
Alexandria Engineering Journal (2022) 61, 5753–5769
HO ST E D  BY

Alexandria University

Alexandria Engineering Journal

www.elsevier.com/locate/aej
www.sciencedirect.com
A novel analytical algorithm for generalized fifth-

order time-fractional nonlinear evolution equations

with conformable time derivative arising in shallow

water waves
Abbreviations: OHAM, Optimal homotopy asymptotic method; q-HAM, q-homotopy analysis method; HPM, Homotopy perturbation m

BPM, Bernstein polynomials method; LMM, Legendre multiwavelet method; ADM, Adomian decomposition method; VIM, Variational it

method; FCD, Fractional conformable derivative; FCRPSA, Fractional conformable residual power series algorithm; FNEE, Fractional no

evolution equation; FPDE, Fractional partial differential equation; FCKdVE, Fractional conformable Korteweg-de Vries equations;

multiple time-fractional series
* Corresponding author at: Department ofMathematics, Faculty of Arts and Sciences, CankayaUniversity, Ogretmenler Cad. 1406530, Ankara,

** Corresponding author at: Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt.

E-mail addresses: dumitru@cankaya.edu.tr (D. Baleanu), mofatzi@cu.edu.eg, mofatzi@sci.cu.edu.eg (M.S. Osman).

Peer review under responsibility of Faculty of Engineering, Alexandria University.

https://doi.org/10.1016/j.aej.2021.12.044
1110-0168 � 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Omar Abu Arqub
a,b
, Mohammed Al-Smadi

c,d
, Hassan Almusawa

e
,

Dumitru Baleanu
f,g,h,*, Tasawar Hayat

b,i
, Mohammed Alhodaly

b
, M.S. Osman

j,**
aDepartment of Mathematics, Faculty of Science, Al Balqa Applied University, Salt 19117, Jordan
bNonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science,
King Abdulaziz University, Jeddah 21589, Saudi Arabia
cDepartment of Applied Science, Ajloun College, Al-Balqa Applied University, Ajloun 26816, Jordan
dNonlinear Dynamics Research Center (NDRC), Ajman University, Ajman, UAE
eDepartment of Mathematics, College of Sciences, Jazan University, Jazan 45142, Saudi Arabia
fDepartment of Mathematics, Faculty of Arts and Sciences, Cankaya University, Ogretmenler Cad. 1406530, Ankara, Turkey
g Institute of Space Sciences, Magurele, Bucharest, Romania
hDepartment of Medical Research, China Medical University Hospita, China Medical University, Taichung, Taiwan
iDepartment of Mathematics, Faculty of Science, Quaid-I-Azam University, Islamabad 45320, Pakistan
jDepartment of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt
Received 11 June 2021; revised 6 December 2021; accepted 16 December 2021
Available online 30 December 2021
KEYWORDS

Fractional nonlinear evolu-

tion equation;

Fractional conformable

Korteweg-de Vries equa-

tions;

Fractional conformable

derivative;
Abstract The purpose of this research is to study, investigate, and analyze a class of temporal time-

FNEE models with time-FCDs that are indispensable in numerous nonlinear wave propagation

phenomena. For this purpose, an efficient semi-analytical algorithm is developed and designed in

view of the residual error terms for solving a class of fifth-order time-FCKdVEs. The analytical

solutions of a dynamic wavefunction of the fractional Ito, Sawada-Kotera, Lax’s Korteweg-de

Vries, Caudrey-Dodd-Gibbon, and Kaup-Kupershmidt equations are provided in the form of a

convergent conformable time-fractional series. The related consequences are discussed both theoret-
ethod;

eration

nlinear

MTFS,

Turkey.
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Fractional conformable

residual power series algo-

rithm;

Shallow water surfaces
ically as well as numerically considering the conformable sense. In this direction, convergence anal-

ysis and error estimates of the developed algorithm are studied and analyzed as well. Concerning

the considered models, specific unidirectional physical experiments are given in a finite compact

regime to confirm the theoretical aspects and to demonstrate the superiority of the novel algorithm

compared to the other existing numerical methods. Moreover, some representative results are pre-

sented in two- and three-dimensional graphs, whilst dynamic behaviors of fractional parameters are

reported for several a values. From the practical viewpoint, the archived simulations and conse-

quences justify that the iterative algorithm is a straightforward and appropriate tool with compu-

tational efficiency for long-wavelength solutions of nonlinear time-FPDEs in physical phenomena.

� 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

The time-FNEE is a mathematical dynamic system suitable for
long wave propagation solutions of nonlinear dispersive time-

FPDEs playing a significant role in balancing the dispersion
and nonlinearity effects of soliton behavior [1-4]. The applica-
tion of such FNEE models can be found in different branches

of pure and applied sciences, including capillary gravity waves,
soliton theory, meteorology, hydrodynamics, the surface ten-
sion of shallow-water waves, and incompressible and inviscid

fluid [3-7]. On the other aspect as well, time-FPDEs play a crit-
ical role in modeling and studying complex nonlinear systems,
and in understanding the basic physics, interactions of elemen-
tary particles, and dynamic processes that govern these sys-

tems. It has recently attracted the attention of scientists due
to its tremendous applications in various scientific fields such
as quantum mechanics, chemical kinetics, electromagnetic,

control theory, magneto-acoustic propagation in plasma, dissi-
pative systems, hydrodynamics, granular fluids, and gas–solid
flows [8-13]. Various types of time-FNEEs have been derived

in the literature, where some of them do not admit N-soliton
solutions [14]. Meanwhile, different kinds of both local and
nonlocal fractional concepts have been refined and modified
like Riesz-Caputo, Atangana-Baleanu, Caputo-Katugampola,

Machado, Hilfer-Hadamard, Grünwald-Letnikov, Erdelyi-
Kober, Riemann-Liouville, and FCD. Although the nonlocal
fractional concept is more interesting due to the long-term

physical features relies on memory and nonlocality effects,
there is also a deficiency elsewhere such as chain, Leibniz, quo-
tient, and semi-group properties. In this orientation, local frac-

tional derivatives rely on the natural generalization of
standard derivatives of a non-integer power to conserve the
local nature of the derivatives, eschew fracturing the extraordi-

nary rules, and inspect the scaling features of local asymptotic
[15-21].

So far, effective reliable semi-analytical techniques and
numerical approaches are successfully developed and applied

for dealing with various categories of time-FNEEs, including
OHAM, HPM, BPM, LMM, ADM, VIM, and reproducing
kernel method. Moreover, many traveling waves concepts like

modified Kudryashov method, tanh-sech method, wavelet
transform method, Riccati sub-equation method, G’/G-
expansion method, sine-Gordon expansion method, and other

methods [22-39]. Finding exact and approximate soliton solu-
tions of higher-order time-FPDEs in wave propagation situa-
tions is a significant issue to understand the dynamic

behaviors of nonlinear waves in dispersive media. For this pur-
pose, we intend in this work to create accurate approximate
solutions of FNEEs in FCD sense subject to suitable initial
conditions utilizing a novel analytical algorithm. The primary

motivation for implementing this algorithm is to achieve effec-
tive approximate solutions straightforwardly without imposing
any undue restrictions on the model nature and gaining rapid
convergence with the lower cost of calculations. The following

is a well-known model for the temporal time-FNEE [22,23]:

@av

@t
þ pv2 @v

@x
þ q

@v

@x

@2v

@x2
þ rv

@3v

@x3
þ @5v

@x5
¼ 0; ð1Þ

where 0 < a � 1, p; q; r are nontrivial constant parameters,

a stands for the order of fractional time-dependent derivative,
and v ¼ vðx; tÞ is the surface wave elevation of a liquid in the

dispersive media in terms of the space x 2 ½a; b� and time t � 0
coordinates. Typically, model (1) consists of three nonlinear

terms and a linear dispersive term @5v=@x5 so it plays a signif-

icant role in balancing the dispersion and nonlinearity effects
of soliton behavior [1]. The proposed model is profitably used
in many physical applications in nonlinear wave propagation
phenomena such as surface tension of shallow water, acoustic

magnetic propagation in plasma, gravitational field, incom-
pressible and inviscid fluids, etc [9,22]. By taking different pro-
cess values of p, q and r a varied version of the time-FNEEs

can be formulated as follows:

� Taking p ¼ 2; q ¼ 6; and r ¼ 3; we get the fractional Ito

equation [23,24]as

@avþ 2v2 @v þ 6
@v @2v þ 3v

@3v þ @5v ¼ 0: ð2Þ

@t @x @x @x2 @x3 @x5
� Taking p ¼ 45 and q ¼ r ¼ 15; we get the fractional

Sawada-Kotera equation [23,27] as

@avþ 45v2 @v þ 15
@v @2v þ 15v

@3v þ @5v ¼ 0: ð3Þ

@t @x @x @x2 @x3 @x5
� Taking p ¼ q ¼ 30 and r ¼ 15; we get the fractional Lax’s

Korteweg-de Vries equation [5,40] as

@avþ 30v2 @v þ 30
@v @2v þ 10v

@3v þ @5v ¼ 0: ð4Þ

@t @x @x @x2 @x3 @x5
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� Taking p ¼ 180 and q ¼ r ¼ 30; we get the fractional

Caudrey-Dodd-Gibbon equation [40,41] as

@avþ 180v2 @v þ 30
@v @2v þ 30v

@3v þ @5v ¼ 0: ð5Þ

@t @x @x @x2 @x3 @x5
� Taking p ¼ 45 and q ¼ r ¼ �15; we get the fractional

Kaup-Kupershmidt equation [14,42] as

@avþ 45v2 @v � 15
@v @2v � 15v

@3v þ @5v ¼ 0: ð6Þ

@t @x @x @x2 @x3 @x5

Hereinafter, the aforementioned time-FCKdVEs (2–6) are
equipped with the underlying initial condition:

v x; 0ð Þ ¼ v0 xð Þ; ð7Þ
where x 2 ½a; b�, v0ðxÞ is a sufficiently smooth bounded

function.
The FCKdVE models have been profitably used for model-

ing the nonlinear dispersive waves phenomena that occurring

in capillary waves, nonlinear optics, scattering theory, Hamil-
tonian dynamics, plasma physics, gravitational fields, Bose-
Einstein condensates, and atmospheric waves [22-24]. In [22],

the time-fractional Sawada-Kotera equation was considered
under the Caputo concept to investigate exact and multiple
soliton solutions using the trial equation and Hirota’s methods

and to approximate soliton solutions using the FCRPSA.
Using the G’’/G-expansion method [27] exact traveling wave
solutions of nonlinear time-FNEEs have been successfully

obtained. Moreover, new sets of exact traveling wave solutions
for time-fractional Caudrey-Dodd-Gibbon-Sawada-Kotera
equation in terms of the Riemann-Liouville concept were
attained in [9] along with a discussion of conservation laws.

