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ABSTRACT 

 

VIOLENCE DETECTION IN VIDEOS USING 3D CONVOLUTIONAL 

NEURAL NETWORKS AND TRANSFER LEARNING 

 

DÜNDAR, NAZ 

M.Sc. in Mathematics 

 

Supervisor: Prof. Dr. Fahd JARAD 

Co-Supervisor: Prof. Dr. Hayri SEVER 

July 2023, 74 pages 

 

Automatic violence detection using computerized systems instead of 

manpower has been a subject of significant contemporary interest among researchers 

recently. In addition, Deep Learning models such as Convolutional Neural Networks 

have been successfully applied to many different tasks in a wide range of domains, 

including video recognition. To that end in this thesis, a computerized model for 

violence recognition will be designed which does not require manual human 

inspection. Two models will be designed, including a simple 3D CNN and a MoViNet 

3D CNN which uses transfer learning. A combined dataset consisting of 5200 videos 

will be used to train and run the models. The aim of this thesis is to give a 

comprehensive explanation to the design and mathematics of CNNs, implement two 

3D CNN models and explain and analyze them in many aspects. 

 

Keywords: Violence detection, Deep Learning, Convolutional Neural 

Networks, Transfer learning. 
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ÖZET 

 

EVRİŞİMSEL SİNİR AĞLARI VE TRANSFER ÖĞRENME İLE 

VİDEOLARDA TEHLİKE TESPİTİ 

 

DÜNDAR, NAZ 

Matematik Yüksek Lisans  

 

Danışman: Prof. Dr. Fahd JARAD 

Ortak Danışman: Prof. Dr. Hayri SEVER 

Temmuz 2023, 74 sayfa 

 

İnsan gücü yerine bilgisayarlı sistemlerin kullanıldığı otomatik şiddet tespiti 

son zamanlarda araştırmacıların ilgi konusu olmuştur. Ek olarak, Evrişimli Sinir 

Ağları gibi Derin Öğrenme modelleri, video tanima da dahil olmak üzere çeşitli 

alanlarda birçok farklı göreve başarıyla uygulanmıştır. Bunlar göz önünde 

bulundurularak bu tezde, şiddetin tanınması için manuel insan kontrolü gerektirmeyen 

bilgisayarlı bir model tasarlanacaktır. Basit bir 3D CNN ve transfer öğrenme kullanan 

bir MoViNet 3D CNN dahil olmak üzere iki model tasarlanacaktır. Modelleri eğitmek 

ve çalıştırmak için 5200 videodan oluşan birleştirilmiş bir veri kümesi kullanılacaktır. 

Bu tezin amacı, CNN’lerin tasarımı ve matematiği hakkında kapsamlı bir açıklama 

sağlamak, iki 3D CNN modelini implemente etmek ve bu modelleri birçok yönden 

açıklamak ve analizini yapmaktır. 

 

Anahtar Kelimeler: Tehlike tespiti, Derin Öğrenme, Evrişimsel Sinir Ağları, 

Transfer öğrenme. 
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CHAPTER I 

INTRODUCTION 

 

Over the past few decades, the application of Machine Learning (ML) models 

has gained significant traction across a wide range of industries and disciplines, 

increasingly replacing the need for humans in certain tasks. The problem of violence 

detection using automated systems is one of the many practical real-life applications 

of ML. The context of this problem aims to decreace reliance on human-operated 

surveillance systems, driven by the pursuit of finding more efficient and effective 

alternatives to detect violence in public places. Equipping surveillance systems with 

ML models for violence detection has the potential to enhance public safety. The aim 

of this thesis is to contribute to the development of more efficient and accurate 

computerized violence detection systems capable of being deployed in diverse real-

world scenarios by exploring benchmark ML algorithms and proposing alternative 

models. 

 

1.1 MOTIVATION AND PROBLEM DEFINITION 

There has been a significant increase in the amount of public violence 

worldwide in the recent years. For example, according to publicly available statistics, 

violent crime rates were at their peak in 1990s and were displaying a decrease up until 

2010s in the United States of America. Then especially around 2014, the rates began 

to increase again, almost doubling the amount recorded just before 2014. There are 

many factors believed to be contributing to the recent increase, including but not 

limited to psychological and physiological effects of COVID, worldwide economic 

contraction, advances in technology, political views, local and global awareness of 

police brutality leading to less use of force by the police, corruptions in the justice 

system, etc. These reasons apply not only to the United States, but all countries. With 

the rise of public violence statistics, problems emerged about keeping public places 

safe and secure. This concern led to the installation of surveillance cameras in several 

public scenes.  
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Surveillance cameras are useful for monitoring public places, detecting and 

identifying any anomalies such as violent behavior, which allows the authorities to 

take the necessary actions. However, their effectiveness is questionable, because they 

require constant manual human supervision. In other words, identifying a scene as 

violent or not is solely dependent on the supervisor’s skills, carefulness and judgment. 

The human decision-making process is usually slow and biased. Humans are mostly 

incapable of monitoring simultaneous stimulations which would be required in the 

presence of multiple cameras. Since increasing the number of people inspecting the 

cameras directly increases the manpower expenses, it is not an ideal solution. By any 

means, any amount of manpower is expensive overall. Moreover, humans can easily 

lose focus at times, make biased or wrong predictions or decisions. Additionally, most 

security cameras are not inspected constantly, only when needed. Thus, it is clear that 

human dependency of surveillance systems is ineffective, impractical and highly 

insufficient, especially regarding security concerns. In order to overcome the 

limitations of human involvement and allow surveillance systems to detect violent acts 

more effectively, researchers began developing computational systems where human 

supervision would not be required. The aim is to build low-cost, computer-driven 

violence detection models that can be integrated into surveillance systems which will 

enable uninterrupted human-independent supervision while raising minimum amount 

of false alarms. 

The goal of this work is to develop a computerized model that is capable of 

detecting violent behavior in videos. Violence detection refers to the act of detecting 

and classifying violent, intrusive and hostile behavior present in input data. In order to 

develop an extensive violence detection model, the scope of violence must be well-

defined. The extent of a violent act may vary from a two-person physical fight to a 

person pointing a gun, mass shootings, home invasion, stabbing, terror attacks, etc. It 

is also important to note that most surveillance systems do not have audio features. To 

that end, two end-to-end, trainable ML models, 3D Convolutional Neural Networks 

(CNNs), are proposed in this work. One of the models will be built from scratch, the 

other model will use transfer learning with MoViNets [55] and the results will be 

compared and discussed in detail. No audio features will be used, only visual video 

footage. The extent of violence in this work is defined as an aggressive invasion of 

personal space or a physical fight between two or more persons. It must be noted that 
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the scope of violence is neither limited to this definition nor limited to humans, but 

this is the definition of violence that will be used in this work. 

 

1.2 THESIS ORGANIZATION 

This thesis is organized as follows: A literature review on automatic violence 

recognition models and a detailed information on CNNs including their working 

principles, designs, algorithms and mathematical overview are presented in Chapter 

II. A comprehensive explanation of the proposed models is given in Chapter III. The 

experimental setups, results and model evaluations of the experiments conducted for 

both models are discussed in Chapter IV. An overall recap and potential future works 

are presented in Chapter V, where the thesis is concluded.
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CHAPTER II 

LITERATURE REVIEW AND BACKGROUND 

   

  In this chapter, a detailed literature review of the previously proposed violence 

detection models as well as their evaluations and essential information on Deep 

Learning (DL) algorithms, mainly focusing on CNNs, are presented. 

 

2.1 RELATED WORKS 

Researchers have been using computer vision algorithms for pattern 

recognition tasks such as violence detection for over two decades. These models vary 

from traditional hand-crafted models to modern deep learning algorithms. In this 

section, a detailed literature review of both hand-crafted and DL methods for violence 

detection will be presented as well as their efficiencies, accuracies and limitations. 

 

2.1.1 Hand-Crafted Methods 

Former studies on violence detection in videos generally used visual and/or 

audio features to detect flame and blood [38], skin and blood [41], gunshots and 

explosions using Gaussian mixture models and Hidden Markov Models [40], etc. 

Later, the Bag-of-Words (BoW) procedure, often used for images, was adapted to 

videos [39] and was used frequently for video classification tasks. For example, [42] 

used spatio-temporal video cubes and the BoW approach for aggressive behavior 

detection. [1] developed a method for verifying person identity and detecting unusual 

human behavior based on the descriptors derived from Histograms of Optical Flow at 

the automated Access Control Points. Their method used normalized Levenshtein 

distance [43] to detect similarities between two motion sequences. A Gaussian Model 

of Optical Flow was used in [6] to detect not only violence, but also the location of the 

act as seen in the video. They also proposed a novel descriptor, Orientation Histogram 

of Optical Flow, to differentiate between violent and non-violent behavior, which are 

then fed to a linear Support Vector Machine (SVM) for classification. Their proposed 

model was tested on CAVIAR [4], and reached an accuracy of 86.75%.  
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BoW framework was tested in [16] along with action descriptors Space-Time 

Interest Points (STIP) [10] and Motion Scale-Invariant Feature Transform (MoSIFT) 

[8]. They also created the Hockey Fight Dataset [16] and Movies Dataset [16] which 

are frequently used in violence detection experiments. They reached an accuracy of 

89.50%. The method developed in [18] considered statistics of how flow-vector 

magnitudes change over time and these statistics are represented using the Violent 

Flows (ViF) descriptor. ViF descriptors are then classified using linear SVM. The 

highest accuracy they received is 82.90%. [19] also employed MoSIFT algorithm and 

used Kernel Density Function to eliminate the feature noise. They reached an accuracy 

of 89.05%. [20] analyzed the features of the motion vectors in each frame and between 

the frames and got Region Motion Vectors descriptor. They used SVM for 

classification. They also created the VVAR10 [20] dataset. Their proposed method 

reached an impressive accuracy of 96.10%. ViF descriptor was used with Horn-

Schunck [17] for violence detection in [21]. Then, they applied the non-adaptive 

interpolation super resolution algorithm to improve the video quality and fire Kanade-

Lucas-Tomasi face detector. They used the BOSS dataset for experiments and reached 

an accuracy of 97.00%. 

 

2.1.2 Deep Learning Methods 

3-dimensional Convolutional Networks (3D ConvNets) are used in [22] for 

spatio-temporal feature learning. They used the UCF101 dataset [12] for model 

evaluation and reached an accuracy of 90.40%. The AlexNet Model [15] pre-trained 

on the ImageNet database [15] was used in [23] as the CNN model for extracting 

features. The extracted features are then aggregated using the Convolutional LSTM 

(convLSTM) layer of their proposed architecture. They used Hockey Fights Dataset 

[16], Movies Dataset [16] and Violent-Flows Crowd Violence Dataset [18] in their 

experiments and reached an accuracy of 91.10% on the Hockey dataset and 100.00% 

on the Movies dataset [16]. A modified 3D ConvNet framework was proposed in [47], 

which improves the preprocessing method of 3D ConvNet. Video sequence is cut into 

clips based on key frames which decreases the motion integrity loss and redundancy 

caused by uniform sampling. Their method was simple yet effective, reaching 

impressive accuracies of 99.62% on Hockey Fights and 99.97% on Movies datasets. 

A combination of CNN and Long-Short Term Memory (LSTM) was used in [24] for 

spatial feature extraction and classification, respectively. They used the Hockey 
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Dataset [16] and achieved a 98.00% accuracy. [25] used spatio-temporal features with 

3D CNN for prediction of violent activity. They tested their model on three datasets 

and reached 99.90% accuracy on the Movies Dataset [16]. [26] used VGG-16 [11], 

pre-trained on ImageNet [15], as spatial feature extractor followed by LSTM as 

temporal feature extractor and sequence of fully-connected layers for classification. 

They also introduced a new dataset called Real-Life Violence Situations [26], which 

they used to test their model and reached an accuracy of 88.20%. 

Three ImageNet [15] models were used for feature extraction which are then 

fed to an LSTM network in [27]. They created a new dataset in Bangladesh context. 

