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A B S T R A C T

Statistical models play an important role in data analysis, and statisticians are constantly looking for new or
relatively new statistical models to fit data sets across a wide range of fields. In this study, we used a new alpha
power transformation and the Gumbel Type -II distribution to suggest an unique statistical model. The study
contains a simulation analysis to determine the parameters’ efficiency. Two real-life data sets were utilized
to demonstrate the use of novel alpha power Gumbel Type II (NAPGT-II) distribution. NAPGT-II distribution
yields a better fit than Weibull, new alpha power exponential, exponentiated Gumbel Type-II, Gumbel Type-II
and exponentiated generalized Gumbel Type-II distribution, as evidenced by the data.
Introduction

The probability distribution plays a significant role in determining
decisions under uncertainty. Their uses include reliability analysis,
signal processing, and communication systems, as well as survival
analysis and engineering. In the study of probability theory, it has
been noted that conventional probability distributions fail to explain
data with non-monotonic hazard functions. The Weibull model [1], for
instance, fails to explain data with a bath-tub non-monotonic hazard
shape. Over other accessible distributions, we can employ the Weibull,
Exponential, and Gamma distributions to model the monotonic hazard
rate. Such models are not rational or practical in the case of nonmono-
tonic hazard rates, like bathtub-shaped or upside-down bathtub-shaped
hazard rates. There exist several data sets that exhibit a non-monotonic
hazard rate function in practice. To describe these data, one must
update the existing distribution, which can be employed to model both
monotonic and non-monotonic hazard rate functions. Researchers are
striving to improve existing distributions in order to solve this problem.
The improvements are required by either increasing the number of
parameters in the baseline distribution or creating a new mechanism
for developing probability distributions.

In new research, the concept of generating new distributions by hav-
ing an extra parameter to an existing family of distributions or mixing
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existing distributions has been a significant issue. It allows for a more
adaptable distribution, providing for more complicated data struc-
tures to be modeled. Aldeni et al. [2], for instance, proposed a novel
distribution family based on the quantile of the generalized lambda
distribution. The T-normal family of models was investigated by Alzaa-
treh et al. [3]. The half-Cauchy family of models was introduced by
Cordeiro et al. [4] with applicability to real-world phenomena. [5]
proposed the concept of beta generated distributions, in which the
parent distribution is beta and the foundation distribution is the cdf
of any continuous random variable. [6] amended approach of [5] by
switching Kumaraswamy distribution for beta distribution. There are
several ways in the literature that may be utilized to improve the dis-
tribution broader and more adaptable so that the data can be modeled.
One of the approaches available is Alpha Power Transformation (APT),
which was recommended in [7]. They used the APT approach to gen-
erate the two-parameter alpha power Exponential (APE) distribution,
which has a variety of features and implications. The investigators
have recently attempted many generalizations of the APT approaches
on modeling Weibull distributions [8,9]. Several scholars have used
this transformation to create alpha power transformed distributions, in-
cluding an APT generalized exponential distribution [10], APT inverse
Lindly distribution [11], APT Lindly distribution [12], Alpha-Power
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Pareto distribution [13], Ijaz et al. [14] suggested a novel family of
distributions known as the Gull Alpha Power Family (GAPF).

In the scientific disciplines, extreme value models have risen to
prominence as a statistical topic of research. Extreme point approaches
are also gaining in popularity in a range of other domains. In extreme
point studies, the likelihood of events that are more severe than those
previously recorded must sometimes be calculated. In extreme value
theory, the Gumbel distribution is a key distribution. It has a large
capacity for use in the event of catastrophic disasters. It can also be
applied to tables of life expectancy, hydrology, and rainfall. [15–19]
provide additional information on Gumbel distribution.

Many generalizations of (GT-II) distributions have been developed
in recent years to deal with various failure rates [20]. Adding more
parameters to an existing distribution family is one such way. This
research focuses on the new family of probability distributions which
has proposed by Ijaz et al. [21], and employs the CDF of the GT-II
distribution to establish its special form named novel alpha power Gum-
bel Type II(NAPGT-II) distribution. We have determined a number of
statistical properties and specify how the suggested probability function
can be used to both real and simulated data. Parameter estimation
is fundamental when studying any probability distribution. For esti-
mating the model’s unknown parameters, we give classical approach.
Check [20–24] for further details on a variety of classical estimation
strategies.

The novel impact of current study using the APT approach to the
Gumbel Type -II (GT-II) distribution is summarized as:

• The APT technique is a quick and easy way to add an extra
parameters ’𝛿’ to baseline distribution.

• The APT approach enriches and enhances the distribution.
• Both monotonic and non-monotonic hazard rates can be modeled

using the APT approach.
• We get a better fit with the APT technique than with other

modified models with the same or more parameters.
• To present an enhanced version of the GT-II distribution with a

closed-form quantile function.
• To apply the maximum likelihood method to investigate the infer-

ential properties of the NAPGT-II distribution, giving a thorough
framework for practitioners.

ew alpha power Gumbel Type II(NAPGT-II) distribution

The Novel Alpha Power Transformation (NAPT) family of prob-
bility distributions has recently presented by Ijaz et al. [21]. The
istributions of the NAPT is stated as follows.

