

VIOLENCE DETECTION IN VIDEOS USING 3D CONVOLUTIONAL

NEURAL NETWORKS AND TRANSFER LEARNING

NAZ DÜNDAR

JULY 2023

ÇANKAYA UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS

M.Sc. Thesis in

MATHEMATICS

VIOLENCE DETECTION IN VIDEOS USING 3D CONVOLUTIONAL

NEURAL NETWORKS AND TRANSFER LEARNING

NAZ DÜNDAR

JULY 2023

iv

ABSTRACT

VIOLENCE DETECTION IN VIDEOS USING 3D CONVOLUTIONAL

NEURAL NETWORKS AND TRANSFER LEARNING

DÜNDAR, NAZ

M.Sc. in Mathematics

Supervisor: Prof. Dr. Fahd JARAD

Co-Supervisor: Prof. Dr. Hayri SEVER

July 2023, 74 pages

Automatic violence detection using computerized systems instead of

manpower has been a subject of significant contemporary interest among researchers

recently. In addition, Deep Learning models such as Convolutional Neural Networks

have been successfully applied to many different tasks in a wide range of domains,

including video recognition. To that end in this thesis, a computerized model for

violence recognition will be designed which does not require manual human

inspection. Two models will be designed, including a simple 3D CNN and a MoViNet

3D CNN which uses transfer learning. A combined dataset consisting of 5200 videos

will be used to train and run the models. The aim of this thesis is to give a

comprehensive explanation to the design and mathematics of CNNs, implement two

3D CNN models and explain and analyze them in many aspects.

Keywords: Violence detection, Deep Learning, Convolutional Neural

Networks, Transfer learning.

v

ÖZET

EVRİŞİMSEL SİNİR AĞLARI VE TRANSFER ÖĞRENME İLE

VİDEOLARDA TEHLİKE TESPİTİ

DÜNDAR, NAZ

Matematik Yüksek Lisans

Danışman: Prof. Dr. Fahd JARAD

Ortak Danışman: Prof. Dr. Hayri SEVER

Temmuz 2023, 74 sayfa

İnsan gücü yerine bilgisayarlı sistemlerin kullanıldığı otomatik şiddet tespiti

son zamanlarda araştırmacıların ilgi konusu olmuştur. Ek olarak, Evrişimli Sinir

Ağları gibi Derin Öğrenme modelleri, video tanima da dahil olmak üzere çeşitli

alanlarda birçok farklı göreve başarıyla uygulanmıştır. Bunlar göz önünde

bulundurularak bu tezde, şiddetin tanınması için manuel insan kontrolü gerektirmeyen

bilgisayarlı bir model tasarlanacaktır. Basit bir 3D CNN ve transfer öğrenme kullanan

bir MoViNet 3D CNN dahil olmak üzere iki model tasarlanacaktır. Modelleri eğitmek

ve çalıştırmak için 5200 videodan oluşan birleştirilmiş bir veri kümesi kullanılacaktır.

Bu tezin amacı, CNN’lerin tasarımı ve matematiği hakkında kapsamlı bir açıklama

sağlamak, iki 3D CNN modelini implemente etmek ve bu modelleri birçok yönden

açıklamak ve analizini yapmaktır.

Anahtar Kelimeler: Tehlike tespiti, Derin Öğrenme, Evrişimsel Sinir Ağları,

Transfer öğrenme.

vi

ACKNOWLEDGEMENTS

I would like to thank my family Dafne, Murat, Onur and Yiğit for their

continuous support of all kinds, my friends and colleagues, my supervisors Fahd Jarad

and Hayri Sever for their guidance and encouragement, Ayhan Arıcı for all the late

night study sessions, all of the teachers I was lucky enough to be the students of,

Çankaya University for the incredible opportunities they have granted me and

TÜBİTAK for their financial support. I am eternally grateful for all of you.

vii

TABLE OF CONTENTS

STATEMENT OF NONPLAGIARISM .. III

ABSTRACT .. IV

ÖZET.. V

ACKNOWLEDGEMENTS... VI

LIST OF TABLES .. X

LIST OF FIGURES ... XI

LIST OF SYMBOLS AND ABBREVIATIONS ... XII

CHAPTER I.. 1

INTRODUCTION .. 1

1.1 MOTIVATION AND PROBLEM DEFINITION ... 1

1.2 THESIS ORGANIZATION .. 3

CHAPTER II .. 4

LITERATURE REVIEW AND BACKGROUND.. 4

2.1 RELATED WORKS .. 4

2.1.1 Hand-Crafted Methods ... 4

2.1.2 Deep Learning Methods ... 5

2.2 BACKGROUND ... 7

2.2.1 Artificial Neural Networks ... 9

2.2.2 Convolutional Neural Networks ... 10

2.2.2.1 Architecture of CNNs ... 12

2.2.2.1.1 Input Layer .. 12

2.2.2.1.2 Convolutional Layer .. 12

2.2.2.1.2.1 Hyperparameters of a Convolutional Layer 13

2.2.2.1.2.1.1 Number of Filters ... 13

2.2.2.1.2.1.2 Kernel Size ... 14

2.2.2.1.2.1.3 Padding... 14

2.2.2.1.2.1.4 Stride .. 14

2.2.2.1.3 Pooling Layer .. 16

viii

2.2.2.1.4 Batch Normalization .. 16

2.2.2.1.5 Fully-Connected Layer .. 16

2.2.2.1.6 Output Layer .. 17

2.2.2.2 2D CNNs .. 17

2.2.2.3 3D CNNs .. 18

2.2.3 Activation Functions .. 19

2.2.3.1 Sigmoid Activation Function .. 21

2.2.3.2 Softmax Activation Function .. 22

2.2.3.3 Hyperbolic Tangent Activation Function 22

2.2.3.4 Rectified Linear Unit Activation Function 23

2.2.3.5 Leaky ReLU .. 23

2.2.4 Backpropagation Algorithm ... 24

2.2.4.1 Gradient Descent .. 25

2.2.4.2 Minimization of the Total Error ... 26

CHAPTER III .. 30

PROPOSED MODELS.. 30

3.1 MODEL 1: 3D CNN .. 31

3.2 MODEL 2: MOVINET 3D CNN ... 34

3.2.1 Transfer Learning ... 34

3.2.2 MoViNets ... 35

3.2.2.1 MoViNet Search Space ... 35

3.2.2.2 Stream Buffers .. 36

3.2.2.3 Temporal Ensembles .. 37

CHAPTER IV ... 38

EXPERIMENTS .. 38

4.1 DATASET DESCRIPTIONS .. 38

4.1.1 Hockey Fights Dataset .. 38

4.1.2 Movies Dataset ... 39

4.1.3 RWF-2000 Dataset ... 39

4.1.4 Real-Life Violence Situations .. 39

4.2 EXPERIMENTAL SETUP .. 40

4.2.1 Libraries .. 41

4.3 EVALUATION METRICS ... 41

4.3.1 Accuracy ... 42

ix

4.3.2 Recall .. 43

4.3.3 Precision ... 43

4.3.4 F1-Score ... 43

4.4 RESULTS AND MODEL EVALUATIONS ... 44

4.4.1 3D CNN Model .. 44

4.4.2 MoViNet 3D CNN ... 45

4.5 COMPARISON OF THE PROPOSED MODELS 46

4.6 COMPARISON WITH OTHER WORKS IN LITERATURE 48

CHAPTER V .. 51

CONCLUSION... 51

REFERENCES ... 52

APPENDICES .. 59

x

LIST OF TABLES

Table 1: Accuracy, loss, recall, precision and F1-score percentages of each experiment

for the proposed 3D CNN model ... 45

Table 2: Accuracy, loss, recall, precision and F1-score percentages of each experiment

for the proposed MoViNet 3D CNN model ... 46

Table 3: Overall accuracy, loss, recall, precision and F1-score percentages for both

models, calculated by taking the average of each evaluation metric for all experiments

of each model ... 47

Table 4: Standard deviation values of accuracy, loss, recall, precision and F1-score

for both models .. 48

Table 5: Accuracy, loss, recall, precision and F1-score values of each experiment for

the proposed 3D CNN model ... 48

Table 6: Accuracy, loss, recall, precision and F1-score values of each experiment for

the proposed MoViNet 3D CNN model... 48

Table 7: Accuracy percentages of some other works in literature 50

xi

LIST OF FIGURES

Figure 1: The architecture of a basic ANN model .. 10

Figure 2: The architecture of a basic 2D CNN model .. 18

Figure 3: The architecture of a typical 3D CNN model .. 19

Figure 4: Sigmoid activation function .. 21

Figure 5: 𝑡𝑎𝑛ℎ activation function .. 22

Figure 6: ReLU activation function .. 23

Figure 7: Leaky ReLU activation function ... 24

Figure 8: The Sequential class created for the implementation of the 3D CNN 31

Figure 9: Structural layout of the proposed 3D CNN model 33

Figure 10: Model summary of the proposed 3D CNN model................................... 33

xii

LIST OF SYMBOLS AND ABBREVIATIONS

SYMBOLS

⋆ :Cross-Correlation

* :Convolution

𝜎 :Standard Deviation

𝜂 :Learning Rate

∇ :Gradient Operator

𝜕 :Partial Derivative Operator

ABBREVIATIONS

AI :Artificial Intelligence

ML :Machine Learning

BoW :Bag-of-Words

SVM :Support Vector Machine

STIP :Space-Time Interest Points

MoSIFT :Motion Scale-Invariant Feature Transform

ViF :Violent Flows

ANN :Artificial Neural Network

CNN :Convolutional Neural Network

LSTM :Long Short-Term Memory

DNN :Deep Neural Network

ConvLSTM :Convolutional Long Short-Term Memory

CPU :Central Processing Unit

GPU :Graphics Processing Unit

ReLU :Rectified Linear Unit function

BP :Backpropagation Algorithm

MoViNet :Mobile Video Network

NAS :Neural Architecture Search

SE :Squeeze-and-Excitation

xiii

CGAP :Cumulative Global Average Pooling

FLOP :Floating Point Operation

TP :True Positive

TN :True Negative

FP :False Positive

FN :False Negative

tanh :Hyperbolic Tangent Function

1

CHAPTER I

INTRODUCTION

Over the past few decades, the application of Machine Learning (ML) models

has gained significant traction across a wide range of industries and disciplines,

increasingly replacing the need for humans in certain tasks. The problem of violence

detection using automated systems is one of the many practical real-life applications

of ML. The context of this problem aims to decreace reliance on human-operated

surveillance systems, driven by the pursuit of finding more efficient and effective

alternatives to detect violence in public places. Equipping surveillance systems with

ML models for violence detection has the potential to enhance public safety. The aim

of this thesis is to contribute to the development of more efficient and accurate

computerized violence detection systems capable of being deployed in diverse real-

world scenarios by exploring benchmark ML algorithms and proposing alternative

models.