They were able to reach an accuracy of 97.06%. In order to reduce feature redundancy 

with no extra parameters, [28] proposed compact convolution. The proposed method 

was used for image classification. A combinition of 3D CNN and SVM was used in 

[48]. The network was pre-trained on the Sport-1M dataset [61] and used for feature 

extraction. The output was then fed as an input to a classifier, which is a linear SVM 

in the case of binary classification. [30] proposed a novel violence detection pipeline 

that can be combined with 2D CNNs. They also presented a spatial attention module 

called Motion Saliency Map (MSM) and a temporal attention module called Temporal 

Squeeze-and-Excitation (T-SE) to improve the performance of violence detection. 

They tested their models on five datasets and reached an accuracy of 100.00% the 

highest and 92.00% the lowest. [29] used a combination of Xception [14], pre-trained 

on the ImageNet dataset [15], and LSTM for feature extraction and classification, 

respectively. They used three datasets for evaluation and their highest accuracy 

recorded was 98.32%. A novel architecture of end-to-end CNN-LSTM model was 

proposed in [31] that could run on low-cost Internet of Things devices. The model was 

tested on two datasets and achieved an average accuracy of 73.35%. 

A two-stream DL architecture is proposed in [32] leveraging Separable 

Convolutional LSTM (SepConvLSTM) and pre-trained MobileNet [13]. They used 

three datasets for model evaluation and the highest result they achieved was 99.50%. 

An approach that combined VGG-16 [11] model pre-trained on ImageNet [15] with 

ConvLSTM [18] was proposed in [33] for detecting violence in surveillance video 

datasets. Their model was tested on six datasets and reached an accuracy of 100.00% 

the highest and 92.40% the lowest. [34] designed a model where the well-known CNN, 

ResNet50 [9], was used for feature extraction followed by ConvLSTM for detecting 

anomalies. They used the UCF-Crime dataset [5] and achieved an accuracy of 81.71%. 
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A combination of 3D CNN and CNN Bidirectional LSTM (CNN-BiLSTM) was 

proposed in [35]. They used three datasets for their experiments and the highest 

accuracy they achieved was 94.90%. [36] proposed two methods, 3D DenseNet Fusion 

OF RGB and 3D DenseNet Fusion OFnom RGB, and developed a new dataset called 

AICS-violence. The highest accuracy they achieved was 97.675%. [52] proposed a U-

Net-like network that uses MobileNet V2 for feature extraction followed by an LSTM 

for temporal feature extraction and classification. [53] also used a MobileNet deep 

learning model for real-time violence detection in surveillance videos, which reached 

96.66% accuracy. 

 

2.2 BACKGROUND 

This section provides comprehensive background information on the field of 

Artificial Intelligence (AI) and the development of Artificial Neural Networks (ANN) 

as well as an in-depth overview of CNNs. 

AI is a branch of computer science that is concerned with developing 

computational systems that are capable of performing tasks usually within the 

capabilities of humans. It refers to the intelligence of machines where they are able to 

experience, perceive, analyze, learn and speculate information in a way human 

intelligence does, based on some form of raw data. This data can be textual, audio or 

visual data. Intelligent machines are created in such a way that imitate human cognitive 

abilities. AI systems can use the learned information and experiences to self-improve 

their performance over time. AI can be split into two subcategories as Narrow AI and 

General AI. Narrow AI, also known as Weak AI, is used in particular, focused tasks 

and is the kind of AI we use in real-life applications. Digital assistants in mobile 

devices, search engines like Google, self-driving vehicles, robotics and online games 

played against the computer are some examples of the applications of Narrow AI. The 

abilities of Narrow AI are limited to the task-at-hand and its respective domain and 

these kinds of systems need to learn from thousands, even millions of labeled 

information or examples. The learned knowledge usually can not be transferred to 

other tasks or domains. General AI, on the other hand, is promised to perform human-

level intelligent action, have a full range of human cognitive abilities, learn from a 

small number of examples as well as unstructured data and the possibility of 

transferring the learned information to other tasks within the same or other domains. 

However, the development of General AI remains a challenge and mostly theoretical 
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for the time being. Even though General AI is not yet applicable with the technology 

we have today, Narrow AI manages to cover an impressive scope of tasks and domains. 

Computer vision is a field of computer science and AI that is concerned with 

enabling computers to learn low to high-level features, i.e extract information from a 

given input in the form of a text, image or video. This is achieved by developing 

methods and algorithms to teach computers to understand and analyze visual data, 

similar to the way humans understand and interpret the same kinds of data. The input, 

in the form of visual data, is processed and analyzed and a decision or prediction is 

made based on the learned information. In other words, the idea behind computer 

vision algorithms is to build computational models that are able to perform tasks that 

the human visual system can do at a human-level accuracy and precision. Computer 

vision can be divided into specific domains such as pattern recognition, image 

reconstruction, object detection, motion estimation, 3D reconstruction, etc. It was 

developed a few years after the concept of AI emerged. Although these disciplines 

have been around for over half a century, the recent technological advancements and 

the availability of an enormous amount of data have certainly affected the development 

of computer vision systems positively. Computer vision, overall AI, is now studied 

and applied in a wide range of fields including medicine, engineering, economics, etc. 

Machine learning (ML), a branch of AI, is a broad field of study concerned 

with understanding and building models that are able to take an input of some form, 

extract high-dimensional information from the input, learn from the extracted features 

and make predictions or decisions based on the learned information. Similar to the 

learning process humans go through, they learn from data and improve their 

performance accordingly. ML algorithms are commonly used for imitating human 

activities. At their core, ML algorithms are mathematical functions that represent the 

relationship between different features of data. Like any mathematical function, they 

map certain variables given a dataset, to a target variable. For example, in the case of 

an image classification model, the input images are mapped, thus classified, to their 

respective labels. Therefore, learning algorithms are also mathematical functions with 

the purpose of finding an optimizing function through the training process with respect 

to a certain set of parameters which minimizes loss over a given dataset. 
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2.2.1 Artificial Neural Networks 

There are billions of neurons in the biological brain that allows for the 

connection of interaction and the resulting behavior. The most important distinction of 

the animal brain is its ability to learn. Animals learn from patterns, which can be 

experienced through vision, hearing, touch, taste or smell. All animals possess the 

ability to leverage learning, albeit minimum amounts, as one of the most primal 

survival skills. By all means, this ability is far more advanced in human brains. 

Humans can learn to talk, remember faces they have seen, process and memorize 

information, etc. The learning taking place in the brain is executed by densely 

interconnected neural networks. Neurons, the information messengers of the brain, 

communicate by sending electrical and chemical signals through the nervous system. 

ANNs are computational processing systems loosely inspired by the biological 

neural networks. In comparison with the biological brain morphology, ANNs have a 

small number of hundreds or thousands of processor units [58]. They consist of 

artificial neurons, also called nodes, which are interconnected and are able to process 

inputs and transmit signals to other neurons. The connection of neurons are called 

edges, resembling synapses in the biological brain. Neurons and edges usually have a 

preassigned weight, which is updated in the process of learning. In this context, 

learning refers to the process of hidden layers making decisions or predictions based 

on the output of the previous layers. Artificial neurons are mathematical functions that 

are used to calculate the weighted sum of the inputs and give the output in the form of 

an activation map. Activation maps specify the significant features of the input. In 

other words, these neurons collaborate in a distributed fashion to collectively acquire 

knowledge about features and patterns from the input in order to optimize the final 

output [37]. 

The basic architecture of an ANN consists of an input layer, one or more hidden 

layers and an output layer, where layers are composed of artificial nodes. In a fully-

connected ANN, as the name suggests, each node within a layer is connected to every 

node in the preceding and subsequent layers. The diagram of a basic ANN is given in 

Figure 1. The size and computational complexity of ANNs are relatively small, thus 

they can be implemented on a Central Processing Units (CPUs), which is the main 

processor of any computer capable of executing arithmetic, logic and standard 

input/output operations. 
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Figure 1: The architecture of a basic ANN model 

 

ANNs work well with simple tasks such as handwritten digit classification, like 

the MNIST database [54]. So, what would happen if an ANN was given a task with 

higher complexity? Intuitively, the number of neurons or layers can be increased 

accordingly in order to work with more difficult data. However, as the number of 

neurons and layers increase, so do the number of mathematical operations and 

therefore the complexity of the network. The model would require higher resources 

such as computational power, time and memory to store the data, which are usually 

limited. Also, as the number of parameters increase, the network would be more prone 

to overfitting. As the name suggests, overfitting occurs when a network classifies the 

training data too well and fails to model data it has not been trained on, in other words, 

is unable to learn effectively. Overfitting is a common and important issue for all ML 

models and will be further explained later in this chapter. So, if the number of neurons 

or layers in an ANN were simply increased, overfitting would be difficult to reduce. 

Thus, more effective models with fewer parameters were needed for more difficult 

tasks. 

 

2.2.2 Convolutional Neural Networks 

Deep Neural Networks (DNNs) are a type of ANNs, composed of multiple 

hidden layers. The depth of a neural network refers to the number of hidden layers of 

the network. DL, a subset of ML, refers to the study of DNNs, which are ANNs at their 

core, only with a higher number of hidden layers. The basic building blocks of DNNs 

are the same as ANNs, which are nodes, edges, weights, biases and non-linear 
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functions. They can be trained using the same training algorithms as ANNs. DNNs are 

capable of processing and modeling non-linear relationships with higher complexities 

in comparison to ANNs. As the number of layers, therefore number and complexity of 

mathematical operations, increases, higher computational power is demanded. To that 

end, they can be implemented on both CPUs and Graphics Processing Units (GPUs). 

However, due to their high computational complexity, their training on CPUs take 

longer than ANNs. Although GPUs were not specifically designed for the 

implementation of DNNs, they are a favorable substitution for CPUs. DNNs are more 

capable of discovering multiple levels of representation and extracting higher-level 

features than simple ANNs. Low-level features can be considered as lines and edges 

whereas high-level features as numbers and faces. Overall, DNNs are usually preferred 

to ANNs for pattern recognition tasks involving complex, high-dimensional features. 

CNNs were first developed and introduced in the 1980s by Yann LeCun. CNNs 

are a special type of DNNs in the DL field generally used in image or video pattern 

recognition tasks. The emerging of CNNs revolutionized the analysis of high-

dimensional data existing in many different forms, such as text, audio, image and 

video, which are generally difficult to store and manage. CNNs are structurally similar 

to DNNs, but they differ from DNNs by the use of the convolution operation. CNNs 

are capable of learning to optimize the kernels, thus they use less pre-processing than 

other traditional algorithms. CNNs are a type of feed-forward neural networks, which 

means the information only moves in one direction, forward, starting from the input 

nodes, through the hidden nodes and to the output nodes. They use supervised learning, 

which is when pre-labelled inputs are leveraged to train algorithms. The goal of 

supervised learning is to reduce the overall classification error of the network [37]. 

Most image-driven pattern recognition models use supervised learning. CNNs are rate-

based neural networks, which means that they are suitable for implementation on 

conventional CPUs with substantial numerical processing capabilities. However, CNN 

algorithms have grown more intricate and thus require more powerful computing 

platforms such as GPUs [2]. 

Digital images are stored as 2-dimensional pixel matrices. The dimension of an 

image is represented by 𝐻 × 𝑊 where 𝐻 denotes the height dimension and 𝑊 denotes 

the width dimension. 𝐻 is equal to the number of pixels across the height and 𝑊 is 

equal to the number of pixels across the width of the image. For example, in grayscale 

images, which are black and white images, the pixels are assigned numerical values 
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ranging from 0-255 which represent the intensity of the pixels. 0 denotes black, 255 

denotes white and the numbers in between whiten in shade starting from 0 as the value 

converges to 255. Another example of images is a color image, called RGB in 

literature, which is comprised of a matrix of pixels in three dimensions. For RGB 

images, a third dimension of depth is added. 