𝑁𝐴𝑃𝑇 ( 𝑡| 𝛿) = 𝛿− log
(

1
𝐹 (𝑡)

)

, 𝑡 ∈ R, 𝛿 > 0. (1)

The PDF refers to (1) is

𝑓𝑁𝐴𝑃𝑇 ( 𝑡| 𝛿) =
log (𝛿) 𝛿− log

(

1
𝐹 (𝑡)

)

𝑓 (𝑦)
𝐹 (𝑦)

, 𝛿 > 0. (2)

jaz et al. [21] developed the New Alpha Power Exponential (NAPE)
odel by using the cumulative distribution function of the Exponential
istribution (ED) in (1). The new intended model is known as the
ew alpha power Gumbel Type II (NAPGT-II) by combining the alpha
ower transformed family of distributions and the Gumbel Type II
istribution. The CDF and PDF of the Gumbel Type II (GT-II) model
re accordingly given by

( 𝑡| 𝜆, 𝛽) = 𝑒−𝜆𝑡
−𝛽
, 𝜆, 𝛽 > 0, (3)

nd

( 𝑡| 𝜆, 𝛽) = 𝜆𝛽𝑡−𝛽−1𝑒−𝜆𝑡
−𝛽
. (4)

et 𝑇 be a random variable that is continuous. Then, for the values
> 0, NAPGT-II is stated as

−𝜆𝑡−𝛽
2

NAPGT-II( 𝑡|𝛹 ) = 𝛿 , 0 < 𝑡 < ∞, 𝜆, 𝛽 > 0, 𝛿 > 1, (5)
where 𝛹 = (𝜆, 𝛽, 𝛿), 𝜆 is scale and 𝛿, 𝛽 are the shape parameters,
accordingly. Here if we consider, 𝛿 = 1, because 𝐹NAPGT-II(−∞) =
, 𝐹MAPGT-II(+∞) = 1, and when 𝛿 < 1, 𝐹NAPGT-II(−∞) = ∞,
𝐹NAPGT-II(∞) = 1, so in this study, we took 𝛿 > 1. The PDF for (5)
s as follows:

NAPGT-II( 𝑡|𝛹 ) = 𝜆𝛽𝑡−𝛽−1 log (𝛿) 𝛿−𝜆𝑡
−𝛽
, 0 < 𝑡 < ∞, 𝜆, 𝛽, 𝜉 > 0, 𝛿 > 1, (6)

when 𝛿 = 𝑒 we have Gumbel Type II (GT-II) distribution as a special
case.

In the literature, terms like "failure rate function’’, is widely men-
tioned. This term is employed to indicate an element’s failure rate
over a given time period (𝑡) and mathematically formulated as ℎ( 𝑡|
𝛹 ) = 𝑓 ( 𝑡| 𝛹 )∕[1 − 𝑓 ( 𝑡| 𝛹 )]. The failure rate function is

( 𝑡|𝛹 ) =
𝜆𝛽𝑡−𝛽−1 log (𝛿)

𝛿𝜆𝑡−𝛽 − 1
, (7)

is an ideal mechanism in reliability study. The chance that a component
will survive at time 𝑡 can be described as the reliability function
𝑆 ( 𝑡|𝛹 ). Analytically, it is characterized as 𝑆 ( 𝑡|𝛹 ) = 1−𝑓 ( 𝑡| 𝛹 ), here,
𝑆 ( 𝑡|𝛹 ) functions of NAPGT-II model is

( 𝑡|𝛹 ) = 1 − 𝛿−𝜆𝑡
−𝛽
. (8)

ne of valuable reliability indicators is the cumulative hazard rate
unction (CHRF). The CHRF is a measure of risk: higher the 𝐻 ( 𝑡|𝛹 ),
levate the risk of collapse by 𝑡 -time.

( 𝑡|𝛹 ) = ∫

𝑡

0
ℎ( 𝑦|𝛹 )𝑑𝑦 = − log [𝑆( 𝑡|𝛹 )] . (9)

( 𝑡|𝛹 ) = − log
(

1 − 𝛿−𝜆𝑡
−𝛽
)

. (10)

ills ratio is defined by 𝑀( 𝑡| 𝛹 ) = 𝑆( 𝑡| 𝛹 )∕𝑓 ( 𝑡| 𝛹 ). Mills ratio of 𝑇
s given by

( 𝑡|𝛹 ) = 𝛿𝜆𝑡−𝛽 − 1
𝜆𝛽𝑡−𝛽−1 log (𝛿)

. (11)

The odd function is defined by 𝑂( 𝑡| 𝛹 ) = 𝑓 ( 𝑡| 𝛹 )∕𝑆( 𝑡| 𝛹 ). The odd
unction of 𝑇 is

( 𝑡|𝛹 ) = 1
𝛿𝜆𝑡−𝛽 − 1

. (12)

The 𝑅𝐻𝑅𝑓 ( 𝑡| 𝛹 ) (reverse hazard rate function) is defined by = 𝑓 ( 𝑡|
𝛹 )∕𝑓 ( 𝑡|𝛹 ). The RHRF of 𝑇 is given by

𝑅𝐻𝑅𝐹 ( 𝑡|𝛹 ) = 𝜆𝛽𝑡−𝛽−1 log (𝛿) . (13)

Shape

Fig. 1 shows possible shapes for NAPGT-II density based on different
parameter values. The potential shapes of the PDF corresponding to
the parameter 𝜆, that regulates the distribution’s scale, as well as
the two shape parameters 𝛿 and 𝛽, which govern the distribution’s
shapes, include growing, bathtub, symmetric, asymmetric, inverted U,
decreasing, and inverted J forms. Fig. 1(a-i) demonstrate such shapes.
Fig. 2(a-i) show failure rate function (FRF) shapes for the NAPGT-II
model. The FRF forms, which include rising, U, increasing decreasing
and bathtub shapes are shown in Fig. 2(a-i). These adaptable FRF
shapes are appropriate for both monotonic and non-monotonic hazard
rate behaviors, which are most common in real-time scenarios. Quantile
function of NAPGT-II exhibits different types of forms (see Fig. 3).

