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Abstract

Studying the dynamics of solitons in nonlinear evolution equations (NLEEs) has gained
considerable interest in the last decades. Accordingly, the search for soliton solutions of
NLEEs has been the main topic of many research studies. In the present paper, a new (4
+ 1)-dimensional Burgers equation (n4D-BE) is introduced that describes specific disper-
sive waves in nonlinear sciences. Based on the truncated Painlevé expansion, the Béacklund
transformation of the n4D-BE is firstly extracted, then, its real and complex N-kink solitons
are derived using the simplified Hirota method. Furthermore, several ansatz methods are
formally adopted to obtain a group of other single-kink soliton solutions of the n4D-BE.
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Introduction

Appearing nonlinear evolution equations in the vast areas of scientific disciplines including
physics, engineering, etc. shows the importance of studying such equations. In recent decades,
the search for soliton solutions of NLEEs has been the main topic of many research works.
There are many effective methods such as exponential method [1, 2], Kudryashov method
[3, 4], Jacobi method [5, 6], linear superposition method [7-9], and simplified Hirota method
[10-14] to look for soliton solutions of NLEEs. Of these, the simplified Hirota method is
capable of constructing multiple soliton solutions of NLEEs. For example, Wazwaz [10] used
the simplified Hirota method to derive multiple soliton solutions of the Vakhnenko—Parkes
equation. Wazwaz [11] also found multiple soliton solutions of the negative-order KdV
equation using the simplified Hirota method. Hosseini et al. [12] employed the simplified
Hirota method to acquire multiple soliton solutions of a new (3 + 1)-dimensional Hirota
bilinear equation. Hosseini et al. [13] also extracted multiple soliton solutions of a generalized
(2 + 1)-dimensional Hirota bilinear equation through the simplified Hirota method. Multiple
soliton solutions of a new generalized Kadomtsev—Petviashvili equation were obtained by
Hosseini et al. in [14] using the simplified Hirota method. The main goal of the present paper
is introducing a new (4 + 1)-dimensional Burgers equation and obtaining its real and complex
N -kink solitons with the use of the simplified Hirota method. The n4D-BE describing specific
dispersive waves is expressed as

ou ou ou ou ou 2u  ajas %u  azes 9%u
— tau— +tav— 3w —+Yyr—+os——+ —— + —— —
ot dy dx 9z ds ax2  ap 9y? ap 972
2
+ s a—u =0,
(0%) 8S2
du dv
ax  dy
du  Jdw _
9z dy
B ad
22y, (1
ds  dy

where u, v, w, and t are functions in terms of x, y, z, s,and ¢, and ¢, i = 1, 2, ..., 5 are free
constants. The (2 + 1)- and (3 + 1)-dimensional Burgers equations, namely [15-26]

ou ou ou %u ooz 0%u
— tau— +av—+a3—s + ———— =0,
ot dy ox 9x2  ap 09y?
du dv
ax oy
and
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— t+aUu—+av—+a3w—+oyy——+ ——+ —— =0,
ot dy x 0z 0x2  ap 0y? o 9372
du  dv
— =0,
dx  dy
ou ow
— =0,
0z ay

have been investigated by many academic researchers. Very recently, Hosseini et al. [25]
considered the (2 + 1)-dimensional Burgers equations and obtained its kinky breather-wave
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and lump solutions using the extended homoclinic and limit approaches. Gao and Wang [26]
found lump-type and interaction solutions of (3 + 1)-dimensional Burgers equation through
ansatz methods.

The simplified Hirota method considers the solution of a NLEE like N (u, uy, u;, ...) =0
as

u = R(ng(x,1)),,
where R is derived in the solution process.
1. For the single soliton, the auxiliary function ¢ (x, ¢) is as follows
P(x, 1) =1+,

where the dispersion relation c; is obtained in a systematic way.
2. For the double soliton, the auxiliary function ¢ (x, t) is as follows

¢(x’ l) — 1+ealx—clt +ea2x—czt +a126(a1+02)x_(cl+02)t,

where the dispersion relations ¢;,i = 1,2 and the phase shift aj» are derived in the
solution process.

In the general case, the auxiliary function ¢ (x, #) (when phase shifts are zero) is considered
as follows

N+1
¢x,t) =1+ Zee",ei =a;x — ¢jt.
i=1
This paper is organized as follows: In Sect. 2, based on the truncated Painlevé expansion,
the Bécklund transformation of the n4D-BE is extracted. In Sect. 3, real and complex N -kink
solitons of the n4D-BE are derived using the simplified Hirota method. In Sect. 4, several
ansatz methods are adopted to obtain a group of other single-kink soliton solutions of the
n4D-BE. The Paper ends with a detailed review regarding the results in the last section.

