = 𝜗𝜍(𝐍 − (𝐕 + 𝐑)) + 𝛾𝜗𝜍(𝐍 − (𝐒 + 𝐑)) −
𝜎23
2

− (𝛿1 + 𝛿2 + 𝜁 )

= 𝜗𝜍
𝜋
(

(1 − 𝐪) + 𝜌1∕𝛿1 + 𝛾𝐪
)

(𝜌1 + 𝛿1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑎𝑡 𝐷𝐹𝐸𝑃 0

−
𝜎23
2

− (𝛿1 + 𝛿2 + 𝜁 )

= (𝛿1 + 𝛿2 + 𝜁 )
{

𝜗𝜍
𝜋
(

(1 − 𝐪) + 𝜌1∕𝛿1 + 𝛾𝐪
)

(𝜌1 + 𝛿1)
−

𝜎23
2(𝛿1 + 𝛿2 + 𝜁 )

− 1
}

= (𝛿1 + 𝛿2 + 𝜁 )(R𝐒
0 − 1) > 0.

Also, we have

ℎ1(𝐍) = −𝜗𝜍(𝐕 + 𝐑) − 𝛾𝜗𝜍(𝐒 + 𝐑) −
𝜎23
2

− (𝛿1 + 𝛿2 + 𝜁 )

= −𝜗𝜍𝐒 − 𝛾𝜗𝜍𝐕 −
𝜎23
2

− (𝛿1 + 𝛿2 + 𝜁 )

= −(𝛿1 + 𝛿2 + 𝜁 )
{

𝜗𝜍
𝜋
(

(1 − 𝐪) + 𝜌1∕𝛿1 + 𝛾𝐪
)

(𝜌1 + 𝛿1)(𝛿1 + 𝛿2 + 𝜁 )
+

𝜎23
2(𝛿1 + 𝛿2 + 𝜁 )

+ 1
}

= −(𝛿1 + 𝛿2 + 𝜁 )
(

R𝐒
0 +

𝜎23
2(𝛿1 + 𝛿2 + 𝜁 )

+ 1
)

= −(𝛿1 + 𝛿2 + 𝜁 )
(

(R𝐒 + 1) +
𝜎23

)

< 0.
7

0 2(𝛿1 + 𝛿2 + 𝜁 )
Then ℎ1(𝐈) permits a zero 𝜂 ∈ (0, 𝜋∕𝑑1)(0, d), and since ℎ1(𝐈) is
ecreasing about 𝜂, we can simply illustrate that we have for every
ubstantially significant 𝜖 > 0, one can find

1(𝜂 + 𝜖) < 0 < ℎ1(𝜂 − 𝜖). (23)

e are now able to back up our claim (23). If this is not the case,
hen there is a relatively small 𝜖 > 0 so that 𝑝(∇1) > 0 where ∇1 =
lim𝜉↦∞ sup(𝐈(𝜉)) ≤ 𝜂 − 2𝜖

}

, and so there is 𝜛 ∈ ∇1 such that for every
∈ ∇1 there is 𝑇 (𝜛) > 0 such that

≤ 𝐈(𝜉,𝜛) ≤ ℎ1(𝜂 − 𝜖), ∀ 𝜉 ≥ 𝑇 (𝜛). (24)

s a consequence of (23) and (24), it concludes that

1(𝐈(𝜉,𝜛)) ≤ ℎ1(𝜂 − 𝜖), ∀ 𝜉 ≥ 𝑇 (𝜛). (25)

urthermore, according to the strong rule of large vales for martingales,
here is a ∇2 ⊂ ∇ having 𝑝(∇2) = 1 such that 𝜛 ∈ ∇2 lim𝜉↦∞ sup 𝛬(𝜉)

𝜉 = 0
lmost probably.

Now, make the necessary adjustments 𝜛 ∈ ∇1 ∩ ∇2, then utilizing
25), so that for 𝜉 ≥ 𝑇 (𝜛),

n 𝐈(𝜉,𝜛) = ln 𝐈(0) + ∫

𝑇 (𝜛)

0
ℎ1(𝐈(𝑠1))𝑑𝑠1 + ∫

𝜉

𝑇 (𝜛)
ℎ1(𝐈(𝑠1))𝑑𝑠1 + 𝛬(𝜉)

≥ ln 𝐈(0) + ∫

𝑇 (𝜛)

0
ℎ1(𝐈(𝑠1))𝑑𝑠1 + ℎ1(𝜂 − 𝜖)(𝜉 − 𝑇 (𝜛))𝑑𝑠1 + 𝛬(𝜉).

his gives lim𝜉↦∞ inf ln 𝐈(𝜉,𝜛)
𝜉 > ℎ1(𝜂 − 𝜖), where lim𝜉↦∞ ln 𝐈(𝜉,𝜛) = ∞.

This contradicting (23), hence the prescribed assumption (22)
hould always true, that is., lim𝜉↦∞ sup(𝐈(𝜉)) ≥ 𝜂 almost probably. □

xistence-uniqueness of the solution

Now, the model’s (10) existence and uniqueness criteria are pro-
ided. To do so, we demonstrate that (𝛷𝜄(𝜉, 𝑥𝜄))𝜄∈[1,2,3,4] and (𝜄

(𝜉, 𝑥𝜄))𝜄∈[1,2,3,4]

|

|

|

𝜚𝜄(𝜉, 𝑥𝜄)
|

|

|

. |

|

|

𝜄(𝜉, 𝑥𝜄)
|

|

|

< 𝜅𝜄(1 +
|

|

|

𝑥𝜄
|

|

|

2
), ∀ (26)

∈ [0, 𝑇 ], (27)

nd

𝛷𝜄(𝜉, 𝑥1𝜄 )−𝛷𝜄(𝜉, 𝑥1𝜄 )
|

|

|

2
, |

|

|

𝜄(𝜉, 𝑥1𝜄 )−𝜄(𝜉, 𝑥1𝜄 )
|

|

|

2
< 𝜅𝜄

|

|

|

𝑥1𝜄 −𝑥2𝜄
|

|

|

, ∀ 𝜉 ∈ [0, 𝑇 ].

(28)

he system (10) can be expressed as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝐒(𝜉) = 𝛷1(𝐒, 𝜉)𝑑𝜉 + 𝜎11(𝐒, 𝜉)𝐵1(𝜉),
𝑑𝐕(𝜉) = 𝛷2(𝐕, 𝜉)𝑑𝜉 + 𝜎22(𝐕, 𝜉)𝐵2(𝜉),
𝑑𝐈(𝜉) = 𝛷3(𝐈, 𝜉)𝑑𝜉 + 𝜎33(𝐈, 𝜉)𝐵3(𝜉),
𝑑𝐑(𝜉) = 𝛷4(𝐑, 𝜉)𝑑𝜉 + 𝜎44(𝐑, 𝜉)𝐵4(𝜉).

(29)

et us introduce

𝜚‖‖
‖∞

= sup
𝜉∈𝐷𝑞1

|

|

|

𝜚(𝜉)||
|

. (30)

or every 𝜉 ∈ [0, 𝑇 ], we attain

𝛷1(𝐒, 𝜉)
|

|

|

2
= |

|

|

(1 − 𝐪)𝜋 + 𝜌1𝐕 + 𝜒𝐑 − 𝛿1𝐒 − 𝜗𝜌2𝐒𝐈
|

|

|

2

≤ 2(1 − 𝐪)2𝜋2 + 2||
|

𝜌1𝐕 + 𝜒𝐑 − (𝛿1 + 𝜗𝜌2𝐈)
|

|

|

2
|

|

|

𝐒||
|

2

≤ 2(1 − 𝐪)2𝜋2 +
(

8𝜌1
|

|

|

𝐕||
|

2
+ 4𝜒2|

|

|

𝐑||
|

2
+ 8𝜇2 + 8𝜗2𝜌22𝐈

)

|

|

|

𝐒||
|

2

≤ 2(1 − 𝐪)2𝜋2 +
(

8𝜌1 sup
𝜉∈[0,𝑇 ]

|

|

|

𝐕||
|

2
+ 4𝜒2 sup

𝜉∈[0,𝑇 ]

|

|

|

𝐑||
|

2

+8𝜇2 + 8𝜗2𝜌22 sup
𝜉∈[0,𝑇 ]

|

|

|

𝐈||
|

2)
|

|

|

𝐒||
|

2

2 2
≤ 2(1 − 𝐪) 𝜋
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s

w

|

|

|

w

|

|

|

w

|

|

|

|

|

|

|

|

|

|

|

|

N
(

|

|

|

|

|

|

T

m

i
(
y
w

𝜉

𝜉

P

H

𝑑

×
(

1 +
8𝜌1

‖

‖

‖

𝐕‖‖
‖

2

∞
+ 4𝜒2‖

‖

‖

𝐑||
|

2

∞
+ 8𝜇2 + 8𝜗2𝜌22

‖

‖

‖

𝐈||
|

2

∞

2(1 − 𝐪)2𝜋2
|

|

|

𝐒||
|

2
)