In [28], tanh-sech and modified Kudryashov methods have
been used to solve the fractional modified Sawada-Kotera
equation using a local fractional derivative. Further, the

time-fractional Sawada-Kotera and Ito equations have been
numerically solved considering Caputo sense based on BPM
[24]. Gupta and Ray [42] effectively studied approximate solu-

tions of the time-fractional Kaup-Kupershmidt equation
employing LMM and OHAM. By employing the q-HAM
[23], approximate solutions of fractional Ito and Sawada-

Kotera equations have been successfully obtained.
Typically, there is no conventional approach that produces

an analytical prototype solution, soliton solution, or closed-
form traveling wave solutions for nonlinear dispersive FPDEs.

Hence, there is an urgent need for reliable and sophisticated
techniques to explore analytical and numerical solutions to
these equations. Motivated by the aforementioned argumenta-

tions, this paper aims to design an advanced iterative algo-
rithm, so-called, the FCRPSA for generating analytical
solutions of nonlinear time-FCKdVE models by utilizing a

new fractional index in light of the FCD sense. Error estimates
and convergence analysis for the present FCRPSA are dis-
cussed as well. The relevant theoretical results are affirmed
by numerical simulations. Eventually, five-types numerical

examples are tested to verify the efficiency of the novel frac-
tional algorithm, including the time-fractional Ito, Sawada-
Kotera, Lax’s Korteweg-de Vries, Caudrey-Dodd-Gibbon,

and Kaup-Kupershmidt equations.
The rest of the paper is arranged as follows. Hereinafter,
some primary definitions and theorems are briefly retrieved.
In Section 3, an efficient analytical FCRPSA is extended to

solve nonlinear FCKdVE of the fifth order. Specific numerical
applications are stated in Section 4 to support the theoretical
aspect. Meanwhile, numerical consequences, discussions, and

physical explanations are reported followed by some deducing
remarks in Section 5.

2. Preliminary results and definitions

Fractional calculus shows up in different fields of pure and
applied physics, biology, chemistry, and engineering as excel-

lent mathematical tools to describe the memory and hereditary
characteristics of many materials and processes [43-55]. It was
used to formulate several nonlinear time-FPDE schemes with

merit given to suppling a more comprehensive discussion of
chaos, dynamic systems, and the pattern of state change over
time.

In this direction, different fractional operators have been

investigated in the literature to handle such equations as Riesz
derivative, Riemann-Liouville derivative, Caputo derivative,
Feller derivative, Grünwald derivative, Caputo-Fabrizio

derivative, Atangana-Baleanu derivative, and local fractional
derivative [17-21]. Consequently, the FCD was modified based
on the general standard notion of limits [56]. This part is pur-

posed to highlight the main definition of FCD with its charac-
teristics. Moreover, a summary of the series expansion in the
FCD sense is stated.

Definition 1 ([56]). The a th order FCD of v tð Þ : ½0;1Þ ! R

for a 2 ð0; 1Þ is defined as

@av tð Þ
@t

¼ lim
e!0

v tþ et1�a
� �� v tð Þ

e
; t > 0: ð8Þ

Moreover, if the previous limit exists at a point s; s > 0 in

ð0; sÞ, then v tð Þ is called a-differentiable so that
@av sð Þ=@t ¼ lim

t!sþ
@av tð Þ=@t:

Definition 2 ([57]). Let v tð Þ : ½s;1Þ ! R be a-differentiable.
The a-fractional integral starting from s is defined as

Ia
sv tð Þ ¼

Z t

s

v nð Þ
n1�a dn; t > s � 0; ð9Þ

in which a 2 ð0; 1� and the integral represents the usual Rie-

mann improper integral.
In the following, we present some interesting properties

acquired in terms of FCD [57]. Further features can be found

in [58-69] and the references therein.

Lemma 1 ([57]). Let vðtÞ and uðtÞ be a-differentiable func-
tions at any point t > 0: Then, we have the following properties:

� @a

@t
v tð Þ ¼ t1�a @

@t
v tð Þ:

� @a

@t
e1vðtÞ þ e2uðtÞð Þ ¼ e1

@a

@t
vðtÞ þ e2

@a

@t
uðtÞ, where e1 and e2

are real constants.

� @a

@t
th
� � ¼ hth�a, where h is an arbitrary constant.

� @a

@t
Cð Þ ¼ 0; where C is a constant.
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� @a

@t
vðtÞuðtÞ½ � ¼ vðtÞ @a

@t
uðtÞ þ uðtÞ @a

@t
vðtÞ.

� @a

@t
vðtÞ=uðtÞ½ � ¼ u tð Þ @a

@t
vðtÞ � vðtÞ @a

@t
uðtÞ� �

=u2ðtÞ; where

uðtÞ is a nonzero function.

Theorem 1 ([57]). Suppose that v : ð0;1Þ ! R is a differen-

tiable and a-differentiable function, while uðtÞ is a differentiable
function defined on the range of vðtÞ. Then, the a-differentiable
chain rule of the composition of the two functions for a 2 0; 1ð � is
provided as

@a v�uð Þ tð Þ
@t

¼ t1�au
0
tð Þv0

u tð Þð Þ: ð10Þ

Definition 3 ([58]). For a 2 ð0; 1�, let v be a function of x and t
defined on ½a; b� � s;1½ Þ to R. Then, the time-FCD of order a is

given as

@a

@t
vðx; tÞ ¼ lim

e!0

v x; tþ e t� sð Þ1�a
� �

� v x; tð Þ
e

: ð11Þ

Definition 4 ([58]). For a 2 ð0; 1�, let v be a function of x and t
defined on ½a; b� � s;1½ Þ to R. Then, the conformable fractional

integral starting from s of order a is given as

Ia
sv x; tð Þ ¼

Z t

s

v x; nð Þ
n� sð Þ1�a dn: ð12Þ

Definition 5 ([11]). The MTFS about t0 > 0 is given as

X1
i¼0

Ci xð Þ t� t0ð Þia ¼ C0 xð Þ þ C1 xð Þ t� t0ð Þa

þ C2 xð Þ t� t0ð Þ2a þ 	 	 	 ; ð13Þ
where 2 n� 1; nð �; t 2 t0; t0 þ r1=a

��
; r > 0, r1=a is a radius

of convergence, and Ci xð Þ indicates unknown coefficients of
the MTFS expansion.

When a ¼ 1, then the MTFS expansion in Definition 5

reduces to the usual series expansion at t0 > 0 with the radius
of convergence r that converges uniformly on t� t0j j < r.

Theorem 2 ([11]). Letv = vðx; tÞbe a function that has

infinitely time-FCDs at any point t on ½t0; t0 þ r1=aÞ such that

v x; tð Þ has the following MTFS expansion about t0 > 0

v x; tð Þ ¼
X1
i¼0

Ci xð Þ t� t0ð Þia; a > 0: ð14Þ

Then, the coefficients Ci xð Þ; i ¼ 0; 1; 2; 	 	 	 ; are evaluated

as

Ci xð Þ ¼ @ia
t0
v x; t0ð Þ
i!ai

; ð15Þ

in which @ia
t0
v x; t0ð Þ indicates the i th time-FCD of v x; tð Þ

at t0 > 0 such that @ia
t0
v x; t0ð Þ ¼ @a

t0
:@a

t0
	 	 	 @a

t0
v x; t0ð Þ (i-

times).
3. The FCRPSA: construction, steps, and analysis

The FCRPSA is a semi-approximate concept specifically intro-
duced for solving complex nonlinear time-FPDEs arising in

different categories of science. This technique is instituted on
generalizing the expansion of the Taylor series for arbitrary
order and minimizing the residual errors identified to detect

the unknown compounds, which was proposed and developed
by Abu Arqub in the study of fuzzy differential equations. It
has many motivational and attractive aspects, in addition to
a massive ability to solve the nonlinear terms directly without

requiring any restrictions, transformation, linearization, or
perturbation on the configuration of the models. Thus, it has
acquired a lot of consideration and has become an energizing

focus of the research community [56-69].
In this segment, a newly developed algorithm is designed to

obtain accurate approximate solutions of the time-FCKdVE

models equipped with a certain initial condition within a finite
spatiotemporal domain. To reach our aim, let us consider the
nonlinear time-FCKdVE as follows:

@a
tv x; tð Þ þN v; v2; vx; v2x; v3x

� �þ v5x x; tð Þ ¼ 0; ð16Þ
along with the underlying initial condition

v x; 0ð Þ ¼ v0ðxÞ; ð17Þ
where 0 < a � 1, x 2 a; b½ �; t � 0; a is the FCD parameter,

vix ¼ @iv x; tð Þ=@xi; i ¼ 1; 2; 3, v0ðxÞ is a given bounded func-
tion, and v x; tð Þ is a sufficiently smooth wavefunction. Herein,

N indicates the nonlinear operator in terms of v2vx; vxv2x and
vv3x over a space–time domain.

