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Abstract: It is important to deal with the exact solution of nonlinear PDEs of non-integer orders.
Integral transforms play a vital role in solving differential equations of integer and fractional orders.
To obtain analytical solutions to integer and fractional-order DEs, a few transforms, such as Laplace
transforms, Sumudu transforms, and Elzaki transforms, have been widely used by researchers. We
propose the Yang transform homotopy perturbation (YTHP) technique in this paper. We present the
relation of Yang transform (YT) with the Laplace transform. We find a formula for the YT of fractional
derivative in Caputo sense. We deduce a procedure for computing the solution of fractional-order
nonlinear PDEs involving the power-law kernel. We show the convergence and error estimate of the
suggested method. We give some examples to illustrate the novel method. We provide a comparison
between the approximate solution and exact solution through tables and graphs.
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1. Introduction

Non-integer calculus is a prominent branch of mathematics that seeks to describe real-world events
using fractional-order operators. Non-integer-order derivatives are used for differentiation and
integration in this discipline. When the order is zero, we obtain the main function, and when the order
is one, we get the ordinary derivative [1]. Fractional derivatives have two advantages: The memory
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effect and preserved demonstrative physical characteristics. Implementing these sorts of operators,
more accurate and up-to-date research has been presented over time. In this way, fractional calculus
(FC) is becoming increasingly popular around the world. Because of the memory effect,
fractional-order models include all prior knowledge from the past, making it easier to anticipate and
evaluate dynamical models. Due to its effective features, non-integer order calculus has a lot of
implications in different fields. For instance, Alqahtani et al. used the Caputo operator to investigate
the model for the production of bioethanol [2]. Ozarslan et al. used fractional operator to study the
projectile motion with wind influence of an object [3]. Ahmad et al. have used nonsingular fractional
operator to analyze the Ambartsumian equation [4]. FC has many applications in finance,
engineering, mathematical biology, mathematical physics, and many applied sciences [5–8].

Fractional order partial differential equations (PDEs) have been used in the analysis of various
physical problems [9–11]. Solving fractional order (PDEs) is notoriously difficult, and obtaining an
accurate solution is much more challenging. Approximate and exact solutions to this sort of equation
are required in the disciplines of physical science and engineering. As a consequence, many approaches
for finding analytical solutions that are almost precise have been designed. DEs were often solved
using integral transforms. In differential and integral equations, integral transformations are important
for solving IVPs and BVPs. Some researchers used different sorts of integral transformations and
looked at how they influenced various kinds of DEs. The Laplace transform is the most often used
integral transform [15]. Watugala [12] introduced the Sumudu transform to solve DEs and control
engineering issues in 1998. In 2011, Elzaki presented the Elzaki Transform, a novel Integral transform
that is widely utilized in the solution of partial DEs [13]. Aboodh proposes the Aboodh transform in
2013 and uses it to solve partial DEs [14].

He formulated the homotopy perturbation method (HPM) [16] in 1999, which is a combination of
the homotopy method and the classical perturbation technique and has been widely applied on both
linear and nonlinear problems like nonlinear wave equation [17], fractional diffusion equation [18],
fractional Burger’s equation [19] and many more. The importance of HPM is that it does not need a
small parameter in the equation, so it reduces the drawbacks of traditional perturbation methods. The
major goal of this manuscript is to use hybrid HPM to compute semianalytical solution to nonlinear
partial DEs of fractional-order in Caputo sense. The hybrid HPM is combination of Yang transform
(YT) [20] and HPM. The suggested approach is used to solve two well-known nonlinear PDEs. In the
context of a fast converging series, we acquire a power series solution, and just a few iterations are
required to produce extremely effective outcomes. There is no need for discretization or linearization
for the nonlinear problem, and only a few iterations can yield a result that can be simply approximated
using these approaches. The paper is organized as follows: Section 2 provides definition of Caputo
operators and Yang transform. Section 3 gives the general method for solution of fractional PDEs via
proposed method, results of convergence and error estimate, and test problem for validity and efficiency
of the suggested method. Section 4 gives the conclusion of the paper.