Simulation

Hyndman and Fan [25] first proposed the notion of a quantile
function (𝑡( 𝑘| 𝛹 ). The 𝑘th QF of NAPGT-II is obtained by inverting the
CDF (5). The NAPGT-II model can be easily simulated from (14). The
generated variate having PDF (6) is

𝑡(𝑘|𝛹 ) =
[

−1
(

log (𝑘)
)]

−1
𝛽
, 0 < 𝑘 < 1. (14)
𝜆 log 𝛿
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Fig. 1. Variations of PDF of NAPGT-II along with 𝜆, 𝛿 and 𝛽.
As a consequence, the upper and lower quantiles, as well as the median,
are computed as follows:

𝑇̃ =
[

−1
𝜆

(

− log (2)
log 𝛿

)]
−1
𝛽
, (15)

𝑡( 0.25|𝛹 ) =
[

−1
𝜆

(

log (0.25)
log 𝛿

)]
−1
𝛽
, (16)

𝑡( 0.75|𝛹 ) =
[

−1
𝜆

(

log (0.75)
log 𝛿

)]
−1
𝛽
. (17)

The differentiation of (14) provides the corresponding quantile density
function

𝑡
′
(𝑘|𝛹 ) =

−
[(

log(𝑘)
𝜆 log 𝛿

)]
−1
𝛽

𝑘𝛽 log 𝑘
. (18)

Skewness and Kurtosis

Eq. (14) with the following two formulas can be used to compute
the Galton skewness coefficient, say 𝑆𝛹 , and Moors kurtosis, say 𝐾𝛹 ,
of the NAPGT-II distribution:

𝑆𝛹 =
𝑄 ( 0.75|𝛹 ) − 2𝑄 ( 0.5|𝛹 ) +𝑄 ( 0.25|𝛹 )

𝐼𝑄𝑅
. (19)

and

𝐾𝛹 =
𝑄 ( 0.875|𝛹 ) −𝑄 ( 0.625|𝛹 ) +𝑄 ( 0.375|𝛹 ) −𝑄 ( 0.125|𝛹 )

𝐼𝑄𝑅
. (20)

These descriptive indicators, which are developed through quartiles
and octiles, can offer more robust estimates than classical skewness
and kurtosis metrics. Furthermore, 𝑆𝛹 and 𝐾𝛹 are less responsive to
exceptions and perform better with inadequate moment models. At
3

different levels of 𝛿 and 𝜉 the QF and quantile density function layouts
are shown in Fig. 4. The density of QF is noticed to be positively U
shaped. Fig. 5 shows three-dimensional plots of possible 𝑆𝛹 and 𝐾𝛹
shapes for various values of 𝛹 . Fig. 5 also shows three-dimensional
visualizations of the median function at various levels of 𝛿. The stronger
the change in the median curve, the lower the inputs of the parameter
𝛽 and all potential values of 𝛽. Also, when the 𝛽 approaches 1.3, the
median function provides increasing values. On the other hand there is
a noticeable shift in the skewness trend along 𝛽 at lesser characteristics
of 𝛽, but as 𝛽 rises, it comes up to nearly 0.4. As 𝛽 increases, the extent
of peakedness of the model decreases and may also be platykurtic.

Mode

For determining the specified model’s mode. To proceed, we calcu-
late first derivative of the PDF (6) with respect to 𝑡 and then equating
this equation to zero as follows:

𝑓
′
(𝑡) = 𝑑

𝑑𝑡

(

𝜆𝛽𝑡−𝛽−1𝛿−𝜆𝑡
−𝛽
𝐿𝑜𝑔 [𝛿]

)

= 0, (21)

𝑡−𝛽−2 (−1 − 𝛽) 𝛽𝛿−𝑡
−𝛽𝜆𝜆 log [𝛿] + 𝑡−2−2𝛽𝛽2𝛿−𝑡

−𝛽𝜆𝜆2 (log [𝛿])2 = 0. (22)

Hence above equation yields the following result:

𝑡 → 𝑒−𝑖
𝜋
𝛽 𝛽

2
𝛽 𝜆

2
𝛽 (log [𝛿])

2
𝛽
(

−𝛽𝜆 log [𝛿] − 𝛽2𝜆 log [𝛿]
)− 1

𝛽 . (23)

After considering the real value by using Euler’s formula, we have a
mode of NAPGT-II model as the following

𝑡 → cos
(

𝜋
)

𝛽
1
𝛽 𝜆

1
𝛽 (log [𝛿])

1
𝛽 (−1 − 𝛽)−

1
𝛽 . (24)
𝛽
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Fig. 2. Variations of FRF of NAPGT-II 𝜆, 𝛿 and 𝛽.
Fig. 3. Variations of QF of NAPGT-II with 𝛽 and 𝑘 at different extents of 𝛿 with 𝜆 = 0.9 (left), and QF of NAPGT-II with 𝛽 and 𝑘 at different extents of 𝛿 and 𝜆 = 1.9 (right).
𝜇

Moments

Moments are utilized in statistics to explain the different features
of a model. The central tendency, skewness, dispersion, and kurtosis
of the model can all be examined using moments. If 𝑇 ∼ NAPGT-II(𝛹 ),
then 𝑛 − th moment 𝜇́𝑛 of 𝑇 is

𝜇́𝑛 = ∫

∞

0
𝑡𝑛𝑑𝐹𝑡( 𝑡|𝛹 ); 𝑛 = 1, 2,… (25)

In fact, we have

𝜇́𝑛 = ∫

∞

0
𝑡𝑛𝜆𝛽𝑡−𝛽−1 log (𝛿) 𝛿−𝜆𝑡

−𝛽
𝑑𝑡; 𝑛 = 1, 2,… (26)

let 𝜆𝑡−𝛽 = 𝑧, then −𝛽𝜆𝑡−𝛽−1𝑑𝑡 = 𝑑𝑧, and using the series expression in
the above equation 𝛼−𝜌 =

∑∞ (−1)𝑘(log 𝛼)𝑘 𝜌 𝑘. As a result, the 𝑛𝑡ℎ order
4

𝑘=0 𝑘! ( )
moment can be computed as,

́𝑛 =
∞
∑

𝑘=0

(−1)𝑘 (𝜆)
𝑛
𝛽

𝑘!
[

log (𝛿)
]𝑘+1

∫

∞

0
𝑧𝑘−𝑛∕𝛽𝑑𝑧; 𝑛 < 𝛽; 𝑛 = 1, 2,… (27)

The integral (27) is convergent for 𝑛 < 𝛽 otherwise it is divergent.
The moment formula (27) can help us come up with some valuable
statistical metrics. In (27), for example, the mean of 𝑇 follows with 𝑛 =
1. The negative moment of 𝑇 can be simply determined by substituting
𝑛 with −𝜏 in (25).