The presented FCRPSA assumes that the solution v x; tð Þ
of (16–17) has an MTFS expansion of about t0 ¼ 0 of the fol-
lowing form:

v x; tð Þ ¼
X1
i¼0

Ci xð Þ t
ia

i!ai
; ð18Þ

provided that v x; 0ð Þ ¼ C0 xð Þ ¼ v0 xð Þ. Therefore, the m-
term truncated series solution vm x; tð Þ of v x; tð Þ in view of
(17) can be expressed by

vm x; tð Þ ¼ C0 xð Þ þ
Xm
i¼1

Ci xð Þ t
ia

i!ai
: ð19Þ

Initially, the residual error Rs ðx; tÞ of (16–17) is given by

Rs x; tð Þ ¼ @a
tv x; tð Þ þN v; v2; vx; v2x; v3x

� �
þ v5x x; tð Þ; ð20Þ

and then the m-term truncated residual of Rs ðx; tÞ is given
by

Rm
s ðx; tÞ ¼ @a

tvm x; tð Þ þN vm; v
2
m; vx;m; v2x;m; v3x;m

� �
þ v5x;m; ð21Þ

where vkx;m ¼ @kvmðx; tÞ=@xk , Rs x; tð Þ ¼ 0 ¼ @ m�1ð Þa

Rs =@t; m ¼ 1; 2; 3; 	 	 	 ;x 2 ½a; b�, 0 � t < T; T 
 t0 þ r1=a;

and @ m�1ð ÞaRm
s =@t t¼0j 
 0 for each m ¼ 1; 2; 3; 	 	 	.

To clarify the main steps of the presented FCRPSA in find-
ing the unknown coefficients Ci xð Þ of the m-term truncated

solution (19), set m ¼ 1 and equate R1
sðx; tÞ to zero at t ¼ 0.

So, C1 xð Þ is obtained. Thereafter, set m ¼ 2; apply the opera-

tor @a
t on both sides of the resulting relevant equation, and
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solve @a
tR

2
sðx; 0Þ ¼ 0. Then, C2 xð Þ is obtained as well. If we

continued in this fashion, the unknown coefficients Ci xð Þ;
i � 3; of the MTFS expansion (19) will be obtained. For fur-
ther clarification, the following algorithm is devoted.

Algorithm 1. Finding the m th approximation of the solution of
nonlinear time-FCKdVE (16–17).

Step A. Let the solution v x; tð Þ of (16–17) can be expanded
about t0 ¼ 0 as

v x; tð Þ ¼
X1
i¼0

Ci xð Þ t
ia

i!ai
; t � t0: ð22Þ

Step B. Define the m th-truncated solution of v x; tð Þ in
view of (17) as

vm x; tð Þ ¼ C0 xð Þ þ
Xm
i¼1

Ci xð Þ t
ia

i!ai
: ð23Þ

Step C. Truncate the m th residual error of Rs x; tð Þ such
that

Rm
s x; tð Þ ¼ @a

tvm x; tð Þ þN vm; v
2
m; vx;m; v2x;m; v3x;m

� �
þ v5x;m; vkx;m: ð24Þ

Step D. Substitute the truncated MTFS solution in Step B

to the m th-truncated residual error in Step C as

Rm
s x; tð Þ ¼ @a

t C0 xð Þ þ
Xm
i¼1

Ci xð Þ t
ia

i!ai

 !

þ C0 xð Þ þ
Xm
i¼1

Ci xð Þ t
ia

i!ai

 !
5x

þN C0 xð Þ þ
Xm
i¼1

Ci xð Þ t
ia

i!ai

 !
;

"

C0 xð Þ þ
Xm
i¼1

Ci xð Þ t
ia

i!ai

 !2

; 	 	 	 ;

C0 xð Þ þ
Xm
i¼1

Ci xð Þ t
ia

i!ai

 !
3x

#
: ð25Þ

Step E. Apply the operator @
ðm�1Þa
t for each m ¼ 1; 2; 3; 	 	 	

on both sides of the resulting equation in Step D as

@
m�1ð Þa
t Rm

s x; tð Þ ¼ @ma
t C0 xð Þ þ

Xm
i¼1

Ci xð Þ t
ia

i!ai

 !

þ @
m�1ð Þa
t C0 xð Þ þ

Xm
i¼1

Ci xð Þ t
ia

i!ai

 !
5x

þ @
ðm�1Þa
t N C0 xð Þ þ

Xm
i¼1

Ci xð Þ t
ia

i!ai

 !
;

"

C0 xð Þ þ
Xm
i¼1

Ci xð Þ t
ia

i!ai

 !2

; 	 	 	 ;

C0 xð Þ þ
Xm
i¼1

Ci xð Þ t
ia

i!ai

 !
3x

#
: ð26Þ

Step F. Execute the following subroutine to get the first few
terms for the unknown coefficients Ci xð Þ with the help of

@
ðm�1Þa
t Rm

s x; 0ð Þ ¼ 0:
F1. Put m ¼ 1 in Step E, compute R1
s x; tð Þ, and solve

R1
s x; 0ð Þ ¼ 0 to get C1 xð Þ.
F2. Put m ¼ 2 in Step E, compute @a

tR
2
s x; tð Þ, and solve

@a
tR

2
s x; 0ð Þ ¼ 0 to get C2 xð Þ.
F3. Put m ¼ 3 in Step E, compute @2a

t R3
s x; tð Þ, and solve

@2a
t R3

s x; 0ð Þ ¼ 0 to get C3 xð Þ.
F4. Continue the procedure up to arbitrary order n by put-

ting m ¼ n, computing @
ðn�1Þa
t Rn

s x; tð Þ; and solving the result-

ing equation @
ðn�1Þa
t Rn

s x; 0ð Þ ¼ 0 to get the n th coefficients

Cn xð Þ.
Step G. Collect the gained components in the form of infi-

nite series. Eventually, the closed-form of the solution can be

obtained so that v x; tð Þ ¼ lim
n!1

vn x; tð Þ when the dynamical

relation of the pattern is regular. Otherwise, the approximate
solutions vn x; tð Þ can be obtained; Then, Stop.

Lemma 2. Suppose that v x; tð Þ is the solution of (16–17), which

has infinitely time-FCDs at any point t on ½t0; t0 þ r1=aÞ, and it

can be expanded in the form of MTFS (18) about t0 ¼ 0. If there
exists a positive function g xð Þ > 0 such that

@
ðmþ1Þa
t v x; nð Þ

��� ��� � g xð Þ for all n between t and 0, then the

remaining term of the MTFS expansion fulfills the following:

Pn x; tð Þj j � g xð Þ
mþ 1ð Þ!amþ1

t mþ1ð Þa; ð27Þ

in which Pn x; tð Þ ¼P1
n¼mþ1

@nat v x;nð Þ
ann! tna:

Corollary 1. Suppose that v x; tð Þ and vm x; tð Þ are the analyt-
ical and approximate solutions of (16–17), respectively. Let there
exists a fixed constant k 2 0; 1½ � such that

kvmþ1 x; tð Þk � kkvm x; tð Þk for each x; tð Þ 2 a; b½ � � ½t0;TÞ;
and kC0 xð Þk < 1 for each x 2 ½a; b�. Then, the approximate
solution vm x; tð Þ converges to the analytical solution v x; tð Þ
whenever m ! 1.

Proof. Since kvmþ1 x; tð Þk � kkvm x; tð Þk for each
x; tð Þ 2 a; b½ � � ½t0;TÞ, then kv1 x; tð Þk � kkv0 x; tð Þk ¼
kkC0 xð Þk, and then kv2 x; tð Þk � k2kC0 xð Þk. Subsequently,
we have kvm x; tð Þk � kmkC0 xð Þk. This leads toP1

n¼mþ1kvn x; tð Þk � kC0 xð ÞkP1
n¼mþ1k

n. Thus,

kv x; tð Þ � vm x; tð Þk ¼ kP1
n¼mþ1vn x; tð Þk

�P1
n¼mþ1kvn x; tð Þk

�P1
n¼mþ1k

nkC0 xð Þk
¼ kmþ1

1�k kC0 xð Þk
! 0form ! 1:

ð28Þ
4. Applications and simulation results

Temporal time-FNEEs are excellent tools for modeling nonlin-

ear wave phenomena of dispersed media, and for understand-
ing their dynamical behaviors. The higher-order time-
FCKdVE is a unidirectional temporal nonlinear evolution
model for describing the propagation of long and shallow

water surface waves under capillary gravity [22-27]. It plays
a significant role in balancing the dispersion and nonlinear
effects of soliton behavior.
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In this segment, the FCRPSA in light of the residual error
functions is profitably applied for solving time-fractional Ito,
Sawada-Kotera, Lax’s Korteweg-de Vries, Caudrey-Dodd-

Gibbon, and Kaup-Kupershmidt equations, which are the
most popular species of fractional Korteweg-de Vries family
hierarchy. Numerical simulation of these models is discussed

and studied as well. Some graphical representative results are
presented with physical interpretations for several fractional
parameters to support the theoretical framework, and to give

a clear visualization of the wavefunction behavior of the pro-
posed models. Further, numerical comparisons are made to
illustrate the effectiveness and simplicity of the presented
FCRPSA. All calculations and representative results are per-

formed by using the Mathematica computing system.