New (4 + 1)-dimensional Burgers equation and its Backlund
transformation

Based on the truncated Painlevé expansion [27-29], the following Bicklund transformation
to the n4D-BE can be considered
) Vo wo 70
U=—+uj,v=—+v,W=—+w|,7T=—+T1], 2)
¢ ¢ ¢ ¢
where u1, v1, wi, and 1y are arbitrary solutions of the n4D-BE, and ug, vy, wo, and 1o are
determined later.
Now, by setting the Bécklund transformation (2) in Eq. (1) and equating the coefficients
of ¢ =3 and ¢ 2 to zero, we find

53¢ A A 3 IO\ 2a1as [\
—aluoa—azvouo——a3w0u0——a4fouo—+2a5u0 — + uog|l —

0x 0z ds 0x o ay
2 Ip\> 2 3\ >
+ @35 uo ﬁ + a0s uo j = 0,
o) 0z [v%) as
d d
—uoﬁ + Uof(p =0,

dax ay
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9
02 w2 o,
a ay

9
o 1,0
ad dy

Solving the above system of nonlinear partial differential equations results in

2a5

2a5 2a5 205
¢JC7 wo = 7(1)17 70 = 7¢S'
o2 a?

uo Py, Vo =

o o

Inserting ug, vo, wo, and 7o into (2) yields the following Backlund transformation to the
n4D-BE
2a5 2u5 2as 205
u=—(n@¢),,v=—>n¢),,w =—(ng¢),, 7 = —(Ing),,
an [e%} a2 a2

which uy, v, wy, and 7] are considered to be zero.

Real and complex N-kink solitons of the new (4 + 1)-dimensional
Burgers equation

In this section, the simplified Hirota method as a useful technique is adopted to extract real
and complex N-kink solitons of the n4D-BE. For this aim, we consider the following terms

u=e" v=e% w=0e% 1t =2¢,

where
0; = ajx +bjy+ piz+qis — cit.

a; X+b; y+pi z+qis—c;

Insertingu = e " into the following linear PDE

ou %u  ajas 0%u  azas 0%u  auas 3%u
ot ax oy 0y oy 07 oy Js
results in
2 2 2
—ci + asaiz + c1osh; L BBP Fa5d; eUiXtbiytpiztis—cit _
a2 (6% (2%

By equating the coefficient of ¢®**Piy+Piz+dis=Cit to zero and solving the resulting equa-
tion, the following dispersion relation is obtained

2 2 2 2
a5(a2ai +a1b; + a3 p; +oz4ql.)
I k)

o2

and hence

o5 (otzal.2 + otlbl.2 + ot3pl.2 + a4qi2)

O = aix +b;y+ piz+q;s — t,
o2

where 6;,i = 1, 2, ..., N +1 are phase variables. By substituting the logarithmic transforma-
tions

u=R(n¢),,v=R(ng),,w =R(ng¢),, T = R(In¢p),,
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into (1) where the auxiliary function ¢ is defined as

as (thu%-%-a] h%+a3p%+u4q12) [
Ly

ajx+b1y+p1z+q15s—
¢:1+el 1Y+p12+41

)

we obtain a nonlinear algebraic equation as

Raja3 + Rajaab?} + Rasas p? + Rapusqi — 2aaasat — 20 asbt —2azas pt —2a4asq7
=0. 3)
The solution of Eq. (3) is

2
R="%5
(6%)

Based on the above results, a single-kink soliton to the n4D-BE can be gained as follows

as (uzulz-wxl [7%-%—&3 p%+u4q]2) .
@

+b1y+p1z+q15—
20{5blea1x 1y+p12+q1s
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a1 +e @2

as (a2a12+011 b%+a3 p%+a4qlz) /
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2asaie
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2 2 2 2 ’
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@
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ar|1+e @

as (azalzﬂxl b%+a3 p%+a4q12)
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ayx+byy+piz+q1s— t

2as5q1e

T(x,y,2,8,1) =
as (ozza%+a1b%+a3p%+a4q12) ‘

aix+biy+piz+qis— s

ar|1+e

Now, to get the double-kink soliton, we consider the following auxiliary function

d=1+e" +e” +ape”*?,

where the phase variables 6 and 6, are as follows

2 2 2 2
a5(oc2a1 +a1b] +a3p] +a4q1)
0 =aix+b1y+piz+q1s — t
o
as (0{20% + alb% + a3p% + a4q22)
0 = arx +byy + prz+qos — t.