2. Preliminaries

This section is devoted to the fundamental definitions of fractional calculus.

Definition 2.1. [1] Let O be a continuous function on [0,T ]. The Caputo fractional derivative may be
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expressed as:
CDα

τO(τ) =
1

Γ( j − α)

[∫ τ

0
(t − δ) j−α−1 d j

dδ jO(δ) dδ
]
,

where j = bαc + 1 and bαc represents the bracket function of α.

Definition 2.2. [1] Let O be a continous function on L1([0,T ],R), a fractional integral in Riemann-
Liouvilli sense of order 0 < α ≤ 1 corresponding to τ is defined as:

IαO(τ) =
1

Γ(α)

∫ τ

0
(t − δ)α−1O(δ)dδ.

Definition 2.3. [1] For the nonlocal Caputo operator of O(τ), the Laplace transform is given by

L
[
CDα

τO(τ)
]

= µαL[O(τ)] − µα−1O(0),

where µ is the transform variable.

Definition 2.4. [20] The YT of O(τ) is given by:

Y [O(τ)] = χ(µ) =

∫ ∞

0
O(τ)e−

τ
µ dτ, τ > 0, (2.1)

where µ represents transform variable.

Remark 2.5. YT of some basic function is given by:

Y [1] = µ,

Y [τ] = µ2,

Y [τn] = Γ(n + 1)µn+1.

3. Main work

In this part, we establish the relation between the YT and LT. We deduce a formula for YT of
fractional operator in Caputo sense. We establish a general procedure for computing the solution of
nonlinear fractional partial DEs in Caputo sense. We prove the convergence and estimate results of the
suggested method. We provide two test problems to verify the efficiency, validity and accuracy of the
proposed method.

Theorem 3.1 (Laplace-Yang relationship). [19] Suppose that F(µ) be the LT ofO(τ), then χ(µ) = F( 1
µ
).

Proof. From Eq (2.1), on can get another form of the YT by putting −τu = x as

Y [O(τ)] = χ(µ) = µ

∫ ∞

0
O(µx) � e−xdx, x > 0 (3.1)

Since L[O(τ)] = F(µ), this implies that

F(µ) = L[O(τ)] =

∫ ∞

0
e−µτO(τ)dτ. (3.2)
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Put τ = x
µ

in (3.2), we have

F(µ) =
1
µ

∫ ∞

0
e−xO(

x
µ

)dx. (3.3)

Thus, from Eq (3.1), we get

F(µ) = χ(
1
µ

) (3.4)

Also from Eqs (2.1) and (3.2), we get

F(
1
µ

) = χ(µ). (3.5)

The Eqs (3.4) and (3.5) give the relation bewteen LT and YT, which is called Laplace-Yang duality
relation. �

Theorem 3.2. For a continuous function O(τ), the YT of Caputo derivative of O(τ) is given by

Y[CDα
τO(τ)] =

Y[O(τ)]
µα

−
O(0)
µα−1 .

Proof. Since, for Caputo fractional derivative, the Laplace transform is given by

L[CDα
τO(τ)] = µαL[O(τ)] − µα−1O(0). (3.6)

Due to LT-YT duality relation, i.e., χ(µ) = F( 1
µ
), replace µ by 1

µ
in Eq (3.6), we obtain

Y[CDα
τO(τ)] =

Y[O(τ)]
µα

−
O(0)
µα−1 .

This ends the proof. �

3.1. General method for finding solution

Here, we proposed a general method for finding the solution to a general nonlinear Caputo fractional
DEs through YHPM. In this section, for the sake of simplicity, we will use F instead of F(x, τ).
Consider a general nonlinear Caputo fractional PDE with nonlinear term N(F(x, τ)) and linear term
L(F) as CDα

τ F + L(F) + N(F) = g(x, τ),
F(x, 0) = h(x).