≤ 𝜅1(1 +
|

|

|

𝐒||
|

2
) (31)

uch that
8𝜌1

‖

‖

‖

𝐕
‖

‖

‖

2

∞
+4𝜒2‖

‖

‖

𝐑
‖

‖

‖

2

∞
+8𝜇2+8𝜗2𝜌22

‖

‖

‖

𝐈
‖

‖

‖

2

∞
2(1−𝐪)2𝜋2 < 1 and 𝜅1 = 2(1 − 𝐪)2𝜋2.

Analogously, we find
|

|

|

𝛷2(𝐕, 𝜉)
|

|

|

2
≤ 3𝐪2𝜋2 +

(

6𝛾2𝜌22𝜗
2‖
‖

‖

𝐈‖‖
‖

2

∞
+ 6(𝜌1 + 𝛿1)2

)

|

|

|

𝐕||
|

2

≤ 3𝐪2𝜋2
(

1 +
6𝛾2𝜌22𝜗

2‖
‖

‖

𝐈‖‖
‖

2

∞
+ 6(𝜌1 + 𝛿1)2

3𝐪2𝜋2
|

|

|

𝐕||
|

2)

≤ 𝜅2(1 +
|

|

|

𝐕||
|

2
), (32)

here 𝜅2 =
6𝛾2𝜌22𝜗

2‖
‖

‖

𝐈
‖

‖

‖

2

∞
+6(𝜌1+𝛿1)2

3𝐪2𝜋2 . Furthermore, we have

𝛷3(𝐈, 𝜉)
|

|

|

2
≤ 3

(

𝜗2𝜍2‖‖
‖

𝐒‖‖
‖

2

∞
+ 𝛾2𝜗2𝜌22

‖

‖

‖

𝐕‖‖
‖

2

∞
− (𝛿1 + 𝛿2 + 𝜁 )2

)

|

|

|

𝐈||
|

2

≤ 3
(

𝜗2𝜍2‖‖
‖

𝐒‖‖
‖

2

∞
+ 𝛾2𝜗2𝜌22

‖

‖

‖

𝐕‖‖
‖

2

∞
− (𝛿1 + 𝛿2 + 𝜁 )2

)

(1 + |

|

|

𝐈||
|

2
)

≤ 𝜅3(1 +
|

|

|

𝐈||
|

2
), (33)

here 𝜅3 = 3
(

𝜗2𝜍2‖‖
‖

𝐒‖‖
‖

2

∞
+ 𝛾2𝜗2𝜌22

‖

‖

‖

𝐕‖‖
‖

2

∞
− (𝛿1 + 𝛿2 + 𝜁 )2

)

.
Again, we have

𝛷4(𝐑, 𝜉)
|

|

|

2
≤ 2

(

𝜁2‖‖
‖

𝐈‖‖
‖

2

∞
+ (𝜒 + 𝛿1)2

)

|

|

|

𝐑||
|

2

≤ 2
(

𝜁2‖‖
‖

𝐈‖‖
‖

2

∞
+ (𝜒 + 𝛿1)2

)

(1 + |

|

|

𝐑||
|

2
)

≤ 𝜅4(1 +
|

|

|

𝐑||
|

2
), (34)

here 𝜅4 =
(

𝜁2‖‖
‖

𝐈‖‖
‖

2

∞
+ (𝜒 + 𝛿1)2

)

. For every 𝜉 ∈ [0, 𝑇 ], we have

1(𝐒, 𝜉)
|

|

|

2
= 𝜎21

|

|

|

𝐒||
|

2
≤ 𝜎21 (1 +

|

|

|

𝐒||
|

2
),

2(𝐕, 𝜉)
|

|

|

2
≤ 𝜎22 (1 +

|

|

|

𝐕||
|

2
),

3(𝐈, 𝜉)
|

|

|

2
≤ 𝜎23 (1 +

|

|

|

𝐕||
|

2
),

4(𝐑, 𝜉)
|

|

|

2
≤ 𝜎24 (1 +

|

|

|

𝐑||
|

2
). (35)

ow, we illustrate the Lipschitz assumption for (𝛷𝜄(𝜉, 𝑥𝜄))𝜄∈[1,2,3,4] and
𝜄(𝜉, 𝑥𝜄))𝜄∈[1,2,3,4]

𝛷1(𝜉,𝐒1) −𝛷1(𝜉,𝐒2)
|

|

|

2
= |

|

|

− 𝛿1 − 𝜗𝜌2𝐈
|

|

|

2
|

|

|

𝐒1 − 𝐒2
|

|

|

2

≤
(

2𝛿21 + 2𝜗2𝜌22
‖

‖

‖

𝐈2‖‖
‖

2

∞

)

|

|

|

𝐒1 − 𝐒2
|

|

|

2

≤ 𝜅1
|

|

|

𝐒1 − 𝐒2
|

|

|

2
,

𝛷2(𝜉,𝐕1) −𝛷2(𝜉,𝐕2)
|

|

|

2
= |

|

|

− 𝛾𝜗𝜌2𝐈 − (𝜌1 + 𝛿1)
|

|

|

2
|

|

|

𝐕1 − 𝐕2
|

|

|

2

≤
(

2𝛾2𝜗2𝜌22
‖

‖

‖

𝐈2‖‖
‖

2

∞
+ 2(𝜌1 + 𝛿1)

)

|

|

|

𝐕1 − 𝐕2
|

|

|

2

≤ 𝜅2
|

|

|

𝐕1 − 𝐕2
|

|

|

2
,

|

|

|

𝛷3(𝜉, 𝐈1) −𝛷3(𝜉, 𝐈2)
|

|

|

2
= |

|

|

𝜗𝜍𝐒 + 𝛾2𝜗2𝜌22𝐕 − (𝛿1 + 𝛿2 + 𝜁 )||
|

2
|

|

|

𝐈1 − 𝐈2
|

|

|

2

≤
(

3𝜗2𝜍2‖‖
‖

𝐒2‖‖
‖

2

∞
+ 3𝛾2𝜗2𝜌22

‖

‖

‖

𝐕2‖
‖

‖

2

∞

+3(𝛿1 + 𝛿2 + 𝜁 )2
)

|

|

|

𝐈1 − 𝐈2
|

|

|

2

≤ 𝜅3
|

|

|

𝐈1 − 𝐈2
|

|

|

2
,

|

|

|

𝛷4(𝜉,𝐑1) −𝛷4(𝜉,𝐑2)
|

|

|

2
= |

|

|

𝜁𝐈 − (𝜒 + 𝛿1)
|

|

|

2
|

|

|

𝐑1 − 𝐑2
|

|

|

2

≤
(

2𝜁2‖𝐈2‖
2
+ 2(𝜒 + 𝛿 )

)

|𝐑 − 𝐑 |

2

8

‖

‖

‖

‖∞ 1 |

|

1 2|
|

≤ 𝜅4
|

|

|

𝐑1 − 𝐑2
|

|

|

2
,

hus, if the assumption on linear growth satisfies

in
{ 8𝜌1

|

|

|

𝐕||
|

2

∞
+ 4𝜒2‖

‖

‖

𝐑||
|

2

∞
+ 8𝜇2 + 8𝜗2𝜌22

‖

‖

‖

𝐈||
|

2

∞

2(1 − 𝐪)2𝜋2
,
6𝛾2𝜌22𝜗

2‖
‖

‖

𝐈‖‖
‖

2

∞
+ 6(𝜌1 + 𝛿1)2

3𝐪2𝜋2
,

3
(

𝜗2𝜍2‖‖
‖

𝐒‖‖
‖

2

∞
+ 𝛾2𝜗2𝜌22

‖

‖

‖

𝐕‖‖
‖

2

∞
− (𝛿1 + 𝛿2 + 𝜁 )2

)

,
(

𝜁2‖‖
‖

𝐈‖‖
‖

2

∞
+ (𝜒 + 𝛿1)2

)

}

< 1. (36)

Both two assumption are verified. So according to the above hypothesis,
then system (10) has unique solution.