 

2.2.2.1 Architecture of CNNs 

A typical CNN consists of three types of layers, which are convolutional layers, 

pooling layers and fully-connected layers. The input of a CNN undergoes several 

layers of floating point operations and matrix computations. Since CNNs are a type of 

fully-connected neural networks, each node in a layer is connected to each of the nodes 

in the former and latter layers. When the CNN is fed an input image in the form of a 

number matrix, each layer of the CNN generates diverse activation maps. These 

activation maps specify the significant features of the input image. Earlier layers focus 

on simple features, such as colors and edges. As the data proceeds through the latter 

layers of the network, it begins to recognize more complex features of the data until it 

eventually makes a prediction [3]. Each neuron in a CNN architecture usually takes 

the input in the form of a matrix, takes the product of their values and their relative 

assigned weights, adds them up and gives them as input to their corresponding 

activation function. The output of each layer is the input of the subsequent layer. 

 

2.2.2.1.1  Input Layer 

The input layer is trivially the first layer of a CNN. In the case of images, the 

pixel matrix of the input image is fed in the input layer. 

 

2.2.2.1.2  Convolutional Layer 

The convolutional layer is the first layer in a CNN architecture where extraction 

of features and where most of the computation of the model occurs. A convolutional 

layer demands three elements, which are an input image, a filter, and an activation 

(feature) map. As the name suggests, this layer performs convolution. In Mathematics, 

convolution operation shows how the shape of one function is influenced by another 

function. It takes two functions as input and produces a third function as output. In 

neural networks, convolution operation refers to the act of sliding a matrix called a 

kernel or a filter of a specified size 𝐾 × 𝐾 with learnable weights across the input 
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image, which is also a matrix as mentioned above. The kernel is slid across by a 

predefined stride, which is the step size for each step of the sliding action, and this 

process is repeated until the whole image is swept by the kernel. The scalar (dot) 

product is calculated between the kernel and the parts of the input image based on the 

size of the kernel. So, the output of a convolutional layer is the weighted sum of input 

and weights, also known as activation map. The kernel must be rotated 180° 

counterclockwise to perform convolution on images since convolution is implemented 

using a digital filter. If the kernel is used without being rotated first, the process is 

called cross-correlation. In other words, convolution is the same operation as cross-

correlation with the key difference of rotating the kernel 180° counterclockwise. This 

can be further explained mathematically as Equation 2.1 where ∗ represents 

convolution and ⋆ represents cross-correlation. 

 

𝑓 ∗  𝑔 =  𝑓 ⋆ 𝑟𝑜𝑡180(𝑘)        (2.1) 

 

2.2.2.1.2.1 Hyperparameters of a Convolutional Layer 

There are certain variables that determine the structure of a neural network and 

how it is trained. These variables are called hyperparameters. Hyperparameters are 

tuned independently from the model parameters and are usually defined before the 

learning process begins [44]. The hyperparameters of a convolutional layer are number 

of filters, kernel size, padding and stride. 

 

2.2.2.1.2.1.1 Number of Filters 

Number of filters in a convolutional layer refers to the depth of the layer. It 

determines how many distinct features the model can learn to detect from the input. In 

other words, these learnable filters will learn to activate for different features of the 

input. It is set based on several factors such as the complexity of the model or data and 

the task-at-hand. It is usually defined through fine-tuning or experimentation. 

Choosing a too small value might result in underfitting, which means the model would 

fail to catch certain patterns in the input. On the other hand, choosing a too large value 

might result in overfitting, which means the model learns the training data too well 

and therefore fails to generalize to other data. 
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2.2.2.1.2.1.2 Kernel Size 

Kernel size, also called receptive field or filter size, refers to the spatial 

dimensions of the kernels that will be used for convolution operations. In 2D CNNs, 

kernel size is comprised of spatial dimensions width and height, because the kernel 

moves and convolves in 2 dimensions. However, in 3D CNNs, kernel size is comprised 

of depth, width and height, because the kernel moves and convolves in 3 dimensions. 

Small kernel sizes are used for local features and large kernel sizes are used to capture 

global features. The increase in the size of the kernel results in an increase in the 

computational complexity of the model. 

 

2.2.2.1.2.1.3 Padding 

Convolution results in a shrinkage in the dimensions of the input data. This 

may cause important spatial information near the edges to be lost after convolution. In 

order to prevent it, padding is applied on the input data, which refers to the operation 

of adding a border of zeros around the input before convolution occurs. With the use 

of padding, the dimensions of the input is preserved and the output feature maps are 

prevented from being smaller than input data. There are two main types of padding 

used in CNNs, which are same padding and valid padding. Same padding is when 

zeros are added around the borders of the input data. Valid padding refers to no 

padding being applied to the input. The type of padding to be used can be determined 

based on the complexity of the data being used. 

 

2.2.2.1.2.1.4 Stride 

The stride hyperparameter is used to control the step size of the kernel. In other 

words, it determines the number of spatial units (pixels) the kernel will be slid 

horizontally and vertically at each step during convolution. A small stride results in a 

larger feature map with preserved spatial dimensions whereas a large stride results in 

a smaller feature map with reduced spatial dimensions. Intuitively, smaller stride can 

be used when working with immensely detailed data when details are more important 

than reducing computational cost of the model. However, if spatial information loss to 

some extent is not crucial to the task-at-hand, a larger stride can be used instead, in 

order to decrease the number of matrix operations and thus reduce the model 

complexity, size and run-time. 
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The output of a convolutional layer depends on the size of the input image, size 

of the kernel, stride and padding. For a grayscale image of dimensions 𝐻 × 𝑊 swept 

with a kernel of dimensions 𝐾 × 𝐾, with stride 𝑆 and padding 𝑃, the output of the 

convolutional layer is calculated as given in Equation 2.2 where 𝐻′ and 𝑊′ are the 

height and width of the output, respectively. The output dimensions are expected to be 

integers, and if not, it means that stride was not defined correctly. 

 

𝐻′ =
𝐻−𝐾+2𝑃

𝑆
+ 1         

𝑊′ =
𝑊−𝐾+2𝑃

𝑆
+ 1          (2.2) 

 

For example, assume that a 4 × 4 input matrix is convolved with a 2 × 2 kernel 

with stride of 1 and no padding. The visualisation of the operation is given in Equation 

2.3. The dimensions of the resulting matrix is 3 × 3, which can be determined using 

Equation 2.2. The scalar product between the receptive field of the input and the kernel 

can be calculated using Equation 2.4 where 𝑎𝑖,𝑗 represents the element of the resulting 

matrix in the 𝑖th row and 𝑗th column starting from index 0 up to index 2. 

 

                              [

0 1 2 1
3 2 2 0
2 1 1 1
0 0 1 3

] ∗ [
1 0
0 1

] = [
2 3 2
4 3 3
2 2 4

]           (2.3) 

 

𝑎0,0 = 0(1) + 1(0) + 3(0) + 2(1) = 2 

𝑎0,1 = 1(1) + 2(0) + 2(0) + 2(1) = 3 

𝑎0,2 = 2(1) + 1(0) + 2(0) + 0(1) = 2 

𝑎1,0 = 3(1) + 2(0) + 2(0) + 1(1) = 4 

                                    𝑎1,1 = 2(1) + 2(0) + 1(0) + 1(1) = 3      (2.4) 

𝑎1,2 = 2(1) + 0(0) + 1(0) + 1(1) = 3 

𝑎2,0 = 2(1) + 1(0) + 0(0) + 0(1) = 2 

𝑎2,1 = 1(1) + 1(0) + 0(0) + 1(1) = 2 

𝑎2,2 = 1(1) + 1(0) + 1(0) + 3(1) = 4 
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2.2.2.1.3  Pooling Layer 

In a typical CNN architecture, a convolutional layer is usually followed by a 

pooling layer. Pooling operation is similar to convolution. Pooling groups up the pixels 

in the input image and filters them down to a subset. A kernel is slid over the output 

of the convolutional layer, which is a feature map, preceding the pooling layer. The 

kernel calculates an output on the receptive field, which is the region in the image that 

a specific feature is looking at. The aim of the pooling layers is to further reduce the 

computational complexity and cost of the presented model. The pooling layers aim to 

decrease the size of the convolved feature map by decreasing the connections between 

layers. Pooling layers are also used to summarize the features present in a region of 

the feature map produced by a convolutional layer. This is done for the purpose of 

down-sampling. 

There are different types of pooling, but the type usually used for image or 

video classification tasks is max pooling. In max pooling, the kernel picks the 

maximum pixel value in the receptive field. For example, a kernel of size 2 × 2, the 

receptive field has 4 pixel values, and the maximum value of those 4 values is selected. 

The hyperparameters of the pooling layer are kernel size and stride, which refer to the 

spatial dimensions of the kernel that will be used in the pooling operation and step size 

of the kernel movements, respectively. Together, they determine the amount of down-

sampling that will be performed in the layer. 

 

2.2.2.1.4  Batch Normalization 

A normalization layer is optional in CNNs. Normalization is commonly used 

for standardizing raw data to downscale the range in which the data exists. It increases 

the learning rate and convergence speed of the model, prevents model divergence and 

thus, makes it easier to train [44]. Batch normalization [50] is a type of normalization. 

Instead of in the raw data, batch normalization is done between the layers of the model 

along training mini-batches and can be added as a layer itself. Batch normalization 

allows us to use much higher learning rates and be less careful about initialization, and 

in some cases eliminates the need for Dropout [50]. 

 

2.2.2.1.5  Fully-Connected Layer 

The Fully-Connected layer consists of neurons where each neuron receives 

input from all the neurons in the previous layer, also referred to as the Dense layer. 
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There is usually a Flatten layer preceding the Dense layer, because neural networks 

accept the input as a 1-dimensional linear vectors. Flatten layer, as the name suggests, 

flattens the output matrix of the preceding layer into a 1D vector. After the features 

are extracted in previous layers, they are classified in the Dense layer based on the 

output of the convolutional layers. 

 

2.2.2.1.6  Output Layer 

The output layer is the last layer of the network. It produces the desired 

prediction or classification of the network. 

 

2.2.2.2 2D CNNs  

The term CNN usually refers to the standard type, which is 2 dimensional 

CNN. It is called 2D, because the kernel slides in two dimensions on the data. Images 

only have spatial information, which refers to the height and width dimensions. 2D 

CNNs are generally applied to image data and they are usually difficult to be 

outperformed in image classification tasks. 2D convolution is carried out to extract 

features from local neighborhood on feature maps in the previous layer. After a bias 

term is added, the result is passed through a sigmoid function [49]. Mathematical 

representation of the 2D convolution operation is given in Equation 2.5, where 𝐾 is 

the convolution kernel, 𝐴 is the convolution matrix and 𝐵 is the resulting matrix [51]. 

 

𝐵(𝑖, 𝑗) = ∑ ∑ 𝐾(𝑚, 𝑛) ∗ 𝐴(𝑖 − 𝑚, 𝑗 − 𝑛)

𝑁

𝑛=0

𝑀

𝑚=0

 

 

The formal equation for the value of a unit at position (𝑥, 𝑦) in the 𝑗th layer 

denoted by 𝑣𝑖𝑗
𝑥𝑦

 was defined by [49], which is given in Equation 2.6, where tanℎ(·) is 

the hyperbolic tangent function, 𝑏𝑖𝑗 is the bias term for the current feature map, 𝑚 is 

the index over the set of feature maps in the (𝑖 − 1)th layer are connected to the feature 

map at the current step, 𝑤𝑖𝑗𝑚
𝑝𝑞

 is the value at the position (𝑝, 𝑞) of the kernel which is 

connected to the 𝑘th feature map, and 𝑃𝑖 is the height and 𝑄𝑖 is the width dimensions 

of the kernel. A basic 2D CNN architecture is given in Figure 2. 

 

(2.5) 
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𝑣𝑖𝑗
𝑥𝑦

= tanh (𝑏𝑖𝑗 + ∑ ∑ ∑ 𝑤𝑖𝑗𝑚
𝑝𝑞 𝑣(𝑖−1)𝑚

(𝑥+𝑝)(𝑦+𝑞)

𝑄𝑖−1

𝑞=0

𝑃𝑖−1

𝑝=0𝑚

 

 

 
Figure 2: The architecture of a basic 2D CNN model 

 

2.2.2.3 3D CNNs  

Although 2D CNNs achieve outstanding results with image data, they are 

limited to dealing with spatial information. So, a 2D CNN is insufficient when it comes 

to working with video data. The definition of a video sequence is a series of images 

shown in rapid succession to give the impression of continuous motion [47]. In other 

words, videos are essentially consecutive images, which have spatial features. 