(3.7)

where the term g(x, τ) represents the source term. Implement Yang transform to Eq (3.7), we get

1
µα

Y [F] =
F(x, 0)
µα−1 − Y [L(F) + N(F)] + Y

[
g
]

Y [F] = µh(x) − µα
[
Y [L(F) + N(F)] + Y

[
g
]]
,

applying inverse of Yang transform, we get

F = G(x, τ) − Y−1 [
µαY [L(F) + N(F)]

]
, (3.8)

AIMS Mathematics Volume 7, Issue 5, 9389–9404.



9393

where the term G(x, τ) arises from the source term and the stated initial condition. Now HPM is given
by:

F =

∞∑
q=0

ρqFq. (3.9)

The nonlinear term N(F) can be written as

N(F) =

∞∑
q=0

ρqHq(F), (3.10)

where Hq(F) denotes the He’s polynomial and is calculated by:

Hq(F1, F2, · · · , Fq) =
1

Γ(q + 1)
∂q

∂ρq

N  ∞∑
i=0

ρiFi


ρ=0

, q = 0, 1, · · · (3.11)

Substituting Eqs (3.9) and (3.10) in Eq (3.8), we achieve

∞∑
q=0

ρqFq = G − ρ

Y−1

µαY

L ∞∑
q=0

ρqFq +

∞∑
q=0

ρqHq(F)



 . (3.12)

One can achieve the approximations by comparing the coefficients of ρ on both sides of Eq (3.12)
as:

ρ0 : F0 = G(x, τ),
ρ1 : F1 = Y−1 [

µαY [L (F0) + H0(F)]
]
,

ρ2 : F2 = Y−1 [
µαY [L (F1) + H1(F)]

]
,

ρ3 : F3 = Y−1 [
µαY [L (F2) + H2(F)]

]
,

...

ρq : Fq = Y−1
[
µαY

[
L

(
Fq−1(x, τ)

)
+ Hq−1(F)

]]
.

Thus the required approximate solution of the Eq (3.7) is given by

F = F0 + F1 + · · ·

3.2. Convergence analysis and error estimate

Here, we give the convergence of the proposed scheme and provide the result for error estimate.

Theorem 3.3. Let H be a Banach space. Let F be the exact solution of (3.7) and let Fq,Fn ∈ H and
0 < σ < 1. Then the approximate solution

∑∞
q=0 Fq converges to F whenever Fq ≤ σFq−1 for all q > A,

i.e., for each ω > 0 ∃ A > 0 with the relation
∥∥∥Fq+n

∥∥∥ ≤ β, ∀m, n ∈ N .

Proof. Consider a sequence
∑∞

q=0 Fq as:

C0 = F0,
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C1 = F0 + F1,

C2 = F0 + F1 + F2,

C3 = F0 + F1 + F2 + F3,
...

Cq = F0 + F1 + F2 + · · · + Fq.

To prove the theorem, we have to show that Cq(x, τ) form a “Cauchy sequence”. Further, let us take∥∥∥Cq+1 − Cq

∥∥∥ =
∥∥∥Fq+1

∥∥∥
≤ σ

∥∥∥Fq

∥∥∥
≤ σ2

∥∥∥Fq−1

∥∥∥
≤ σ3

∥∥∥Fq−2

∥∥∥
...

≤ σq+1 ‖F0‖ .

Now for any q, n ∈ N, we have∥∥∥Cq − Cn

∥∥∥ =
∥∥∥Fq+n

∥∥∥
=

∥∥∥∥(Cq − Cq−1

)
+

(
Cq−1 − Cq−2

)
+

(
Cq−2 − Cq−3

)
+ · · · + (Cn+1 − Cn)

∥∥∥∥
≤

∥∥∥Cq − Cq−1

∥∥∥ +
∥∥∥Cq−1 − Cq−2

∥∥∥
+ · · · + ‖Cn+1 − Cn‖ .