Remark 1. The Moment Generating Function (MGF) is commonly
employed in model characterization. The MGF of NAPGT-II model using
the Maclaurin series expansion of an exponential function is mentioned
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Fig. 4. Variations of quantile density function of NAPGT-II with 𝛽 and 𝑘 at different extents of 𝛿 with 𝜆 = 0.9 (left), and QF of NAPGT-II with 𝛽 and 𝑘 at different extents of 𝛿
with 𝜆 = 1.9 (right).
Fig. 5. (i) Fluctuation of 𝑇̃ of NAPGT-II with 𝛽 and at different extents of 𝛿 (left) (ii) Fluctuation of skewness (middle) and kurtosis of NAPGT-II at different extents of 𝛿 (right).
as

𝑀𝑡 (𝑑|𝛹 ) = 𝐸
(

𝑒𝑑𝑡
)

=
+∞
∑

𝑛=0

𝑑𝑛

𝑛!
𝜇́𝑛. (28)

Stochastic ordering

In this subsection, we compare the NAPGT-II1
(

𝑡|𝛹1
)

and the
NAPGT-II2

(

𝑡|𝛹2
)

with respect to stochastic ordering information. As-
sume that 𝑇1 and 𝑇2 be two random variables with reliability functions,
cdfs, and pdfs 𝑆1

(

𝑡|𝛹1
)

and 𝑆2
(

𝑡|𝛹2
)

; 𝐹1
(

𝑡|𝛹1
)

and 𝐹2
(

𝑡|𝛹2
)

; and
𝑓1

(

𝑡|𝛹1
)

and 𝑓2
(

𝑡|𝛹2
)

, respectively, where 𝛹1 =
(

𝛿1; 𝛽1; 𝜆1
)

and 𝛹2 =
(

𝛿2; 𝛽2; 𝜆2
)

respectively. A random variable 𝑇1 ≤ 𝑇2 in the following
ordering (see [26]), if: (i) Stochastic order

(

𝑇1 ≼𝑠𝑡 𝑇2
)

if 𝑆1
(

𝑡|𝛹1
)

≼
𝑆2

(

𝑡|𝛹2
)

∀ 𝑡; (ii) Hazard rate order
(

𝑇1 ≼ℎ𝑟 𝑇2
)

if ℎ1
(

𝑡|𝛹1
)

≽ ℎ2
(

𝑡|𝛹2
)

∀ 𝑡; (iii) likelihood ratio order 𝑋 ≼𝑙𝑟 𝑇 if
𝑓𝑇1 (𝑡)
𝑓𝑇2 (𝑡)

decreases in 𝑡. Among
the various partial orderings discussed above, the following chain of
implications follows.

𝑇1 ≼𝑙𝑟 𝑇2 ⇒ 𝑇1 ≼ℎ𝑟 𝑇2 ⇒ 𝑇1 ≼𝑠𝑡 𝑇2. (29)

As stated in the following theorem, NAPGT-II( 𝑡|𝛹 ) models are ranked
according to the strongest ‘‘likelihood ratio’’ ordering.

Theorem 1. Let 𝑇1 ∼ 𝑁𝐴𝑃𝐺𝑇 − 𝐼𝐼1
(

𝜇1; 𝜉1; 𝜆1
)

, and 𝑇2 ∼ 𝑁𝐴𝑃𝐺𝑇 −
𝐼𝐼2

(

𝜇2; 𝜉2; 𝜆2
)

, if 𝛽1 = 𝛽2, 𝜆1 = 𝜆2 and 𝛿1 ≤ 𝛿2, then 𝑇1 ≼𝑙𝑟 𝑇2
(

𝑇1 ≼ℎ𝑟 𝑇2, 𝑇1 ≼𝑠𝑡 𝑇2
)

in all three cases exists.

Proof. It is sufficient to show
𝑓𝑇1 (𝑡)
𝑓𝑇2 (𝑡)

is a decreasing function of 𝑡; the
likelihood ratio is

𝑓𝑁𝐴𝑃𝐺𝑇−𝐼𝐼1 (𝑡) =
𝛿−𝑡−𝛽𝜆1 𝛿−𝑡−𝛽𝜆2

[ ] log
[

𝛿1
]

. (30)
5

𝑓𝑁𝐴𝑃𝐺𝑇−𝐼𝐼2 (𝑡) log 𝛿2
Thus if 𝛽1 = 𝛽2, 𝜆1 = 𝜆2 and 𝛿1 ≤ 𝛿2, then

𝑑
𝑑𝑡

[

𝑓𝑁𝐴𝑃𝐺𝑇−𝐼𝐼1 (𝑡)
𝑓𝑁𝐴𝑃𝐺𝑇−𝐼𝐼2 (𝑡)

]

=
log

[

𝛿1
]

log
[

𝛿2
] 𝛽𝜆𝑡−1−𝛽𝛿−𝑡

−𝛽𝜆
1 𝛿−𝑡

−𝛽𝜆
2

×
(

log
[

𝛿1
]

− log
[

𝛿2
])

≤ 0. (31)

Hence it shows that 𝑇1 ≼𝑙𝑟 𝑇2, and according to (29) these both are
𝑇1 ≼ℎ𝑟 𝑇2, 𝑇1 ≼𝑠𝑡 𝑇2 also hold. □

The estimation technique with simulation

In this part, we focus on the MLE technique for estimating NAPGT-II
model parameters. Simulation studies are used to investigate the effec-
tiveness of MLE technique. From now, 𝑡1, 𝑡2,… , 𝑡𝑛 indicate 𝑛 observed
characteristics from 𝑇 .