However, there is also motion information, also called temporal information, present 

between adjacent frames of a video, which would simply be lost if a 2D CNN is used 

on video data. Changes in successive frames have crucial effects on the results of a 

video classification problem. In order to deal with the temporal features that happen 

over time in a video, a third dimension of time must be added to a 2D CNN. 

3D convolution is the same operation as 2D convolution, except the kernel 

slides in 3 dimensions in 3D convolutions as opposed to 2 dimensions in 2D 

convolutions. 3D convolution is obtained using a 3D kernel on the cube formed by 

stacking adjacent frames together [48]. Thus, movement information is acquired from 

consecutive frames. So, by using 3D convolution and 3D pooling, temporal 

information of the input video remains well preserved [47]. Mathematical 

representation of 3D convolution is similar to that of 2D convolution and is given in 

Equation 2.7, where 𝐾 is the convolution kernel, 𝐴 is the convolution matrix and 𝐵 is 

the resulting matrix [51]. 

(2.6) 
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𝐵(𝑖, 𝑗, 𝑟) = ∑ ∑ ∑𝐾(𝑚, 𝑛, 𝑡) ∗ 𝐴(𝑖 − 𝑚, 𝑗 − 𝑛, 𝑟 − 𝑡)

𝑇

𝑡=0

𝑁

𝑛=0

𝑀

𝑚=0

 

 

The formal equation, again defined by [49], for the value of a unit at position 

(𝑥, 𝑦, 𝑧) in the 𝑗th feature map in the 𝑖th layer denoted by 𝑣𝑖𝑗
𝑥𝑦𝑧

 , is given in Equation 

2.8 where tanℎ(·) is the hyperbolic tangent function, 𝑏𝑖𝑗 is the bias term for the current 

feature map, 𝑚 is the index over the set of feature maps in the (𝑖 − 1)th layer which 

are connected to the feature map at the current step, 𝑤𝑖𝑗𝑚
𝑝𝑞𝑟

 is the (𝑝, 𝑞, 𝑟)th value of the 

kernel which is connected to the 𝑚th feature map in the preceding layer, 𝑃𝑖 is the height 

and 𝑄𝑖 is the width of the kernel, and 𝑅𝑖 is the size of the 3D kernel across the temporal 

axis. By this construction, the feature maps in the convolution layer are connected to 

multiple contiguous frames in the previous layer, thereby capturing motion 

information [49]. A typical 3D CNN architecture with two output classes is given in 

Figure 3. 

 

𝑣𝑖𝑗
𝑥𝑦𝑧

= tanh (𝑏𝑖𝑗 + ∑ ∑ ∑ ∑ 𝑤𝑖𝑗𝑚
𝑝𝑞𝑟𝑣(𝑖−1)𝑚

(𝑥+𝑝)(𝑦+𝑞)(𝑧+𝑟)

𝑅𝑖−1

𝑟=0

𝑄𝑖−1

𝑞=0

𝑃𝑖−1

𝑝=0𝑚

 

 

 
Figure 3: The architecture of a typical 3D CNN model 

 

2.2.3 Activation Functions 

Activation functions are mathematical functions used in ANNs that determine 

whether a neuron in the network structure should be activated or not, and if activated, 

(2.7) 

(2.8) 
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to what degree. They are applied to each neuron in the hidden layers of the network 

after the weighted sum of the set of input values is calculated to get the output values 

of the layer. In a nutshell, they are used to transform input signals to output signals 

which are to be fed to the subsequent layer as input. Any perceptron, a simple artificial 

neuron that has one input layer and one output layer, contains a summation function 

and an activation function. The inputs fed to a perceptron are processed by the 

summation function followed by the activation function to give the output. There are 

different types of activation functions, each serving a specific purpose. They must be 

chosen carefully based on the task-at-hand. Choosing the most suitable activation 

function directly increases the prediction accuracy of a network, which is almost solely 

dependent on the type of activation function used. One common feature of all 

activation functions is that they are differentiable functions, which allows the 

Backpropagation (BP) algorithm to be implemented used in the training phase of 

neural networks. 

Activation functions can be either linear or non-linear functions. In 

mathematics, a linear function is defined as a function that has a linear relationship 

between the input and output variables. In other words, the rate of change of the input 

and output is constant. The simplest form of a linear function is 𝑦 = 𝑚𝑥 + 𝑛 where 𝑥 

and 𝑦 are the independent and dependent variables, respectively and 𝑚, 𝑛 are 

constants. The degree of the independent variable, 𝑥, is always 1 and the graph of a 

linear function is always a straight line. If a linear function is used as an activation 

function in a neural network, the network can only adapt to the linear changes of the 

input, because their boundary is linear. However, since neural networks usually deal 

with real-world problems which possess ample amounts of non-linear characteristics, 

they must be able to learn about erroneous data [58]. This can be achieved by using 

non-linear functions, where the relationship between the input and output variables is 

not linear and there is at least one curvature when graphed. Thus, non-linear activation 

functions are generally used instead of linear activation functions in order to add non-

linearity to the output of the layers, making the network capable of modelling complex, 

high-dimensional and non-linear mappings between the input and output. The most 

commonly used types of activation functions are given below. 

 



21 

 

2.2.3.1 Sigmoid Activation Function  

The sigmoid function, also called the logistic function, is a continuously 

differentiable, smooth, S-shaped non-linear activation function. The equation of the 

sigmoid function is given in Equation 2.9 and its graph is given in Figure 4. Sigmoid 

function converts a vector of real input values to a vector of their normalized values in 

the inclusive interval [0, 1]. The domain of sigmoid is the set of real numbers and the 

range is [0, 1]. Similar to the other types of activation functions, the sigmoid function 

is also differentiable, so the slope of the function can be computed at any given point. 

The function is monotonic, which refers to any function’s strictly non-increasing or 

non-decreasing nature. In the sigmoid function’s case, it is strictly non-decreasing. 

However, while the sigmoid function is monotonic, its derivative is not. Sigmoid is 

commonly used in models where the probability of the inputs needs to be predicted, 

since probability of any event occurring is conveniently between 0 and 1, where 0 

means there is no possibility of the event happening and 1 means it will definitely 

happen. These probabilistic values can be treated as the probabilities of the data points 

for a particular class, thus sigmoid can intuitively be used in binary classification tasks 

where the output is two classes. However, due to the vanishing gradient problem, 

where the gradient converges to zero, sigmoid is usually avoided, because it makes 

training neural networks difficult. 

 

𝑓(𝑥) =
1

1 + 𝑒𝑥
 

 

 
Figure 4: Sigmoid activation function 

 

 

(2.9) 
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2.2.3.2 Softmax Activation Function  

The softmax function is a more generalized sigmoid activation function, which 

is used in classification tasks consisting of multiple output classes, unlike the sigmoid 

function which is typically used for binary classification. Similar to the sigmoid 

function, softmax takes the input as a vector of real numbers and converts the values 

to a probability distribution. The output of softmax is also a vector of the same length 

and each element in the output vector corresponds to the probability of the input 

belonging to a specific class. Softmax function is also continuously differentiable. The 

equation of the sigmoid function is given in Equation 2.10. 

 

𝑓(𝑥)𝑖 =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑗𝐽
𝑗=1

 

 

2.2.3.3 Hyperbolic Tangent Activation Function  

Similar to the sigmoid function, the hyperbolic tangent (𝑡𝑎𝑛ℎ) function is also 

a continuously differentiable, smooth, S-shaped curve. However, unlike the sigmoid 

function, it ranges from -1 to 1, inclusive. The advantage 𝑡𝑎𝑛ℎ has against the sigmoid 

function is that the negative input values will be mapped strongly negative and the 

input values that are zero will be mapped in the neighborhood of zero in the graph. 

𝑡𝑎𝑛ℎ is also monotonic, whereas its derivative is not monotonic and is mostly used for 

classification tasks between two classes. The equation of tanh is given in Equation 

2.11 and its graph is given in Figure 5. 

 

𝑓(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
=

2

1 + 𝑒−𝑥
= 2𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) − 1 

 

 
Figure 5: 𝑡𝑎𝑛ℎ activation function 

 

(2.11) 

(2.10) 
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2.2.3.4 Rectified Linear Unit Activation Function  

Rectified Linearu Unit (ReLU) is the default activation function for several 

types of neural networks, because it makes training easier and improves the 

performance of the network. If the value of 𝑥 is negative, 𝑓(𝑥) is equal to 0. If the value 

of 𝑥 is positive, 𝑓(𝑥) is equal to that positive number. In other words, if 𝑥 is a positive 

number, the function keeps it as it is, and if it is a negative number, changes it to zero. 

Thus, its range is the interval [0, ∞). The equation of ReLU is given in Equation 2.12. 

As given in Figure 6, ReLU is half rectified from the bottom. The ReLU function and 

its derivative are both monotonic. One disadvantage it has is that since all negative 

values immediately become 0, the model’s ability to fit and train data properly 

decreases. This is called the dying ReLU problem. 

 

𝑓(𝑥) = {
𝑥, 𝑥 > 0
0, 𝑥 < 0

 

 

 
Figure 6: ReLU activation function 

 

2.2.3.5 Leaky ReLU  

Leaky ReLU was introduced to overcome the dying ReLU problem. The leak 

increases the range of the ReLU function. If the value of the input number is positive, 

the output is that same number. If the input number is negative, the output is the 

product of a small constant number 𝑎 and the input itself. The constant number a is 

usually 0.01. If a is not equal to 0.01, then it is called a Randomized ReLU. This way, 

the range of Leaky ReLU is ±∞. Leaky and Randomized ReLU functions are both 

monotonic, as well as their derivatives. The equation of Leaky ReLU is given in 

Equation 2.13 and its graph is given in Figure 7. 

 

(2.12) 

(2.13) 
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𝑓(𝑥) = {
𝑥, 𝑥 > 0

𝑎𝑥, 𝑥 < 0
 

 

 
Figure 7: Leaky ReLU activation function 

 

2.2.4 Backpropagation Algorithm 

The BP algorithm is an iterative algorithm commonly used for training 

feedforward ANNs. An input vector representing the states of the input units is fed to 

the network. States of the input units in this context refers to the activation values of 

the input units. For example, when working with image data, these input units usually 

represent the pixel values of the input image. The state of the input units changes 

iteratively during the forward pass of the network. Forward pass refers to the process 

of passing the input through the layers of the network where each layer performs a 

specific operation on the input to transform it in a way that can be passed to the 

subsequent layer so that lastly, the output layer can generate the desired predictions or 

decisions based on the transformed input. As the input units are passed through the 

hidden layers, the states of these units are changed in accordance with Equations 2.14 

and 2.15, as presented in the original paper [59]. In Equation 2.14, 𝑥𝑗 is a linear 

function of the outputs, 𝑦𝑗, of the units connected to unit 𝑗 and of the weights, 𝑤𝑗𝑖, on 

these edges. At this point, a bias term can be added to Equation 2.14, which is a 

learnable parameter that improves the versatility of the network by allowing it to learn 

a distinct bias for each neuron. If a bias term is added, Equation 2.14 becomes Equation 

2.16. 

 

𝑥𝑗 = ∑ 𝑦𝑖𝑤𝑗𝑖

𝑖

 

𝑦𝑗 =
1

1 + 𝑒−𝑥𝑗
 

(2.14) 

(2.15) 
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𝑥𝑗 = ∑(𝑦𝑖𝑤𝑗𝑖 + 𝑏𝑖)

𝑖

 

In the case of having a fixed, finite number of input-output cases, the total error, 

𝐸, can be computed using Equation 2.14, by comparing the actual and desired output 

vectors for each case [59]. Total error is given in Equation 2.17, where 𝑐 is an index 

over input-output cases, 𝑗 is an index over output units, 𝑦 is the actual state of an output 

unit and 𝑑 is its desired state. In order to optimize the network, the total error must be 

minimized. The minimization of the total error is achieved using the gradient descent 

algorithm. 