1.1 MOTIVATION AND PROBLEM DEFINITION

There has been a significant increase in the amount of public violence

worldwide in the recent years. For example, according to publicly available statistics,

violent crime rates were at their peak in 1990s and were displaying a decrease up until

2010s in the United States of America. Then especially around 2014, the rates began

to increase again, almost doubling the amount recorded just before 2014. There are

many factors believed to be contributing to the recent increase, including but not

limited to psychological and physiological effects of COVID, worldwide economic

contraction, advances in technology, political views, local and global awareness of

police brutality leading to less use of force by the police, corruptions in the justice

system, etc. These reasons apply not only to the United States, but all countries. With

the rise of public violence statistics, problems emerged about keeping public places

safe and secure. This concern led to the installation of surveillance cameras in several

public scenes.

2

Surveillance cameras are useful for monitoring public places, detecting and

identifying any anomalies such as violent behavior, which allows the authorities to

take the necessary actions. However, their effectiveness is questionable, because they

require constant manual human supervision. In other words, identifying a scene as

violent or not is solely dependent on the supervisor’s skills, carefulness and judgment.

The human decision-making process is usually slow and biased. Humans are mostly

incapable of monitoring simultaneous stimulations which would be required in the

presence of multiple cameras. Since increasing the number of people inspecting the

cameras directly increases the manpower expenses, it is not an ideal solution. By any

means, any amount of manpower is expensive overall. Moreover, humans can easily

lose focus at times, make biased or wrong predictions or decisions. Additionally, most

security cameras are not inspected constantly, only when needed. Thus, it is clear that

human dependency of surveillance systems is ineffective, impractical and highly

insufficient, especially regarding security concerns. In order to overcome the

limitations of human involvement and allow surveillance systems to detect violent acts

more effectively, researchers began developing computational systems where human

supervision would not be required. The aim is to build low-cost, computer-driven

violence detection models that can be integrated into surveillance systems which will

enable uninterrupted human-independent supervision while raising minimum amount

of false alarms.

The goal of this work is to develop a computerized model that is capable of

detecting violent behavior in videos. Violence detection refers to the act of detecting

and classifying violent, intrusive and hostile behavior present in input data. In order to

develop an extensive violence detection model, the scope of violence must be well-

defined. The extent of a violent act may vary from a two-person physical fight to a

person pointing a gun, mass shootings, home invasion, stabbing, terror attacks, etc. It

is also important to note that most surveillance systems do not have audio features. To

that end, two end-to-end, trainable ML models, 3D Convolutional Neural Networks

(CNNs), are proposed in this work. One of the models will be built from scratch, the

other model will use transfer learning with MoViNets [55] and the results will be

compared and discussed in detail. No audio features will be used, only visual video

footage. The extent of violence in this work is defined as an aggressive invasion of

personal space or a physical fight between two or more persons. It must be noted that

3

the scope of violence is neither limited to this definition nor limited to humans, but

this is the definition of violence that will be used in this work.

1.2 THESIS ORGANIZATION

This thesis is organized as follows: A literature review on automatic violence

recognition models and a detailed information on CNNs including their working

principles, designs, algorithms and mathematical overview are presented in Chapter

II. A comprehensive explanation of the proposed models is given in Chapter III. The

experimental setups, results and model evaluations of the experiments conducted for

both models are discussed in Chapter IV. An overall recap and potential future works

are presented in Chapter V, where the thesis is concluded.

4

CHAPTER II

LITERATURE REVIEW AND BACKGROUND

 In this chapter, a detailed literature review of the previously proposed violence

detection models as well as their evaluations and essential information on Deep

Learning (DL) algorithms, mainly focusing on CNNs, are presented.

2.1 RELATED WORKS

Researchers have been using computer vision algorithms for pattern

recognition tasks such as violence detection for over two decades. These models vary

from traditional hand-crafted models to modern deep learning algorithms. In this

section, a detailed literature review of both hand-crafted and DL methods for violence

detection will be presented as well as their efficiencies, accuracies and limitations.

2.1.1 Hand-Crafted Methods

Former studies on violence detection in videos generally used visual and/or

audio features to detect flame and blood [38], skin and blood [41], gunshots and

explosions using Gaussian mixture models and Hidden Markov Models [40], etc.

Later, the Bag-of-Words (BoW) procedure, often used for images, was adapted to

videos [39] and was used frequently for video classification tasks. For example, [42]

used spatio-temporal video cubes and the BoW approach for aggressive behavior

detection. [1] developed a method for verifying person identity and detecting unusual

human behavior based on the descriptors derived from Histograms of Optical Flow at

the automated Access Control Points. Their method used normalized Levenshtein

distance [43] to detect similarities between two motion sequences. A Gaussian Model

of Optical Flow was used in [6] to detect not only violence, but also the location of the

act as seen in the video. They also proposed a novel descriptor, Orientation Histogram

of Optical Flow, to differentiate between violent and non-violent behavior, which are

then fed to a linear Support Vector Machine (SVM) for classification. Their proposed

model was tested on CAVIAR [4], and reached an accuracy of 86.75%.

5

BoW framework was tested in [16] along with action descriptors Space-Time

Interest Points (STIP) [10] and Motion Scale-Invariant Feature Transform (MoSIFT)

[8]. They also created the Hockey Fight Dataset [16] and Movies Dataset [16] which

are frequently used in violence detection experiments. They reached an accuracy of

89.50%. The method developed in [18] considered statistics of how flow-vector

magnitudes change over time and these statistics are represented using the Violent

Flows (ViF) descriptor. ViF descriptors are then classified using linear SVM. The

highest accuracy they received is 82.90%. [19] also employed MoSIFT algorithm and

used Kernel Density Function to eliminate the feature noise. They reached an accuracy

of 89.05%. [20] analyzed the features of the motion vectors in each frame and between

the frames and got Region Motion Vectors descriptor. They used SVM for

classification. They also created the VVAR10 [20] dataset. Their proposed method

reached an impressive accuracy of 96.10%. ViF descriptor was used with Horn-

Schunck [17] for violence detection in [21]. Then, they applied the non-adaptive

interpolation super resolution algorithm to improve the video quality and fire Kanade-

Lucas-Tomasi face detector. They used the BOSS dataset for experiments and reached

an accuracy of 97.00%.

2.1.2 Deep Learning Methods

3-dimensional Convolutional Networks (3D ConvNets) are used in [22] for

spatio-temporal feature learning. They used the UCF101 dataset [12] for model

evaluation and reached an accuracy of 90.40%. The AlexNet Model [15] pre-trained

on the ImageNet database [15] was used in [23] as the CNN model for extracting

features. The extracted features are then aggregated using the Convolutional LSTM

(convLSTM) layer of their proposed architecture. They used Hockey Fights Dataset

[16], Movies Dataset [16] and Violent-Flows Crowd Violence Dataset [18] in their

experiments and reached an accuracy of 91.10% on the Hockey dataset and 100.00%

on the Movies dataset [16]. A modified 3D ConvNet framework was proposed in [47],

which improves the preprocessing method of 3D ConvNet. Video sequence is cut into

clips based on key frames which decreases the motion integrity loss and redundancy

caused by uniform sampling. Their method was simple yet effective, reaching

impressive accuracies of 99.62% on Hockey Fights and 99.97% on Movies datasets.

A combination of CNN and Long-Short Term Memory (LSTM) was used in [24] for

spatial feature extraction and classification, respectively. They used the Hockey

6

Dataset [16] and achieved a 98.00% accuracy. [25] used spatio-temporal features with

3D CNN for prediction of violent activity. They tested their model on three datasets

and reached 99.90% accuracy on the Movies Dataset [16]. [26] used VGG-16 [11],

pre-trained on ImageNet [15], as spatial feature extractor followed by LSTM as

temporal feature extractor and sequence of fully-connected layers for classification.

They also introduced a new dataset called Real-Life Violence Situations [26], which

they used to test their model and reached an accuracy of 88.20%.

Three ImageNet [15] models were used for feature extraction which are then

fed to an LSTM network in [27]. They created a new dataset in Bangladesh context.

They were able to reach an accuracy of 97.06%. In order to reduce feature redundancy

with no extra parameters, [28] proposed compact convolution. The proposed method

was used for image classification. A combinition of 3D CNN and SVM was used in

[48]. The network was pre-trained on the Sport-1M dataset [61] and used for feature

extraction. The output was then fed as an input to a classifier, which is a linear SVM

in the case of binary classification. [30] proposed a novel violence detection pipeline

that can be combined with 2D CNNs. They also presented a spatial attention module

called Motion Saliency Map (MSM) and a temporal attention module called Temporal

Squeeze-and-Excitation (T-SE) to improve the performance of violence detection.

They tested their models on five datasets and reached an accuracy of 100.00% the

highest and 92.00% the lowest. [29] used a combination of Xception [14], pre-trained

on the ImageNet dataset [15], and LSTM for feature extraction and classification,

respectively. They used three datasets for evaluation and their highest accuracy

recorded was 98.32%. A novel architecture of end-to-end CNN-LSTM model was

proposed in [31] that could run on low-cost Internet of Things devices. The model was

tested on two datasets and achieved an average accuracy of 73.35%.

A two-stream DL architecture is proposed in [32] leveraging Separable

Convolutional LSTM (SepConvLSTM) and pre-trained MobileNet [13]. They used

three datasets for model evaluation and the highest result they achieved was 99.50%.