(%)

After some operations, a double-kink soliton to the n4D-BE is extracted as

_ 2a5

= Z(ng),,

o2

v="%(ng),,
as

25
w=—(ng¢),,
o)
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25
7= —(ng);,
(o%)

which the phase shift aj; is zero.
In a similar way, the real N-kink soliton to the n4D-BE is derived as

2a5
u= a_(ln ®)y,
2
205
v= —(11’1 ¢)x»
&%)
2a5
w=—(ng¢),
)
2u5
= —(ng);,
o2
where
N+1 2 vory b2 +ay p2+ayq?
b=1+ Z ea,‘x+b,‘y+piz+qis7a5(a2a' o 49)

i=1

It is noteworthy that the following complex N-kink soliton to the n4D-BE can be derived

2a5 205 2a5 205
u=_(1n¢)y7v= _(1n¢)xaw=_(ln¢)sz= _(1n¢)37
o a a2 a2

where

N+1 as (o a2+a b2+a 2 2
n v Pito4q;
o=1+ Zeaix+b,-y+piz+qis— 5(0; 10’12 30 T ’)t

i=1

The three-dimensional plots of single-, double-, and triple-kink solitons have been pre-
sented in Figs. 1, Fig. 2 and Fig. 3 for a series of the involved parameters. Obviously, Fig. 1
signifies a kink soliton wave, Fig. 2 shows the interaction of two kink soliton waves, and
Fig. 3 demonstrates the interaction of three kink soliton waves.

(a) (b)

10 -10

Fig. 1 Single-kink soliton on the x-s plane when a; = 1, by
a3 =—1l,ag =-2,a5=4,y=1,z=—1l,andat =0;br =0.25
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(2) (b)

10 -10 10 -10

Fig. 2 Double-kink soliton on the x-s plane whena; = 1, b1 =2, p; = —1,q1 = —2,ap = -1, by =1,
=2, ¢p=-2,a1=—l,ap =-2,03=1l,a4 =2, a5 =4,y=1,z=—1l,andar=0;br=0.25

@ (b)

I
—_

Fig. 3 Triple-kink soliton on the x-s plane whena; = 1,b; =2, p; = —1,q1 = —2,a = —1,by =
P2=-2q3=2a3=50b3=3,p3=-2,q3=-3,a4 = —5by=-3,p4=2,q4 =3, =1,
ap =2, 03=—-1l,a4 =2, 05 =4,y=1,z=—1,andar=0;br=0.1

Other single-kink solitons of the new (4 + 1)-dimensional Burgers
equation

To seek other single-kink solitons of the n4D-BE, one can consider the following ansatz

u(x,y,z,s,t) = A+ Btanh(ax + by + pz +¢qs — ct),
v(x,y,2,8,t) = g(A + Btanh(ax + by + pz + gs — ct)),
w(x,y,z,8, 1) = %(A + Btanh(ax + by + pz + gs — ct)),

T(x,y,2,8,t) = %(A + Btanh(ax + by + pz + gs — ct)),
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where A, B, a, b, p, g, and c are found later. After substituting the above ansatz into Eq. (1),
the following system of nonlinear algebraic equations is obtained

Baza% + Bb2a1a2 + Bp2a2a3 + Bq2a2a4 — 2a2ba2a5
— 2b3a1a5 — 2bp2a3a5 — 2bq2a4a5 =0,
Aazoz% + Ab2a1a2 + Ap2a2a3 + Aq2a2a4 — bcay = 0.

The solution of the above system is

B 2bas A(a2a2 + b2 + p2a3 + q2a4)
= , CcC = .
o b

Therefore, the following single-kink soliton to the n4D-BE is derived

A (a2a2 +b%a; + p2a3 + q2a4) )
t],
b

2b A (day + b2ay + pPas + g2«
:Z<A+ astanh(ax+by+pz+qs— ( 2 1b[7 S

2b
ulx,y,z,s,t)=A+ @

tanh (ax +by+ pz+gs —
o
v(x,y,z,5,1)

a

b

A (612012 +bap + p2a3 + q2a4
b

2bas
A+ tanh | ax + by + pz +gqs —
a

w(x,y,2,8,1)

p 2bas
=% A+ tanh | ax + by + pz +gs —

o b

T(x,y,2,8,1)

)t
A (a2a2 + b2a1 + p2a3 + q2a4)t
)t

s
Similarly, one can find another single-kink soliton to the n4D-BE as

2b0(5
u(x,y,z,s,t)=A+

b

Ala?ay + b%a; + pas + g2au
coth(ax+by+pz+qs— ( PosTa )t ,
o2

v(x,y,2,5,1)

2b A (s + P?ay + p*as + ¢’a
Za(A"' asCOth(ax+by+pZ+qs_ ( 2 1+p a3 +q 4)[ !