≤ σq ‖F0‖ + σq−1 ‖F0‖ + · · · + σq+1 ‖F0‖

= ‖F0‖
(
σq + σq−1 + · · · + σq+1

)
= ‖F0‖

1 − σq−n

1 − σ
σn+1.

Let us take β = 1−σ
(1−σq−n)σn+1‖F0‖

< ∞, one gets∥∥∥Fq+n

∥∥∥ ≤ β, ∀q, n ∈ N.

Thus,
{
Fq

}∞
q=0

form a “Cauchy sequence” in H . Consequently, the sequence
{
Fq

}∞
q=0

is a convergent
sequence with the limit lim

q→∞
Fq = F for ∃ F ∈ H . �

Theorem 3.4. Suppose that
∑k

h=0 Fh < ∞ and F denotes the obtained solution. Let ℘ > 0 such that
‖Fh+1‖ ≤ ℘ ‖Fh‖, then maximum absolute error is given by∥∥∥∥∥∥∥F −

k∑
h=0

Fh

∥∥∥∥∥∥∥ < ℘k+1

1 − ℘
‖F0‖ .
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Proof. Since
∑k

h=0 Fh is finite. This implies that
∑k

h=0 Fh < ∞ . Consider∥∥∥∥∥∥∥F −
k∑

h=0

Fh

∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥
∞∑

h=k+1

Fh

∥∥∥∥∥∥∥
≤

∞∑
h=k+1

‖Fh‖

≤

∞∑
h=k+1

℘k ‖F0‖

≤ ℘k+1(1 + ℘ + ℘2 + · · · ) ‖F0‖

≤
℘k+1

1 − ℘
‖F0‖ .

�

3.3. Examples

In this portion, the YT homotopy perturbation approach is implemented to solve well-known
nonlinear fractional PDEs, proving its simplicity and validity.

Example 3.5. Consider the nonlinear KdV equation as:

CDα
τv(x, τ) = −vvx − vvxxx, 0 < α ≤ 1 (3.13)

subjected to I.C v(x, 0) = x.

Solution 3.6. Implementing the Yang transform to Eq (3.13), we achieve

Y [v(x, τ)] = µv(x, 0) − µαY [vvx + vvxxx] .

Applying Yang inverse transform, we achieve

v(x, τ) = v(x, 0) − Y−1 [
µαY [vvx + vvxxx]

]
. (3.14)

The solution through HPT is represented by:

v(x, τ) =

∞∑
q=0

ρqvq(x, τ), (3.15)

thus, Eq (3.14) becomes

∞∑
q=0

ρqvq(x, τ) = x − ρY−1

µαY

 ∞∑
q=0

ρqHq(v)


 , (3.16)

where Hq(v) are He’s polynomial which represent the nonlinear term vvx + vvxxx. We give the first three
terms as

H0(v) = v0
∂

∂x
v0 + v0

∂3

∂x3 v0,

AIMS Mathematics Volume 7, Issue 5, 9389–9404.
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H1(v) = v0
∂

∂x
v1 + v1

∂

∂x
v0 + v0

∂3

∂x3 v1 + v1
∂3

∂x3 v0,

H2(v) = v0
∂

∂x
v2 + v1

∂

∂x
v1 + v2

∂

∂x
v0

+v0
∂3

∂x3 v2 + v1
∂3

∂x3 v1 + v2
∂3

∂x3 v0,

...

comparing the like powers of ρ, one can get

ρ0 : v0(x, τ) = x.

Now, via He’s polynomials, one can obtain H0(v) = x. Further,

ρ1 : v1(x, τ) = −Y−1 [
µαY [H0(v)]

]
= −Y−1 [

µαY [x]
]

= −Y−1
[
xµα+1

]
ρ1 : v1(x, τ) = −x

τα

Γ(α + 1)
.