MLE approach

The maximum likelihood strategy is the most extensively used
methodology for estimating parameters. Let 𝑇1, 𝑇2,… , 𝑇𝑛 be a ran-
dom sample and the corresponding observed values, 𝑡1, 𝑡2,… , 𝑡𝑛 from
NAPGT-II model with parameter vector 𝛹 = (𝜆, 𝛽, 𝛿). Then the joint
probability function 𝐿 ( 𝐭|𝛹 ) =

∏𝑛
𝑖=1 𝑓 ( 𝑡| 𝛹 ) of 𝑇1, 𝑇2,… , 𝑇𝑛 as a

log-likelihood function is

𝑙 ( 𝐭|𝛹 ) = ln
𝑛
∏

𝑖=1
𝑓 (𝑡𝑖;𝛹 ), (32)

= 𝑛 log (𝜆) + 𝑛 log (𝛽) − (𝛽 + 1)
𝑛
∑

𝑖=1
log

(

𝑡𝑖
)

+ 𝑛 log {log (𝛿)} − 𝜆 log (𝛿)
𝑛
∑

𝑡−𝛽𝑖 (33)

𝑖=1
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𝜕𝑙 ( 𝐭|𝛹 )
𝜕𝜆

= 𝑛
𝜆
− log (𝛿)

𝑛
∑

𝑖=1
𝑡−𝛽𝑖 , (34)

𝜕𝑙 ( 𝐭|𝛹 )
𝜕𝛽

= 𝑛
𝛽
−

𝑛
∑

𝑖=1
log

(

𝑡𝑖
)

+ 𝜆 log (𝛿)
𝑛
∑

𝑖=1
𝑡−𝛽𝑖 log

(

𝑡𝑖
)

, (35)

𝜕𝑙 ( 𝐭|𝛹 )
𝜕𝛿

= 𝑛
𝛿 log (𝛿)

− 𝜆
𝛿

𝑛
∑

𝑖=1
𝑡−𝛽𝑖 . (36)

he MLEs of the model parameters are achieved by solving the equa-
ions above simultaneously. The bias and mean square error of the
LEs, with few exceptions, decrease as sample sizes rise, which fits

he common criteria of asymptotic properties of MLEs, according to
he simulation study (Section ‘‘Numerical and graphical analysis’’). In
articular, variation in bias and mean square error is observed in all
arameter combinations that approaches to zero. Such reflections can
e found in Tables 1–4.

symptotic confidence bounds

Because the exact magnitude of the parameters cannot be deter-
ined, the asymptotic confidence bounds for the unknown parameters

f NAPGT-II(𝜆, 𝛽, 𝛿) can be determined using the asymptotic distribu-
ion of MLE. We require the information matrix to get these boundaries,
hich goes like this:

The 2nd partial derivatives of (34–36) are derived by

𝜕2𝑙 ( 𝐭|𝛹 )
𝜕𝜆2

= − 𝑛
𝜆
, (37)

𝜕2𝑙 ( 𝐭|𝛹 )
𝜕𝛽2

= − 𝑛
𝛽2

− 𝜆 log (𝛿)
𝑛
∑

𝑖=1
𝑡−𝛽𝑖

[

log
(

𝑡𝑖
)]2 , (38)

𝜕2𝑙 ( 𝐭|𝛹 )
𝜕𝛿2

=
−𝑛

[

1 + log (𝛿)
]

𝛿2
[

log (𝛿)
]2

+ 𝜆
𝛿2

𝑛
∑

𝑖=1
𝑡−𝛽𝑖 , (39)

𝜕2𝑙 ( 𝐭|𝛹 )
𝜕𝜆𝜕𝛽

= log (𝛿)
𝑛
∑

𝑖=1
log

(

𝑡𝑖
)

𝑡−𝛽𝑖 , (40)

𝜕2𝑙 ( 𝐭|𝛹 )
𝜕𝜆𝜕𝛿

= −1
𝛿

𝑛
∑

𝑖=1
𝑡−𝛽𝑖 , (41)

𝜕2𝑙 ( 𝐭|𝛹 )
𝜕𝛽𝜕𝛿

= 𝜆
𝛿

𝑛
∑

𝑖=1
𝑡−𝛽𝑖 log

(

𝑡𝑖
)

. (42)

he information matrix is

̀ = −
⎛

⎜

⎜

⎝

𝚤11 𝚤12 𝚤13
𝚤21 𝚤22 𝚤23
𝚤31 𝚤32 𝚤33

⎞

⎟

⎟

⎠

, (43)

where 𝚤11 = 𝐸
(

𝜕2𝑙( 𝐭|𝛹 )
𝜕𝜆2

)

, 𝚤22 = 𝐸
(

𝜕2𝑙( 𝐭|𝛹 )
𝜕𝛽2

)

, 𝚤33 = 𝐸
(

𝜕2𝑙( 𝐭|𝛹 )
𝜕𝛿2

)

, 𝚤21 =

𝚤12 = 𝐸
(

𝜕2𝑙( 𝐭|𝛹 )
𝜕𝜆𝜕𝛽

)

, 𝚤13 = 𝚤31 = 𝐸
(

𝜕2𝑙( 𝐭|𝛹 )
𝜕𝜆𝜕𝛿

)

and 𝚤23 = 𝚤32 = 𝐸
(

𝜕2𝑙( 𝐭|𝛹 )
𝜕𝛽𝜕𝛿

)

.
After that, the approximated variance–covariance matrix is:

𝛺𝛹 = −
⎛

⎜

⎜

⎝

𝚤11 𝚤12 𝚤13
𝚤21 𝚤22 𝚤23
𝚤31 𝚤32 𝚤33

⎞

⎟

⎟

⎠

−1

. (44)

In most cases, parameter values are undetermined and must be eval-
uated using samples; as a result, the expected variance–covariance
matrix is specified as

𝛺̆𝛹̆ = −
⎛

⎜

⎜

⎝

𝚤11 𝚤12 𝚤13
𝚤21 𝚤22 𝚤23
𝚤31 𝚤32 𝚤33

⎞

⎟

⎟

⎠

−1

. (45)

Using the above variance–covariance matrix, A(1−𝜔)100% confidence
interval can be constructed for the parameters and stated as

𝜆̆ ±𝑍 𝜔
2

√

𝑉
(

𝜆̆
)

, 𝛽 ±𝑍 𝜔
2

√

𝑉
(

𝛽
)

, 𝛿 ±𝑍 𝜔
2

√

𝑉
(

𝛿
)

(46)

where 𝑍 𝜔 is the upper
(

𝜔
)

th percentile of the SND.
6

2 2
Numerical and graphical analysis

The ML estimators of the NAPGT-II model are not in closed form,
as shown in the prior section. As a result, a simulation experiment
is conducted to assess the trend of estimates utilizing various metrics
such as mean square errors (MSEs), root mean square error (RMSE) and
average bias (AB) values, and also their asymptotic behavior for finite
samples.