Extinction of infection

In this part, we will analyse how the eradication of infectious species
is explained. To do so, we formulated a functional as

⟨𝐲(𝜉)⟩ = 1
𝜉 ∫

𝜉

0
𝐲(𝜏)𝑑𝜏.

Theorem 4. Suppose there be a assumption 𝛿1 <
𝜎21𝜎

2
2𝜎

2
3𝜎

2
4

2 and (𝐒,𝐕, 𝐈,𝐑)
s the solution of the system (10) considering a further supposition that
𝐒(0),𝐕(0), 𝐈(0),𝐑(0)) ∈ R4

+ and R𝐒
0 < 1, then lim𝜉↦∞

⟨log 𝐈(𝜉)⟩
𝜉 < 0. That

ields 𝐈(𝜉) ↦ 0 exponentially, this means that the infection will dying out
ith unit probability. Furthermore

lim
↦∞

1
𝜉 ∫

𝜉

0
𝐒(𝜏)𝑑𝜏 =

(1 − 𝐪 + 𝜌1∕𝛿1)𝜋
𝜌1 + 𝛿1

,

lim
𝜉↦∞

1
𝜉 ∫

𝜉

0
𝐕(𝜏)𝑑𝜏 =

𝐪𝜋
𝜌1 + 𝛿1

,

lim
𝜉↦∞

1
𝜉 ∫

𝜉

0
𝐈(𝜏)𝑑𝜏 = 0,

lim
↦∞

1
𝜉 ∫

𝜉

0
𝐑(𝜏)𝑑𝜏 = 0. (37)

roof. Performing integration to (10) and dividing by 𝜉 gives
𝐒(𝜉) − 𝐒(0)

𝜉
= (1 − 𝐪)𝜋 + 𝜌1⟨𝐕⟩ + 𝜒⟨𝐑⟩ − 𝛿1⟨𝐒⟩ − 𝜗𝜌2⟨𝐒𝐈⟩

+
𝜎1
𝜉 ∫

𝜉

0
𝐒(𝜏)𝑑𝐵1(𝜏),

𝐕(𝜉) − 𝐕(0)
𝜉

= 𝐪𝜋 − 𝛾𝜌2𝜗⟨𝐕𝐈⟩ − (𝜌1 + 𝛿1)⟨𝐕⟩ +
𝜎2
𝜉 ∫

𝜉

0
𝐕(𝜏)𝑑𝐵2(𝜏),

𝐈(𝜉) − 𝐈(0)
𝜉

= 𝜗𝜍⟨𝐒𝐈⟩ + 𝛾𝜗𝜌2⟨𝐕𝐈⟩ − (𝛿1 + 𝛿2 + 𝜁 )⟨𝐈⟩ +
𝜎3
𝜉 ∫

𝜉

0
𝐈(𝜏)𝑑𝐵3(𝜏),

𝐑(𝜉) − 𝐑(0)
𝜉

= 𝜁⟨𝐈⟩ − 𝜒⟨𝐑⟩ − 𝛿1⟨𝐑⟩ +
𝜎4
𝜉 ∫

𝜉

0
𝐑(𝜏)𝑑𝐵4(𝜏). (38)

owever, a direct implementation of 𝐈 to formula produces

ln 𝐈(𝜉) =
(

𝜗𝜍𝐒 + 𝛾𝜗𝜌2𝐕 −
(

𝛿1 + 𝛿2 + 𝜁 +
𝜎23
2
)

)

+ 𝜎3𝑑𝐵3(𝜉). (39)

Performing integration over (0, 𝜉) and dividing by 𝜉 gives

ln 𝐈(𝜉) − ln 𝐈(0)
𝜉

=
(

𝜗𝜍⟨𝐒⟩ + 𝛾𝜗𝜌2⟨𝐕⟩ −
(

𝛿1 + 𝛿2 + 𝜁 +
𝜎23
2
)

)

+
𝜎3
𝜉 ∫

𝜉

0
𝑑𝐵3(𝜏)

≤
(

𝜗𝜍 + 𝛾𝜗𝜌2 −
(

𝛿1 + 𝛿2 + 𝜁 +
𝜎23
2
)

)

+
𝜎3
𝜉 ∫

𝜉

0
𝑑𝐵3(𝜏)

≤
(

𝛿1 + 𝛿2 + 𝜁 +
𝜎23
2
)

( 𝜗𝜍 + 𝛾𝜗𝜌2
(

𝛿1 + 𝛿2 + 𝜁 +
𝜎23
2

)

− 1
)

+
𝜎3 𝜉

𝑑𝐵3(𝜏)
𝜉 ∫0
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𝜉

S

⟨

w

w

≤
(

𝛿1 + 𝛿2 + 𝜁 +
𝜎23
2
)

(R𝐒
0 − 1) +

𝜎3
𝜉 ∫

𝜉

0
𝑑𝐵3(𝜏), (40)

where 𝑀1(𝜉) =
𝜎3
𝜉 ∫ 𝜉

0 𝑑𝐵3(𝜏), which is local continuous Martingale and
𝑀1(0) = 0, lim𝜉↦∞ sup 𝑀1(𝜉)

𝜉 = 0. This, if R𝐒
0 < 1, then

lim
↦∞

sup
ln 𝐈(𝜉)
𝜉

≤
(

𝛿1 + 𝛿2 + 𝜁 +
𝜎23
2
)

(R𝐒
0 − 1) < 0. (41)

o, we have lim𝜉↦∞⟨𝐈(𝜉)⟩ = 0.
For cohort 𝐒(𝜉), we have

𝐒(𝜉) − 𝐒(0)
𝜉

= (1 − 𝐪)𝜋 + 𝜌1⟨𝐕⟩ + 𝜒⟨𝐑⟩ − 𝛿1⟨𝐒⟩ − 𝜗𝜌2⟨𝐒𝐈⟩

+
𝜎1
𝜉 ∫

𝜉

0
𝐒(𝜏)𝑑𝐵1(𝜏),

𝐒⟩ = (1 − 𝐪)𝜋
𝛿1

+ 1
𝛿1

{

𝜌1
𝐪𝜋

(𝜌1 + 𝛿1)
+ 𝜒⟨𝐑⟩ − 𝜗𝜌2⟨𝐒𝐈⟩ +

𝐒(0) − 𝐒(𝜉)
𝜉

+
𝜎1
𝜉 ∫

𝜉

0
𝐒(𝜏)𝑑𝐵1(𝜏)

}

, (42)

hich yields lim𝜉↦∞⟨𝐒(𝜉)⟩ = (1−𝐪+𝜌1∕𝛿1)𝜋
𝜌1+𝛿1

.
Furthermore,for cohort 𝐕(𝜉), we have

⟨𝐕⟩ = 𝐪𝜋
(𝜌1 + 𝛿1)

− 1
(𝜌1 + 𝛿1)

{

𝛾𝜌2𝜗⟨𝐕𝐈⟩−
𝐕(0) − 𝐕(𝜉)

𝜉
+
𝜎2
𝜉 ∫

𝜉

0
𝐕(𝜏)𝑑𝐵2(𝜏)

}

,

(43)

hich implies that lim𝜉↦∞⟨𝐕(𝜉)⟩ = 𝐪𝜋
(𝜌1+𝛿1)

.
Finally, we have

⟨𝐑⟩ = 1
(𝜒 + 𝛿1)

{

𝜁⟨𝐈⟩ + 𝐑(0) − 𝐑(𝜉)
𝜉

+
𝜎4
𝜉 ∫

𝜉

0
𝐑(𝜏)𝑑𝐵4(𝜏)

}

. (44)

which leads to lim𝜉↦∞⟨𝐑(𝜉)⟩ = 0, which is the required result. □

Numerical scheme of the proposed model via fractal–fractional
derivative operators

In what follows, the framework is further extended to F–F derivative
operators in the Atangana–Baleanu sense.