The third approximation is given

ρ1 : v1(x, τ) = −Y−1 [
µαY [H1(v)]

]
. (3.17)

The second term H1(v) of He’s polynomial is calculated as

H1(v) = v0
∂

∂x
v1 + v1

∂

∂x
v0 + v0

∂3

∂x3 v1 + v1
∂3

∂x3 v0

= −x
∂

∂x
x

τα

Γ(α + 1)
− x

τα

Γ(α + 1)
∂

∂x
x

−x
∂3

∂x3 x
τα

Γ(α + 1)
− x

τα

Γ(α + 1)
∂3

∂x3 x,

after simple calculation, we get

H1(v) = −2x
τα

Γ(α + 1)
. (3.18)

Now, putting Eq (3.18) into Eq (3.17), we obtain

ρ2 : v2(x, τ) = −Y−1
[
µαY

[
−2x

τα

Γ(α + 1)

]]
=

2x
Γ(α + 1)

Y−1 [
µαY [τα]

]
= 2xY−1

[
µ2α+1

]
= 2x

τ2α

Γ(2α + 1)
.

AIMS Mathematics Volume 7, Issue 5, 9389–9404.



9397

Likewise, the other terms may be computed. The desired solution is given by

v(x, τ) = x − x
τα

Γ(α + 1)
+ 2x

τ2α

Γ(2α + 1)
+ · · · (3.19)

Remark 3.7. The suggested approach is more computationally efficient and precise since the resulting
solution quickly converges to the classical exact solution when α = 1 is substituted in Eq (3.19), i.e.,

v(x, τ) = x
(
1 −

τ1

Γ(1 + 1)
+ 2

τ2

Γ(2 + 1)
+ · · ·

)
= x

(
1 − τ + τ2 + · · ·

)
= x

∞∑
i=0

(−1)iτi

v(x, τ) =
x

1 + τ
. (3.20)

Equation (3.20) denotes the exact solution of the Eq (3.13).

Figures 1 and 2 shows the graphical representation of the solution of the KdV for α = 0.7, 0.8
and α = 0.9 and 0.1, respectively. We observe that the solution of the KdV equation converges to the
classical solution, when α = 1. The validity and convergence of the suggested method is illustrated
in the Figure 3. It show the comparison of the obtained and classical solution of KdV equation. The
graph demonstrates that the approximate and the exact solution are in good agreement. Table 1 shows
the numeric data of absolute error between approximate and exact solutions for α = 1. Table 2 also
shows the absolute errors for α = 1 and α = 0.9. The approximate solutions for α = 1 and 0.9 are
respectively denoted by vapprox and v′approx.
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Figure 1. Graphical illustration of v(x, τ) for α = 0.7 and 0.8.
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Figure 2. Graphical illustration of v(x, τ) for α = 0.7 and 0.8.
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Figure 3. Comparison between exact and approximate solution of Problem 1.

Table 1. Numeric data for absolute errors between exact solution and obtained solution of
Problem 4.3 at α = 1 and τ = 0.1.

x vexact(x, τ) vapprox(x, τ) vexact − vapprox

0 0 0 0
0.1 0.0667 0.0625 0.0042
0.2 0.1333 0.1250 0.0083
0.3 0.2000 0.1875 0.0125
0.4 0.2667 0.2500 0.0167
0.5 0.3333 0.3125 0.0208
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Table 2. Numeric data of error between approximate solution of Problem 4.3 at α = 1 and
α = 0.95.

x vapprox(x, τ) v′approx(x, τ) vapprox − v′approx

0 0 0 0
0.1 0.0909 0.0898 0.0011
0.2 0.1818 0.1795 0.0023
0.3 0.2727 0.2693 0.0034
0.4 0.3636 0.3590 0.0046
0.5 0.4545 0.4488 0.0057

Example 3.8. Let us take nonlinear time fractional order Fornberg-Witham equation asCDα
τv(x, τ) = ∂3v

∂x2∂τ
− ∂v

∂x + v ∂3v
∂x3 − v ∂v

∂x

+3 ∂v
∂x

∂3v
∂x3 , τ > 0, x ∈ R, α ∈ (0, 1].