To evaluate the finite sample behavior of MLEs, we can perform
simulation experiments numerically and graphically. The decision has
been made using the given algorithm:

1. Generate a thousand samples of size 𝑛 from (6). QF accomplished
all of the work and gleaned the data from a uniform distribution.

2. Exact values of different combinations of the model parameters
𝜆, 𝛽 and 𝛿 are considered as set -I∶ (0.7, 0.9, 1.5), set -II∶ (1.1, 1.3, 1.2),set
III∶ (1.2, 1.4, 1.2) and set -IV∶ (2.1, 0.25, 1.15).

3. Compute the estimates for 1000 samples, say
(

𝜆̂𝑘, 𝛽𝑘, 𝛿𝑘
)

for 𝑘 =
, 2,… , 1000.

4. Appraise average bias (AB) value, MSEs and RMSE. These targets
re acquired with following formulas:

𝐵𝑖𝑎𝑠𝛹 (𝑛) = 1
1000

1000
∑

𝑖=1

(

𝛹̌𝑖 − 𝛹
)

, (47)

𝑆𝐸𝛹 (𝑛) = 1
1000

1000
∑

𝑖=1

(

𝛹̌𝑖 − 𝛹
)2 , (48)

𝑀𝑆𝐸𝛹 (𝑛) =

√

√

√

√
1

1000

1000
∑

𝑖=1

(

𝛹̌𝑖 − 𝛹
)2. (49)

where 𝛹 = (𝜆, 𝛽, 𝛿).
5. These processes have been replicated with the defined parameters

for MLEs for 𝑛 = 30, 35,… , 500. The bias 𝛹 (𝑛) and MSE𝛹 (𝑛) have both
been computed. We utilized optim function of R to assess the quality
of estimates. Tables 1–4 and Figs. 6–9 illustrate the findings of the
simulations. These ABs and MSEs fluctuate with respect to 𝑛 in Figs. 6–9
(left panels and right panels).

Because as 𝑛 increases, the bias approaches zero, we may infer that
estimators exhibit the attribute of asymptotic unbiasedness. Meanwhile,
the trend in the MSE indicates consistency because the error approaches
zero as 𝑛 rises.

Conclusions on the Simulation Results
The outcomes of the study are interpreted through graphs and tables

as described in the results and discussion. The main findings of study
can be stated as follows:

• Tables 1–4 show the AB, MSE, and RMSE values of the param-
eters for various sample sizes and it is noticed that MSE, RMSE
decreases as the sample size increases, as expected. Furthermore,
as sample size increases, so does the AB.

• The biases of 𝜆̂ 𝛽 and 𝛿 decrease as 𝑛 rises.
• The biases of 𝜆̂ and 𝛽 are relatively positive, however there exist

few negative biases for 𝛿.
• The MLEs of 𝜆̂ and 𝛽 are overestimated however, MLEs of 𝛿 are

underestimated (see left panel of Figs. 6 and 9).
• As shown in right panel of Figs. 6–9, the maximum likelihood

technique of estimation outperforms in terms of MSE (check right
panel of Figs. 6–9).

• According to Figs. 6–9, when the 𝑛 grows, all bias and MSE
plots for all parameters eventually reach zero. That highlights the
accuracy of estimation techniques.

• Based on these results, we draw the conclusion that MLEs do a
good job of estimating parameters and that the estimates seem
to be reasonably constant and closer to the true values for these
sample sizes. These findings demonstrate the MLEs’ efficiency as
well as their consistency.
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Table 1
Average values of Biases and MSEs values of MLEs from Simulation of the NAPGT-II distribution for (𝜆 = 0.7, 𝛽 = 0.9, 𝛿 = 1.5).
𝑛 30 50 80 140 200 260 320 500

AB (𝜆̂) 0.4932 0.3352 0.1529 0.0729 0.0561 0.0534 0.05100 0.0467
MSE (𝜆̂) 0.3068 0.1580 0.0489 0.0113 0.0084 0.0079 0.0073 0.0071
RMSE (𝜆̂) 0.5539 0.3975 0.2211 0.1063 0.0917 0.0889 0.0854 0.0843

AB (𝛽) 0.0417 0.03341 0.1064 0.0969 0.0966 0.0895 0.0973 0.0939
MSE (𝛽) 0.2165 0.1479 0.0312 0.0149 0.0139 0.0134 0.0115 0.0109
RMSE (𝛽) 0.4653 0.3846 0.1766 0.1221 0.1179 0.1158 0.1072 0.1044

AB (𝛿) −0.0206 −0.0759 0.0410 0.0254 0.0066 0.0030 0.0006 0.0002
MSE (𝛿) 0.0105 0.0245 0.0063 0.0061 0.0058 0.0053 0.0049 0.0044
RMSE (𝛿) 0.1025 0.1565 0.0794 0.0781 0.0762 0.0728 0.0700 0.0663
Table 2
Average values of Biases and MSEs values of MLEs from Simulation of the NAPGT-II distribution for (𝜆 = 1.1, 𝛽 = 1.3, 𝛿 = 1.2).
𝑛 30 50 80 140 200 260 320 500