4.1. Application 1: Time-fractional Ito equation

In this portion, consider the fractional Ito equation with time-
FCD in the underlying model [23,24]:

@av

@t
þ 2v2 @v

@x
þ 6

@v

@x

@2v

@x2
þ 3v

@3v

@x3
þ @5v

@x5
¼ 0; ð29Þ

associated with the underlying initial condition

v x; 0ð Þ ¼ 20j2 � 30j2tanh2ðjxÞ; ð30Þ
where 0 < a � 1, j is an arbitrary constant with j–0,

x 2 ½a; b�; t � 0; and v ¼ vðx; tÞ is a sufficiently smooth func-
tion represented the elevation of wave surface of a liquid in the

dispersed media. Typically, this equation consists of three non-

linear terms and one linear dispersive term @5v=@x5, which is
not fully integrable but admits a limited range of conservation

laws [1]. The fractional Ito equation is an indispensable model
for numerous nonlinear physical applications in magneto-
acoustic propagation in plasma, the surface tension of shallow

water, hydrodynamics, etc. [2-7].
Utilizing the FCRPSA, the MTFS solution v x; tð Þ of (29–

30) about t ¼ 0 can be constructed as follows:

v x; tð Þ ¼
X1
i¼0

Ci xð Þ t
ia

aii!
; ð31Þ

in which C0 xð Þ ¼ v x; 0ð Þ ¼ 20j2 � 30j2tanh2 jxð Þ: Subse-
quently, the m-term truncated series vm x; tð Þ of v x; tð Þ in view

of (30) can be written as

vm x; tð Þ ¼ 20j2 � 30j2tanh2 jxð Þ þ
Xm
i¼1

Ci xð Þ t
ia

aii!
: ð32Þ

Meanwhile, the residual error function Rs ðx; tÞ can be

written as

Rs x; tð Þ ¼ @av

@t
þ 2v2 @v

@x
þ 6

@v

@x

@2v

@x2
þ 3v

@3v

@x3
þ @5v

@x5
; ð33Þ

provided that Rs x; tð Þ ¼ 0 ¼ @ m�1ð ÞaRs =@t;

m ¼ 1; 2; 3; 	 	 	 ;x 2 ½a; b�, and 0 � t < T.

In this direction as well, the m-term truncated residual
Rm

s ðx; tÞ of Rs x; tð Þ can be written as

Rm
s x; tð Þ ¼ @avm

@t
þ 2v2

m

@vm

@x
þ 6

@vm

@x

@2vm

@x2
þ 3vm

@3vm

@x3

þ @5vm

@x5
; ð34Þ
in which @ m�1ð ÞaRm
s =@t t¼0j 
 0 for each m ¼ 1; 2; 3; 	 	 	 :

In the following, the first few terms of the coefficients

Ci xð Þ, i ¼ 1; 2; 	 	 	 ;m; of expression (32) for each value of i
will be calculated. To this end, the first series solution for
m ¼ 1 takes the form

v1 x; tð Þ ¼ 20j2 � 30j2tanh2 jxð Þ þ 1

a
C1 xð Þta; ð35Þ

while the first residual function takes the form

R1
s x; tð Þ ¼ @av1

@t
þ 2v2

1

@v1

@x
þ 6

@v1

@x

@2v1

@x2
þ 3v1

@3v1

@x3

þ @5v1

@x5
: ð36Þ

Consequently, putting v1 x; tð Þ into R1
s x; tð Þ to get

R1
s x; tð Þ ¼ C1 xð Þ

þ 2 C0 xð Þ þ C1 xð Þ t
a

a

� 	2

C
0
0 xð Þ þ C

0
1 xð Þ t

a

a

� 	

þ 6 C
0
0 xð Þ þ C

0
1 xð Þ t

a

a

� 	
C

0 0
0 xð Þ þ C

0 0
1 xð Þ t

a

a

� 	

þ 3 C0 xð Þ þ C1 xð Þ t
a

a

� 	
C

3ð Þ
0 xð Þ þ C

3ð Þ
1 xð Þ t

a

a

� 	

þ C
5ð Þ
0 xð Þ þ C

5ð Þ
1 xð Þ t

a

a

� 	
:

ð37Þ
Thus, with the aid of R1

s x; tð Þ t¼0j ¼ 0; it yields

C1 xð Þ þ 2C
0
0 xð Þ 3C

0 0
0 xð Þ þ C2

0 xð Þ
� �

þ 3C0 xð ÞC 3ð Þ
0 xð Þ þ C

5ð Þ
0 xð Þ ¼ 0;

ð38Þ
which implies that

C1 xð Þ ¼ 5760j7sech2 jxð Þ tanh jxð Þ: ð39Þ
So, the first series solution v1 x; tð Þ is provided by

v1 x; tð Þ ¼ 20j2 � 30j2tanh2 jxð Þ

þ 5760j7sech2 jxð Þ tanh jxð Þ t
a

a
: ð40Þ

Sequentially, calculate the second truncated series v2 x; tð Þ
of expression (32) by setting m ¼ 2 in the m th truncated resid-
ual error (20) so that

R2
s x; tð Þ ¼ @av2

@t
þ 2v2

2

@v2

@x
þ 6

@v2

@x

@2v2

@x2
þ 3v2

@3v2

@x3

þ @5v2

@x5
; ð41Þ

where v2 x; tð Þ takes the form as

v2 x; tð Þ ¼ 20j2 � 30j2tanh2 jxð Þ

þ 5760j7sech2 jxð Þ tanh jxð Þ t
a

a

þ 1

2a2
C2 xð Þt2a; ð42Þ

and then employing the differential operator @a=@t on both
sides of equation (41) to get
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@aR2
s x; tð Þ
@t

¼ C2 xð Þ þ @a

@t
2v2

2

@v2

@x
þ 6

@v2

@x

@2v2

@x2
þ 3v2

@3v2

@x3

� 	

þ C
5ð Þ
1 xð Þ þ C

5ð Þ
2 xð Þ t

a

a
: ð43Þ

Solving the term @aR2
s x; tð Þ=@t t¼0j ¼ 0 via Mathematica

computing system leads to

C2 xð Þ ¼ 552960j12ð�2þ cosh 2jxð ÞÞsech4 jxð Þ: ð44Þ
So, the second series solution v2 x; tð Þ is given by

v2 x; tð Þ ¼ 20j2 � 30j2tanh2 jxð Þ

þ 5760j7sech2 jxð Þ tanh jxð Þ t
a

a

þ 276480j12ð�2þ cosh 2jxð ÞÞsech4 jxð Þ t
2a

a2
: ð45Þ

Likewise, the third truncated series v3 x; tð Þ of expression
(32) can be calculated by setting m ¼ 3 in the m th truncated

residual error (34), operating @2a=@t2 on both sides of the

resulting relevant equation, and solving the term

@2aR3
s x; tð Þ=@t2 t¼0j ¼ 0 to get C3 xð Þ as follow

C3 xð Þ ¼ 53084160j17 sinh 3jxð Þ � 11sinh jxð Þð Þsech5 jxð Þ; ð46Þ
which implies that the third series solution v3 x; tð Þ takes

the form

v3 x; tð Þ ¼ 20j2 � 30j2tanh2 jxð Þ

þ 5760j7sech2 jxð Þ tanh jxð Þ t
a

a

þ 276480j12 �2þ cosh 2jxð Þð Þsech4 jxð Þ t
2a

a2

þ 8847360j17 sinh 3jxð Þ � 11sinh jxð Þð Þsech5 jxð Þ t
3a

a3
:

ð47Þ
Continuing likewise, the fourth series solution v4 x; tð Þ

takes the form

v4 x; tð Þ ¼ 20j2 � 30j2tanh2 jxð Þ þ 5760j7sech2 jxð Þ tanh jxð Þ t
a

a

þ 276480j12 �2þ cosh 2jxð Þð Þsech4 jxð Þ t
2a

a2

þ 8847360j17 sinh 3jxð Þ � 11sinh jxð Þð Þsech5 jxð Þ t
3a

a3

þ 212336640j22 33� 26cosh 2jxð Þ þ cosh 4jxð Þð Þsech6 jxð Þ t
4a

a4
:

ð48Þ
To end this process, it can be assumed that v4 x; tð Þ is the

approximate solution. Furthermore, the rest values of Cm xð Þ
for each m � 5 can be computed similarly. Thereafter, by col-
lecting the obtained terms in the pattern of an infinite series,

the solution v x; tð Þ of (29–30) can be entirely predicted. Partic-
ularly, the analytical solution for a ¼ 1 is given by the follow-
ing expression

v x; tð Þ ¼ 20j2 � 30j2tanh2 jxð Þ þ 5760j7sech2 jxð Þ tanh jxð Þt
þ 276480j12 �2þ cosh 2jxð Þð Þsech4 jxð Þt2
þ 8847360j17 sinh 3jxð Þ � 11sinh jxð Þð Þsech5 jxð Þt3

þ 212336640j22 33� 26cosh 2jxð Þ þ cosh 4jxð Þð Þsech6 jxð Þt4
þ 	 	 	 ;

ð49Þ
which is the same solution obtained by q-HAM [23], BPM
[24], and mADM [40], after some symbolic simplification of
hyperbolic trigonometric identities, so that

v x; tð Þ ¼ 20j2 � 30j2tanh2ðj x� 96j4t
� �Þ: ð50Þ

In the following, some graphical results achieved by the
presented algorithm for (29–30) are provided in Figs. 1 and
2. Three-dimensional surface plots of the exact solution and

fourth approximate solution at a ¼ 1 are provided in Fig. 1
with j ¼ 0:1 over a large enough spatiotemporal domain
�20; 20½ � �½0; 6�, which shows match the exact and approxi-
mate solutions. In Fig. 2, the motion and elevation of water

wave surface of (29–30) are displayed in 2D plots based on
the parametric values of j such that j ¼ 0:25; 0:5; 0:75; and
1:25 at t ¼ 1; �20 � x � 20; and a ¼ 0:8. The comparison

of the achieved absolute errors v� v3j j for (29–30) are exhib-
ited in Table 1 for different values of x and t when a ¼ 1
and j ¼ 0:01 that compared to the absolute errors obtained

by the mADM [31]. The superiority and efficiency of the pre-
sented FCRPSA are obvious from these results.