An approach that combined VGG-16 [11] model pre-trained on ImageNet [15] with

ConvLSTM [18] was proposed in [33] for detecting violence in surveillance video

datasets. Their model was tested on six datasets and reached an accuracy of 100.00%

the highest and 92.40% the lowest. [34] designed a model where the well-known CNN,

ResNet50 [9], was used for feature extraction followed by ConvLSTM for detecting

anomalies. They used the UCF-Crime dataset [5] and achieved an accuracy of 81.71%.

7

A combination of 3D CNN and CNN Bidirectional LSTM (CNN-BiLSTM) was

proposed in [35]. They used three datasets for their experiments and the highest

accuracy they achieved was 94.90%. [36] proposed two methods, 3D DenseNet Fusion

OF RGB and 3D DenseNet Fusion OFnom RGB, and developed a new dataset called

AICS-violence. The highest accuracy they achieved was 97.675%. [52] proposed a U-

Net-like network that uses MobileNet V2 for feature extraction followed by an LSTM

for temporal feature extraction and classification. [53] also used a MobileNet deep

learning model for real-time violence detection in surveillance videos, which reached

96.66% accuracy.

2.2 BACKGROUND

This section provides comprehensive background information on the field of

Artificial Intelligence (AI) and the development of Artificial Neural Networks (ANN)

as well as an in-depth overview of CNNs.

AI is a branch of computer science that is concerned with developing

computational systems that are capable of performing tasks usually within the

capabilities of humans. It refers to the intelligence of machines where they are able to

experience, perceive, analyze, learn and speculate information in a way human

intelligence does, based on some form of raw data. This data can be textual, audio or

visual data. Intelligent machines are created in such a way that imitate human cognitive

abilities. AI systems can use the learned information and experiences to self-improve

their performance over time. AI can be split into two subcategories as Narrow AI and

General AI. Narrow AI, also known as Weak AI, is used in particular, focused tasks

and is the kind of AI we use in real-life applications. Digital assistants in mobile

devices, search engines like Google, self-driving vehicles, robotics and online games

played against the computer are some examples of the applications of Narrow AI. The

abilities of Narrow AI are limited to the task-at-hand and its respective domain and

these kinds of systems need to learn from thousands, even millions of labeled

information or examples. The learned knowledge usually can not be transferred to

other tasks or domains. General AI, on the other hand, is promised to perform human-

level intelligent action, have a full range of human cognitive abilities, learn from a

small number of examples as well as unstructured data and the possibility of

transferring the learned information to other tasks within the same or other domains.

However, the development of General AI remains a challenge and mostly theoretical

8

for the time being. Even though General AI is not yet applicable with the technology

we have today, Narrow AI manages to cover an impressive scope of tasks and domains.

Computer vision is a field of computer science and AI that is concerned with

enabling computers to learn low to high-level features, i.e extract information from a

given input in the form of a text, image or video. This is achieved by developing

methods and algorithms to teach computers to understand and analyze visual data,

similar to the way humans understand and interpret the same kinds of data. The input,

in the form of visual data, is processed and analyzed and a decision or prediction is

made based on the learned information. In other words, the idea behind computer

vision algorithms is to build computational models that are able to perform tasks that

the human visual system can do at a human-level accuracy and precision. Computer

vision can be divided into specific domains such as pattern recognition, image

reconstruction, object detection, motion estimation, 3D reconstruction, etc. It was

developed a few years after the concept of AI emerged. Although these disciplines

have been around for over half a century, the recent technological advancements and

the availability of an enormous amount of data have certainly affected the development

of computer vision systems positively. Computer vision, overall AI, is now studied

and applied in a wide range of fields including medicine, engineering, economics, etc.

Machine learning (ML), a branch of AI, is a broad field of study concerned

with understanding and building models that are able to take an input of some form,

extract high-dimensional information from the input, learn from the extracted features

and make predictions or decisions based on the learned information. Similar to the

learning process humans go through, they learn from data and improve their

performance accordingly. ML algorithms are commonly used for imitating human

activities. At their core, ML algorithms are mathematical functions that represent the

relationship between different features of data. Like any mathematical function, they

map certain variables given a dataset, to a target variable. For example, in the case of

an image classification model, the input images are mapped, thus classified, to their

respective labels. Therefore, learning algorithms are also mathematical functions with

the purpose of finding an optimizing function through the training process with respect

to a certain set of parameters which minimizes loss over a given dataset.

9

2.2.1 Artificial Neural Networks

There are billions of neurons in the biological brain that allows for the

connection of interaction and the resulting behavior. The most important distinction of

the animal brain is its ability to learn. Animals learn from patterns, which can be

experienced through vision, hearing, touch, taste or smell. All animals possess the

ability to leverage learning, albeit minimum amounts, as one of the most primal

survival skills. By all means, this ability is far more advanced in human brains.

Humans can learn to talk, remember faces they have seen, process and memorize

information, etc. The learning taking place in the brain is executed by densely

interconnected neural networks. Neurons, the information messengers of the brain,

communicate by sending electrical and chemical signals through the nervous system.

ANNs are computational processing systems loosely inspired by the biological

neural networks. In comparison with the biological brain morphology, ANNs have a

small number of hundreds or thousands of processor units [58]. They consist of

artificial neurons, also called nodes, which are interconnected and are able to process

inputs and transmit signals to other neurons. The connection of neurons are called

edges, resembling synapses in the biological brain. Neurons and edges usually have a

preassigned weight, which is updated in the process of learning. In this context,

learning refers to the process of hidden layers making decisions or predictions based

on the output of the previous layers. Artificial neurons are mathematical functions that

are used to calculate the weighted sum of the inputs and give the output in the form of

an activation map. Activation maps specify the significant features of the input. In

other words, these neurons collaborate in a distributed fashion to collectively acquire

knowledge about features and patterns from the input in order to optimize the final

output [37].

The basic architecture of an ANN consists of an input layer, one or more hidden

layers and an output layer, where layers are composed of artificial nodes. In a fully-

connected ANN, as the name suggests, each node within a layer is connected to every

node in the preceding and subsequent layers. The diagram of a basic ANN is given in

Figure 1. The size and computational complexity of ANNs are relatively small, thus

they can be implemented on a Central Processing Units (CPUs), which is the main

processor of any computer capable of executing arithmetic, logic and standard

input/output operations.

10

Figure 1: The architecture of a basic ANN model

ANNs work well with simple tasks such as handwritten digit classification, like

the MNIST database [54]. So, what would happen if an ANN was given a task with

higher complexity? Intuitively, the number of neurons or layers can be increased

accordingly in order to work with more difficult data. However, as the number of

neurons and layers increase, so do the number of mathematical operations and

therefore the complexity of the network. The model would require higher resources

such as computational power, time and memory to store the data, which are usually

limited. Also, as the number of parameters increase, the network would be more prone

to overfitting. As the name suggests, overfitting occurs when a network classifies the

training data too well and fails to model data it has not been trained on, in other words,

is unable to learn effectively. Overfitting is a common and important issue for all ML

models and will be further explained later in this chapter. So, if the number of neurons

or layers in an ANN were simply increased, overfitting would be difficult to reduce.

Thus, more effective models with fewer parameters were needed for more difficult

tasks.

2.2.2 Convolutional Neural Networks

Deep Neural Networks (DNNs) are a type of ANNs, composed of multiple

hidden layers. The depth of a neural network refers to the number of hidden layers of

the network. DL, a subset of ML, refers to the study of DNNs, which are ANNs at their

core, only with a higher number of hidden layers. The basic building blocks of DNNs

are the same as ANNs, which are nodes, edges, weights, biases and non-linear

11

functions. They can be trained using the same training algorithms as ANNs. DNNs are

capable of processing and modeling non-linear relationships with higher complexities

in comparison to ANNs. As the number of layers, therefore number and complexity of

mathematical operations, increases, higher computational power is demanded. To that

end, they can be implemented on both CPUs and Graphics Processing Units (GPUs).

However, due to their high computational complexity, their training on CPUs take

longer than ANNs. Although GPUs were not specifically designed for the

implementation of DNNs, they are a favorable substitution for CPUs. DNNs are more

capable of discovering multiple levels of representation and extracting higher-level

features than simple ANNs. Low-level features can be considered as lines and edges

whereas high-level features as numbers and faces. Overall, DNNs are usually preferred

to ANNs for pattern recognition tasks involving complex, high-dimensional features.

CNNs were first developed and introduced in the 1980s by Yann LeCun. CNNs

are a special type of DNNs in the DL field generally used in image or video pattern

recognition tasks. The emerging of CNNs revolutionized the analysis of high-

dimensional data existing in many different forms, such as text, audio, image and

video, which are generally difficult to store and manage. CNNs are structurally similar

to DNNs, but they differ from DNNs by the use of the convolution operation. CNNs

are capable of learning to optimize the kernels, thus they use less pre-processing than

other traditional algorithms. CNNs are a type of feed-forward neural networks, which

means the information only moves in one direction, forward, starting from the input

nodes, through the hidden nodes and to the output nodes. They use supervised learning,

which is when pre-labelled inputs are leveraged to train algorithms. The goal of

supervised learning is to reduce the overall classification error of the network [37].

Most image-driven pattern recognition models use supervised learning. CNNs are rate-

based neural networks, which means that they are suitable for implementation on

conventional CPUs with substantial numerical processing capabilities. However, CNN

algorithms have grown more intricate and thus require more powerful computing

platforms such as GPUs [2].

Digital images are stored as 2-dimensional pixel matrices. The dimension of an

image is represented by 𝐻 × 𝑊 where 𝐻 denotes the height dimension and 𝑊 denotes

the width dimension. 𝐻 is equal to the number of pixels across the height and 𝑊 is

equal to the number of pixels across the width of the image. For example, in grayscale

images, which are black and white images, the pixels are assigned numerical values

12

ranging from 0-255 which represent the intensity of the pixels. 0 denotes black, 255

denotes white and the numbers in between whiten in shade starting from 0 as the value

converges to 255. Another example of images is a color image, called RGB in

literature, which is comprised of a matrix of pixels in three dimensions. For RGB

images, a third dimension of depth is added.