AB (𝜆̂) 0.2306 0.0792 0.0424 0.0365 0.0307 0.0270 0.0254 0.0247
MSE (𝜆̂) 0.0847 0.0143 0.0055 0.0047 0.0045 0.0042 0.0039 0.0031
RMSE (𝜆̂) 0.2910 0.1196 0.0742 0.0686 0.0671 0.0648 0.0625 0.0557

AB (𝛽) 0.3365 0.0719 0.0475 0.0475 0.0512 0.0538 0.0565 0.0583
MSE (𝛽) 0.1586 0.0185 0.0105 0.0059 0.0056 0.0053 0.0052 0.0049
RMSE (𝛽) 0.3983 0.1360 0.1025 0.0768 0.0748 0.0728 0.0721 0.0700

AB (𝛿) 0.3263 0.0860 0.0481 0.0459 0.0415 0.0387 0.0355 0.0347
MSE (𝛿) 0.2003 0.0240 0.0062 0.0059 0.0056 0.0050 0.0048 0.0045
RMSE (𝛿) 0.4476 0.1549 0.0787 0.0768 0.0748 0.0707 0.0693 0.0671
Table 3
Average values of Biases and MSEs values of MLEs from Simulation of the NAPGT-II distribution for (𝜆 = 1.2, 𝛽 = 1.4, 𝛿 = 1.2).
𝑛 30 50 80 140 200 260 320 500

AB (𝜆̂) 0.1382 0.0490 0.0351 0.0285 0.0240 0.0210 0.0191 0.0175
MSE (𝜆̂) 0.0413 0.0069 0.0049 0.0044 0.0034 0.0032 0.0030 0.0024
RMSE (𝜆̂) 0.2032 0.0831 0.0700 0.0663 0.0583 0.0566 0.0548 0.0489

AB (𝛽) 0.1869 0.0245 0.0385 0.0350 0.0315 0.0295 0.0245 0.0105
MSE (𝛽) 0.0562 0.0049 0.0054 0.0049 0.0044 0.0039 0.0034 0.0030
RMSE (𝛽) 0.0237 0.0700 0.0735 0.0700 0.0663 0.0624 0.0583 0.0548

AB (𝛿) 0.2424 0.0665 0.0890 0.0875 0.0845 0.0775 0.0762 0.0752
MSE (𝛿) 0.1264 0.0093 0.0113 0.0103 0.0137 0.0124 0.0117 0.0109
RMSE (𝛿) 0.3555 0.0964 0.1063 0.1015 0.1171 0.1114 0.1082 0.1044
Table 4
Average values of Biases and MSEs values of MLEs from Simulation of the NAPGT-II distribution for (𝜆 = 2.1, 𝛽 = 0.25, 𝛿 = 1.15).
𝑛 30 50 80 140 200 260 320 500

AB (𝜆̂) −0.1676 −0.0975 −0.0568 −0.0164 −0.0031 0.0000 0.0000 0.0000
MSE (𝜆̂) 0.0473 0.0196 0.0087 0.0024 0.0006 0.0001 0.0000 0.0000
RMSE (𝜆̂) 0.2175 0.1400 0.0933 0.0490 0.0245 0.0100 0.0000 0.0000

AB (𝛽) 0.3370 0.2689 0.2502 0.2500 0.2499 0.2021 0.0453 0.0012
MSE (𝛽) 0.1214 0.0768 0.0679 0.0625 0.0623 0.0612 0.0603 0.0600
RMSE (𝛽) 0.3484 0.2771 0.2606 0.2500 0.2496 0.2474 0.2456 0.2450

AB (𝛿) 0.2591 0.1833 0.1213 0.0773 0.0341 0.0072 0.0000 0.0000
MSE (𝛿) 0.1016 0.0579 0.0214 0.0095 0.0021 0.0000 0.0000 0.0000
RMSE (𝛿) 0.3187 0.2406 0.1463 0.0975 0.0458 0.0000 0.0000 0.0000
Real data practices

In this portion, the NAPGT-II model’s usefulness for two real data
sets is presented. The NAPE (New Alpha Power Exponential)
model [21], EGT-II (Exponentiated Gumbel Type-II) [27], Weibull,
Gumbel Type-Two (GT-II) and Exponentiated Generalized Gumbel
Type-II (EGGT-II) [28] Distribution are all considered viable alterna-
tives to the NAPGT-II model. The analytical measures Kolmogorov–
Smirnov (K-S) statistic and its 𝑃 -value (PV) have been used to compare
hese models. The model with the lowest analytical measures scores for
he real data set with the highest PV may be the best fit. The results of
hese examinations are shown in Tables 5 and 6.

The first data represents COVID-19 data represent the daily new
eaths which belong to Argentina in 65 days recorded from 1 June to
August 2020, second real data collection presented COVID-19 data

rom Italy, which spans 35 days from April 1 to May 5, 2020 and
7

is available at [https://covid19.who.int/]. This data is calculated by
dividing daily new deaths by new cases. The detail of this dataset can
be seen in Hassan et al. [29]. See [30–33] for other examples of COVID-
19 data applications. To assess the pertinent parameters of models, the
MLE method has been utilized. Tables 5 and 6 provide ML estimates
and their standard errors (SEs) in parenthesis, for two real data sets.
The results in these tables prove that proposed distribution gives better
fits than competing models, as NAPGT model has the highest P-value
and the smallest Kolmogorov–Smirnov (K-S) distance. The fitted PDF,
CDF and P-P layouts of the NAPGT-II distribution for the two real
data sets are depicted, respectively, in Figs. 10 and 11. These figures
support the values in Tables 5 and 6, that the NAPGT-II distribution
provides close fit for the two real data sets. Figs. 12 and 14 provide
profile-likelihood plots of the NAPGT-II parameters for the two real
data sets. These plots illustrate the unimodality of profile-likelihood

functions for all estimated parameters. The existence and uniqueness of
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Fig. 6. Variation of Bias and MSE of 𝜆̂, 𝛽 and 𝛿.
Fig. 7. Variation of Bias and MSE of 𝜆̂, 𝛽 and 𝛿.
Table 5
MLEs, SEs of the parameters and K-S statistic with 𝑃 -value of considered models for data Set I.