Here, we intend to modify the system by employing the Atangana–
Baleanu F–F differential operator instead of the conventional differen-
tial operator. We will propose a numerical result for the continually
improving system (10) using an innovative numerical approach intro-
duced by Atangana and Araz [34] because it is inherently unpredictable
and intricate. As a result, we analyse the approach below.

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐅𝐅𝐌
0 𝐃𝜑,𝜔

𝜉 𝐒(𝜉) =
(

(1 − 𝐪)𝜋 + 𝜌1𝐕 + 𝜒𝐑 − 𝛿1𝐒 − 𝜗𝜌2𝐒𝐈
)

+ 𝜎1𝐺1(𝜉,𝐒)𝐵1(𝜉),
𝐅𝐅𝐌
0 𝐃𝜑,𝜔

𝜉 𝐕(𝜉) =
(

𝐪𝜋 − 𝛾𝜌2𝜗𝐕𝐈 − (𝜌1 + 𝛿1)𝐕
)

+ 𝜎2𝐺2(𝜉,𝐕)𝐵2(𝜉),
𝐅𝐅𝐌
0 𝐃𝜑,𝜔

𝜉 𝐈(𝜉) =
(

𝜗𝜍𝐒𝐈 + 𝛾𝜗𝜌2𝐕𝐈 − (𝛿1 + 𝛿2 + 𝜁 )𝐈
)

+ 𝜎3𝐺3(𝜉, 𝐈)𝐵3(𝜉),
𝐅𝐅𝐌
0 𝐃𝜑,𝜔

𝜉 𝐑(𝜉) =
(

𝜁𝐈 − 𝜒𝐑 − 𝛿1𝐑
)

+ 𝜎4𝐺4(𝜉,𝐑)𝐵4(𝜉).

(45)

For 𝑡n+1 = (n + 1)𝛥𝜉, then we transform these mappings by their
polynomials as follows:

𝐒n+1 = 𝐒0 +
(1 − 𝜑)
ABC(𝜑)

𝜔𝜉𝜔−1
n+1

⎡

⎢

⎢

⎢

⎣

⎧

⎪

⎨

⎪

⎩

𝐒∗
(

𝜉n+1,𝐒
p

n+1,𝐕
p

n+1, 𝐈
p

n+1,𝐑
p

n+1

)

+𝜎1𝐺1
(

𝜉n+1,𝐒
p

n+1

)(

𝐵1(𝜉n+2) − 𝐵1(𝜉n+1)
)

⎤

⎥

⎥

⎥

⎦

+
𝜑𝜔

ABC(𝜑)𝛤 (𝜑)

n−1
∑

𝚥=0

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

𝐒∗
(

𝜉𝚥+1,𝐒𝚥+1,𝐕𝚥+1, 𝐈𝚥+1,𝐑𝚥+1
)

𝐉𝜑,𝜔1,𝚥

+
𝐒∗
(

𝜉𝚥+1 ,𝐒𝚥+1 ,𝐕𝚥+1 ,𝐈𝚥+1 ,𝐑𝚥+1

)

−𝐒∗
(

𝜉𝚥 ,𝐒𝚥 ,𝐕𝚥 ,𝐈𝚥 ,𝐑𝚥

)

ℏ
𝐉𝜑,𝜔2,𝚥

+
( 𝐒∗

(

𝜉𝚥+1 ,𝐒𝚥+1 ,𝐕𝚥+1 ,𝐈𝚥+1 ,𝐑𝚥+1

)

−2𝐒∗
(

𝜉𝚥 ,𝐒𝚥 ,𝐕𝚥 ,𝐈𝚥 ,𝐑𝚥

)

ℏ
𝐒∗
(

𝜉𝚥−1 ,𝐒𝚥−1 ,𝐕𝚥−1 ,𝐈𝚥−1 ,𝐑𝚥−1

)

)

𝜑,𝜔

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

9

⎣⎩

+
ℏ

𝐉3,𝚥 ⎦
+
𝜑𝜔

ABC(𝜑)𝛤 (𝜑)

n−1
∑

𝚥=0

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝜎1𝐺1
(

𝜉𝚥+1,𝐒𝚥+1
)(

𝐵1(𝜉𝚥+1) − 𝐵1(𝜉𝚥)
)

𝐉𝜑,𝜔1,𝚥

+
{

𝜎1𝐺1
(

𝜉𝚥+1,𝐒𝚥+1
)(

𝐵1(𝜉𝚥+1) − 𝐵1(𝜉𝚥)
)

−𝜎1𝐺1
(

𝜉𝚥,𝐒𝚥
)(

𝐵1(𝜉𝚥) − 𝐵1(𝜉𝚥−1)
)

}

𝐉𝜑,𝜔2,𝚥

+
{

𝜎1𝐺1

(

𝜉𝚥+1 ,𝐒𝚥+1
)(

𝐵1 (𝜉𝚥+1 )−𝐵1 (𝜉𝚥 )
)

−2𝜎1𝐺1

(

𝜉𝚥 ,𝐒𝚥
)(

𝐵1 (𝜉𝚥 )−𝐵1 (𝜉𝚥−1 )
)

ℏ

−
𝜎1𝐺1

(

𝜉𝚥−1 ,𝐒𝚥−1
)(

𝐵1 (𝜉𝚥−1 )−𝐵1 (𝜉𝚥−2 )
)

ℏ

}

𝐉𝜑,𝜔3,𝚥

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+
𝜑𝜔

ABC(𝜑)𝛤 (𝜑)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝐒∗
(

𝜉n+1,𝐒
p

n+1,𝐕
p

n+1, 𝐈
p

n+1,𝐑
p

n+1

)

𝐉𝜑,𝜔1,n

+𝐒∗
(

𝜉n+1,𝐒
p

n+1,𝐕
p

n+1, 𝐈
p

n+1,𝐑
p

n+1

)

𝐉𝜑,𝜔2,n

−𝐒∗
(

𝜉n,𝐒n,𝐕n, 𝐈n,𝐑n

)

𝐉𝜑,𝜔2,n

+
{

𝐒∗
(

𝜉n+1 ,𝐒
p

n+1 ,𝐕
p

n+1 ,𝐈
p

n+1 ,𝐑
p

n+1

)

−2𝐒∗
(

𝜉n ,𝐒n ,𝐕n ,𝐈n ,𝐑n

)

2ℏ

}

𝐉𝜑,𝜔3,n

+
𝐒∗
(

𝜉n−1 ,𝐒n−1 ,𝐕n−1 ,𝐈n−1 ,𝐑n−1

)

2ℏ2 𝐉𝜑,𝜔3,n

+𝜎1𝐺1
(

𝜉n+1,𝐒
p

n+1

)(

𝐵1(𝜉n+1) − 𝐵1(𝜉n)
)

𝐉𝜑,𝜔1,n

+𝜎1𝐺1
(

𝜉n+1,𝐒
p

n+1

)(

𝐵1(𝜉n+1) − 𝐵1(𝜉n)
)

𝐉𝜑,𝜔2,n

−𝜎1𝐺1
(

𝜉n,𝐒
p
n

)(

𝐵1(𝜉n) − 𝐵1(𝜉n−1)
)

𝐉𝜑,𝜔2,n

+
𝜎1𝐺1

(

𝜉n+1 ,𝐒
p

n+1

)(

𝐵1 (𝜉n+1 )−𝐵1 (𝜉n )
)