2.2.2.1 Architecture of CNNs

A typical CNN consists of three types of layers, which are convolutional layers,

pooling layers and fully-connected layers. The input of a CNN undergoes several

layers of floating point operations and matrix computations. Since CNNs are a type of

fully-connected neural networks, each node in a layer is connected to each of the nodes

in the former and latter layers. When the CNN is fed an input image in the form of a

number matrix, each layer of the CNN generates diverse activation maps. These

activation maps specify the significant features of the input image. Earlier layers focus

on simple features, such as colors and edges. As the data proceeds through the latter

layers of the network, it begins to recognize more complex features of the data until it

eventually makes a prediction [3]. Each neuron in a CNN architecture usually takes

the input in the form of a matrix, takes the product of their values and their relative

assigned weights, adds them up and gives them as input to their corresponding

activation function. The output of each layer is the input of the subsequent layer.

2.2.2.1.1 Input Layer

The input layer is trivially the first layer of a CNN. In the case of images, the

pixel matrix of the input image is fed in the input layer.

2.2.2.1.2 Convolutional Layer

The convolutional layer is the first layer in a CNN architecture where extraction

of features and where most of the computation of the model occurs. A convolutional

layer demands three elements, which are an input image, a filter, and an activation

(feature) map. As the name suggests, this layer performs convolution. In Mathematics,

convolution operation shows how the shape of one function is influenced by another

function. It takes two functions as input and produces a third function as output. In

neural networks, convolution operation refers to the act of sliding a matrix called a

kernel or a filter of a specified size 𝐾 × 𝐾 with learnable weights across the input

13

image, which is also a matrix as mentioned above. The kernel is slid across by a

predefined stride, which is the step size for each step of the sliding action, and this

process is repeated until the whole image is swept by the kernel. The scalar (dot)

product is calculated between the kernel and the parts of the input image based on the

size of the kernel. So, the output of a convolutional layer is the weighted sum of input

and weights, also known as activation map. The kernel must be rotated 180°

counterclockwise to perform convolution on images since convolution is implemented

using a digital filter. If the kernel is used without being rotated first, the process is

called cross-correlation. In other words, convolution is the same operation as cross-

correlation with the key difference of rotating the kernel 180° counterclockwise. This

can be further explained mathematically as Equation 2.1 where ∗ represents

convolution and ⋆ represents cross-correlation.

𝑓 ∗ 𝑔 = 𝑓 ⋆ 𝑟𝑜𝑡180(𝑘) (2.1)

2.2.2.1.2.1 Hyperparameters of a Convolutional Layer

There are certain variables that determine the structure of a neural network and

how it is trained. These variables are called hyperparameters. Hyperparameters are

tuned independently from the model parameters and are usually defined before the

learning process begins [44]. The hyperparameters of a convolutional layer are number

of filters, kernel size, padding and stride.

2.2.2.1.2.1.1 Number of Filters

Number of filters in a convolutional layer refers to the depth of the layer. It

determines how many distinct features the model can learn to detect from the input. In

other words, these learnable filters will learn to activate for different features of the

input. It is set based on several factors such as the complexity of the model or data and

the task-at-hand. It is usually defined through fine-tuning or experimentation.

Choosing a too small value might result in underfitting, which means the model would

fail to catch certain patterns in the input. On the other hand, choosing a too large value

might result in overfitting, which means the model learns the training data too well

and therefore fails to generalize to other data.

14

2.2.2.1.2.1.2 Kernel Size

Kernel size, also called receptive field or filter size, refers to the spatial

dimensions of the kernels that will be used for convolution operations. In 2D CNNs,

kernel size is comprised of spatial dimensions width and height, because the kernel

moves and convolves in 2 dimensions. However, in 3D CNNs, kernel size is comprised

of depth, width and height, because the kernel moves and convolves in 3 dimensions.

Small kernel sizes are used for local features and large kernel sizes are used to capture

global features. The increase in the size of the kernel results in an increase in the

computational complexity of the model.

2.2.2.1.2.1.3 Padding

Convolution results in a shrinkage in the dimensions of the input data. This

may cause important spatial information near the edges to be lost after convolution. In

order to prevent it, padding is applied on the input data, which refers to the operation

of adding a border of zeros around the input before convolution occurs. With the use

of padding, the dimensions of the input is preserved and the output feature maps are

prevented from being smaller than input data. There are two main types of padding

used in CNNs, which are same padding and valid padding. Same padding is when

zeros are added around the borders of the input data. Valid padding refers to no

padding being applied to the input. The type of padding to be used can be determined

based on the complexity of the data being used.

2.2.2.1.2.1.4 Stride

The stride hyperparameter is used to control the step size of the kernel. In other

words, it determines the number of spatial units (pixels) the kernel will be slid

horizontally and vertically at each step during convolution. A small stride results in a

larger feature map with preserved spatial dimensions whereas a large stride results in

a smaller feature map with reduced spatial dimensions. Intuitively, smaller stride can

be used when working with immensely detailed data when details are more important

than reducing computational cost of the model. However, if spatial information loss to

some extent is not crucial to the task-at-hand, a larger stride can be used instead, in

order to decrease the number of matrix operations and thus reduce the model

complexity, size and run-time.

15

The output of a convolutional layer depends on the size of the input image, size

of the kernel, stride and padding. For a grayscale image of dimensions 𝐻 × 𝑊 swept

with a kernel of dimensions 𝐾 × 𝐾, with stride 𝑆 and padding 𝑃, the output of the

convolutional layer is calculated as given in Equation 2.2 where 𝐻′ and 𝑊′ are the

height and width of the output, respectively. The output dimensions are expected to be

integers, and if not, it means that stride was not defined correctly.

𝐻′ =
𝐻−𝐾+2𝑃

𝑆
+ 1

𝑊′ =
𝑊−𝐾+2𝑃

𝑆
+ 1 (2.2)

For example, assume that a 4 × 4 input matrix is convolved with a 2 × 2 kernel

with stride of 1 and no padding. The visualisation of the operation is given in Equation

2.3. The dimensions of the resulting matrix is 3 × 3, which can be determined using

Equation 2.2. The scalar product between the receptive field of the input and the kernel

can be calculated using Equation 2.4 where 𝑎𝑖,𝑗 represents the element of the resulting

matrix in the 𝑖th row and 𝑗th column starting from index 0 up to index 2.

 [

0 1 2 1
3 2 2 0
2 1 1 1
0 0 1 3

] ∗ [
1 0
0 1

] = [
2 3 2
4 3 3
2 2 4

] (2.3)

𝑎0,0 = 0(1) + 1(0) + 3(0) + 2(1) = 2

𝑎0,1 = 1(1) + 2(0) + 2(0) + 2(1) = 3

𝑎0,2 = 2(1) + 1(0) + 2(0) + 0(1) = 2

𝑎1,0 = 3(1) + 2(0) + 2(0) + 1(1) = 4

 𝑎1,1 = 2(1) + 2(0) + 1(0) + 1(1) = 3 (2.4)

𝑎1,2 = 2(1) + 0(0) + 1(0) + 1(1) = 3

𝑎2,0 = 2(1) + 1(0) + 0(0) + 0(1) = 2

𝑎2,1 = 1(1) + 1(0) + 0(0) + 1(1) = 2

𝑎2,2 = 1(1) + 1(0) + 1(0) + 3(1) = 4

16

2.2.2.1.3 Pooling Layer

In a typical CNN architecture, a convolutional layer is usually followed by a

pooling layer. Pooling operation is similar to convolution. Pooling groups up the pixels

in the input image and filters them down to a subset. A kernel is slid over the output

of the convolutional layer, which is a feature map, preceding the pooling layer. The

kernel calculates an output on the receptive field, which is the region in the image that

a specific feature is looking at. The aim of the pooling layers is to further reduce the

computational complexity and cost of the presented model. The pooling layers aim to

decrease the size of the convolved feature map by decreasing the connections between

layers. Pooling layers are also used to summarize the features present in a region of

the feature map produced by a convolutional layer. This is done for the purpose of

down-sampling.

There are different types of pooling, but the type usually used for image or

video classification tasks is max pooling. In max pooling, the kernel picks the

maximum pixel value in the receptive field. For example, a kernel of size 2 × 2, the

receptive field has 4 pixel values, and the maximum value of those 4 values is selected.

The hyperparameters of the pooling layer are kernel size and stride, which refer to the

spatial dimensions of the kernel that will be used in the pooling operation and step size

of the kernel movements, respectively. Together, they determine the amount of down-

sampling that will be performed in the layer.

2.2.2.1.4 Batch Normalization

A normalization layer is optional in CNNs. Normalization is commonly used

for standardizing raw data to downscale the range in which the data exists. It increases

the learning rate and convergence speed of the model, prevents model divergence and

thus, makes it easier to train [44]. Batch normalization [50] is a type of normalization.

Instead of in the raw data, batch normalization is done between the layers of the model

along training mini-batches and can be added as a layer itself. Batch normalization

allows us to use much higher learning rates and be less careful about initialization, and

in some cases eliminates the need for Dropout [50].

2.2.2.1.5 Fully-Connected Layer

The Fully-Connected layer consists of neurons where each neuron receives

input from all the neurons in the previous layer, also referred to as the Dense layer.

17

There is usually a Flatten layer preceding the Dense layer, because neural networks

accept the input as a 1-dimensional linear vectors. Flatten layer, as the name suggests,

flattens the output matrix of the preceding layer into a 1D vector. After the features

are extracted in previous layers, they are classified in the Dense layer based on the

output of the convolutional layers.

2.2.2.1.6 Output Layer

The output layer is the last layer of the network. It produces the desired

prediction or classification of the network.

2.2.2.2 2D CNNs

The term CNN usually refers to the standard type, which is 2 dimensional

CNN. It is called 2D, because the kernel slides in two dimensions on the data. Images

only have spatial information, which refers to the height and width dimensions. 2D

CNNs are generally applied to image data and they are usually difficult to be

outperformed in image classification tasks. 2D convolution is carried out to extract

features from local neighborhood on feature maps in the previous layer. After a bias

term is added, the result is passed through a sigmoid function [49]. Mathematical

representation of the 2D convolution operation is given in Equation 2.5, where 𝐾 is

the convolution kernel, 𝐴 is the convolution matrix and 𝐵 is the resulting matrix [51].