b o b

w(x,y,z,5,1)

2b A (d?ar + b2ay + pPos + g2«
:Z(A+ ascoth(ax+by+pz+qs— ( 2 lb PesTa 4)t ,
Qs

T(x,y,2,8,1)

2b A (aPan + b2ay + p2az + g2
:Z(A+ ascoth(ax+by+pz+qs— ( 2 lb PasTa 4)t .
(69
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It is noteworthy that one can adopt another ansatz as follows

tanh(ax + by + pz +gs — ct)

u(x,y,z,8,1) = )
.y, 2 ) A + Btanh(ax + by + pz +gs — ct)
a tanh(ax + by + pz +gqs — ct)
v(x5yaZ7s7t):7 5
b \ A + Btanh(ax + by + pz +gs — ct)

b
q tanh(ax + by + pz +gs — ct)
b\ A+ Btanh(ax + by + pz+qs —ct) )’

where A, B, a, b, p, q, and c are determined later. By inserting the above ansatz into Eq. (1),
one arrives at a system of nonlinear algebraic equations as

2Aa2ba2a5 + 2Ab3¢x1a5 + 2Abp2043055 + 2Abq2a4a5

W, y.2.5.1) = P tanh(ax + by + pz +qs — ct)
I A + Btanh(ax + by + pz+qs —ct) )’

T(x,y,2,8,1) =

+ Bbcoy — az(x% — b2a1a2 — p2a2a3 — q2a2a4 =0,

ZBazba2a5 + 28b3a1a5 + 2Bbp2a3oz5 + 23bq2a4a5 + Abcay = 0.
By solving the above system, the following single-kink soliton to the n4D-BE is obtained

tanh(ax + by + pz +qs — ct)

ux,y,z,s,t) = s
(x.y ) A + Btanh(ax + by + pz +¢qs — ct)
a tanh(ax + by + pz +gqs — ct)
v(x,y,z,8, 1) = — ;
b \ A + Btanh(ax + by + pz +gs — ct)
)4 tanh(ax + by + pz +qs — ct)
w(x,)’yZaS»f):* ’
b \ A + Btanh(ax + by + pz +¢qs — ct)
q tanh(ax + by + pz +gqs — ct)
(X, y,2,8,1) =+ ;
b \ A + Btanh(ax + by + pz +gs — ct)
where
B 1 —4A%bas +2A0n
T2 bas ’
o5 (a2a2 + b2a1 + P2a3 + 6120!4)\/ —7_4'42[;,?:%&2

c=—
Aar

In a similar manner, one can construct the following single-kink soliton to the n4D-BE
coth(ax + by + pz +¢qs — ct)
A + Beoth(ax + by + pz +qs — ct)’
coth(ax + by + pz + gs — ct)
<A + Bceoth(ax + by + pz +qs — ct))’
coth(ax + by + pz +¢qs — ct)
(A + Bceoth(ax + by + pz +qs — ct))’
coth(ax + by + pz + gs — ct)
<A + Bceoth(ax + by + pz +qs — ct))’

u(x,y,z,s,t) =

v(x,y,2,8,1) =

w(x,y,z,8,1) =

a
b
p
b
T(x,y,2,58,1) =%

where

B=-
2

’

1 —4A2b()l5 +2A0p
bos
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(b

Fig. 4 The first single-kink soliton on the x-s plane when A = l,a =1, b=—-1,p=2,9g = -2, ] = 1,
ap=2,03=—1l, 04 =—2,05=2,y=1,z=—1,andat =0;bt =0.25

(@ (b)

Fig.5 The third single-kink soliton on the x-s plane when A = l,a =1,b=1,p =2,9g = -2, 0] = 1,
ap=2,03=—1,04 =—2,05=2,y=1,z=—1,andat =0;bt =0.25

_4A2
as(a’as +bPay + pPoz + gas),/ — A bast2 Ay IZL“';’M“Z

Aayp

c=—

The three-dimensional plots of the first and third single-kink solitons have been shown
in Figs. 4 and 5 for a series of the involved parameters. Clearly, these figures signify the
single-kink soliton waves.

Conclusion

A new (4 + 1)-dimensional Burgers equation describing specific dispersive waves in nonlinear
sciences was introduced and studied in the current paper. In this respect, first, the Béacklund
transformation of the n4D-BE was extracted through the use of the truncated Painlevé expan-
sion. Through applying the simplified Hirota method, real and complex N-kink solitons of
the n4D-BE were then retrieved. Moreover, several ansatz methods were used to acquire a
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number of other single-kink soliton solutions of the n4D-BE. As future works, the authors are
interested in applying other methods [30-35] to derive other exact solutions of the n4D-BE.
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