2ℏ
𝐉𝜑,𝜔3,n

−2
𝜎1𝐺1

(

𝜉n ,𝐒
p
n

)(

𝐵1 (𝜉n )−𝐵1 (𝜉n−1 )
)

2ℏ
𝐉𝜑,𝜔3,n

+
𝜎1𝐺1

(

𝜉n−1 ,𝐒
p

n−1

)(

𝐵1 (𝜉n−2 )−𝐵1 (𝜉n−2 )
)

2ℏ
𝐉𝜑,𝜔3,n

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (46)

𝐕n+1 = 𝐕0 +
(1 − 𝜑)
ABC(𝜑)

𝜔𝜉𝜔−1
n+1

⎡

⎢

⎢

⎢

⎣

⎧

⎪

⎨

⎪

⎩

𝐕∗(𝜉n+1,𝐕
p

n+1, 𝐈
p

n+1

)

+𝜎2𝐺2
(

𝜉n+1,𝐕
p

n+1

)(

𝐵2(𝜉n+2) − 𝐵2(𝜉n+1)
)

⎤

⎥

⎥

⎥

⎦

+
𝜑𝜔

ABC(𝜑)𝛤 (𝜑)

n−1
∑

𝚥=0

⎡

⎢

⎢

⎢

⎢

⎢

⎣

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐕∗(𝜉𝚥+1,𝐕𝚥+1, 𝐈𝚥+1
)

𝐉𝜑,𝜔1,𝚥

+
𝐕∗
(

𝜉𝚥+1 ,𝐕𝚥+1 ,𝐈𝚥+1
)

−𝐕∗
(

𝜉𝚥 ,𝐕𝚥 ,𝐈𝚥
)

ℏ
𝐉𝜑,𝜔2,𝚥

+
𝐕∗
(

𝜉𝚥+1 ,𝐕𝚥+1 ,𝐈𝚥+1
)

−2𝐕∗
(

𝜉𝚥 ,𝐕𝚥 ,𝐈𝚥
)

+𝐕∗
(

𝜉𝚥−1 ,𝐕𝚥−1 ,𝐈𝚥−1
)

ℏ
𝐉𝜑,𝜔3,𝚥

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+
𝜑𝜔

ABC(𝜑)𝛤 (𝜑)

n−1
∑

𝚥=0

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝜎2𝐺2
(

𝜉𝚥+1,𝐕𝚥+1
)(

𝐵2(𝜉𝚥+1) − 𝐵2(𝜉𝚥)
)

𝐉𝜑,𝜔1,𝚥

+
{

𝜎2𝐺2
(

𝜉𝚥+1,𝐕𝚥+1
)(

𝐵2(𝜉𝚥+1) − 𝐵2(𝜉𝚥)
)

−𝜎2𝐺2
(

𝜉𝚥,𝐕𝚥
)(

𝐵2(𝜉𝚥) − 𝐵2(𝜉𝚥−1)
)

}

𝐉𝜑,𝜔2,𝚥

+
{

𝜎2𝐺2

(

𝜉𝚥+1 ,𝐕𝚥+1

)(

𝐵2 (𝜉𝚥+1 )−𝐵2 (𝜉𝚥 )
)

−2𝜎2𝐺2

(

𝜉𝚥 ,𝐕𝚥

)(

𝐵2 (𝜉𝚥 )−𝐵2 (𝜉𝚥−1 )
)

ℏ

−
𝜎2𝐺2

(

𝜉𝚥−1 ,𝐕𝚥−1

)(

𝐵2 (𝜉𝚥−1 )−𝐵2 (𝜉𝚥−2 )
)

ℏ

}

𝐉𝜑,𝜔3,𝚥

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+
𝜑𝜔

ABC(𝜑)𝛤 (𝜑)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝐕∗(𝜉n+1,𝐕
p

n+1, 𝐈
p

n+1

)

𝐉𝜑,𝜔1,n

+𝐕∗(𝜉n+1,𝐕
p

n+1, 𝐈
p

n+1

)

𝐉𝜑,𝜔2,n

−𝐕∗(𝜉n,𝐕n, 𝐈n
)

𝐉𝜑,𝜔2,n

+
{

𝐕∗
(

𝜉n+1 ,𝐕
p

n+1 ,𝐈
p

n+1

)

−2𝐕∗
(

𝜉n ,𝐕n ,𝐈n
)

2ℏ

}

𝐉𝜑,𝜔3,n

+
𝐕∗
(

𝜉n−1 ,𝐕n−1 ,𝐈n−1

)

2ℏ2 𝐉𝜑,𝜔3,n

+𝜎2𝐺2
(

𝜉n+1,𝐕
p

n+1

)(

𝐵2(𝜉n+1) − 𝐵2(𝜉n)
)

𝐉𝜑,𝜔1,n

+𝜎2𝐺2
(

𝜉n+1,𝐕
p

n+1

)(

𝐵2(𝜉n+1) − 𝐵2(𝜉n)
)

𝐉𝜑,𝜔2,n

−𝜎2𝐺2
(

𝜉n,𝐕
p
n

)(

𝐵2(𝜉n) − 𝐵2(𝜉n−1)
)

𝐉𝜑,𝜔2,n

+
𝜎2𝐺2

(

𝜉n+1 ,𝐕
p

n+1

)(

𝐵2 (𝜉n+1 )−𝐵2 (𝜉n )
)

2ℏ
𝐉𝜑,𝜔3,n

−2
𝜎2𝐺2

(

𝜉n ,𝐕
p
n

)(

𝐵2 (𝜉n )−𝐵2 (𝜉n−1 )
)

2ℏ
𝐉𝜑,𝜔3,n

+
𝜎2𝐺2

(

𝜉n−1 ,𝐕
p

n−1

)(

𝐵2 (𝜉n−2 )−𝐵2 (𝜉n−2 )
)

2ℏ
𝐉𝜑,𝜔3,n

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (47)

𝐈n+1 = 𝐈0 +
(1 − 𝜑)
ABC(𝜑)

𝜔𝜉𝜔−1
n+1

⎡

⎢

⎢

⎢

⎣

⎧

⎪

⎨

⎪

⎩

𝐈∗
(

𝜉n+1,𝐒
p

n+1,𝐕
p

n+1, 𝐈
p

n+1

)

+𝜎3𝐺4
(

𝜉n+1, 𝐈
p

n+1

)(

𝐵3(𝜉n+2) − 𝐵3(𝜉n+1)
)

⎤

⎥

⎥

⎥

⎦

+
𝜑𝜔

ABC(𝜑)𝛤 (𝜑)

n−1
∑

𝚥=0

⎡

⎢

⎢

⎢

⎢

⎢

⎧

⎪

⎪

⎨

⎪

⎪

𝐈∗
(

𝜉𝚥+1,𝐒𝚥+1,𝐕𝚥+1, 𝐈𝚥+1
)

𝐉𝜑,𝜔1,𝚥

+
𝐈∗
(

𝜉𝚥+1 ,𝐒𝚥+1 ,𝐕𝚥+1 ,𝐈𝚥+1
)

−𝐈∗
(

𝜉𝚥 ,𝐒𝚥 ,𝐕𝚥 ,𝐈𝚥
)

ℏ
𝐉𝜑,𝜔2,𝚥

𝐈∗
(

𝜉𝚥+1 ,𝐒𝚥+1 ,𝐕𝚥+1 ,𝐈𝚥+1
)

−2𝐈∗
(

𝜉𝚥 ,𝐒𝚥 ,𝐕𝚥 ,𝐈𝚥
)

+𝐈∗
(

𝜉𝚥−1 ,𝐒𝚥−1 ,𝐕𝚥−1 ,𝐈𝚥−1
)

𝜑,𝜔

⎤

⎥

⎥

⎥

⎥

⎥

⎣⎩

+
ℏ

𝐉3,𝚥 ⎦
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w

𝐒

𝐈
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𝐉
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s
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o
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t
t
T
v
t
s

t
b
c
b

+
𝜑𝜔

ABC(𝜑)𝛤 (𝜑)

n−1
∑

𝚥=0

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝜎3𝐺3
(

𝜉𝚥+1, 𝐈𝚥+1
)(

𝐵3(𝜉𝚥+1) − 𝐵3(𝜉𝚥)
)