𝐵(𝑖, 𝑗) = ∑ ∑ 𝐾(𝑚, 𝑛) ∗ 𝐴(𝑖 − 𝑚, 𝑗 − 𝑛)

𝑁

𝑛=0

𝑀

𝑚=0

The formal equation for the value of a unit at position (𝑥, 𝑦) in the 𝑗th layer

denoted by 𝑣𝑖𝑗
𝑥𝑦

 was defined by [49], which is given in Equation 2.6, where tanℎ(·) is

the hyperbolic tangent function, 𝑏𝑖𝑗 is the bias term for the current feature map, 𝑚 is

the index over the set of feature maps in the (𝑖 − 1)th layer are connected to the feature

map at the current step, 𝑤𝑖𝑗𝑚
𝑝𝑞

 is the value at the position (𝑝, 𝑞) of the kernel which is

connected to the 𝑘th feature map, and 𝑃𝑖 is the height and 𝑄𝑖 is the width dimensions

of the kernel. A basic 2D CNN architecture is given in Figure 2.

(2.5)

18

𝑣𝑖𝑗
𝑥𝑦

= tanh (𝑏𝑖𝑗 + ∑ ∑ ∑ 𝑤𝑖𝑗𝑚
𝑝𝑞 𝑣(𝑖−1)𝑚

(𝑥+𝑝)(𝑦+𝑞)

𝑄𝑖−1

𝑞=0

𝑃𝑖−1

𝑝=0𝑚

Figure 2: The architecture of a basic 2D CNN model

2.2.2.3 3D CNNs

Although 2D CNNs achieve outstanding results with image data, they are

limited to dealing with spatial information. So, a 2D CNN is insufficient when it comes

to working with video data. The definition of a video sequence is a series of images

shown in rapid succession to give the impression of continuous motion [47]. In other

words, videos are essentially consecutive images, which have spatial features.

However, there is also motion information, also called temporal information, present

between adjacent frames of a video, which would simply be lost if a 2D CNN is used

on video data. Changes in successive frames have crucial effects on the results of a

video classification problem. In order to deal with the temporal features that happen

over time in a video, a third dimension of time must be added to a 2D CNN.

3D convolution is the same operation as 2D convolution, except the kernel

slides in 3 dimensions in 3D convolutions as opposed to 2 dimensions in 2D

convolutions. 3D convolution is obtained using a 3D kernel on the cube formed by

stacking adjacent frames together [48]. Thus, movement information is acquired from

consecutive frames. So, by using 3D convolution and 3D pooling, temporal

information of the input video remains well preserved [47]. Mathematical

representation of 3D convolution is similar to that of 2D convolution and is given in

Equation 2.7, where 𝐾 is the convolution kernel, 𝐴 is the convolution matrix and 𝐵 is

the resulting matrix [51].

(2.6)

19

𝐵(𝑖, 𝑗, 𝑟) = ∑ ∑ ∑𝐾(𝑚, 𝑛, 𝑡) ∗ 𝐴(𝑖 − 𝑚, 𝑗 − 𝑛, 𝑟 − 𝑡)

𝑇

𝑡=0

𝑁

𝑛=0

𝑀

𝑚=0

The formal equation, again defined by [49], for the value of a unit at position

(𝑥, 𝑦, 𝑧) in the 𝑗th feature map in the 𝑖th layer denoted by 𝑣𝑖𝑗
𝑥𝑦𝑧

 , is given in Equation

2.8 where tanℎ(·) is the hyperbolic tangent function, 𝑏𝑖𝑗 is the bias term for the current

feature map, 𝑚 is the index over the set of feature maps in the (𝑖 − 1)th layer which

are connected to the feature map at the current step, 𝑤𝑖𝑗𝑚
𝑝𝑞𝑟

 is the (𝑝, 𝑞, 𝑟)th value of the

kernel which is connected to the 𝑚th feature map in the preceding layer, 𝑃𝑖 is the height

and 𝑄𝑖 is the width of the kernel, and 𝑅𝑖 is the size of the 3D kernel across the temporal

axis. By this construction, the feature maps in the convolution layer are connected to

multiple contiguous frames in the previous layer, thereby capturing motion

information [49]. A typical 3D CNN architecture with two output classes is given in

Figure 3.

𝑣𝑖𝑗
𝑥𝑦𝑧

= tanh (𝑏𝑖𝑗 + ∑ ∑ ∑ ∑ 𝑤𝑖𝑗𝑚
𝑝𝑞𝑟𝑣(𝑖−1)𝑚

(𝑥+𝑝)(𝑦+𝑞)(𝑧+𝑟)

𝑅𝑖−1

𝑟=0

𝑄𝑖−1

𝑞=0

𝑃𝑖−1

𝑝=0𝑚

Figure 3: The architecture of a typical 3D CNN model

2.2.3 Activation Functions

Activation functions are mathematical functions used in ANNs that determine

whether a neuron in the network structure should be activated or not, and if activated,

(2.7)

(2.8)

20

to what degree. They are applied to each neuron in the hidden layers of the network

after the weighted sum of the set of input values is calculated to get the output values

of the layer. In a nutshell, they are used to transform input signals to output signals

which are to be fed to the subsequent layer as input. Any perceptron, a simple artificial

neuron that has one input layer and one output layer, contains a summation function

and an activation function. The inputs fed to a perceptron are processed by the

summation function followed by the activation function to give the output. There are

different types of activation functions, each serving a specific purpose. They must be

chosen carefully based on the task-at-hand. Choosing the most suitable activation

function directly increases the prediction accuracy of a network, which is almost solely

dependent on the type of activation function used. One common feature of all

activation functions is that they are differentiable functions, which allows the

Backpropagation (BP) algorithm to be implemented used in the training phase of

neural networks.

Activation functions can be either linear or non-linear functions. In

mathematics, a linear function is defined as a function that has a linear relationship

between the input and output variables. In other words, the rate of change of the input

and output is constant. The simplest form of a linear function is 𝑦 = 𝑚𝑥 + 𝑛 where 𝑥

and 𝑦 are the independent and dependent variables, respectively and 𝑚, 𝑛 are

constants. The degree of the independent variable, 𝑥, is always 1 and the graph of a

linear function is always a straight line. If a linear function is used as an activation

function in a neural network, the network can only adapt to the linear changes of the

input, because their boundary is linear. However, since neural networks usually deal

with real-world problems which possess ample amounts of non-linear characteristics,

they must be able to learn about erroneous data [58]. This can be achieved by using

non-linear functions, where the relationship between the input and output variables is

not linear and there is at least one curvature when graphed. Thus, non-linear activation

functions are generally used instead of linear activation functions in order to add non-

linearity to the output of the layers, making the network capable of modelling complex,

high-dimensional and non-linear mappings between the input and output. The most

commonly used types of activation functions are given below.

21

2.2.3.1 Sigmoid Activation Function

The sigmoid function, also called the logistic function, is a continuously

differentiable, smooth, S-shaped non-linear activation function. The equation of the

sigmoid function is given in Equation 2.9 and its graph is given in Figure 4. Sigmoid

function converts a vector of real input values to a vector of their normalized values in

the inclusive interval [0, 1]. The domain of sigmoid is the set of real numbers and the

range is [0, 1]. Similar to the other types of activation functions, the sigmoid function

is also differentiable, so the slope of the function can be computed at any given point.

The function is monotonic, which refers to any function’s strictly non-increasing or

non-decreasing nature. In the sigmoid function’s case, it is strictly non-decreasing.

However, while the sigmoid function is monotonic, its derivative is not. Sigmoid is

commonly used in models where the probability of the inputs needs to be predicted,

since probability of any event occurring is conveniently between 0 and 1, where 0

means there is no possibility of the event happening and 1 means it will definitely

happen. These probabilistic values can be treated as the probabilities of the data points

for a particular class, thus sigmoid can intuitively be used in binary classification tasks

where the output is two classes. However, due to the vanishing gradient problem,

where the gradient converges to zero, sigmoid is usually avoided, because it makes

training neural networks difficult.

𝑓(𝑥) =
1

1 + 𝑒𝑥

Figure 4: Sigmoid activation function

(2.9)

22

2.2.3.2 Softmax Activation Function

The softmax function is a more generalized sigmoid activation function, which

is used in classification tasks consisting of multiple output classes, unlike the sigmoid

function which is typically used for binary classification. Similar to the sigmoid

function, softmax takes the input as a vector of real numbers and converts the values

to a probability distribution. The output of softmax is also a vector of the same length

and each element in the output vector corresponds to the probability of the input

belonging to a specific class. Softmax function is also continuously differentiable. The

equation of the sigmoid function is given in Equation 2.10.

𝑓(𝑥)𝑖 =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑗𝐽
𝑗=1

2.2.3.3 Hyperbolic Tangent Activation Function

Similar to the sigmoid function, the hyperbolic tangent (𝑡𝑎𝑛ℎ) function is also

a continuously differentiable, smooth, S-shaped curve. However, unlike the sigmoid

function, it ranges from -1 to 1, inclusive. The advantage 𝑡𝑎𝑛ℎ has against the sigmoid

function is that the negative input values will be mapped strongly negative and the

input values that are zero will be mapped in the neighborhood of zero in the graph.

𝑡𝑎𝑛ℎ is also monotonic, whereas its derivative is not monotonic and is mostly used for

classification tasks between two classes. The equation of tanh is given in Equation

2.11 and its graph is given in Figure 5.

𝑓(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
=

2

1 + 𝑒−𝑥
= 2𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) − 1

Figure 5: 𝑡𝑎𝑛ℎ activation function

(2.11)

(2.10)

23

2.2.3.4 Rectified Linear Unit Activation Function

Rectified Linearu Unit (ReLU) is the default activation function for several

types of neural networks, because it makes training easier and improves the

performance of the network. If the value of 𝑥 is negative, 𝑓(𝑥) is equal to 0. If the value

of 𝑥 is positive, 𝑓(𝑥) is equal to that positive number. In other words, if 𝑥 is a positive

number, the function keeps it as it is, and if it is a negative number, changes it to zero.