(3.21)

subjected to the initial condition v(x, 0) = exp( x
2 ).

Solution 3.9. Implementing Yang transform to Eq (3.21), we achieve

Y [v(x, τ)] = µv(x, 0) + µαY
[
∂3v
∂x2∂τ

−
∂v
∂x

+ v
∂3v
∂x3 − v

∂v
∂x

+3
∂v
∂x

∂3v
∂x3

]
.

Applying inverse Yang transform, we getv(x, τ) = exp( x
2 ) + Y−1

[
µαY

[
∂3v
∂x2∂τ

− ∂v
∂x + v ∂3v

∂x3 − v ∂v
∂x

+3 ∂v
∂x

∂3v
∂x3

]]
.

(3.22)

Using HPT method, the approximate solution is

∞∑
q=0

ρqvq(x, τ) = exp(
x
2

) + ρY−1

µαY

 ∞∑
q=0

ρq(vq)xxτ −

∞∑
q=0

ρq(vq)x +

∞∑
q=0

ρqHq(v)


 , (3.23)

where the He’s polynomials Hq(v) represents the nonlinear terms v ∂3v
∂x3 − v ∂v

∂x + 3 ∂v
∂x

∂3v
∂x3 . The first three

terms of Hq(v) are given by

H0(v) = v0
∂3v0

∂x3 − v0
∂v0

∂x
+ 3

∂v0

∂x
∂2v0

∂x2 ,

H1(v) = v0
∂3v1

∂x3 + v1
∂3v0

∂x3 − v0
∂v1

∂x

−v1
∂v0

∂x
+ 3

∂v0

∂x
∂2v1

∂x2 + 3
∂v1

∂x
∂2v0

∂x2 ,

H2(v) = v0
∂3v2

∂x3 + v1
∂3v1

∂x3 + v2
∂3v0

∂x3 − v0
∂v2

∂x

−v1
∂v1

∂x
− v2

∂v0

∂x
+ 3

∂v2

∂x
∂2v0

∂x2
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+3
∂v1

∂x
∂2v1

∂x2 + 3
∂v0

∂x
∂2v2

∂x2 .

Similarly other terms can be calculated. We compare like powers of ρ, and obtain

ρ0 : v0(x, τ) = exp(
x
2

),

ρ1 : v1(x, τ) = Y−1 [
µαY [(v0)xxτ − (v0)x + H0(v)]

]
, (3.24)

now we compute H0(v) as:

H0(v) = v0
∂3v0

∂x3 − v0
∂v0

∂x
+ 3

∂v0

∂x
∂2v0

∂x2

= exp(
x
2

)
∂3 exp( x

2 )
∂x3 − exp(

x
2

)
∂ exp( x

2 )
∂x

+ 3
∂ exp( x

2 )
∂x

∂2 exp( x
2 )

∂x2

=
1
8

exp(
x
2

) exp(
x
2

) −
1
2

exp(
x
2

) exp(
x
2

) +
3
8

exp(
x
2

) exp(
x
2

)

= 0,

thus, Eq (3.24) becomes

ρ1 : v1(x, τ) = Y−1
[
µαY

[
0 −

1
2

exp(
x
2

) + 0
]]

= −
1
2

exp(
x
2

)Y−1
[
µα+1

]
ρ1 : v1(x, τ) = −

1
2

exp(
x
2

)
τα

Γ(α + 1)
,

on the same fashion the 3rd approximation is given as

ρ2 : v2(x, τ) = −
1
8

exp(
x
2

)
τ2α−1

Γ(2α)
+

1
4

exp(
x
2

)
τ2α

Γ(2α + 1)
,

and so on. The obtained solution in series form is written as

v(x, τ) = exp(
x
2

) −
1
2

exp(
x
2

)
τα

Γ(α + 1)
−

1
8

exp(
x
2

)
τ2α−1

Γ(2α)
+

1
4

exp(
x
2

)
τ2α

Γ(2α + 1)
+ · · · (3.25)