4.2. Application 2: Time-fractional Sawada-Kotera equation

In this portion, consider the fractional Sawada-Kotera equa-
tion with time-FCD in the underlying model [23,24]:

@av

@t
þ 45v2 @v

@x
þ 15

@v

@x

@2v

@x2
þ 15v

@3v

@x3
þ @5v

@x5
¼ 0; ð51Þ

associated with the underlying initial condition

v x; 0ð Þ ¼ 2j2sech2ðjxÞ; ð52Þ
where 0 < a � 1, j is an arbitrary constant with j–0,

x 2 ½a; b�; t � 0; and v ¼ vðx; tÞ is a sufficiently smooth func-
tion. This model is completely integrable, admits N-soliton

solutions, and has an endless set of conservation laws. The
fractional Sawada-Kotera equation is widely used in nonlinear
physical phenomena, including capillary gravitational waves,

soliton’s theory, hydrodynamics, and electromagnetic [3-7].
Using the FCRPSA, the fractional truncated series solution

vm x; tð Þ of (51–52) about t ¼ 0 in view of (52) is given by

vm x; tð Þ ¼ 2j2sech2 jxð Þ þ
Xm
i¼1

Ci xð Þ t
ia

aii!
; ð53Þ

and the residual error function Rs ðx; tÞ is given by

Rs x; tð Þ ¼ @av

@t
þ 45v2 @v

@x
þ 15

@v

@x

@2v

@x2
þ 15v

@3v

@x3
þ @5v

@x5
:

ð54Þ
In this direction as well, the m-term truncated residual

Rm
s ðx; tÞ of Rs x; tð Þ is given by

Rm
s x; tð Þ ¼ @avm

@t
þ 45v2

m

@vm

@x
þ 15

@vm

@x

@2vm

@x2

þ 15vm

@3vm

@x3
þ @5vm

@x5
; ð55Þ

in which @ m�1ð ÞaRm
s =@t t¼0j 
 0 for each m ¼ 1; 2; 3; 	 	 	.

In the following, the first few terms of the coefficients

Ci xð Þ; i ¼ 1; 2; 3; 	 	 	 ;m; of expression (53) for each value of
i will be calculated. To this end, the first series solution for
m ¼ 1 is



Fig. 1 Surface plots of time-fractional Ito model (29–30) with j ¼ 0:1 on �20; 20½ � �½0; 6�: (a) v x; tð Þ and (b) v4 x; tð Þ at a ¼ 1.

Fig. 2 Elevation of water wave surface of v4 x; tð Þ of time-fractional Ito model (29–30) at t ¼ 1 with fractional parameter a ¼ 0:8 and

several parametric values of.j:

5760 O.A. Arqub et al.
v1 x; tð Þ ¼ 2j2sech2ðjxÞ þ 1

a
C1 xð Þta; ð56Þ

and the first residual function is

R1
s x; tð Þ ¼ @av1

@t
þ 45v2

1

@v1

@x
þ 15

@v1

@x

@2v1

@x2
þ 15v1

@3v1

@x3

þ @5v1

@x5
: ð57Þ

Consequently, putting v1 x; tð Þ into R1
s x; tð Þ to get
R1
s x; tð Þ ¼ C1 xð Þ

þ 45 C0 xð Þ þ C1 xð Þ t
a

a

� 	2

C
0
0 xð Þ þ C

0
1 xð Þ t

a

a

� 	

þ 15 C
0
0 xð Þ þ C

0
1 xð Þ t

a

a

� 	
C

0 0
0 xð Þ þ C

0 0
1 xð Þ t

a

a

� 	

þ 15 C0 xð Þ þ C1 xð Þ t
a

a

� 	
C

3ð Þ
0 xð Þ þ C

3ð Þ
1 xð Þ t

a

a

� 	

þ C
5ð Þ
0 xð Þ þ C

5ð Þ
1 xð Þ t

a

a

� 	
: ð58Þ



Table 1 Comparison of absolute errors of time-fractional Ito model (29–30) with a ¼ 1 and j ¼ 0:01.

xi t ¼ 0:2 t ¼ 0:6 t ¼ 1:0

FCRPSA mADM [31] FCRPSA mADM [31] FCRPSA mADM [31]

2 2:7756� 10�17 1:4100� 10�16 0:0 1:4118� 10�16 2:7756� 10�17 1:4168� 10�16

4 3:8858� 10�16 5:6398� 10�16 3:6082� 10�16 5:6469� 10�16 3:3307� 10�16 5:6637� 10�16

6 4:1356� 10�16 1:2690� 10�15 4:0523� 10�16 1:2705� 10�15 3:9413� 10�16 1:2741� 10�15

8 1:0408� 10�15 2:2559� 10�15 9:9087� 10�16 2:2587� 10�15 8:9928� 10�16 2:2648� 10�15

10 2:3148� 10�15 3:5249� 10�15 2:2093� 10�15 3:5292� 10�15 2:0067� 10�15 3:5385� 10�15
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Thus, with the aid of R1
s x; tð Þ t¼0j ¼ 0; it yields

C1 xð Þ þ 15 C
0
0 xð Þ C

0 0
0 xð Þ þ 3C2

0 xð Þ
� �

þ C0 xð ÞC 3ð Þ
0 xð Þ

� �
þ C

5ð Þ
0 xð Þ ¼ 0;

ð59Þ
which implies that

C1 xð Þ ¼ 64j7 tanh jxð Þsech2ðjxÞ: ð60Þ
So, the first series solution v1 x; tð Þ is provided by

v1 x; tð Þ ¼ 2j2sech2ðjxÞ þ 64j7 tanh jxð Þsech2ðjxÞ t
a

a
: ð61Þ

Sequentially, calculate the second truncated series v2 x; tð Þ
of expression (53) by setting m ¼ 2 in the m th truncated resid-
ual error (55) so that

R2
s x; tð Þ ¼ @av2

@t
þ 45v2

2

@v2

@x
þ 15

@v2

@x

@2v2

@x2
þ 15v2

@3v2

@x3
þ @5v2

@x5
;

ð62Þ
in which

v2 x; tð Þ ¼ 2j2sech2ðjxÞ þ 64j7 tanh jxð Þsech2ðjxÞ t
a

a

þ 1

2a2
C2 xð Þt2a; ð63Þ

and employing the differential operator @a=@t on both sides
of the resulting equation (62) to get

@aR2
s x; tð Þ
@t

¼ C2 xð Þ

þ @a

@t
45v2

2

@v2

@x
þ 15

@v2

@x

@2v2

@x2
þ 15v2

@3v2

@x3

� 	

þ C
5ð Þ
1 xð Þ þ C

5ð Þ
2 xð Þ t

a

a
:

ð64Þ
Solving the term @aR2

s x; tð Þ=@t t¼0j ¼ 0 via Mathematica

computing system leads to

C2 xð Þ ¼ 1024j12ð�2þ cosh 2jxð ÞÞsech4 jxð Þ: ð65Þ
So, the second series solution v2 x; tð Þ is given by

v2 x; tð Þ ¼ 2j2sech2ðjxÞ þ 64j7 tanh jxð Þsech2ðjxÞ t
a

a

þ 512j12ðcosh 2jxð Þ � 2Þsech4 jxð Þ t
2a

a2
: ð66Þ

Likewise, the third truncated series v3 x; tð Þ of expression

(53) can be calculated by setting m ¼ 3 in the m th truncated

residual error (55), operating @2a=@t2 on both sides of the
resulting relevant equation, and solving the term

@2aR3
s x; tð Þ=@t2 t¼0j ¼ 0 to get C3 xð Þ as

C3 xð Þ ¼ 16384j17 sinh 3jxð Þ � 11sinh jxð Þð Þsech5 jxð Þ; ð67Þ
which implies that the third series solution v3 x; tð Þ takes

the form

v3 x; tð Þ ¼ 2j2sech2ðjxÞ þ 64j7 tanh jxð Þsech2ðjxÞ t
a

a

þ 512j12ðcosh 2jxð Þ � 2Þsech4 jxð Þ t
2a

a2

þ 8192

3a3
j17 sinh 3jxð Þ � 11sinh jxð Þð Þsech5 jxð Þt3a:

ð68Þ
Similarly, the fourth series solution v4 x; tð Þ takes the form

v4 x; tð Þ ¼ 2j2sech2ðjxÞ þ 64j7 tanh jxð Þsech2ðjxÞ t
a

a

þ 512j12ðcosh 2jxð Þ � 2Þsech4 jxð Þ t
2a

a2

þ 8192

3a3
j17 sinh 3jxð Þ � 11sinh jxð Þð Þsech5 jxð Þt3a

þ 32768

3a4
j22 33� 26cosh 2jxð Þ þ cosh 4jxð Þð Þsech6 jxð Þt4a:

ð69Þ
To end this process, it can be assumed that v4 x; tð Þ is the

approximate solution. Furthermore, the rest values of Cm xð Þ
for each m � 5 can be computed similarly. Thereafter, by col-
lecting the obtained terms in the pattern of an infinite series,
the solution v x; tð Þ of (51–52) can be entirely predicted. Partic-

ularly, the analytical solution for a ¼ 1 is given by the follow-
ing expression

v x; tð Þ ¼ 2j2sech2ðjxÞ þ 64j7 tanh jxð Þsech2ðjxÞt
þ 512j12ðcosh 2jxð Þ � 2Þsech4 jxð Þt2

þ 8192

3a3
j17 sinh 3jxð Þ � 11sinh jxð Þð Þsech5 jxð Þt3

þ 32768

3a4
j22 33� 26cosh 2jxð Þ þ cosh 4jxð Þð Þsech6 jxð Þt4

þ 	 	 	 ;
ð70Þ

which meets the underlying exact solution provided by q-

HAM [23] and BPM [24] through symbolic simplification of
hyperbolic trigonometric identities

v x; tð Þ ¼ 2j2sech2ðj x� 16j4t
� �Þ: ð71Þ
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Fig. 3 shows the three-dimensional plots of the exact solu-
tion and fourth approximate solution at a ¼ 1 for (51–52) when
j ¼ 0:3 along with a large enough spatiotemporal domain

�20; 20½ � � 0; 10½ �: Further, the motion and elevation of the
water wave surface of (51–52) are displayed in 2D plots in
Fig. 4 based on the time values of t such that

t 2 f0:2; 2; 4; 10g with fractional parameter a ¼ 0:9 and
j ¼ 0:5 on �15 � x � 15. The comparison of the achieved
absolute errors v� v2j j for (51–52) are exhibited in Table 2

for different values of x and t when a ¼ 1 and j ¼ 0:01, which
compared to the absolute errors obtained by BPM [24]. The effi-
ciency of the presented FCRPSA is obvious from these results.

4.3. Application 3: Time-fractional Lax’s Korteweg-de Vries
equation

In this portion, consider the fractional Lax’s KdV equation

with time-FCD in the underlying model [5,40]:

@av

@t
þ 30v2 @v

@x
þ 30

@v

@x

@2v

@x2
þ 10v

@3v

@x3
þ @5v

@x5
¼ 0; ð72Þ

associated with the underlying initial condition

v x; 0ð Þ ¼ 2j2ð2� 3tanh2 jxð ÞÞ; ð73Þ
where 0 < a � 1; j is an arbitrary constant with j–0,

x 2 ½a; b�; t � 0; and v ¼ vðx; tÞ is a sufficiently smooth func-
tion. Such an equation is completely integrable, admits N-
soliton solutions, and has an endless set of conservation laws

[14]. The exact solution of (72–73) is given by [5,41]

v x; tð Þ ¼ 2j2ð2� 3tanh2 jðx� 56j4tÞ� �
: ð74Þ

Using the FCRPSA, the fractional truncated series solution
vm x; tð Þ of (72–73) about t ¼ 0 in view of (73) takes the form

vm x; tð Þ ¼ 2j2ð2� 3tanh2 jxð ÞÞ þ
Xm
i¼1

Ci xð Þ t
ia

aii!
; ð75Þ

provided that C0 xð Þ ¼ v x; 0ð Þ:
In this orientation as well, the m-term residual function

Rm
s ðx; tÞ is given by

Rm
s x; tð Þ ¼ @avm

@t
þ 30v2

m

@vm

@x
þ 30

@vm

@x

@2vm

@x2

þ 10vm

@3vm

@x3
þ @5vm

@x5
; ð76Þ
Fig. 3 Surface plots of time-fractional Sawada-Kotera model (51–52)

at a ¼ 1.
in which @ m�1ð ÞaRm
s =@t t¼0j 
 0 for each m ¼ 1; 2; 3; 	 	 	 :

Now, the first series solution for m ¼ 1 takes the form

v1 x; tð Þ ¼ 2j2ð2� 3tanh2 jxð ÞÞ þ 1

a
C1 xð Þta; ð77Þ

while the first residual function takes the form

R1
s x; tð Þ ¼ @av1

@t
þ 30v2

1

@v1

@x
þ 30

@v1

@x

@2v1

@x2
þ 10v1

@3v1

@x3

þ @5v1

@x5
: ð1Þ

Consequently, putting v1 x; tð Þ into R1
s x; tð Þ, and using the

term R1
s x; tð Þ t¼0j ¼ 0 to get

C1 xð Þ þ 30C
0
0 xð Þ C

0 0
0 xð Þ þ C2

0 xð Þ
� �

þ 10C0 xð ÞC 3ð Þ
0 xð Þ

þ C
5ð Þ
0 xð Þ

¼ 0; ð78Þ
which implies that

C1 xð Þ ¼ 672j7 tanhðjxÞ � tanh3ðjxÞ� �
: ð79Þ

In this case, the first series solution v1 x; tð Þ is given by

v1 x; tð Þ ¼ 2j2ð2� 3tanh2 jxð ÞÞ

þ 672j7 tanhðjxÞ � tanh3ðjxÞ� � ta
a
: ð80Þ

Sequentially, by setting m ¼ 2 in the m th truncated resid-

ual error (76), applying @a=@t on both sides of the resulting rel-

evant equation, and solving the term @aR2
s x; tð Þ=@t t¼0j ¼ 0;

the second series solution v2 x; tð Þ can be obtained as

v2 x; tð Þ ¼ 2j2ð2� 3tanh2 jxð ÞÞ þ 672j7

� tanh jxð Þsech2 jxð Þ t
a

a

þ 18816j12ðcoshð2jxÞ � 2Þsech4 jxð Þ t
2a

a2
: ð81Þ

Likewise, by setting m ¼ 3 in the m th truncated residual

error (76), operating @2a=@t2 on both sides of the resulting rel-

evant equation, and solving the term @2aR3
s x; tð Þ=@t2 t¼0j ¼ 0,

the third series solution v3 x; tð Þ can be obtained as
with j ¼ 0:3; x; tð Þ 2 �20; 20½ � �½0; 10�: (a) v x; tð Þ and (b) v4 x; tð Þ



Fig. 4 Elevation of water wave surface of v4 x; tð Þ of time-fractional Sawada-Kotera model (51–52) with fractional parameter a ¼ 0:9

and j ¼ 0:5; and different time values t.

Table 2 Comparison of absolute errors of time-fractional Sawada-Kotera model (51–52) at a ¼ 1.

xi t ¼ 0:1 t ¼ 0:5 t ¼ 0:9

v� v2j j BPM [24] v� v2j j BPM [24] v� v2j j BPM [24]

2 3:4695� 10�18 2:79� 10�12 2:7062� 10�16 1:81� 10�12 1:5960� 10�15 1:86� 10�11

4 3:4695� 10�18 1:44� 10�12 8:2226� 10�16 6:56� 10�13 4:7566� 10�15 1:06� 10�11

6 1:0408� 10�17 9:88� 10�14 1:3531� 10�15 4:94� 10�13 7:9034� 10�15 2:67� 10�12

8 1:3878� 10�17 1:25� 10�12 1:8804� 10�15 1:64� 10�12 1:0984� 10�14 5:30� 10�12

10 1:7347� 10�17 2:59� 10�12 2:3974� 10�15 2:79� 10�12 1:4003� 10�14 1:33� 10�11
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v3 x; tð Þ ¼ 2j2ð2� 3tanh2 jxð ÞÞ þ 672j7

� tanh jxð Þsech2 jxð Þ t
a

a

þ 18816j12ðcoshð2jxÞ � 2Þsech4 jxð Þ t
2a

a2

þ 351232j17 sinh 3jxð Þ � 11sinh jxð Þð Þsech5 jxð Þ t
3a

a3
:

ð82Þ
Similarly, the rest of Cm xð Þ for each m � 4 can be com-

puted. Thereafter, by collecting the obtained terms in the pat-
tern of an infinite series, the solution v x; tð Þ of (72–73) can be

entirely predicted. The solution (82) for a ¼ 1 is fully compat-
ible with the solution achieved by mADM [40] and mVIM [41].
In the following, the 2D plots of fractional level curves for
(72–73) are displayed in Fig. 5 based on different fractional

indices such that a 2 0:25; 0:5; 0:75; 1:0f g with j ¼ 0:3 and
j ¼ 0:35 for t ¼ 4 and �10 � x � 10. The comparison of
the achieved absolute errors v� v3j j for (72–73) are reported

in Table 3 for different values of x and t when a ¼ 1 and
j ¼ 0:01, which compared to the absolute errors obtained by
the mADM [40] and mVIM [41]. The superiority and efficiency

of the presented FCRPSA are obvious from these results.