Thus, its range is the interval [0, ∞). The equation of ReLU is given in Equation 2.12.

As given in Figure 6, ReLU is half rectified from the bottom. The ReLU function and

its derivative are both monotonic. One disadvantage it has is that since all negative

values immediately become 0, the model’s ability to fit and train data properly

decreases. This is called the dying ReLU problem.

𝑓(𝑥) = {
𝑥, 𝑥 > 0
0, 𝑥 < 0

Figure 6: ReLU activation function

2.2.3.5 Leaky ReLU

Leaky ReLU was introduced to overcome the dying ReLU problem. The leak

increases the range of the ReLU function. If the value of the input number is positive,

the output is that same number. If the input number is negative, the output is the

product of a small constant number 𝑎 and the input itself. The constant number a is

usually 0.01. If a is not equal to 0.01, then it is called a Randomized ReLU. This way,

the range of Leaky ReLU is ±∞. Leaky and Randomized ReLU functions are both

monotonic, as well as their derivatives. The equation of Leaky ReLU is given in

Equation 2.13 and its graph is given in Figure 7.

(2.12)

(2.13)

24

𝑓(𝑥) = {
𝑥, 𝑥 > 0

𝑎𝑥, 𝑥 < 0

Figure 7: Leaky ReLU activation function

2.2.4 Backpropagation Algorithm

The BP algorithm is an iterative algorithm commonly used for training

feedforward ANNs. An input vector representing the states of the input units is fed to

the network. States of the input units in this context refers to the activation values of

the input units. For example, when working with image data, these input units usually

represent the pixel values of the input image. The state of the input units changes

iteratively during the forward pass of the network. Forward pass refers to the process

of passing the input through the layers of the network where each layer performs a

specific operation on the input to transform it in a way that can be passed to the

subsequent layer so that lastly, the output layer can generate the desired predictions or

decisions based on the transformed input. As the input units are passed through the

hidden layers, the states of these units are changed in accordance with Equations 2.14

and 2.15, as presented in the original paper [59]. In Equation 2.14, 𝑥𝑗 is a linear

function of the outputs, 𝑦𝑗, of the units connected to unit 𝑗 and of the weights, 𝑤𝑗𝑖, on

these edges. At this point, a bias term can be added to Equation 2.14, which is a

learnable parameter that improves the versatility of the network by allowing it to learn

a distinct bias for each neuron. If a bias term is added, Equation 2.14 becomes Equation

2.16.

𝑥𝑗 = ∑ 𝑦𝑖𝑤𝑗𝑖

𝑖

𝑦𝑗 =
1

1 + 𝑒−𝑥𝑗

(2.14)

(2.15)

25

𝑥𝑗 = ∑(𝑦𝑖𝑤𝑗𝑖 + 𝑏𝑖)

𝑖

In the case of having a fixed, finite number of input-output cases, the total error,

𝐸, can be computed using Equation 2.14, by comparing the actual and desired output

vectors for each case [59]. Total error is given in Equation 2.17, where 𝑐 is an index

over input-output cases, 𝑗 is an index over output units, 𝑦 is the actual state of an output

unit and 𝑑 is its desired state. In order to optimize the network, the total error must be

minimized. The minimization of the total error is achieved using the gradient descent

algorithm.

𝐸 =
1

2
∑∑(𝑦𝑗,𝑐 − 𝑑𝑗,𝑐)

2

𝑗𝑐

2.2.4.1 Gradient Descent

Gradient descent is an optimization algorithm commonly used in training

neural networks as well as other ML and non-ML models. The goal of neural networks

is to update the model parameters with each iteration in order to minimize the loss

function, which increases the network’s ability to make accurate predictions. Loss

function is a mathematical function that measures the difference between the predicted

and actual output of a network. Although loss function is similar to the total error, they

are not the same, but closely related. The total error is used on the training set to

measure the overall performance of the network, whereas the loss function is used to

measure the performance of the network on individual training samples. When a neural

network is in its training phase, the goal is to minimize the total error by updating the

weights and biases of the network using optimization algorithms like gradient descent.

Gradient descent can be applied to all differentiable and convex functions. A

function is called differentiable if the derivatives exist for all points in its domain. A

function is called a convex function if a line segment can be drawn between any two

points, 𝑥1, 𝑥2 in its domain, which does not cross the function at any point, thus

staying on the inside of the function. This can be expressed mathematically as Equation

2.18, where 𝜆 is the point’s location whose value is between 0 and 1. The convex nature

of a function can also be determined by computing its second derivative with respect

(2.16)

(2.17)

26

to the independent variable. If the second derivative is greater than zero for all points

in its domain, then the function is called a convex function.

𝑓(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≤ 𝜆𝑓(𝑥1) + (1 − 𝜆)𝑓(𝑥2)

Gradient is the slope of a curve at a given point. When the function has only

one independent variable, the slope of the function is simply the first derivative of the

function at the given point. When the function has two or more independent variables,

the slope is a vector of the function’s partial derivatives with respect to each

independent variable, along each main axis, which is called gradient. The gradient of

a function with 𝑛 independent variables at a given point 𝑡 is given in the Equation 2.19.

∇𝑓(𝑡) =

[

𝜕𝑓

𝜕𝑥1
⁄

𝜕𝑓
𝜕𝑥2

⁄

⋮
𝜕𝑓

𝜕𝑥𝑛
⁄]

Gradient descent optimization algorithm uses the gradient at a particular

position to compute the next position. The initial position is iteratively scaled by a

hyperparameter called the learning rate and the scaled position is subtracted from the

initial position. This step is carried out iteratively. This process can be expressed

mathematically as Equation 2.20, where 𝜂 is the learning rate.

𝑝𝑛+1 = 𝑝𝑛 − 𝜂∇𝑓(𝑝𝑛)

2.2.4.2 Minimization of the Total Error

The backward pass, also called backpropagation, process begins with the

computation of the partial derivative of 𝐸, given in Equation 2.17 with respect to each

output unit, 𝜕𝐸
𝜕𝑦⁄ . The summation operator is a linear operator, which means it can

be differentiated term-by-term, where each term is a particular case, 𝑐. Differentiating

Equation 2.17 with respect to 𝑦𝑗 gives:

(2.18)

(2.19)

(2.20)

(2.21)

27

𝜕𝐸

𝜕𝑦𝑗
= 𝑦𝑗 − 𝑑𝑗

In order to compute 𝜕𝐸
𝜕𝑥⁄ , the Leibniz Chain Rule must be applied, which is

used when a function 𝑦 is a differentiable function of a function 𝑡 and 𝑡 is a

differentiable function of a function x. Applying the Chain Rule to Equation 2.17,

gives:

𝜕𝐸

𝜕𝑥𝑗
=

𝜕𝐸

𝜕𝑦𝑗
.
𝜕𝑦𝑗

𝜕𝑥𝑗

The term
𝑑𝑦𝑗

𝑑𝑥𝑗
⁄ can be computed by differentiating Equation 2.15 with

respect to 𝑥𝑗:

𝑦𝑗 = (1 + 𝑒−𝑥𝑗)−1

𝑑𝑦𝑗

𝑑𝑥𝑗
= −(1 + 𝑒−𝑥𝑗)−2. (−𝑒−𝑥𝑗)

 =
−𝑒−𝑥𝑗

(1 + 𝑒−𝑥𝑗)2

 =

1
𝑦𝑗 − 1⁄

(1 𝑦𝑗
⁄)

2

 = 𝑦𝑗 − 𝑦𝑗
2

 = 𝑦𝑗(1 − 𝑦𝑗)

 Substituting the result obtained from Equation 2.23 into Equation 2.22, we get:

𝜕𝐸

𝜕𝑥𝑗
=

𝜕𝐸

𝜕𝑦𝑗
. 𝑦𝑗(1 − 𝑦𝑗)

Taking the partial derivative of the total error with respect to 𝑥𝑗 allows us to

understand how a change in the total input 𝑥 to an output unit will affect the total error

[59]. Additionally, the total input is a linear function of the states, which is in other

(2.22)

(2.24)

(2.23)

28

words the activation values, of the previous layers, and the weights of the edges, which

is apparent in Equation 2.14. Similarly, we can differentiate the total error with respect

to these states, 𝑦𝑗, and weights, 𝑤𝑗𝑖, in order to understand how total error is affected

with changes to 𝑦𝑗 and 𝑤𝑗𝑖 . Since 𝑥𝑗 is a function of 𝑦𝑗 and 𝑤𝑗𝑖, the Chain Rule must

be applied to compute 𝜕𝐸
𝜕𝑦𝑖

⁄ and 𝜕𝐸
𝜕𝑤𝑗𝑖

⁄ . Equation 2.25 is the partial derivative for

a weight 𝑤𝑗𝑖 from 𝑖 to 𝑗 . Equation 2.26 represents how the effect of 𝑖 on 𝑗 changes the

total error for the output of the 𝑖th unit.

𝜕𝐸

𝜕𝑤𝑗𝑖
=

𝜕𝐸

𝜕𝑥𝑗
.
𝜕𝑥𝑗

𝜕𝑤𝑗𝑖
=

𝜕𝐸

𝜕𝑥𝑗
. 𝑦𝑗

𝜕𝐸

𝜕𝑦𝑖
=

𝜕𝐸

𝜕𝑥𝑗
.
𝜕𝑥𝑗

𝜕𝑦𝑖
=

𝜕𝐸

𝜕𝑥𝑗
. 𝑤𝑗𝑖 = ∑

𝜕𝐸

𝜕𝑥𝑗
.

𝑗

𝑤𝑗𝑖

𝜕𝐸
𝜕𝑦⁄ can be computed for any unit in the penultimate layer if 𝜕𝐸

𝜕𝑦⁄ is

given for all units in the last layer. All layers in a network can be swept repeating these

computations, starting from the penultimate layer to the earlier layers. 𝜕𝐸
𝜕𝑤𝑗𝑖

⁄ can

also be calculated for the weights. This is, as the name suggests, the backward pass

process. The weights can either be updated after each input-output case or after all

cases are swept using gradient descent by a particular learning rate, as given in

Equation 2.20.