Remark 3.10. The suggested approach is more computationally efficient and precise since the resulting
solution quickly converges to the classical exact solution when α = 1 is substituted in Eq (3.25), i.e.,

v(x, τ) = exp(
x
2

) −
1
2

exp(
x
2

)
τ

Γ(1 + 1)
−

1
8

exp(
x
2

)
τ

Γ(2)
+

1
4

exp(
x
2

)
τ2

Γ(2 + 1)
+ · · ·

= exp(
x
2

) −
1
2

exp(
x
2

)τ −
1
8

exp(
x
2

)τ +
1
4

exp(
x
2

)τ2 + · · ·

v(x, τ) = exp(
x
2
−

4τ
6

). (3.26)

Equation (3.26) denotes the exact solution of the Eq (22).
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Figures 4 and 5 shows the graphical representation of the solution of the Fornberg-Witham equation
for α = 0.7, 0.8 and α = 0.9 and 0.1, respectively. We observe that the solution of the Fornberg-
Witham equation converges to the classical solution, when α = 1. The validity and convergence of the
suggested method is illustrated in the Figure 6. It show the comparison of the obtained and classical
solution of Fornberg-Witham equation. The graph demonstrates that the approximate solution and
the exact solution are in good agreement. Table 3 shows the numeric data of absolute error between
approximate and exact solutions for α = 1. Table 4 also shows the absolute errors for α = 1 and
α = 0.9. The approximate solutions for α = 1 and 0.9 are respectively denoted by vapprox and v′approx.
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Figure 4. Graphical illustration of v(x, τ) for α = 0.7 and 0.8.
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Figure 5. Graphical illustration of v(x, τ) for α = 0.9 and 1.
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Figure 6. Graphical comparison exact and approximate solution of Problem 4.6.

Table 3. Numeric data for absolute errors between exact and obtained solution of Problem
4.6 at α = 1 and τ = 0.5.

x vexact(x, τ) vapprox(x, τ) vexact − vapprox

0.1 0.7553 0.7556 0.0023
0.2 0.7919 0.7943 0.0025
0.3 0.8325 0.8351 0.0026
0.4 0.8752 0.8779 0.0027
0.5 0.9200 0.9229 0.0028

Table 4. Absolute errors between approximate solution of Problem 4.6 at α = 0.95 and 1.

τ vapprox(x, τ) v′approx(x, τ) vapprox − v′approx

0.1 1.2054 1.2002 0.0052
0.2 1.1299 1.1226 0.0073
0.3 1.0577 1.0494 0.0083
0.4 0.9887 0.9802 0.0085
0.5 0.9229 0.9147 0.0082

4. Conclusions and future work

In this article, we have utilized a novel hybrid method to compute the approximate solution of
nonlinear fractional order PDEs in the Caputo sense. The novel method is the combination of the
YT and HPM, which we called the Yang homotopy perturbation transform method (YHPTM). We
have utilized the HPM to decompose the nonlinear term into He’s polynomial. We have deduced a
general method to find a solution of nonlinear PDEs defined by Caputo derivative. We have shown
the convergence of the approximate solution and presented a result for the absolute error estimate.
To verify the simplicity and validity of the suggested method, we have solved well-known nonlinear
PDEs; the KdV equation and the Fornberg-Witham equation. We have achieved the required solution in
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series form, which rapidly converges to the exact solution of the KdV and Fornberg-Witham equations
by substituting α = 1, as given in the remarks after the solution of KdV and Fornberg-Witham equation.
We have calculated the numeric data of the absolute errors between the approximate solution and exact
solution, which shows an agreement of the exact solution with the approximate solution. We have
presented the comparison between the exact solution and achieved solution through 3D graphs, which
also present the high accuracy and fast convergence of the suggested technique. Another plus point
of the method is that it does not require linearization, discretization, and extra memory. Thus, we
have concluded that the suggested hybrid method is efficient, accurate, and less computational. In near
future, we will use this method for solving the non-singular fractional-order PDEs.
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