4.4. Application 4: Time-fractional Caudrey-Dodd-Gibbon
equation

In this portion, consider the fractional Caudrey-Dodd-Gibbon
equation with time-FCD in the underlying model [40,41]:
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@av

@t
þ 180v2 @v

@x
þ 30

@v

@x

@2v

@x2
þ 30v

@3v

@x3
þ @5v

@x5
¼ 0; ð83Þ

associated with the underlying initial condition

v x; 0ð Þ ¼ jejx

ð1þ ejxÞ2 ; ð84Þ

where 0 < a � 1, j is an arbitrary constant with j–0,

x 2 ½a; b�; t � 0; and v is a sufficiently smooth function.
Using the FCRPSA, the fractional truncated series solution

vm x; tð Þ of (83–84) about t ¼ 0 in view of (84) takes the form

vm x; tð Þ ¼ jejx

ð1þ ejxÞ2 þ
Xm
i¼1

Ci xð Þ t
ia

aii!
; ð85Þ

while the m-term residual function Rm
s ðx; tÞ takes the form

Rm
s x; tð Þ ¼ @avm

@t
þ 180v2

m

@vm

@x
þ 30

@vm

@x

@2vm

@x2
þ 30vm

� @3vm

@x3
þ @5vm

@x5
: ð86Þ

Consequently, the first series solution for m ¼ 1 is given by

v1 x; tð Þ ¼ jejx 1þ ejxð Þ�2 þ 1

a
C1 xð Þta; ð87Þ

and the first residual function is given by

R1
s x; tð Þ ¼ @av1

@t
þ 180v2

m

@vm

@x
þ 30

@v1

@x

@2v1

@x2
þ 30v1

@3v1

@x3

þ @5v1

@x5
: ð88Þ

Putting v1 x; tð Þ into R1
s x; tð Þ, and using the term

R1
s x; tð Þ t¼0j ¼ 0 to get

C1 xð Þ þ 30 C
0
0 xð Þ C

0 0
0 xð Þ þ 6C2

0 xð Þ
� �

þ C0 xð ÞC 3ð Þ
0 xð Þ

� �
þ C

5ð Þ
0 xð Þ

¼ 0; ð89Þ
which implies that

C1 xð Þ ¼ j7ejxðejx � 1Þ
ð1þ ejxÞ3 : ð90Þ

Thus, the first series solution v1 x; tð Þ is given as
Fig. 5 Elevation of water surface of the wavefunction v3 x; tð Þ for fra
index values: a ¼ 1 blue, a ¼ 0:75 red, a ¼ 0:5 yellow and a ¼ 0:25 gr
v1 x; tð Þ ¼ jejx

ð1þ ejxÞ2 þ
j7ejxðejx � 1Þ
að1þ ejxÞ3 ta: ð91Þ

Sequentially, by setting m ¼ 2 in the m th truncated resid-

ual error (86), applying @a=@t on both sides of the resulting

equation, and solving @aR2
s x; tð Þ=@t t¼0j ¼ 0; we get the second

series solution v2 x; tð Þ as

v2 x; tð Þ ¼ jejx

ð1þ ejxÞ2 þ
j7ejxðejx � 1Þ
að1þ ejxÞ3 ta

þ j12ejxð1� 4ejx þ e2jxÞ
2a2ð1þ ejxÞ4 t2a: ð92Þ

Likewise, by setting m ¼ 3 in the m th truncated residual

error (86), operating @2a=@t2 on both sides of the resulting rel-

evant equation, and solving the term @2aR3
s x; tð Þ=@t2 t¼0j ¼ 0;

we get the third series solution v3 x; tð Þ as

v3 x; tð Þ ¼ jejx

ð1þ ejxÞ2 þ
j7ejxðejx � 1Þ
að1þ ejxÞ3 ta

þ j12ejxð1� 4ejx þ e2jxÞ
2a2ð1þ ejxÞ4 t2a

þ j17ejxðejx � 1Þð1� 10ejx þ e2jxÞ
6ð1þ ejxÞ5 t3a: ð93Þ

Similarly, the fourth series solution v4 x; tð Þ takes the form

v4 x; tð Þ ¼ jejx

ð1þ ejxÞ2 þ
j7ejxðejx � 1Þ
að1þ ejxÞ3 ta

þ j12ejxð1� 4ejx þ e2jxÞ
2a2ð1þ ejxÞ4 t2a

þ j17ejxðejx � 1Þð1� 10ejx þ e2jxÞ
6a3ð1þ ejxÞ5 t3a

þ j22ejxð1� 26ejx þ 66e2jx � 26e3jx þ e4jxÞ
24a4ð1þ ejxÞ6 t4a:

ð94Þ
To end this process, it can be assumed that v4 x; tð Þ is the

approximate solution. Nevertheless, the rest values of Cm xð Þ
for each m � 5 can be computed similarly. Thereafter, by col-

lecting the obtained terms in the pattern of an infinite series,
ctional Lax’s KdV model (72–73) at t ¼ 4 with different fractional-

ay.



Table 3 Comparison of absolute errors of fractional Lax’s KdV model (72–73) with a ¼ 1 and j ¼ 0:01.

xi t ¼ 0:8 t ¼ 5

FCRPSA mVIA [32] mADM [31] FCRPSA mVIA [32] mADM [31]

2 1:3444� 10�17 2:2991� 10�13 2:3034� 10�13 5:1738� 10�16 1:4369� 10�12 1:4210� 10�12

4 1:3010� 10�17 4:5688� 10�13 4:6073� 10�13 5:0871� 10�16 2:8555� 10�12 2:8421� 10�12

6 1:2794� 10�17 6:7804� 10�13 6:1915� 10�13 4:9418� 10�16 4:2377� 10�12 4:2633� 10�12

8 1:2143� 10�17 8:9060� 10�13 9:2162� 10�13 4:7380� 10�16 5:5662� 10�12 5:6844� 10�12

10 1:1493� 10�17 1:0919� 10�13 1:1521� 10�12 4:4929� 10�16 6:8246� 10�12 7:1057� 10�12
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the solution v x; tð Þ of (83–84) can be entirely predicted. Partic-
ularly, the analytical solution for a ¼ 1 is given by the follow-

ing expression

v x; tð Þ ¼ jejx

ð1þ ejxÞ2 þ
j7ejxðejx � 1Þ
ð1þ ejxÞ3 t

þ j12ejxð1� 4ejx þ e2jxÞ
2ð1þ ejxÞ4 t2

þ j17ejxðejx � 1Þð1� 10ejx þ e2jxÞ
6ð1þ ejxÞ5 t3

þ j22ejxð1� 26ejx þ 66e2jx � 26e3jx þ e4jxÞ
24ð1þ ejxÞ6 t4

þ 	 	 	 ;
ð95Þ

which meets the underlying exact solution provided by
mADM [40] after some symbolic simplification of hyperbolic
trigonometric identities

v x; tð Þ ¼ jej x�j4tð Þ 1þ ej x�j4tð Þ� ��2

: ð96Þ

In the following, the 3D plots of absolute error v� v3j j for
(83–84) with j ¼ 0:3 are plotted in Fig. 6 for fractional orders
a ¼ 1 and a ¼ 0:75 over a large enough spatiotemporal
domain �20; 20½ � � 0; 4½ �: The comparison of the achieved

absolute errors v� v3j j for (83–84) are reported in Table 4
for different values of x and t when a ¼ 1 and j ¼ 0:01, which
compared to the absolute errors obtained by mVIM [41] and

mADM [40]. The accuracy and efficiency of the presented
FCRPSA are obvious from these results.

4.5. Application 5 Time-fractional Kaup-Kupershmidt equation

In this portion, consider the fractional Kaup-Kupershmidt
equation with time-FCD in the underlying model [42]:

@av

@t
þ 45v2 @v

@x
� 15q

@v

@x

@2v

@x2
� 15v

@3v

@x3
þ @5v

@x5
¼ 0; 0 < a � 1;

ð97Þ
associated with the underlying initial condition

v x; 0ð Þ ¼ 1

4
w2k2sech2 kwx

2

� 	
þ 1

12
w2k2; ð98Þ

where x 2 ½a; b�; t � 0; v is a sufficiently differentiable

function. This equation is integrable for q ¼ 5=2. The exact
solution of (97–98) is provided in [42] as follows

v x; tð Þ ¼ 1

4
w2k2sech2 k

2

n
a
ta þwx

� 	� 	
þ 1

12
w2k2; ð99Þ
where n ¼ �w5

16
�8k2lþ 16l2 þ k4
� �

; w; k, and l are arbi-

trary real parameters with w–0:
Using the FCRPSA, the fractional truncated series solution

vm x; tð Þ of (97–98) about t ¼ 0 in view of (98) is given as
follows:

vm x; tð Þ ¼ 1

4
w2k2sech2 kwx

2

� 	
þ 1

12
w2k2

þ
Xm
i¼1

Ci xð Þ t
ia

aii!
: ð100Þ

In this orientation as well, the m-term residual function
Rm

s ðx; tÞ is given by

Rm
s x; tð Þ ¼ @avm

@t
þ 45v2

m

@vm

@x
� 15q

@vm

@x

@2vm

@x2
� 15vm

� @3vm

@x3
þ @5vm

@x5
; ð101Þ

in which @ m�1ð ÞaRm
s =@t t¼0j 
 0 for each m ¼ 1; 2; 3; 	 	 	 :

In the following, the first few terms of the coefficients

Ci xð Þ; i ¼ 1; 2; 3; 	 	 	 ;m; of expression (100) for each value
of i will be calculated. To this end, the first series solution
for m ¼ 1 takes the form

v1 x; tð Þ ¼ 1

4
w2k2sech2 kwx

2

� 	
þ 1

12
w2k2 þ 1

a
C1 xð Þta; ð102Þ

and the first residual function takes the form

R1
s x; tð Þ ¼ @av1

@t
þ 45v2

1

@v1

@x
� 15q

@v1

@x

@2v1

@x2
� 15v1

� @3v1

@x3
þ @5v1

@x5
: ð103Þ

Consequently, putting v1 x; tð Þ into R1
s x; tð Þ, and using

R1
s x; tð Þ t¼0j ¼ 0 to get

C1 xð Þ
� 15 C

0
0 xð Þ qC

0 0
0 xð Þ � 3C2

0 xð Þ
� �

þ C0 xð ÞC 3ð Þ
0 xð Þ

� �
þ C

5ð Þ
0 xð Þ

¼ 0; ð104Þ
which implies that

C1 xð Þ ¼ 1

512
w7k7ð3843þ 480p� 4ð209

þ 60qÞcoshðwxkÞ

þ coshð2wxkÞÞtanhðwxk
2

Þsech6ðwxk
2

Þ: ð105Þ

Thus, the first series solution v1 x; tð Þ is given by



Fig. 6 3D plots of v� v3j j for fractional Caudrey-Dodd-Gibbon model (83–84) with j ¼ 0:3.