 

𝐸 =
1

2
∑∑(𝑦𝑗,𝑐 − 𝑑𝑗,𝑐)

2

𝑗𝑐

 

 

2.2.4.1 Gradient Descent  

Gradient descent is an optimization algorithm commonly used in training 

neural networks as well as other ML and non-ML models. The goal of neural networks 

is to update the model parameters with each iteration in order to minimize the loss 

function, which increases the network’s ability to make accurate predictions. Loss 

function is a mathematical function that measures the difference between the predicted 

and actual output of a network. Although loss function is similar to the total error, they 

are not the same, but closely related. The total error is used on the training set to 

measure the overall performance of the network, whereas the loss function is used to 

measure the performance of the network on individual training samples. When a neural 

network is in its training phase, the goal is to minimize the total error by updating the 

weights and biases of the network using optimization algorithms like gradient descent. 

Gradient descent can be applied to all differentiable and convex functions. A 

function is called differentiable if the derivatives exist for all points in its domain. A 

function is called a convex function if a line segment can be drawn between any two 

points, 𝑥1, 𝑥2 in its domain, which does not cross the function at any point, thus 

staying on the inside of the function. This can be expressed mathematically as Equation 

2.18, where 𝜆 is the point’s location whose value is between 0 and 1. The convex nature 

of a function can also be determined by computing its second derivative with respect 

(2.16) 

(2.17) 
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to the independent variable. If the second derivative is greater than zero for all points 

in its domain, then the function is called a convex function. 

 

𝑓(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≤ 𝜆𝑓(𝑥1) + (1 − 𝜆)𝑓(𝑥2) 

 

Gradient is the slope of a curve at a given point. When the function has only 

one independent variable, the slope of the function is simply the first derivative of the 

function at the given point. When the function has two or more independent variables, 

the slope is a vector of the function’s partial derivatives with respect to each 

independent variable, along each main axis, which is called gradient. The gradient of 

a function with 𝑛 independent variables at a given point 𝑡 is given in the Equation 2.19. 

 

∇𝑓(𝑡) =

[
 
 
 
 
 
 
𝜕𝑓

𝜕𝑥1
⁄

𝜕𝑓
𝜕𝑥2

⁄

⋮
𝜕𝑓

𝜕𝑥𝑛
⁄ ]

 
 
 
 
 
 

 

 

Gradient descent optimization algorithm uses the gradient at a particular 

position to compute the next position. The initial position is iteratively scaled by a 

hyperparameter called the learning rate and the scaled position is subtracted from the 

initial position. This step is carried out iteratively. This process can be expressed 

mathematically as Equation 2.20, where 𝜂 is the learning rate. 

 

𝑝𝑛+1 = 𝑝𝑛 − 𝜂∇𝑓(𝑝𝑛) 

 

2.2.4.2 Minimization of the Total Error  

The backward pass, also called backpropagation, process begins with the 

computation of the partial derivative of 𝐸, given in Equation 2.17 with respect to each 

output unit, 𝜕𝐸
𝜕𝑦⁄  . The summation operator is a linear operator, which means it can 

be differentiated term-by-term, where each term is a particular case, 𝑐. Differentiating 

Equation 2.17 with respect to 𝑦𝑗 gives: 

 

(2.18) 

(2.19) 

(2.20) 

(2.21) 
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𝜕𝐸

𝜕𝑦𝑗
= 𝑦𝑗 − 𝑑𝑗 

 

In order to compute 𝜕𝐸
𝜕𝑥⁄  , the Leibniz Chain Rule must be applied, which is 

used when a function 𝑦 is a differentiable function of a function 𝑡 and 𝑡 is a 

differentiable function of a function x. Applying the Chain Rule to Equation 2.17, 

gives: 

 

𝜕𝐸

𝜕𝑥𝑗
=

𝜕𝐸

𝜕𝑦𝑗
.
𝜕𝑦𝑗

𝜕𝑥𝑗
 

 

The term 
𝑑𝑦𝑗

𝑑𝑥𝑗
⁄  can be computed by differentiating Equation 2.15 with 

respect to 𝑥𝑗: 

 

𝑦𝑗 = (1 + 𝑒−𝑥𝑗)−1 

𝑑𝑦𝑗

𝑑𝑥𝑗
= −(1 + 𝑒−𝑥𝑗)−2. (−𝑒−𝑥𝑗) 

                                                         =
−𝑒−𝑥𝑗

(1 + 𝑒−𝑥𝑗)2
     

                                                         =

1
𝑦𝑗 − 1⁄

(1 𝑦𝑗
⁄ )

2      

                                                         =     𝑦𝑗 − 𝑦𝑗
2 

                                                         =     𝑦𝑗(1 − 𝑦𝑗) 

 

  Substituting the result obtained from Equation 2.23 into Equation 2.22, we get: 

 

𝜕𝐸

𝜕𝑥𝑗
=

𝜕𝐸

𝜕𝑦𝑗
. 𝑦𝑗(1 − 𝑦𝑗) 

 

Taking the partial derivative of the total error with respect to 𝑥𝑗 allows us to 

understand how a change in the total input 𝑥 to an output unit will affect the total error 

[59]. Additionally, the total input is a linear function of the states, which is in other 

(2.22) 

(2.24) 

(2.23) 
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words the activation values, of the previous layers, and the weights of the edges, which 

is apparent in Equation 2.14. Similarly, we can differentiate the total error with respect 

to these states, 𝑦𝑗, and weights, 𝑤𝑗𝑖, in order to understand how total error is affected 

with changes to 𝑦𝑗 and 𝑤𝑗𝑖 . Since 𝑥𝑗  is a function of 𝑦𝑗 and 𝑤𝑗𝑖, the Chain Rule must 

be applied to compute 𝜕𝐸
𝜕𝑦𝑖

⁄  and 𝜕𝐸
𝜕𝑤𝑗𝑖

⁄ . Equation 2.25 is the partial derivative for 

a weight 𝑤𝑗𝑖  from 𝑖 to 𝑗 . Equation 2.26 represents how the effect of 𝑖 on 𝑗 changes the 

total error for the output of the 𝑖th unit. 

 

𝜕𝐸

𝜕𝑤𝑗𝑖
=

𝜕𝐸

𝜕𝑥𝑗
.
𝜕𝑥𝑗

𝜕𝑤𝑗𝑖
=

𝜕𝐸

𝜕𝑥𝑗
. 𝑦𝑗  

𝜕𝐸

𝜕𝑦𝑖
=

𝜕𝐸

𝜕𝑥𝑗
.
𝜕𝑥𝑗

𝜕𝑦𝑖
=

𝜕𝐸

𝜕𝑥𝑗
. 𝑤𝑗𝑖 = ∑

𝜕𝐸

𝜕𝑥𝑗
.

𝑗

𝑤𝑗𝑖 

 

𝜕𝐸
𝜕𝑦⁄   can be computed for any unit in the penultimate layer if  𝜕𝐸

𝜕𝑦⁄   is 

given for all units in the last layer. All layers in a network can be swept repeating these 

computations, starting from the penultimate layer to the earlier layers. 𝜕𝐸
𝜕𝑤𝑗𝑖

⁄  can 

also be calculated for the weights. This is, as the name suggests, the backward pass 

process. The weights can either be updated after each input-output case or after all 

cases are swept using gradient descent by a particular learning rate, as given in 

Equation 2.20. 

In ML models, including CNNs, an epoch, which can be thought of as an 

iteration, is the operation of sweeping the entire training set to completion during 

training. In an epoch, all training samples are processed once, predictions are 

determined and compared to the actual labels and model parameters, which are weights 

and biases, are updated based on the computed loss value. The aim is to iteratively 

adjust the model parameters so that the loss function can be minimised and the model 

performance can be improved. Models typically have multiple epochs for training. The 

number of epochs is a hyperparameter which is set manually before training, which 

refers to the number of times the training set will be processed by the model. 

Determining the number of epochs for a model depends on the size of the dataset and 

convergence nature of the model as well as the level of complexity of the task-at-hand. 

It is usually set after a trial-and-error process where the model is run using different 

(2.25) 

(2.26) 
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number of epochs and determined when it is observed that the loss does not improve 

any further despite increasing the number of epochs or when the model’s performance 

seem to worsen. Training the model with too few epochs can result in underfitting 

whereas training the model with too many epochs can result in overfitting. Underfitting 

would impair the model’s ability to learn embedded patterns present in the data fed to 

the model. Overfitting would cause the model to learn the training data too well and 

make it difficult for the model to generalize the learned patterns and fail to perform 

well on new data. 
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CHAPTER III 

PROPOSED MODELS 

 

DL algorithms, CNNs in particular, have transformed the field of computer 

vision. As mentioned in Chapter II, there are numerous uses of CNNs, pattern 

recognition being the most common one. In the recent years, as DL algorithms have 

been significantly improved, CNNs are regularly being applied in action recognition 

problems, which is a similar problem to violence recognition. To that end, two 3D 

CNN models were created in this work for detecting violent behavior in video data. In 

this chapter, the details of the proposed models are presented. 

Two 3D CNN models were developed and proposed in this work. 3D CNNs 

are usually preferred to 2D CNNs when dealing with video data if we want to use only 

one type of neural network. The difference of 2D and 3D CNNs was mentioned in 

Chapter II in detail. In a nutshell, videos are sequences of consecutive images and 

while images only have spatial information, the difference between the frames must 

be taken into account when working with video data. The motion information between 

the frames adds another dimension, time, to be dealt with. 2D CNNs can only deal with 

spatial information, so using a 2D CNN by itself would cause a significant loss in the 

temporal sense. 

Generally, there are two types of model structures developed with CNNs for 

video classification tasks. The first one is using a 2D CNN as a spatial feature extractor 

and adding a second deep learning architecture like Recurrent Neural Networks 

(RNNs) for temporal feature extraction as in [34] [29]. The second one is using a 3D 

CNN which are capable of dealing with spatio-temporal features without requiring 

additional ANNs such as RNNs as in [22] [47] or some type of supervised or 

unsupervised learning algorithms such as SVMs. 

3D CNNs can deal with both spatial and temporal features, which results in no 

loss in motion information. Therefore, 3D CNNs are preferred in this work to avoid 

the complexity of adding another algorithm to the model. Thus, 3D CNNs were chosen 

for video classification in the scope of this work.
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3.1 MODEL 1: 3D CNN 

One of the models proposed in this work is an end-to-end, trainable 3D CNN. 

This CNN was built using the Sequential class available in Keras API (Application 

Programming Interface), which groups a linear stack of layers into a Model object. 

The Sequential class created consists of 2 3D Convolution, 2 3D Max-Pooling and 2 

Batch Normalization layers, a Flatten layer and a fully-connected Dense layer. All of 

these layers were imported from Keras and added to the Sequential model using the 

add() method. This Sequential class created is given in Figure 8. 

 

 
Figure 8: The Sequential class created for the implementation of the 3D CNN 

 

Since video data (e.g avi files) is used in the experiments, the input data is 

shaped as a 5-dimensional object with dimensions [batch_size, number_of_frames, 

height, width, channels]. Number of frames is set as 10, which means 10 frames from 

each video will be used. Height and width are the dimensions of each frame, which are 

both set at 224. Channels dimension refers to the colour scheme used, which in this 

case is RGB. In this colour scheme, all colours are represented as a combination of 

three primary colors which are red, green, and blue. Batch size is the number of 

samples used in each iteration in the training phase. The dataset is split into batches of 

8 during training and fed to the model to compute gradients of the loss function. The 

parameters are then updated using the Adam [60] optimizer, which is an optimization 

algorithm used widely in DL algorithms. Adam optimizer combines the benefits of 

RMSProp and AdaGrad, which are also optimizers. AdaGrad adapts the learning rate 

based on the gradients of each parameter and RMSProp scales the learning rate using 

a moving average of the squared gradient. Learning rate is a hyperparameter used in 

training that regulates the step size of the weight updation and is usually set before 

training. A too large learning rate might result in missing a local extrema and cause 

the model to diverge and a too low learning rate might result in a lengthened training 

time. After several experiments, 10−4 was decided on for the learning rate of the 

proposed CNN. 
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There are different types of loss functions, but the function used in the proposed 

model is Sparse Categorical Cross-Entropy, which is commonly used in multi-class 

classification problems. There is also a Binary Cross-Entropy, which is used in 

classification problems with two outcome classes. Although Binary Cross-Entropy 

could be used in this model, since Sparse Categorical Cross-Entropy works for binary 

classification as well, it was chosen to allow the network to be generalized and be 

adapted to multi-class problems as well as binary. The loss function and the optimizer 

work together to optimize the network, thus improve its performance. In each iteration, 

loss is calculated and optimized accordingly using the optimizer. 