In ML models, including CNNs, an epoch, which can be thought of as an

iteration, is the operation of sweeping the entire training set to completion during

training. In an epoch, all training samples are processed once, predictions are

determined and compared to the actual labels and model parameters, which are weights

and biases, are updated based on the computed loss value. The aim is to iteratively

adjust the model parameters so that the loss function can be minimised and the model

performance can be improved. Models typically have multiple epochs for training. The

number of epochs is a hyperparameter which is set manually before training, which

refers to the number of times the training set will be processed by the model.

Determining the number of epochs for a model depends on the size of the dataset and

convergence nature of the model as well as the level of complexity of the task-at-hand.

It is usually set after a trial-and-error process where the model is run using different

(2.25)

(2.26)

29

number of epochs and determined when it is observed that the loss does not improve

any further despite increasing the number of epochs or when the model’s performance

seem to worsen. Training the model with too few epochs can result in underfitting

whereas training the model with too many epochs can result in overfitting. Underfitting

would impair the model’s ability to learn embedded patterns present in the data fed to

the model. Overfitting would cause the model to learn the training data too well and

make it difficult for the model to generalize the learned patterns and fail to perform

well on new data.

30

CHAPTER III

PROPOSED MODELS

DL algorithms, CNNs in particular, have transformed the field of computer

vision. As mentioned in Chapter II, there are numerous uses of CNNs, pattern

recognition being the most common one. In the recent years, as DL algorithms have

been significantly improved, CNNs are regularly being applied in action recognition

problems, which is a similar problem to violence recognition. To that end, two 3D

CNN models were created in this work for detecting violent behavior in video data. In

this chapter, the details of the proposed models are presented.

Two 3D CNN models were developed and proposed in this work. 3D CNNs

are usually preferred to 2D CNNs when dealing with video data if we want to use only

one type of neural network. The difference of 2D and 3D CNNs was mentioned in

Chapter II in detail. In a nutshell, videos are sequences of consecutive images and

while images only have spatial information, the difference between the frames must

be taken into account when working with video data. The motion information between

the frames adds another dimension, time, to be dealt with. 2D CNNs can only deal with

spatial information, so using a 2D CNN by itself would cause a significant loss in the

temporal sense.

Generally, there are two types of model structures developed with CNNs for

video classification tasks. The first one is using a 2D CNN as a spatial feature extractor

and adding a second deep learning architecture like Recurrent Neural Networks

(RNNs) for temporal feature extraction as in [34] [29]. The second one is using a 3D

CNN which are capable of dealing with spatio-temporal features without requiring

additional ANNs such as RNNs as in [22] [47] or some type of supervised or

unsupervised learning algorithms such as SVMs.

3D CNNs can deal with both spatial and temporal features, which results in no

loss in motion information. Therefore, 3D CNNs are preferred in this work to avoid

the complexity of adding another algorithm to the model. Thus, 3D CNNs were chosen

for video classification in the scope of this work.

31

3.1 MODEL 1: 3D CNN

One of the models proposed in this work is an end-to-end, trainable 3D CNN.

This CNN was built using the Sequential class available in Keras API (Application

Programming Interface), which groups a linear stack of layers into a Model object.

The Sequential class created consists of 2 3D Convolution, 2 3D Max-Pooling and 2

Batch Normalization layers, a Flatten layer and a fully-connected Dense layer. All of

these layers were imported from Keras and added to the Sequential model using the

add() method. This Sequential class created is given in Figure 8.

Figure 8: The Sequential class created for the implementation of the 3D CNN

Since video data (e.g avi files) is used in the experiments, the input data is

shaped as a 5-dimensional object with dimensions [batch_size, number_of_frames,

height, width, channels]. Number of frames is set as 10, which means 10 frames from

each video will be used. Height and width are the dimensions of each frame, which are

both set at 224. Channels dimension refers to the colour scheme used, which in this

case is RGB. In this colour scheme, all colours are represented as a combination of

three primary colors which are red, green, and blue. Batch size is the number of

samples used in each iteration in the training phase. The dataset is split into batches of

8 during training and fed to the model to compute gradients of the loss function. The

parameters are then updated using the Adam [60] optimizer, which is an optimization

algorithm used widely in DL algorithms. Adam optimizer combines the benefits of

RMSProp and AdaGrad, which are also optimizers. AdaGrad adapts the learning rate

based on the gradients of each parameter and RMSProp scales the learning rate using

a moving average of the squared gradient. Learning rate is a hyperparameter used in

training that regulates the step size of the weight updation and is usually set before

training. A too large learning rate might result in missing a local extrema and cause

the model to diverge and a too low learning rate might result in a lengthened training

time. After several experiments, 10−4 was decided on for the learning rate of the

proposed CNN.

32

There are different types of loss functions, but the function used in the proposed

model is Sparse Categorical Cross-Entropy, which is commonly used in multi-class

classification problems. There is also a Binary Cross-Entropy, which is used in

classification problems with two outcome classes. Although Binary Cross-Entropy

could be used in this model, since Sparse Categorical Cross-Entropy works for binary

classification as well, it was chosen to allow the network to be generalized and be

adapted to multi-class problems as well as binary. The loss function and the optimizer

work together to optimize the network, thus improve its performance. In each iteration,

loss is calculated and optimized accordingly using the optimizer.

Sparse Categorical Cross-Entropy loss function has the same formula as

Categorical Cross Entropy. The difference is that one-hot encoded labels are used in

Categorical Cross-Entropy whereas integer encoded labels are used in Sparse

Categorical Cross Entropy. The sparse encoding of the labels decreases the memory

usage as well as computational resources. For both loss functions, the probabilities of

the predicted class are compared with the actual class. In the formula, given in

Equation 3.1, where 𝑛 is the number of classes, 𝑡𝑖 is the truth label and 𝑝𝑖 is the softmax

probability for the 𝑖th class, the negative logarithm probability of the correct class

label weighted by the true label is calculated. The reason why negative log probability

loss functions are commonly used in ML problems is that minimizing negative log of

the true class label will reinforce the network to assign higher penalties to incorrect

predictions with higher probabilities and lower penalties to incorrect predictions with

lower probabilities. The logarithmic nature of the penalties results in large differences

being close to 1 and small differences being close to 0.

𝐿𝐶𝐸 = −∑𝑡𝑖 log 𝑝𝑖

𝑛

𝑖=1

 = −∑ 𝑡𝑖 log (
𝑒𝑥𝑖

∑ 𝑒𝑥𝑖
𝐽
𝑗=1

)

𝑛

𝑖=1

The layout of the proposed model is given in Figure 9. The layout was created

using the plot_model() method available in Keras Utilities. Parameters in a neural

network model are the weights and biases used for computation in all neurons. There

are 128,082 total parameters in the model, 128,018 being trainable and 64 being non-

(3.1)

33

trainable. The summary of the model is given in Figure 10, which was taken during

the implementation of the 3D CNN.

Figure 9: Structural layout of the proposed 3D CNN model

Figure 10: Model summary of the proposed 3D CNN model

34

After experimenting with several layer hyperparameters for the proposed 3D

CNN, the most suitable ones for the task-at-hand were determined. For the 3D

convolutional layers, the number of filters is 16, kernel size is (3, 7, 7), padding is

valid, stride is 1 and the activation function is ReLU. For the max pooling layers, the

kernel size is (2, 2, 2) and padding is valid. Batch Normalization and Flatten layers do

not accept any parameters, because they use the output from the preceding layer and

apply certain transforms to it before passing it to the next layer. The output of the

Dense layer is 2, since the model has two possible outcome classes, fight and non-

fight. The activation function used in the Dense layer is the Softmax function, which

normalizes the input values into a probability distribution.

The proposed CNN model has significantly fewer parameters than most

existing models. The model was trained on a large dataset, which is further explained

in Chapter IV. Accuracy to some extent was compromised in order to make the model

more efficient yet still effective. The goal is to design the network so that it can be

embedded on surveillance systems and even mobile devices. The proposed model can

be made to achieve this goal, due to its small size, low power consumption and little

memory requirements. In order to use this model in surveillance systems with limited

resources, the training of the model can be handled in a separate computerized

environment first and be embedded in a surveillance system only for classification. If

the training is done successfully on a large dataset, the model will be able to classify

new data easily.

3.2 MODEL 2: MOVINET 3D CNN

Transfer learning is used for the second model proposed in this work. In this

section, transfer learning and the second proposed model will be defined.

3.2.1 Transfer Learning

Training neural networks is a computationally intense and time-consuming

process with high memory requirements. Even when there are no computational or

memory-related limitations, there may be a limited amount of data available for the

training of a new model. Transfer learning is a useful solution to the problems training

neural networks face. Assume that there is a ML model already trained on a large

dataset for a task such as image classification for automobiles. Since it has been

trained, the model holds the knowledge learned from the dataset to be used for the

35

classification task-at-hand. Also assume that there is another task, image classification

for all vehicles. The knowledge learned from the automobile classification can be used

for vehicle classification, which is a similar but different task. This transfer of

knowledge is called transfer learning, which is a ML technique that reuses a pre-trained

model with learned knowledge to train another model developed for a different but

similar problem or domain. The purpose of transfer learning is to decrease the

computational intensity and memory requirements, therefore increase the performance

and generalization of the developed model.

3.2.2 MoViNets

Mobile Video Networks (MoViNets) [55] are a family of efficient video

classification models (3D CNNs) that support online inference, which means running

trained AI models to make predictions, on streaming video. It was designed to make

3D CNNs memory and computation-efficient to enable online inference. Three steps

were proposed by [55] to achieve this goal. These steps are given below, as described

in the original work of [55].