𝐉𝜑,𝜔1,𝚥

+
{

𝜎3𝐺3
(

𝜉𝚥+1, 𝐈𝚥+1
)(

𝐵3(𝜉𝚥+1) − 𝐵3(𝜉𝚥)
)

−𝜎3𝐺3
(

𝜉𝚥, 𝐈𝚥
)(

𝐵3(𝜉𝚥) − 𝐵3(𝜉𝚥−1)
)

}

𝐉𝜑,𝜔2,𝚥

+
{

𝜎3𝐺3

(

𝜉𝚥+1 ,𝐈𝚥+1
)(

𝐵3 (𝜉𝚥+1 )−𝐵3 (𝜉𝚥 )
)

−2𝜎3𝐺3

(

𝜉𝚥 ,𝐈𝚥
)(

𝐵3 (𝜉𝚥 )−𝐵3 (𝜉𝚥−1 )
)

ℏ

−
𝜎3𝐺3

(

𝜉𝚥−1 ,𝐈𝚥−1
)(

𝐵3 (𝜉𝚥−1 )−𝐵3 (𝜉𝚥−2 )
)

ℏ

}

𝐉𝜑,𝜔3,𝚥

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+
𝜑𝜔

ABC(𝜑)𝛤 (𝜑)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝐈∗
(

𝜉n+1,𝐒
p

n+1,𝐕
p

n+1, 𝐈
p

n+1

)

𝐉𝜑,𝜔1,n

+𝐈∗
(

𝜉n+1,𝐒
p

n+1,𝐕
p

n+1, 𝐈
p

n+1

)

𝐉𝜑,𝜔2,n

−𝐈∗
(

𝜉n,𝐒n,𝐕n, 𝐈n
)

𝐉𝜑,𝜔2,n

+
{

𝐈∗
(

𝜉n+1 ,𝐒
p

n+1 ,𝐕
p

n+1 ,𝐈
p

n+1

)

−2𝐈∗
(

𝜉n ,𝐒n ,𝐕n ,𝐈n
)

2ℏ

}

𝐉𝜑,𝜔3,n

+
𝐈∗
(

𝜉n−1 ,𝐒n−1 ,𝐕n−1 ,𝐈n−1

)

2ℏ2 𝐉𝜑,𝜔3,n

+𝜎3𝐺3
(

𝜉n+1, 𝐈
p

n+1

)(

𝐵3(𝜉n+1) − 𝐵3(𝜉n)
)

𝐉𝜑,𝜔1,n

+𝜎3𝐺3
(

𝜉n+1, 𝐈
p

n+1

)(

𝐵3(𝜉n+1) − 𝐵3(𝜉n)
)

𝐉𝜑,𝜔2,n

−𝜎3𝐺3
(

𝜉n, 𝐈
p
n

)(

𝐵3(𝜉n) − 𝐵3(𝜉n−1)
)

𝐉𝜑,𝜔2,n

+
𝜎3𝐺3

(

𝜉n+1 ,𝐈
p

n+1

)(

𝐵3 (𝜉n+1 )−𝐵3 (𝜉n )
)

2ℏ
𝐉𝜑,𝜔3,n

−2
𝜎3𝐺3

(

𝜉n ,𝐈
p
n

)(

𝐵3 (𝜉n )−𝐵3 (𝜉n−1 )
)

2ℏ
𝐉𝜑,𝜔3,n

+
𝜎3𝐺3

(

𝜉n−1 ,𝐈
p

n−1

)(

𝐵3 (𝜉n−2 )−𝐵3 (𝜉n−2 )
)

2ℏ
𝐉𝜑,𝜔3,n

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (48)

𝐑n+1 = 𝐑0 +
(1 − 𝜑)
ABC(𝜑)

𝜔𝜉𝜔−1
n+1

⎡

⎢

⎢

⎢

⎣

⎧

⎪

⎨

⎪

⎩

𝐑∗(𝜉n+1, 𝐈
p

n+1,𝐑
p

n+1

)

+𝜎4𝐺4
(

𝜉n+1,𝐑
p

n+1

)(

𝐵4(𝜉n+2) − 𝐵4(𝜉n+1)
)

⎤

⎥

⎥

⎥

⎦

+
𝜑𝜔

ABC(𝜑)𝛤 (𝜑)

n−1
∑

𝚥=0

⎡

⎢

⎢

⎢

⎢

⎢

⎣

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐑∗(𝜉𝚥+1, 𝐈𝚥+1,𝐑𝚥+1
)

𝐉𝜑,𝜔1,𝚥

+
𝐑∗
(

𝜉𝚥+1 ,𝐈𝚥+1 ,𝐑𝚥+1

)

−𝐑∗
(

𝜉𝚥 ,𝐈𝚥 ,𝐑𝚥

)

ℏ
𝐉𝜑,𝜔2,𝚥

+
𝐑∗
(

𝜉𝚥+1 ,𝐈𝚥+1 ,𝐑𝚥+1

)

−2𝐈∗
(

𝜉𝚥 ,𝐈𝚥 ,𝐑𝚥

)

+𝐑∗
(

𝜉𝚥−1 ,𝐈𝚥−1 ,𝐑𝚥−1

)

ℏ
𝐉𝜑,𝜔3,𝚥

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+
𝜑𝜔

ABC(𝜑)𝛤 (𝜑)

n−1
∑

𝚥=0

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝜎4𝐺4
(

𝜉𝚥+1,𝐑𝚥+1
)(

𝐵4(𝜉𝚥+1) − 𝐵4(𝜉𝚥)
)

𝐉𝜑,𝜔1,𝚥

+
{

𝜎4𝐺4
(

𝜉𝚥+1,𝐑𝚥+1
)(

𝐵4(𝜉𝚥+1) − 𝐵4(𝜉𝚥)
)

−𝜎4𝐺4
(

𝜉𝚥,𝐑𝚥
)(

𝐵4(𝜉𝚥) − 𝐵4(𝜉𝚥−1)
)

}

𝐉𝜑,𝜔2,𝚥

+
{

𝜎4𝐺4

(

𝜉𝚥+1 ,𝐈𝚥+1
)(

𝐵4 (𝜉𝚥+1 )−𝐵4 (𝜉𝚥 )
)

−2𝜎4𝐺4

(

𝜉𝚥 ,𝐑𝚥

)(

𝐵4 (𝜉𝚥 )−𝐵4 (𝜉𝚥−1 )
)

ℏ

−
𝜎4𝐺4

(

𝜉𝚥−1 ,𝐑𝚥−1

)(

𝐵4 (𝜉𝚥−1 )−𝐵4 (𝜉𝚥−2 )
)

ℏ

}

𝐉𝜑,𝜔3,𝚥

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+
𝜑𝜔

ABC(𝜑)𝛤 (𝜑)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝐑∗(𝜉n+1, 𝐈
p

n+1,𝐑
p

n+1

)

𝐉𝜑,𝜔1,n

+𝐑∗(𝜉n+1, 𝐈
p

n+1,𝐑
p

n+1

)

𝐉𝜑,𝜔2,n

−𝐑∗(𝜉n, 𝐈n,𝐑n

)

𝐉𝜑,𝜔2,n

+
{

𝐑∗
(

𝜉n+1 ,𝐈
p

n+1 ,𝐑
p

n+1

)

−2𝐑∗
(

𝜉n ,𝐈n ,𝐑n

)

2ℏ

}

𝐉𝜑,𝜔3,n

+
𝐑∗
(

𝜉n−1 ,𝐈n−1 ,𝐑n−1

)

2ℏ2 𝐉𝜑,𝜔3,n

+𝜎4𝐺4
(

𝜉n+1,𝐑
p

n+1

)(

𝐵4(𝜉n+1) − 𝐵4(𝜉n)
)

𝐉𝜑,𝜔1,n

+𝜎4𝐺4
(

𝜉n+1,𝐑
p

n+1

)(

𝐵4(𝜉n+1) − 𝐵4(𝜉n)
)

𝐉𝜑,𝜔2,n

−𝜎4𝐺4
(

𝜉n,𝐑
p
n

)(

𝐵4(𝜉n) − 𝐵4(𝜉n−1)
)