Sparse Categorical Cross-Entropy loss function has the same formula as 

Categorical Cross Entropy. The difference is that one-hot encoded labels are used in 

Categorical Cross-Entropy whereas integer encoded labels are used in Sparse 

Categorical Cross Entropy. The sparse encoding of the labels decreases the memory 

usage as well as computational resources. For both loss functions, the probabilities of 

the predicted class are compared with the actual class. In the formula, given in 

Equation 3.1, where 𝑛 is the number of classes, 𝑡𝑖 is the truth label and 𝑝𝑖 is the softmax 

probability for the 𝑖th class, the negative logarithm probability of the correct class 

label weighted by the true label is calculated. The reason why negative log probability 

loss functions are commonly used in ML problems is that minimizing negative log of 

the true class label will reinforce the network to assign higher penalties to incorrect 

predictions with higher probabilities and lower penalties to incorrect predictions with 

lower probabilities. The logarithmic nature of the penalties results in large differences 

being close to 1 and small differences being close to 0. 

 

𝐿𝐶𝐸 = −∑𝑡𝑖 log 𝑝𝑖

𝑛

𝑖=1

 

                                                                  = −∑ 𝑡𝑖 log (
𝑒𝑥𝑖

∑ 𝑒𝑥𝑖
𝐽
𝑗=1

)

𝑛

𝑖=1

 

 

The layout of the proposed model is given in Figure 9. The layout was created 

using the plot_model() method available in Keras Utilities. Parameters in a neural 

network model are the weights and biases used for computation in all neurons. There 

are 128,082 total parameters in the model, 128,018 being trainable and 64 being non-

(3.1) 
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trainable. The summary of the model is given in Figure 10, which was taken during 

the implementation of the 3D CNN. 

 

 
Figure 9: Structural layout of the proposed 3D CNN model 

 

 

 
Figure 10: Model summary of the proposed 3D CNN model 
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After experimenting with several layer hyperparameters for the proposed 3D 

CNN, the most suitable ones for the task-at-hand were determined. For the 3D 

convolutional layers, the number of filters is 16, kernel size is (3, 7, 7), padding is 

valid, stride is 1 and the activation function is ReLU. For the max pooling layers, the 

kernel size is (2, 2, 2) and padding is valid. Batch Normalization and Flatten layers do 

not accept any parameters, because they use the output from the preceding layer and 

apply certain transforms to it before passing it to the next layer. The output of the 

Dense layer is 2, since the model has two possible outcome classes, fight and non-

fight. The activation function used in the Dense layer is the Softmax function, which 

normalizes the input values into a probability distribution. 

The proposed CNN model has significantly fewer parameters than most 

existing models. The model was trained on a large dataset, which is further explained 

in Chapter IV. Accuracy to some extent was compromised in order to make the model 

more efficient yet still effective. The goal is to design the network so that it can be 

embedded on surveillance systems and even mobile devices. The proposed model can 

be made to achieve this goal, due to its small size, low power consumption and little 

memory requirements. In order to use this model in surveillance systems with limited 

resources, the training of the model can be handled in a separate computerized 

environment first and be embedded in a surveillance system only for classification. If 

the training is done successfully on a large dataset, the model will be able to classify 

new data easily. 

 

3.2 MODEL 2: MOVINET 3D CNN 

Transfer learning is used for the second model proposed in this work. In this 

section, transfer learning and the second proposed model will be defined. 

  

3.2.1 Transfer Learning 

Training neural networks is a computationally intense and time-consuming 

process with high memory requirements. Even when there are no computational or 

memory-related limitations, there may be a limited amount of data available for the 

training of a new model. Transfer learning is a useful solution to the problems training 

neural networks face. Assume that there is a ML model already trained on a large 

dataset for a task such as image classification for automobiles. Since it has been 

trained, the model holds the knowledge learned from the dataset to be used for the 
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classification task-at-hand. Also assume that there is another task, image classification 

for all vehicles. The knowledge learned from the automobile classification can be used 

for vehicle classification, which is a similar but different task. This transfer of 

knowledge is called transfer learning, which is a ML technique that reuses a pre-trained 

model with learned knowledge to train another model developed for a different but 

similar problem or domain. The purpose of transfer learning is to decrease the 

computational intensity and memory requirements, therefore increase the performance 

and generalization of the developed model. 

 

3.2.2 MoViNets 

Mobile Video Networks (MoViNets) [55] are a family of efficient video 

classification models (3D CNNs) that support online inference, which means running 

trained AI models to make predictions, on streaming video. It was designed to make 

3D CNNs memory and computation-efficient to enable online inference. Three steps 

were proposed by [55] to achieve this goal. These steps are given below, as described 

in the original work of [55]. 

 

3.2.2.1 MoViNet Search Space  

A MoViNet search space was defined in order to allow Neural Architecture 

Search (NAS) to effectively balance spatio-temporal feature representations [55]. The 

process of finding the optimal neural network architecture is usually carried out 

manually using the trial-and-error technique to search for the most suitable model 

design including layer types and depth, parameters and hyperparameters. NAS is a ML 

technique that enables the automation of figuring out the optimal neural network 

architecture for the task-at-hand. NAS methods eliminate the need for the trial-and-

error technique and use algorithms to search for the optimal architecture automatically. 

Their base search space was built on MobileNetV3[56], an efficient pre-trained 

CNN model that provides a strong baseline for mobile CPUs [55]. Each 2D block in 

MobileNetV3 was expanded to handle 3D video input. The dimensions of the input 

are 50 × 2242 denoted by 𝑇 × 𝑆2 and the frame stride was set as 𝜏 = 5. The search 

was conducted over the base filter width, 𝑐𝑏𝑎𝑠𝑒, for each block. For the additional 

temporal dimension, the 3D kernel size, denoted by 𝑘𝑡𝑖𝑚𝑒 × (𝑘𝑠𝑝𝑎𝑐𝑒)2 was defined 

within each layer with the choices (1×3×3), (1×5×5), (1×7×7), (5×1×1), (7×1×1), 

(3×3×3), (5×3×3). Making these choices enables combining various dimensional 
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representations, thereby increasing the network’s receptive field [55]. No temporal 

downsampling is applied to enable frame-wise prediction. Squeeze-and-Excitation 

(SE) blocks were used to capture spatio-temporal information using 3D average 

pooling. The scaling of the search space was expanded to searching over all scalings 

of all architectures to find the optimal design, rather than choosing a model and scaling 

it accordingly. 

 

3.2.2.2 Stream Buffers  

The MoViNet search space produced a collection of adaptable 3D CNNs, but 

their memory requirements increased with the number of input frames, making them 

impractical for processing long videos. To tackle this issue, the stream buffer 

mechanism was introduced in order to reduce memory consumption. This mechanism 

stores feature activations at the endpoints of subclips, enabling the expansion of the 

temporal receptive field across subclips without requiring any additional 

computations. The feature map, 𝐹𝑖, of the buffer combined with the subclip along the 

temporal dimension is computed by Equation 3.2 and the buffer is updated to Equation 

3.3 when processing the next clip, where 𝐵 denotes the buffer, 𝑥𝑖
𝑐𝑙𝑖𝑝

 denotes the subclip 

being processed at that moment, ⊕ denotes concatenation and [−𝑏 :] denotes a 

selection of the last 𝑏 frames, which denotes the length of the buffer of the 

concatenated input. 

 

𝐹𝑖 = 𝑓(𝐵𝑖 ⊕ 𝑥𝑖
𝑐𝑙𝑖𝑝) 

𝐵𝑖+1 = (𝐵𝑖 ⊕ 𝑥𝑖
𝑐𝑙𝑖𝑝)[−𝑏:] 

 

In order to fit 3D CNNs’ operations to the stream buffer, all temporal 

convolutions in 3D CNNs are replaced with Causal Convolutions (CausalConvs) [57], 

which makes them unidirectional along the temporal dimension. Causality in CNNs 

refers to the ability of predicting the output of the model using the past and present 

inputs, not depending on any future inputs. In addition, Cumulative Global Average 

Pooling (CGAP) is employed to compute global average pooling that encompasses the 

temporal dimension. This can be calculated as a cumulative sum for any activations 

up to frame 𝑇′, which is given in Equation 3.4 where 𝑥 denotes a tensor of activations. 

To enable causal calculation of CGAP, a single-frame stream buffer is maintained, 

(3.2) 

(3.3) 
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storing the cumulative sum up to 𝑇′. Causal SE is presented as a method which is used 

to multiply the spatial feature map at frame 𝑡 with the SE computed from 𝐶𝐺𝐴𝑃(𝑥, 𝑡). 

Additionally, a sine-based fixed positional encoding (PosEnc) scheme is utilized to 

directly utilize the frame index as the position. The resulting vector is then summed 

with the CGAP output before applying the SE projection [55]. 

 

𝐶𝐺𝐴𝑃(𝑥, 𝑇′) =
1

𝑇′
∑𝑥𝑡

𝑇′

𝑡=1

 

 

3.2.2.3 Temporal Ensembles 

Although the stream buffer mechanism of MoViNets effectively reduce 

memory consumption, a little amount of accuracy is lost in the process. To regain this 

accuracy, an ensembling strategy is employed. This approach involves training two 

MoViNets individually, where both models have same network design, but operating 

at half the frame-rate while maintaining the temporal duration. During inference, a 

video is fed as input to each model, where one of the models have frames offset by one 

frame. The unweighted logits from both models are then averaged using arithmetic 

mean before applying softmax [55]. While these models might have lower accuracy 

separately, this two-model ensemble provides a higher accuracy, while preserving the 

same Floating Point Operations (FLOPs) as a single model. 

 

In this work, MoViNet-A0 model is used, which was chosen because it is faster 

to train than the other models the family of MoViNets. The pre-trained MoViNet 

model was downloaded from the TensorFlow models (tf-models-official) library. 

 

(3.4) 
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CHAPTER IV 

EXPERIMENTS 

 

As mentioned previously, two 3D CNN models were created for this work. In 

this chapter, the details of their experiments, their results and evaluations are 

presented, as well as a comparison between the models. 

 

4.1 DATASET DESCRIPTIONS 

There are several datasets created specifically for violence detection tasks. The 

videos in some datasets vary in context, background noise and resolution whereas the 

videos in some of them have consistency. Nonetheless, none of the datasets consist of 

high quality videos, which is actually preferred, because low quality videos would 

result in a more accurate evaluation of the performance of the proposed model. After 

all, the main goal of building a violence detection model is to equip surveillance 

systems with the network and most security footage do not have high resolution feed. 

In contradiction, having a large number of low resolution videos would result in low 

accuracy percentages. After appropriate research and analysis, 4 datasets were chosen 

to be used in this work. Each dataset come with unique advantages and disadvantages. 

Descriptions of the datasets that will be used in this work are given below. 

 

4.1.1 Hockey Fights Dataset 

Hockey fights dataset [16] was created by collecting 1000 clips of action from 

hockey games of the National Hockey League (NHL). Each clip consists of 50 frames 

of 720x576 pixels labelled as "fight" or "non-fight". All clips have the same 

background and involve similar human actions where either fights or normal hockey 

game take place. Background consistency and relatively high resolution videos allow 

the network to be trained easily. However, learned features would not generalize well 

to other videos with different contexts and low resolution, which would make the 

network prone to overfitting. 
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4.1.2 Movies Dataset 

Movies Dataset [16] consists of 200 clips collected from action movies, 100 of 

which contains a fight scene. The clips consists of 360 x 250 pixels. The videos are 

taken from a selection of scenes from different movies and some of the videos are of 

the same scene, with the same context and background. If some of the videos of the 

same scenes were split into training and test sets, it would most probably cause 

overfitting. There are also not enough videos for the model to be appropriately trained. 