Table 4 Comparison of absolute error of fractional Caudrey-Dodd-Gibbon model (83–84) at a ¼ 1 and j ¼ 0:01.

xi t ¼ 0:8 t ¼ 5

FCRPSA mVIA [32] mADM [31] FCRPSA mVIA [32] mADM [31]

2 0 6:7763� 10�21 1:7893� 10�20 1:0164� 10�21 3:3881� 10�21 2:4803� 10�18

4 1:3553� 10�20 1:0164� 10�20 2:0134� 10�20 0 1:3553� 10�20 5:7068� 10�18

6 3:3881� 10�21 3:3881� 10�21 3:9146� 10�20 3:3881� 10�21 6:7763� 10�21 8:9310� 10�18

8 6:7763� 10�21 0 5:7990� 10�20 6:7763� 10�20 1:3553� 10�20 1:2180� 10�17

10 0 3:3881� 10�21 5:6336� 10�20 3:3881� 10�21 0 1:5409� 10�17

5766 O.A. Arqub et al.
v1 x; tð Þ ¼ 1

12
w2k2 þ 1

4
w2k2sech2 kwx

2

� 	

þ 1

512
w7k7ð3843þ 480q� 4ð209

þ 60qÞcoshðkwxÞ

þ coshð2kwxÞÞtanh kwx

2

� 	
sech6 kwx

2

� 	
ta

a
:

ð106Þ
Sequentially, by setting m ¼ 2 in the m th truncated resid-

ual error (101), applying @a=@t on both sides of the resulting

equation, and solving @aR2
s x; tð Þ=@t t¼0j ¼ 0; we get the second

solution v2 x; tð Þ as follows:

v2 x;tð Þ¼ 1

12
w2k2þ1

4
w2k2sech2 kwx

2

� 	

þ 1

512
w7k7 3843þ480q�4 209þ60qð Þcosh kwxð Þð

þ cosh 2kwxð ÞÞtanh kwx

2

� 	
sech6 kwx

2

� 	
ta

a

þ 1

1048576
w12k12ðf1þ f2cosh kwxð Þ� f3 cosh 2kwxð Þ

þ3f4cosh 3kwxð Þ� f5coshð4kwxÞ

þ coshð5kwxÞÞsech12 kwx

2

� 	
t2a

a2
; ð107Þ

in which
f1 ¼ �12ð328935727þ 240q 254677þ 7200qð ÞÞ;
f2 ¼ 6ð777305099þ 640q 231379þ 6810qð ÞÞ;
f3 ¼ 48ð18859301þ 40q 96263þ 3120qð ÞÞ;
f4 ¼ 15437759þ 3840q 893þ 30qð Þ;
f5 ¼ 4 76439þ 21840qð Þ:

ð108Þ

Likewise, the third truncated series v3 x; tð Þ of expression
(100) can be calculated by setting m ¼ 3 in the m th truncated

residual error (101), operating @2a=@t2 on both sides of the
resulting relevant equation, and solving the term

@2aR3
s x; tð Þ=@t2 t¼0j ¼ 0. To end this process, it can be assumed

that v3 x; tð Þ is the approximate solution. The rest values of
Cm xð Þ for each m � 4 can be computed similarly. Thereafter,
by collecting the obtained terms in the pattern of an infinite

series, the solution v x; tð Þ of (97–98) can be entirely predicted.
In the following, the surface and contour plots of the third

approximate solution for (97–98) are displayed in Fig. 7 with
k ¼ 0:1; l ¼ 0; w ¼ 1; and a ¼ 0:75 over a large enough spa-

tiotemporal domain �40; 40½ � � 0; 10½ �: The comparison of
the achieved absolute errors v� v2j j for (97–98) are summa-
rized in Table 5 for different values of x and t when a ¼ 1,

which compared to the absolute errors obtained by LMM
and OHAM [42]. The accuracy and efficiency of the FCRPSA
are obvious from these results.

5. Discussions and concluding remarks

This paper adopted the FCRPSA to solve a class of the time-

FNEEs in terms of FCD sense, including time-fractional Ito,



Fig. 7 Water wave profile of time-fractional Kaup-Kupershmidt model (97–98) with k ¼ 0:1; l ¼ 0; w ¼ 1; and a ¼ 0:75 : (a) surface

plot of v3 x; tð Þ and (b) contour plot of v3 x; tð Þ.

Table 5 Comparison of absolute error of fractional Kaup-Kupershmidt model (97–98) at k ¼ 0:1; l ¼ 0; w ¼ 1; and a ¼ 0:75.

xi t ¼ 0:1 t ¼ 0:3

FCRPSA LMM [33] OHAM [33] FCRPSA LMM [33] OHAM [33]

0:1 3:4695� 10�18 3:5268� 10�10 3:4968� 10�10 2:7322� 10�17 1:0519� 10�9 6:5846� 10�9

0:3 3:9031� 10�18 1:0532� 10�9 2:6793� 10�5 2:6888� 10�17 3:1535� 10�9 2:6651� 10�5

0:5 3:0358� 10�18 1:7520� 10�9 1:0061� 10�4 2:7756� 10�17 5:2500� 10�9 1:0037� 10�4

0:7 3:4695� 10�18 2:4480� 10�9 2:1579� 10�4 2:7756� 10�17 7:3381� 10�9 2:1549� 10�4

0:9 3:0358� 10�18 3:1402� 10�9 3:6399� 10�4 2:7756� 10�17 9:4146� 10�9 3:6370� 10�4

xi t ¼ 0:7 t ¼ 0:9

FCRPSA LMM [33] OHAM [33] FCRPSA LMM [33] OHAM [33]

0:1 1:5049� 10�16 2:4259� 10�9 1:4638� 10�8 2:4893� 10�16 3:1007� 10�9 1:6457� 10�8

0:3 1:5049� 10�16 7:3297� 10�9 2:6372� 10�5 2:4893� 10�16 9:4057� 10�9 2:6235� 10�5

0:5 1:5092� 10�16 1:2222� 10�8 9:9885� 10�5 2:4850� 10�16 1:5695� 10�8 9:9643� 10�5

0:7 1:5005� 10�16 1:7094� 10�8 2:1491� 10�4 2:4720� 10�16 2:1960� 10�8 2:1461� 10�4

0:9 1:4962� 10�16 2:1939� 10�8 3:6312� 10�4 2:4676� 10�16 2:8191� 10�9 3:6282� 10�4
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Sawada-Kotera, Lax’s Korteweg-de Vries, Caudrey-Dodd-
Gibbon, and Kaup-Kupershmidt equations. Based on time-

conformable residual functions, MTFS solutions have been
investigated without imposing any unjustified restrictions or
linearization on the structure of the presented problems. The

efficiency and accuracy of the proposed technique have been
accomplished by numerical applications. The theoretical
framework is supported via 2D and 3D graphical representa-

tion of some obtained solutions in limited domains of spatial
and temporal variables that were depicted to visualize dynamic
behavior as well, which relies noticeably on time. A compar-
ison between our results and other existing numerical results

is discussed and the calculations and simulations have been
introduced with the aid of Mathematica 10. Conclusively,
acquiring analytical solutions for different kinds of time-

FNEEs is a difficult undertaking, encouraging further studies
to obtain solutions to these models under an FCD of a frac-
tional order bigger than one. Ideally, this investigation will

be helpful to analysts, later on, to manage complex spacetime
time-FPDEs in higher dimensions.
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Osman, Analytical and numerical study of the DNA dynamics

arising in oscillator-chain of Peyrard-Bishop model, Chaos,

Solitons Fractals 139 (2020) 110089.

[37] K. Wajdi, H. Almusawa, S.M. Mirhosseini-Alizamini, M.

Eslami, H. Rezazadeh, M.S. Osman, Optical soliton solutions

for the coupled conformable Fokas-Lenells equation with

spatio-temporal dispersion, Results Phys. 26 (2021) 104388.

[38] A. Akbulut, H. Almusawa, M. Kaplan, M.S. Osman, On the

Conservation Laws and Exact Solutions to the (3+ 1)-

Dimensional Modified KdV-Zakharov-Kuznetsov Equation,

Symmetry 13 (5) (2021) 765.

[39] S. Djennadi, N. Shawagfeh, M.S. Osman, J.F. Gómez-Aguilar,
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