𝐉𝜑,𝜔2,n

+
𝜎4𝐺4

(

𝜉n+1 ,𝐑
p

n+1

)(

𝐵4 (𝜉n+1 )−𝐵4 (𝜉n )
)

2ℏ
𝐉𝜑,𝜔3,n

−2
𝜎4𝐺4

(

𝜉n ,𝐑
p
n

)(

𝐵4 (𝜉n )−𝐵4 (𝜉n−1 )
)

2ℏ
𝐉𝜑,𝜔3,n

+
𝜎4𝐺4

(

𝜉n−1 ,𝐑
p

n−1

)(

𝐵4 (𝜉n−2 )−𝐵4 (𝜉n−2 )
)

2ℏ
𝐉𝜑,𝜔3,n

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (49)

here

p

n+1 = 𝐒0 +
1 − 𝜑

ABC(𝜑)
𝜔𝜉𝜔−1

n+1

[{

𝐒∗
(

𝜉n,𝐒n,𝐕n, 𝐈n,𝐑n

)

+𝜔𝜎1𝐺1
(

𝜉n,𝐒n
)(

𝐵1(𝜉n) − 𝐵1(𝜉n−1)
)

]

+
𝜑𝜔

ABC(𝜑)𝛤 (𝜑)

n
∑

𝚥=0

[{

𝐒∗
(

𝜉𝚥,𝐒𝚥,𝐕𝚥, 𝐈𝚥,𝐑𝚥
)

𝐉𝜑,𝜔1,𝚥

+𝜎1𝐺1
(

𝜉𝚥,𝐒𝚥
)(

𝐵1(𝜉𝚥) − 𝐵1(𝜉𝚥−1)
)

𝐉𝜑,𝜔1,𝚥

]

,

𝐕p

n+1 = 𝐕0 +
1 − 𝜑

ABC(𝜑)
𝜔𝜉𝜔−1

n+1

[{

𝐕∗(𝜉n,𝐕n, 𝐈n
)

( )( )

]
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+𝜔𝜎2𝐺2 𝜉n,𝐕n 𝐵2(𝜉n) − 𝐵2(𝜉n−1) F
+
𝜑𝜔

ABC(𝜑)𝛤 (𝜑)

n
∑

𝚥=0

[{

𝐕∗(𝜉𝚥,𝐕𝚥, 𝐈𝚥
)

𝐉𝜑,𝜔1,𝚥

+𝜎2𝐺2
(

𝜉𝚥,𝐕𝚥
)(

𝐵2(𝜉𝚥) − 𝐵2(𝜉𝚥−1)
)

𝐉𝜑,𝜔1,𝚥

]

,

p

n+1 = 𝐈0 +
1 − 𝜑

ABC(𝜑)
𝜔𝜉𝜔−1

n+1

[{

𝐈∗
(

𝜉n,𝐒n,𝐕n, 𝐈n
)

+𝜔𝜎3𝐺3
(

𝜉n, 𝐈n
)(

𝐵3(𝜉n) − 𝐵3(𝜉n−1)
)

]

+
𝜑𝜔

ABC(𝜑)𝛤 (𝜑)

n
∑

𝚥=0

[{

𝐈∗
(

𝜉𝚥,𝐒𝚥,𝐕𝚥, 𝐈𝚥
)

𝐉𝜑,𝜔1,𝚥

+𝜎3𝐺3
(

𝜉𝚥, 𝐈𝚥
)(

𝐵3(𝜉𝚥) − 𝐵3(𝜉𝚥−1)
)

𝐉𝜑,𝜔1,𝚥

]

,

p

n+1 = 𝐑0 +
1 − 𝜑

ABC(𝜑)
𝜔𝜉𝜔−1

n+1

[{

𝐑∗(𝜉n, 𝐈n,𝐑n

)

+𝜔𝜎4𝐺4
(

𝜉n,𝐑n

)(

𝐵4(𝜉n) − 𝐵4(𝜉n−1)
)

]

+
𝜑𝜔

ABC(𝜑)𝛤 (𝜑)

n
∑

𝚥=0

[{

𝐑∗(𝜉𝚥, 𝐈𝚥,𝐑𝚥
)

𝐉𝜑,𝜔1,𝚥

+𝜎4𝐺4
(

𝜉𝚥,𝐑𝚥
)(

𝐵4(𝜉𝚥) − 𝐵4(𝜉𝚥−1)
)

𝐉𝜑,𝜔1,𝚥

]

. (50)

here

𝜑,𝜔
1,𝚥 =

((n + 1)ℏ)𝜑−1

𝜔

⎡

⎢

⎢

⎢

⎣

⎧

⎪

⎨

⎪

⎩

((𝚥 + 1)ℏ)𝜔 21

(

[

𝜔, 1 − 𝜑
]

,
[

1 + 𝜔
]

, 𝚥+1
n+1

)

−(𝚥ℏ)𝜔 21

(

[

𝜔, 1 − 𝜑
]

,
[

1 + 𝜔
]

, 𝚥
n

)

⎤

⎥

⎥

⎥

⎦

,

𝜑,𝜔
2,𝚥 =

((n + 1)ℏ)𝜑−1

𝜔(𝜔 + 1)

×

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜔((𝚥 + 1)ℏ)𝜔+1 21

(

[

1 + 𝜔, 1 − 𝜑
]

,
[

2 + 𝜔
]

, 𝚥+1
n+1

)

−(1 + 𝜔)((𝚥 + 1)ℏ)𝜔+1 21

(

[

𝜔, 1 − 𝜑
]

,
[

1 + 𝜔
]

, 𝚥+1
n

)

−𝜔((𝚥)ℏ)𝜔+1 21

(

[

1 + 𝜔, 1 − 𝜑
]

,
[

2 + 𝜔
]

, 𝚥
n+1

)

+ℏ((𝚥)ℏ)𝜔(1 + 𝜔)(1 + 𝚥) 21

(

[

𝜔, 1 − 𝜑
]

,
[

1 + 𝜔
]

, 𝚥
n

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

𝐉𝜑,𝜔3,𝚥 =
((𝚥 + 1)ℏ)𝜑−1

𝜔(𝜔 + 1)(𝜔 + 2)

×

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝜔(𝜔 + 1)((𝚥 + 1)ℏ)𝜔+2 21

(

[

2 + 𝜔, 1 − 𝜑
]

,
[

3 + 𝜔
]

, 𝚥+1
n+1

)

−2𝜔(𝜔 + 2)
(

𝚥 + 1
2

)

ℏ((𝚥 + 1)ℏ)𝜔+1 21

(

[

1 + 𝜔, 1 − 𝜑
]

,
[

2 + 𝜔
]

, 𝚥+1
n+1

)

+𝚥ℏ(𝜔 + 1)(𝜔 + 2)((𝚥 + 1)ℏ)𝜔+1 21

(

[

𝜔, 1 − 𝜑
]

,
[

1 + 𝜔
]

, 𝚥+1
n

)

+2𝜔(𝜔 + 2)
(

𝚥 + 1
2

)

ℏ((ℏ𝚥))𝜔+1 21

(

[

1 + 𝜔, 1 − 𝜑
]

,
[

2 + 𝜔
]

, 𝚥
n+1

)

−𝜔(𝜔 + 1)(𝚥ℏ)𝜔+2 21

(

[

2 + 𝜔, 1 − 𝜑
]

,
[

3 + 𝜔
]

, 𝚥
n

)

−ℏ(𝜔 + 1)(𝜔 + 2)(𝚥 + 1)(𝚥ℏ)𝜔+1 21

(

[

𝜔, 1 − 𝜑
]

,
[

1 + 𝜔
]

, 𝚥
n+1

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

esults and discussion

In this section, we provide and examine certain modelling out-
omes for the mechanisms of tuberculosis transmission as described
y model (10) via the fractal–fractional derivative in the Atangana–
aleanu sense. Atangana and Araz [34] technique is used to numeri-
ally solve stochastic differential equations, and numerical simulations
re provided to evaluate our analytical findings. For this purpose, the
ystem’s components 𝐪, 𝜌2, 𝑟1, and 𝜗, whose attributes are shown in
able 1, were used. We change the settings of these characteristics to
ee how they affect the simulations.