In addition, the resolution of the videos is relatively high in comparison with other 

datasets, which would cause the model to underperform in a surveillance setting. 

 

4.1.3 RWF-2000 Dataset 

RWF-2000 Dataset [7] consists of 2000 clips captured by surveillance cameras 

labelled as "violent" and "non-violent". The clips are collected from YouTube and are 

of several resolutions. The average length of clips is 5 s. Since the videos are from 

surveillance footage, they are mostly quite low in resolution and the action occurring 

is often out of the focus of the camera. Although it consists of a relatively large number 

of videos, training a network using this dataset is difficult because of the resolution of 

the videos, which may cause the problem of underfitting. 

 

4.1.4 Real-Life Violence Situations 

Real-Life Violence Situations (RLVS) [26] dataset was created in order to 

overcome the disadvantages of the existing datasets. The RLVS dataset consists of 

2000 videos, where 1000 of them are labelled violent and 1000 are labelled non-

violent. The clips are of 480p–720p resolutions. Although the video content is richer 

in context in comparison with the RWF-2000 dataset, there are still a number of videos 

with out-of-focus action and low resolution. 

Existing datasets generally have too much or too little background consistency, 

too many or too few low resolution videos or consist of only a small number of videos. 

In order to overcome the limitations of the existing benchmarks, the proposed models 

in this work are trained and evaluated on a combination of 4 datasets, which are 

Hockey Fights[16], Movies[16], RWF-2000[7] and Real-Life Violence Situations[26]. 

The dataset created combining these 4 datasets consist of 5200 videos in total, 2600 of 

them labelled violent and 2600 labelled non-violent. 
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In neural networks, videos in the datasets are divided into subsets, which are 

usually training, test and validation. The training set is used for fitting of parameters 

based on the observational relationships between the data and their respective labels. 

The validation set is used for the fitting of hyperparameters and to approximate a 

model’s predictive performance during training [44]. The reason why parameters and 

hyperparameters are fitted using these separate sets is to avoid overfitting. The test set 

is not used during training, but it uses the same predictive relationship as the training 

set and is used for testing. 

The majority of the videos in the datasets are used for training. Generally, the 

split of these subsets are %60, %20, %20 for training, test and validation sets, 

respectively. The combined dataset used for the experiments of the proposed models 

consists of 5200 videos where half of them are violent and the other half is non-violent. 

For the proposed 3D CNN model, 2600 violent and 2600 non-violent videos are each 

split into 1560 for training, 520 for validation and 520 for test sets. In total, there are 

3120 videos for training, 1040 for validation and 1040 for test sets, since the model 

has two outcome classes. For the proposed MoViNet 3D CNN model, validation set is 

not needed, because it is a pre-trained network and thus the hyperparameters are 

already fine-tuned. Therefore, the split is done %60 and %40 between training and test 

sets, respectively. 2600 violent and 2600 non-violent videos are divided into 1560 for 

training and 1040 for test sets. In total, there are 3120 videos in the training set and 

2080 videos in the test set. In both models, the division of videos was done in random 

by the algorithm for each experiment. Random selection of videos enable a more 

precise evaluation of the proposed models. 

 

4.2 EXPERIMENTAL SETUP 

All experiments were conducted on the computer 11th Gen Intel(R) Core(TM) 

i7 64GB, 16 cores with NVIDIA GeForce GTX 1660 SUPER GPU. The codes were 

written using Python 3.7, the Tensorflow framework and the layers of the network 

were imported from the Keras library. The outline of the codes were inspired by the 

publicly-available Tensorflow tutorials [45] and [46], but changed and adapted in 

accordance with the proposed model. 
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4.2.1 Libraries 

A library in Python is a collection of codes serving a particular purpose. In 

order to run the proposed neural network models in Python, the necessary libraries 

were installed and imported. Remotezip was used to inspect the contents of the ZIP file 

in which the combined dataset resided. Tqdm was used for the progress bar which 

showed as the files were split into their subsets. OpenCV was used in video processing, 

performing operations such as extracting frames from the videos. Einops was used to 

simplify the complex tensor operations performed. Random was used to shuffle the 

dataset randomly while splitting the dataset into subsets. Pathlib provided a more 

appropriate file system path representation. Itertools provided several functions built 

for iterators to produce more complex iterators. Collections implements container 

datatypes in addition to Python’s built-in containers such as list, set, tuple, etc. NumPy 

is a commonly used open source Python library when working with numerical data. It 

contains multidimensional array and matrix data structures alongside a large variety of 

high-level mathematical functions that enables operating on the arrays and matrices. 

For example, extracted frames from the videos in this work were contained in a NumPy 

array. Pandas is an open source Python library that contains DataFrame object for data 

manipulation, tools for reading and writing data, data alignment and handling missing 

data, reshaping and merging datasets, etc. Matplotlib is used for creating static, 

animated and interactive visualizations including graphs and model layouts. Seaborn 

is also a data visualization library based on matplotlib. It provides a high-level 

interface for drawing statistical graphics. Matplotlib and Seaborn were used in this 

work to create the graphs and confusion matrices. Shutil library provides high-level 

operations on files, which was used in this work for checking whether a file already 

existed before creating it. Keras is a deep learning API written in Python, running on 

top of the ML platform TensorFlow used for building ML models and their 

implementations. It has a variety of applications such as importing pre-trained models, 

creating existing or custom ML models from scratch and their layers. Keras can be run 

on CPUs, GPUs and TPUs (TensorFlow Processing Unit). 

 

4.3 EVALUATION METRICS 

The goal of the proposed models is to determine whether an input video 

contains a fight or not. After the training phase, videos in the test set are fed to the 

network and classified as fights and non-fights. In this phase, the network predicts the 
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label of the input videos based on the learned features. Since both models use 

supervised learning, the samples are already labelled as fight or non-fight. To that end, 

there are four possible outcomes of the classification executed by the models. A video 

of a fight can either be classified correctly as a fight or incorrectly as a non-fight. 

Similarly, a non-fight video can either be classified correctly as a non-fight or 

incorrectly as a fight. These predicted values can be found in the confusion matrices 

created for the test set for each experiment, and certain evaluation metrics can be 

calculated using these values to evaluate the performance of the models. 

In the extent of the experiments conducted for this work, the event of detecting 

a fight has a truth value of 1 (positive) and not detecting a fight has a truth value of 0 

(negative). In the confusion matrices created in this work, the vertical axis represents 

the actual action, which is the actual label of a video, and the horizontal axis represents 

the predicted action, which is the label of a video predicted by the network. The terms 

True and False refer to the correct or incorrect predictions made by the network, 

respectively, whereas Positive and Negative refer to the labels, which in this case are 

Positive for fights and Negative for non-fights. If a fight is predicted as a fight, it is 

called a true positive (TP) and if a fight is predicted as a non-fight, it is called a false 

negative (FN). If a non-fight is predicted as a fight, it is called a false positive (FP) and 

if a non-fight is classified as a non-fight, it is called a true negative (TN). Their 

corresponding elements in the confusion matrices are top left corner for TP, top right 

corner for FN, bottom left corner for FP and bottom right corner for TN. The evaluation 

metrics calculated based on these values are accuracy, precision, recall and F1-score. 

 

4.3.1 Accuracy 

Accuracy is calculated by dividing the number of correctly classified videos, 

which means the prediction matches the actual label, by the total number of videos. 

The accuracy metric does not make the distinction of whether a fight is detected or 

not, it is simply the measure of the correctly predictions made by the network, which 

correspond to the TP and TN elements in the confusion matrix. The formula for 

calculating accuracy is: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4.1) 
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4.3.2 Recall 

Recall is calculated by dividing TP values by the total number of positive 

samples in the dataset. In the case of the proposed models, this is equal to dividing the 

number of fights classified correctly as fights, by the total number of fight videos. 

Recall is the measure of the model’s ability to correctly predict the positive samples. 

If the number of FN cases are high, the recall of the model would be a small. Recall is 

calculated with the formula: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

4.3.3 Precision  

Precision is calculated by dividing TP values by the total number of positive 

predictions made by the model. In the case of the proposed models, this is equal to 

dividing the number of fights classified correctly as fights, by the total number of 

videos classified as fights. As the name suggests, precision is the measure of how 

precise a model is. If the number of FP cases are high, which are non-fight videos 

classified incorrectly as fight videos, the value of precision would decrease. Precision 

is calculated as follows: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

4.3.4 F1-Score 

F1-score is the harmonic mean of precision and recall values of a model. It is 

a combined measure of precision and recall, in the range of [0, 1]. If the value of the 

F1-score is close to 1, it means the model has high precision and recall. In most cases, 

the values of precision and recall are close to each other, so F1-score is usually a 

consistent evaluation metric. It is calculated as follows: 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

 

(4.2) 

(4.3) 

(4.4) 
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4.4 RESULTS AND MODEL EVALUATIONS 

In this section, separate evaluations of both models based on the experiments 

are presented. For each calculation, 6-digit rounding is used. 

 

4.4.1 3D CNN Model 

The proposed 3D CNN model was experimented with using different numbers 

of epochs and it was determined that the most suitable number was 100 epochs. Any 

number of epochs less than 100 resulted in low accuracy. It was observed that loss 

ceased to improve when the number of epochs was increased beyond 100. The average 

length of an epoch was 640 seconds, so the average run-time of the model including 

both training and inference phases was 17.8 hours with the GPU used in the 

experiments. Although this is a considerably long time, it is common for the training 

of 3D CNNs to take this long, especially considering the size of the dataset the 

proposed model is being run on and that GPU used in the experiments has fairly low 

computational power. The run-time is highly dependent on these two factors. The 

combined dataset has a large number of videos and most of the videos are taken from 

surveillance cameras which are of low resolutions with diverse contexts. Computing 

the feature maps for these types of videos is difficult for the model and thus, it takes 

longer than it would for high resolution videos with similar contexts. However, 

changing the GPU with one that has higher computational power would result in 

shortening the run-time of the model. Regardless, a run-time of 17.8 hours for a 3D 

CNN where videos are being processed can be considered as satisfactory performance. 

The proposed 3D CNN model is a simple 3D CNN which lacks complex layers with 

too many floating-point and matrix operations. As a result, the model has 128,082 total 

parameters. This number is significantly lower than most proposed 3D CNNs. In a 

way, some accuracy was compromised in order to make the model smaller in size with 

lower computational requirements. 

The average accuracy of the proposed 3D CNN model was calculated as the 

average of all 5 experiments, which was 82.46%. Considering the size of the model 

and low resolutions of the videos in the dataset, this result is favorably decent. The 

accuracy, loss, recall, precision and F1-scores were computed for each experiment, 

which are presented in Table 1. The reason why these values vary significantly for 

each experiment is that the dataset was randomly shuffled and split into training, test 

and validation tests before each training. Accuracy-loss graphs were drawn during the 
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implementation of the model as well as confusion matrices for both training and test 

sets. These figures for each experiment are given in Appendix 1. As mentioned above, 

accuracy and loss values were computed during implementation whereas recall, 

precision and F1-score values were calculated using their respective formulas using 

the values in the confusion matrix of the test set. 

 

Table 1: Accuracy, loss, recall, precision and F1-score percentages of each experiment for 

the proposed 3D CNN model 

Experiment Accuracy Loss Recall Precision F1-Score 

1 0.8144 1.5946 0.813462 0.790654 0.801896 

2 0.8250 1.4465 0.844231 0.809963 0.809963 

3 0.8231 1.4109 0.803846 0.832669 0.818004 

4 0.8163 1.8286 0.875000 0.789931 0.830292 

5 0.8442 1.3360 0.871154 0.834254 0.852305 

 

4.4.2 MoViNet 3D CNN 

Transfer learning was leveraged in the proposed MoViNet 3D CNN model. 

The model was pre-trained on the action dataset Kinetics 600 [62], which has 600 

classes of action, each with at least 600 video clips. The proposed model only looked 

for similar patterns in the new data, which significantly decreased the number of 

epochs and the run-time of the model. After experimenting with higher and lower 

number of epochs, it was observed that the value of loss stopped improving after 25 

epochs. Thus, each experiment involving the proposed model was executed with 25 

epochs. The average length of each epoch was 625 seconds, which resulted in the run-

time of the model being an average of 4.3 hours. Since the model was only required to 

become familiar with the new data it was fed instead of being trained from scratch, 

this run-time is unusually short for a 3D CNN, yet expected since it leveraged transfer 

learning. 