Models MLEs Standard errors K-S 𝑃 -value

NAPE
(

𝜆̌, 𝜉
)

19.7022, 0.03801 4.7161, 0.0034 0.1224 0.2848
NAPGT-II

(

𝜆̌, 𝛽, 𝛿
)

118.0960, 1.6728, 9.8709 3.6130, 0.000, 2.966 0.0804 0.7944
EGT-II

(

𝜉, 𝛽, 𝜅̌
)

5.2947, 0.7958, 37.9722 5.6157, 0.3264, 26.7375 0.9902 0.0000
Weibull

(

𝜗̌, 𝜅̌
)

1.5567, 54.5182 0.1423, 4.6119 0.1472 0.1197
EGGT-II 0.0703, 6.8688, 0.0031, 1.0901, 0.4414 0.0000

6.5774, 200.6077 0.0029, 24.8823 0.2537 0.0179
estimated parameters for the proposed model are shown graphically in
Figs. 13 and 15, respectively, for the two real data sets. Finally, NAPGT-
II model emerges as the most appropriate model for both datasets,
demonstrating its usefulness in a real context.

Closing remarks on both applications
1. NAPGT-II has the highest 𝑃 -value and the lowest K-S distance,

according to both datasets.
2. As shown in Figs. 10 and 11 NAPGT-II is the most effective model

for fitting datasets I and II.
8

3. The EGT-II and EGGT-II distributions demonstrate poor fit for the

first dataset, as shown in Table 5.

4. The NAPE and GT-II models demonstrate poor fit for the second

dataset, as shown in Table 6.

5. The existence and uniqueness of estimated parameters for the

proposed model can be noticed in Figs. 13 and 15, respectively, for

the two real data sets.
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Fig. 8. Variation of Bias and MSE of 𝜆̂, 𝛽 and 𝛿.

Fig. 9. Variation of Bias and MSE of 𝜆̂, 𝛽 and 𝛿.

Fig. 10. Fitted density plotted over the sample histogram of dataset I (left panel), fitted CDFs on empirical CDF (middle panel) and P-P layouts of dataset I (right panel).
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Table 6
MLEs, SEs of the parameters and K-S statistic with 𝑃 -value of considered models for data Set II.

Models MLEs Standard errors K-S 𝑃 -value

NAPE
(

𝜆̌, 𝜉
)

135.5089, 13.2114 79.5693, 1.3148 0.2788 0.0068
NAPGT-II

(

𝜆̌, 𝛽, 𝛿
)

0.0063, 5.2431, 1.0064 0.0043, 0.4208, 0.0044 0.0889 0.9217
EGT-II

(

𝜉, 𝛽, 𝜅̌
)

6.4945, 2.4718, 0.0238 4.0462, 0.5118, 0.0282 0.9891 0.0000
Weibull

(

𝜗̌, 𝜅̌
)

5.2152, 0.1750 0.6407, 0.0060 0.1102 0.7480
GT-II

(

𝛽, 𝜅̌
)

0.0025, 3.1696 0.0006, 0.1391 0.2537 0.0179
Fig. 11. Fitted density plotted over the sample histogram of dataset I (left panel). fitted CDFs on empirical CDF (middle panel) and P-P layouts of dataset II (right panel).
Fig. 12. Plots of the profile-likelihood functions for the two estimated parameters of the first real data set.
Fig. 13. Existence and uniqueness of NAPGT-II parameters 𝜆, 𝛽 and 𝛿 for dataset I.
Concluding remarks

The three-parameter new alpha power Gumbel Type II (NAPGT-
II) model is proposed in this study. The NAPGT-II model is more
10
adaptable than other known models when it comes to studying lifespan
data. This is a brief summary of what we are trying to accomplish.
The estimation methodologies like MLE is employed to evaluate the
parameters of NAPGT-II model. A emulation study is used to assess the
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Fig. 14. Plots of the profile-likelihood functions for the two estimated parameters of the second real data set.
Fig. 15. Existence and uniqueness of NAPGT-II parameters 𝜆, 𝛽 and 𝛿 for dataset II.
model’s performance under several sample sizes and several values of
the parameters. We represent two accomplishment based on the COVID
19 mortality rate. We concluded that it had the lowest K-S and the
highest P-values, making it the best choice among all its competitors.
Additionally, to ensure that the roots of the proposed distribution’s MLE
offer a maximum value, we graphed Figs. 12 and 14 for the profile-
likelihood function of the proposed model with its parameters for the
real data set. These plots demonstrate the unimodality of all calculated
parameters’ profile-likelihood functions.

Nomenclature
Symbols
𝑓 ( 𝑡|𝛹 ) PDF 𝐹 ( 𝑡|𝛹 ) CDF
𝑆( 𝑡|𝛹 ) SF ℎ( 𝑡|𝛹 ) HRF/FRF
𝐻 ( 𝑡|𝛹 ) CHRF 𝑡( 𝑘|𝛹 ) QF
𝑡′( 𝑘|𝛹 ) Quantile Density Function 𝑀𝑡 ( 𝑑|𝛹 ) MGF
𝛺̆𝛹̆ Variance–Covariance
Abbreviations
MLE Maximum likelihood

Estimation
EGT-II Exponentiated Gumbel Type-II

GT-II Gumbel Type II NAPGT-II New Alpha Power Gumbel
Type II

PDF Probability Density Function FGF Factorial Generating Function
SND Standard Normal Distribution CHRF Cumulative Hazard Rate

Function
SF Survival Function FRF Failure Rate Function
hrf hazard rate function RMSE Root Mean Square Error
AB Average Bias MSE Mean square error
11
EGGT-II Exponentiated Generalized
Gumbel Type-II

CDF Cumulative Distribution
Function

MGF Moment Generating Function QF Quantile Function
ED Exponential distribution
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