The stochastic graphs in Figs. 4 and 5 depict the unpredictability
f the population of individuals within each cohort using the F–F
erivative in the Atangana–Baleanu sense, with decreases in fractional-
rder 𝜑 while maintaining fractal-dimension to be 1. In essence, this
s how meaningful occurrences behave, and the behaviour revealed in
he randomized graphs is unsurprising given that stochastic models bet-
er capture specific environments than deterministic techniques [14].
hese statistics also show that the proportion of contaminated indi-
iduals continues to decrease over time, with no ebbs and flows in
he determinism scenario and several fluctuations in the randomized
ituation.

Furthermore, by considering the F–F derivative operator in the con-
ext of the Atangana–Baleanu sense, the numerical findings obtained
y adjusting the value of 𝜗 while maintaining the remaining process
omponents are shown in Figs. 6 and 7. Due to the unpredictability
ehaviour, the outcomes from the stochastic approach, illustrated in
igs. 6 and 7, are likewise rising, keeping their crisscrossing structure
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𝜔
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(
f
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𝜗
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Fig. 4. Trajectories for the susceptible 𝐒(𝜉) and vaccinated 𝐕(𝜉) when the white noise values 𝜎1 = 0.5, 𝜎2 = 0.6, 𝜎3 = 0.8, 𝜎4 = 0.85 have a significant decrease in 𝜑 while
considering 𝜔 = 1.
Fig. 5. Trajectories for the Infected 𝐑(𝜉) and restored 𝐑(𝜉) when the white noise values 𝜎1 = 0.5, 𝜎2 = 0.6, 𝜎3 = 0.8, 𝜎4 = 0.85 have a significant decrease in 𝜑 while considering
= 1.
Fig. 6. Trajectories for the susceptible 𝐒(𝜉) and vaccinated 𝐕(𝜉) when the white noise values 𝜎1 = 0.9, 𝜎2 = 1.0, 𝜎3 = 1.1, 𝜎4 = 1.3 have a significant decrease in 𝜔 while considering
= 1.
t
v
p

effectively approximating the clear illustration) whilst keeping 𝜑 to be
ixed and 𝜔 to be decreased. This significant difference indicates that
he infection decreased when the contact rate 𝜗 was increased from
= 0.07 to 𝜗 = 0.1. Also, the general result is that when the value

f 𝜗 significantly increased, the number of affected individuals begins
11

c

o rise dramatically. As a result, we can deduce that, especially when
arious characteristics stay unchanged, the infection rate rises in the
opulation as the randomness of interaction rate rises.

Figs. 8 and 9 show the numerical results of varying the level of
omponent 𝐪 (inoculation rate) while holding the other factors constant
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Fig. 7. Trajectories for the infected 𝐈(𝜉) and restored 𝐑(𝜉) when the white noise values 𝜎1 = 0.9, 𝜎2 = 1.0, 𝜎3 = 1.1, 𝜎4 = 1.3 have a significant decrease in 𝜔 while considering
= 1.
Fig. 8. Trajectories for the susceptible 𝐒(𝜉) and vaccinated 𝐕(𝜉) when the white noise values 𝜎1 = 1.4, 𝜎2 = 1.5, 𝜎3 = 1.6, 𝜎4 = 1.8 have a significant decrease in 𝜑 while increasing
.

Fig. 9. Trajectories for the infected 𝐈(𝜉) and restored 𝐑(𝜉) when the white noise values 𝜎1 = 1.4, 𝜎2 = 1.5, 𝜎3 = 1.6, 𝜎4 = 1.8 have a significant decrease in 𝜑 while increasing 𝜔.
i
i

t
n
o

sing the F–F derivative scheme with a Mittag-Leffler kernel. As time
asses, the increase in the number of infectious people becomes more
isible; clearly, the curve 𝐈(𝜉) is marginally greater for lower vacci-
ation rates 𝐪. Furthermore, the stochastic behaviour for increasing
he fractal-dimension 𝜔 and decreasing the fractional-order 𝜑 yields
ntriguing results for reducing infection with low randomization densi-
ies. It is worthy to note that, in the randomized situation, the increase
12

c

n the vaccination rate plays an important role in eradicating the
nfection.

Furthermore, we investigate how the restored efficiency 𝜁 affects
he growth of the estimated prevalence 𝐈(𝜉) when the non-local and
on-singular kernels are used. Figs. 10 and 11 show the test results
btained by varying the value of 𝜁 while holding the other factors
onstant. The simulation findings demonstrate that as the level of the
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Fig. 10. Trajectories for the susceptible 𝐒(𝜉) and vaccinated 𝐕(𝜉) when the white noise values 𝜎1 = 1.4, 𝜎2 = 1.5, 𝜎3 = 1.6, 𝜎4 = 1.8 have a significant increase in 𝜑 while decreasing
.

Fig. 11. Trajectories for the infected 𝐈(𝜉) and restored 𝐑(𝜉) when the white noise values 𝜎1 = 1.4, 𝜎2 = 1.5, 𝜎3 = 1.6, 𝜎4 = 1.8 have a significant increase in 𝜑 while decreasing 𝜔.
w
m
t
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f
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t
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n
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ecovery efficiency, 𝜁 is increased, the incidence of tuberculosis patients
rops. When 𝜑 and 𝜔 are increased in the above-mentioned Figs. 10
nd 11, the decrease in affected patients is consistent in the findings
resented by [14] but sporadic in the stochastic model. As a nutshell,
e may deduce that increasing the value of the restoration factor 𝜁 has
significant impact on eradicating the infection from the population.

Hence, numerical simulations are presented to verify the sufficient
ssumptions of the F–F derivative by incorporating the Brownian mo-
ions. In addition, analytical and experimental evaluations demonstrate
hat the noise effect’s intensity is a key element in monitoring and
nhibiting TB cell development in the vicinity of defencive effectors.
ractitioners and therapeutic procedures benefit from the dynamical
ehaviour in the stochastic TB model. With the aid of environmental
erturbations, therapeutic methods for TB victims can be changed for
ptimal performance throughout public interventions.

onclusion

In this paper, we effectively offered a new evaluation of tuberculous
sing a novel modelling technique called fractal–fractional Atangana–
aleanu derivative via randomization. The fractal-dimension 𝜔 is used,
nd the fractional-order is 𝜑. The problem is constructed adhering
o Atangana–Baleanu’s concept of F–F, and then certain supporting
iscoveries are provided. Then, for the formulation of the F–F model,
13
e proposed an innovative numerical technique. Based on environ-
ental unpredictability, the stochastic features are interconnected in

he system as Gaussian white noise. In the midst of the infection, we
enerated certain necessary settings for permanence and elimination.
hen randomness is introduced into the deterministic SVIR system, the

undamental reproductive number is raised to a new threshold amount,
𝐒
0 . It has been demonstrated that the disease will be eradicated if
𝐒
0 < 1 is used. If R𝐒

0 > 1, on the other hand, the sickness remains
n the model, although still with distinct behaviours. However, when
𝐒
0 < 1 and the level of white noise is high, the infection may
e wiped off. In deterministic models, this does not arise. Graphical
llustrations with the implementation of a stochastic SVIR model for
ewborn inoculation and F–F derivative in the Atangana–Baleanu sense
ive the capability to take into account environmental fluctuations
hat all influence the disease’s transmission. The existence of a kernel
memory) in the modulation schemes allows for the regularity of
ruptions. The researchers argue that the probabilistic SVIR model is an
ndeavour to comprehend TB infection features. When environmental
oise (variability) and cross-immunity are addressed in TB disease
ystems, the framework is ideal for new insights into disease scenarios.
n infectious diseases, combining white noise with fractional derivatives
as a massive effect on the permanence and extermination of the
utbreak, as well as enriching the model’s kinetics. Our forthcoming
esearch will concentrate on stochastic epidemic models incorporating
arkovian switching, time delays and fractional calculus.
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