The average accuracy of the model was calculated as 91.712%, which is the 

average of the 5 experiments that were conducted. This result is remarkable for only 

25 epochs, which is an indication of the effectiveness and efficiency of transfer 

learning. Since the MoViNet model was trained on an action dataset, it allowed for the 

proposed model to recognize violent activity even though most of the combined dataset 

used in this work consisted of surveillance footage with low resolution videos and out-

of-focus action. The accuracy, loss, recall, precision and F1-scores were computed for 

each experiment, which are presented in Table 2. Since the dataset was shuffled 
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randomly at the beginning of each experiment, these values vary by some amount. The 

graphs for accuracy-loss drawn during implementation and confusion matrices of test 

sets for each experiment are given in Appendix 2. Evaluation metrics are calculated 

using their respective formulas using the values in the confusion matrix created for the 

test set. 

 

Table 2: Accuracy, loss, recall, precision and F1-score percentages of each experiment for 

the proposed MoViNet 3D CNN model 

Experiment Accuracy Loss Recall Precision F1-Score 

1 0.9149 0.3796 0.902885 0.914314 0.908564 

2 0.9178 0.3895 0.925000 0.908404 0.916627 

3 0.9245 0.3741 0.926923 0.924257 0.925588 

4 0.9087 0.5206 0.857692 0.951974 0.902377 

5 0.9197 0.3721 0.920192 0.921965 0.921078 

 

4.5 COMPARISON OF THE PROPOSED MODELS 

The proposed 3D CNN model was trained from scratch in each experiment 

with no weight initialization whereas the MoViNet 3D CNN model uses transfer 

learning with a pre-trained model. It was anticipated that the MoViNet model would 

outperform the 3D CNN model in all aspects. 3D CNN model learned the data fed to 

it with no prior knowledge and the weights were initialized at 0 as default. The weights 

were updated in each epoch based on the optimizer’s computations against the value 

produced by the loss function. When the loss function stopped improving around the 

hundredth epoch, it was determined that the model had reached its highest 

performance. Reaching this performance required 100 epochs which took around 17.8 

hours. Considering that the model had no weight initialization, had no prior learned 

information and no other complex machine learning algorithms were added to it, the 

average accuracy reached by the model was considerably high. It must be noted that 

this accuracy was reached with an optimal number of parameters, 128,082, which is 

significantly lower than most proposed violence detection models. 

On the other hand, the proposed MoViNet model outperformed the 3D CNN, 

with a significant accuracy difference, which is around 10%. This accuracy difference 

was achieved with one-forth number of epochs of the 3D CNN as well as run-time, 

which was around 4.3 hours. This run-time is significantly shorter than other proposed 

violence detection models. The model was not trained from scratch, rather only 

became familiar with the new data it was fed. Another disadvantage of 3D CNNs is 
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that they do not support online inference due to their high computational resources and 

memory requirements. Thus, 3D CNNs are not suitable to work on mobile devices 

unless they are improved to do so. However, MoViNet models are more 

computationally efficient compared to 3D CNNs and they have significantly lower 

memory usage. This allows them to work on mobile devices. Interpreting the results, 

it is clear that transfer learning has a significant advantage against other simple DL 

models. Considering all of these factors contributing to the performance of both 

models, they still achieved impressive results within the range of their respective 

expectations. The accuracy, loss, recall, precision and F1-score values for both models, 

calculated as the average of their 5 respective experiments are given in Table 3.  

 

Table 3: Overall accuracy, loss, recall, precision and F1-score percentages for both models, 

calculated by taking the average of each evaluation metric for all experiments of each model 

Model Accuracy Loss Recall Precision F1-Score 

3D CNN 82.46% 1.523320 84.15386% 81.14942% 82.58478% 

MoViNet 3D CNN 91.712% 0.407180 90.65384% 92.41828% 91.48468% 

 

Since the dataset was randomly shuffled and split into training, test and 

validation sets for the 3D CNN model and only training and test sets for the MoViNet 

3D CNN model at the beginning of each experiment, the evaluation metrics given in 

Table 1 and Table 2 vary by some amount. In order to interpret the results 

comprehensively, the standard deviation for each metric of both models was calculated 

using Equation 4.5, where 𝑛 is the number of data points, 𝑥𝑖 is the values of each data 

and 𝑥 is the average (mean) of �̅�. 

 

𝜎 = √
∑ (𝑥𝑖 − �̅�)𝑛

𝑖=1

𝑛 − 1
 

 

Since standard deviation is a measure of the amount of variation of a set of 

values, it can be said that a low standard deviation value means minimal variation 

occurred in the set of values. Judging from the standard deviation values given in Table 

4, shuffling the dataset at the beginning of each experiment did not cause a large 

amount of dispersion in the results, but did allow for a more accurate evaluation of the 

proposed models. The standard deviation values for the evaluation metrics are mostly 

consistent with each other. It also must be noted that the overall standard deviation 

(4.5) 
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values for the MoViNet model is around 10 times lower than the 3D CNN model. This 

shows that shuffling the dataset randomly had less effect on the MoViNet model where 

transfer learning was leveraged than it had on the 3D CNN model. This difference 

reflects on the consistency achieved by transfer learning. 

 

Table 4: Standard deviation values of accuracy, loss, recall, precision and F1-score for both 

models 

Model Accuracy Loss Recall Precision F1-Score 

3D CNN 0.011827 0.194875 0.032454 0.216102 0.018410 

MoViNet 3D CNN 0.005861 0.063762 0.028905 0.016760 0.009385 

 

4.6 COMPARISON WITH OTHER WORKS IN LITERATURE 

In this work, a combined dataset is used to evaluate the proposed the models. 

There are no other works in literature that uses the same combined dataset, so a 

thorough comparison of the models with other works could not be achieved. However, 

in order to compare the proposed models with other works in literature, a total of 8 

separate experiments were conducted using the datasets in the combined dataset 

individually. Both proposed models were trained with the individual datasets once. 

The results of these experiments are presented in Table 5 and Table 6 for the 3D CNN 

model and the MoViNet 3D CNN model, respectively.  

 

Table 5: Accuracy, loss, recall, precision and F1-score values of each experiment for the 

proposed 3D CNN model 

Dataset Accuracy Loss Recall Precision F1-Score 

Hockey Fights 0.9400 0.3307 0.9400 0.9400 0.9400 

Movies 1.0000 4.8123x10-4 1.0000 1.0000 1.0000 

RWF-2000 0.7125 1.8605 0.8150 0.687764 0.745996 

RLVS 0.8950 0.7723 0.8450 0.944134 0.891821 

 

Table 6: Accuracy, loss, recall, precision and F1-score values of each experiment for the 

proposed MoViNet 3D CNN model 

Dataset Accuracy Loss Recall Precision F1-Score 

Hockey Fights 0.9200 0.4118 0.8950 0.942105 0.917949 

Movies 1.0000 0.0083 1.0000 1.0000 1.0000 

RWF-2000 0.8788 0.4966 0.9150 0.853147 0.882992 

RLVS 0.9638 0.2072 0.9550 0.984536 0.969543 

 

Interpreting the results from the individual dataset experiments, it can be seen 

that both models reached a 100% accuracy with the Movies dataset, which is a result 

that has been achieved by most works in literature. The MoViNet model significantly 
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outperformed the 3D CNN model with the RWF-2000 and Real Life Violence 

Situations datasets. On the other hand, the 3D CNN model slightly outperformed the 

MoViNet model in the Hockey Fights dataset. It should be noted that the MoViNet 

experiments were conducted with 25 epochs whereas the 3D CNN experiments were 

conducted with 100 epochs for the sake of not changing the experimental setting. The 

Hockey Fights dataset is rather an easy dataset to train and considering that the 3D 

CNN model ran with 100 epochs, it is probable that it outperformed the MoViNet 

model with 25 epochs. If the number of epochs of the MoViNet model was to be 

increased, it would most likely outperform the 3D CNN model eventually. The Real 

Life Violence Situations and RWF-2000 datasets are more difficult to train, so the 

accuracy gap between the models were expected.  

It is noteworthy to mention that the run-time of the 3D CNN experiments were 

1.25 hours, 16.7 minutes, 11.1 hours and 5.5 hours for the Hockey Fights, Movies, 

RWF-2000 and Real Life Violence Situations datasets, respectively. The run-time of 

the MoViNet experiments, on the other hand, are 17.7 minutes, 5 minutes, 2.7 hours 

and 1.3 hours for the Hockey Fights, Movies, RWF-2000 and Real Life Violence 

Situations datasets, respectively. The MoViNet model reached mostly higher accuracy 

values in a significantly shorter amount of time with individual dataset experiments, 

which was also the case with the experiments using the combined dataset. While the 

proposed 3D CNN model reached high accuracy values with the individual dataset 

experiments, the run-time of the model is too long. Thus, the results from the 

individual experiments still point to the efficiency and effectiveness achieved by using 

the MoViNet model. 

High accuracy values have been reached by other proposed models in literature 

for the Hockey Fights and Movies datasets. Both proposed models have achieved a 

100% accuracy with the Movies dataset. Although the accuracy of the Hockey Fights 

experiments of both models could not come close to other proposed models, the 

MoViNet model presented in this work performed extremely well with the RWF-2000 

and Real Life Violence Situations datasets. The MoViNet model came close to the 

accuracy values reached by other works in literature with the RWF-2000 dataset. In 

addition, the MoViNet model especially outperformed the original paper where the 

Real Life Violence Situations dataset was introduced, by a significant accuracy 

difference of approximately 25%. The models and accuracy values of the experiements 

carried out for individual datasets in some other proposed works in literature are given 
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in Table 7. Overall, both proposed models performed well with the combined dataset 

as well as individual datasets.  

 

Table 7: Accuracy percentages of some other works in literature  

Model Year Hockey Fights Movies RWF-2000 RLVS 

MoSIFt+HIK[16] 2011 90.9% 89.5% - - 

C3D[25] 2019 96.0% 99.9% - - 

VGG16+LSTM[26] 2019 95.1% 99.0% - 71.5% 

C3D+SVM[48] 2020 98.5% - - - 

VGG16+ConvLSTM[33] 2021 99.1% 100% 92.4% - 

Xception+LSTM[29] 2021 96.5% 98.3% - - 

SepConvLSTM-M[32] 2021 99.5% 100% 89.75% - 

CNN+BiLSTM[35] 2022 94.9% 92.9% - - 
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CHAPTER V 

CONCLUSION 

 

The aim of this thesis was to extensively study CNNs, give mathematical 

explanations to how they work and implement and compare two types of 3D CNN 

models to efficiently and effectively detect violence on video data. One of the models 

was a simple 3D CNN whereas the other model was a 3D CNN which leveraged 

transfer learning. A combination of 4 different publicly-available violence detection 

datasets was used in the experiments with a total of 5200 videos, half of which are 

violent and the other half are non-violent. After 5 experiments were conducted on both 

models using this combined dataset, it was quantitatively determined that the transfer 

learning model, MoViNet, resulted in more accurate results in a significantly shorter 

amount of time. The performance of the MoViNet model being higher than the simple 

3D CNN model was reasonably expected, because MoViNet model was pre-trained 

on an action dataset and the model only needed to become familiar with the new data 

whereas the simple 3D CNN model was trained from scratch. Architecture designs, 

underlying theoretical foundations and implementation specifics of both models as 

well as their comparisons were explained in detail. 

In future works, the simple 3D CNN model is planned to be improved by 

adding new layers to make the model more efficient such as attention layers and use 

weight initialization to shorten the training-time and to increase accuracy. This model 

can also be combined with classifiers such as SVMs other DL models such as RNNs. 

Additionally, the 3D CNN model can be made smaller in size and lighter in 

computational intensity, eventually making them suitable for mobile device inference. 

The MoViNet model, on the other hand, has reached its anticipated potential efficiency 

with the data it was fed and the GPU it was implemented on. It can be further improved 

by using a larger dataset for the training and a more powerful GPU. 
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