3.2.2.1 MoViNet Search Space

A MoViNet search space was defined in order to allow Neural Architecture

Search (NAS) to effectively balance spatio-temporal feature representations [55]. The

process of finding the optimal neural network architecture is usually carried out

manually using the trial-and-error technique to search for the most suitable model

design including layer types and depth, parameters and hyperparameters. NAS is a ML

technique that enables the automation of figuring out the optimal neural network

architecture for the task-at-hand. NAS methods eliminate the need for the trial-and-

error technique and use algorithms to search for the optimal architecture automatically.

Their base search space was built on MobileNetV3[56], an efficient pre-trained

CNN model that provides a strong baseline for mobile CPUs [55]. Each 2D block in

MobileNetV3 was expanded to handle 3D video input. The dimensions of the input

are 50 × 2242 denoted by 𝑇 × 𝑆2 and the frame stride was set as 𝜏 = 5. The search

was conducted over the base filter width, 𝑐𝑏𝑎𝑠𝑒, for each block. For the additional

temporal dimension, the 3D kernel size, denoted by 𝑘𝑡𝑖𝑚𝑒 × (𝑘𝑠𝑝𝑎𝑐𝑒)2 was defined

within each layer with the choices (1×3×3), (1×5×5), (1×7×7), (5×1×1), (7×1×1),

(3×3×3), (5×3×3). Making these choices enables combining various dimensional

36

representations, thereby increasing the network’s receptive field [55]. No temporal

downsampling is applied to enable frame-wise prediction. Squeeze-and-Excitation

(SE) blocks were used to capture spatio-temporal information using 3D average

pooling. The scaling of the search space was expanded to searching over all scalings

of all architectures to find the optimal design, rather than choosing a model and scaling

it accordingly.

3.2.2.2 Stream Buffers

The MoViNet search space produced a collection of adaptable 3D CNNs, but

their memory requirements increased with the number of input frames, making them

impractical for processing long videos. To tackle this issue, the stream buffer

mechanism was introduced in order to reduce memory consumption. This mechanism

stores feature activations at the endpoints of subclips, enabling the expansion of the

temporal receptive field across subclips without requiring any additional

computations. The feature map, 𝐹𝑖, of the buffer combined with the subclip along the

temporal dimension is computed by Equation 3.2 and the buffer is updated to Equation

3.3 when processing the next clip, where 𝐵 denotes the buffer, 𝑥𝑖
𝑐𝑙𝑖𝑝

 denotes the subclip

being processed at that moment, ⊕ denotes concatenation and [−𝑏 :] denotes a

selection of the last 𝑏 frames, which denotes the length of the buffer of the

concatenated input.

𝐹𝑖 = 𝑓(𝐵𝑖 ⊕ 𝑥𝑖
𝑐𝑙𝑖𝑝)

𝐵𝑖+1 = (𝐵𝑖 ⊕ 𝑥𝑖
𝑐𝑙𝑖𝑝)[−𝑏:]

In order to fit 3D CNNs’ operations to the stream buffer, all temporal

convolutions in 3D CNNs are replaced with Causal Convolutions (CausalConvs) [57],

which makes them unidirectional along the temporal dimension. Causality in CNNs

refers to the ability of predicting the output of the model using the past and present

inputs, not depending on any future inputs. In addition, Cumulative Global Average

Pooling (CGAP) is employed to compute global average pooling that encompasses the

temporal dimension. This can be calculated as a cumulative sum for any activations

up to frame 𝑇′, which is given in Equation 3.4 where 𝑥 denotes a tensor of activations.

To enable causal calculation of CGAP, a single-frame stream buffer is maintained,

(3.2)

(3.3)

37

storing the cumulative sum up to 𝑇′. Causal SE is presented as a method which is used

to multiply the spatial feature map at frame 𝑡 with the SE computed from 𝐶𝐺𝐴𝑃(𝑥, 𝑡).

Additionally, a sine-based fixed positional encoding (PosEnc) scheme is utilized to

directly utilize the frame index as the position. The resulting vector is then summed

with the CGAP output before applying the SE projection [55].

𝐶𝐺𝐴𝑃(𝑥, 𝑇′) =
1

𝑇′
∑𝑥𝑡

𝑇′

𝑡=1

3.2.2.3 Temporal Ensembles

Although the stream buffer mechanism of MoViNets effectively reduce

memory consumption, a little amount of accuracy is lost in the process. To regain this

accuracy, an ensembling strategy is employed. This approach involves training two

MoViNets individually, where both models have same network design, but operating

at half the frame-rate while maintaining the temporal duration. During inference, a

video is fed as input to each model, where one of the models have frames offset by one

frame. The unweighted logits from both models are then averaged using arithmetic

mean before applying softmax [55]. While these models might have lower accuracy

separately, this two-model ensemble provides a higher accuracy, while preserving the

same Floating Point Operations (FLOPs) as a single model.

In this work, MoViNet-A0 model is used, which was chosen because it is faster

to train than the other models the family of MoViNets. The pre-trained MoViNet

model was downloaded from the TensorFlow models (tf-models-official) library.

(3.4)

38

CHAPTER IV

EXPERIMENTS

As mentioned previously, two 3D CNN models were created for this work. In

this chapter, the details of their experiments, their results and evaluations are

presented, as well as a comparison between the models.

4.1 DATASET DESCRIPTIONS

There are several datasets created specifically for violence detection tasks. The

videos in some datasets vary in context, background noise and resolution whereas the

videos in some of them have consistency. Nonetheless, none of the datasets consist of

high quality videos, which is actually preferred, because low quality videos would

result in a more accurate evaluation of the performance of the proposed model. After

all, the main goal of building a violence detection model is to equip surveillance

systems with the network and most security footage do not have high resolution feed.

In contradiction, having a large number of low resolution videos would result in low

accuracy percentages. After appropriate research and analysis, 4 datasets were chosen

to be used in this work. Each dataset come with unique advantages and disadvantages.

Descriptions of the datasets that will be used in this work are given below.

4.1.1 Hockey Fights Dataset

Hockey fights dataset [16] was created by collecting 1000 clips of action from

hockey games of the National Hockey League (NHL). Each clip consists of 50 frames

of 720x576 pixels labelled as "fight" or "non-fight". All clips have the same

background and involve similar human actions where either fights or normal hockey

game take place. Background consistency and relatively high resolution videos allow

the network to be trained easily. However, learned features would not generalize well

to other videos with different contexts and low resolution, which would make the

network prone to overfitting.

39

4.1.2 Movies Dataset

Movies Dataset [16] consists of 200 clips collected from action movies, 100 of

which contains a fight scene. The clips consists of 360 x 250 pixels. The videos are

taken from a selection of scenes from different movies and some of the videos are of

the same scene, with the same context and background. If some of the videos of the

same scenes were split into training and test sets, it would most probably cause

overfitting. There are also not enough videos for the model to be appropriately trained.

In addition, the resolution of the videos is relatively high in comparison with other

datasets, which would cause the model to underperform in a surveillance setting.

4.1.3 RWF-2000 Dataset

RWF-2000 Dataset [7] consists of 2000 clips captured by surveillance cameras

labelled as "violent" and "non-violent". The clips are collected from YouTube and are

of several resolutions. The average length of clips is 5 s. Since the videos are from

surveillance footage, they are mostly quite low in resolution and the action occurring

is often out of the focus of the camera. Although it consists of a relatively large number

of videos, training a network using this dataset is difficult because of the resolution of

the videos, which may cause the problem of underfitting.

4.1.4 Real-Life Violence Situations

Real-Life Violence Situations (RLVS) [26] dataset was created in order to

overcome the disadvantages of the existing datasets. The RLVS dataset consists of

2000 videos, where 1000 of them are labelled violent and 1000 are labelled non-

violent. The clips are of 480p–720p resolutions. Although the video content is richer

in context in comparison with the RWF-2000 dataset, there are still a number of videos

with out-of-focus action and low resolution.

Existing datasets generally have too much or too little background consistency,

too many or too few low resolution videos or consist of only a small number of videos.

In order to overcome the limitations of the existing benchmarks, the proposed models

in this work are trained and evaluated on a combination of 4 datasets, which are

Hockey Fights[16], Movies[16], RWF-2000[7] and Real-Life Violence Situations[26].

The dataset created combining these 4 datasets consist of 5200 videos in total, 2600 of

them labelled violent and 2600 labelled non-violent.

40

In neural networks, videos in the datasets are divided into subsets, which are

usually training, test and validation. The training set is used for fitting of parameters

based on the observational relationships between the data and their respective labels.

The validation set is used for the fitting of hyperparameters and to approximate a

model’s predictive performance during training [44]. The reason why parameters and

hyperparameters are fitted using these separate sets is to avoid overfitting. The test set

is not used during training, but it uses the same predictive relationship as the training

set and is used for testing.

The majority of the videos in the datasets are used for training. Generally, the

split of these subsets are %60, %20, %20 for training, test and validation sets,

respectively. The combined dataset used for the experiments of the proposed models

consists of 5200 videos where half of them are violent and the other half is non-violent.

For the proposed 3D CNN model, 2600 violent and 2600 non-violent videos are each

split into 1560 for training, 520 for validation and 520 for test sets. In total, there are

3120 videos for training, 1040 for validation and 1040 for test sets, since the model

has two outcome classes. For the proposed MoViNet 3D CNN model, validation set is

not needed, because it is a pre-trained network and thus the hyperparameters are

already fine-tuned. Therefore, the split is done %60 and %40 between training and test

sets, respectively. 2600 violent and 2600 non-violent videos are divided into 1560 for

training and 1040 for test sets. In total, there are 3120 videos in the training set and

2080 videos in the test set. In both models, the division of videos was done in random

by the algorithm for each experiment. Random selection of videos enable a more

precise evaluation of the proposed models.

4.2 EXPERIMENTAL SETUP

All experiments were conducted on the computer 11th Gen Intel(R) Core(TM)

i7 64GB, 16 cores with NVIDIA GeForce GTX 1660 SUPER GPU. The codes were

written using Python 3.7, the Tensorflow framework and the layers of the network

were imported from the Keras library. The outline of the codes were inspired by the

publicly-available Tensorflow tutorials [45] and [46], but changed and adapted in

accordance with the proposed model.

41

4.2.1 Libraries

A library in Python is a collection of codes serving a particular purpose. In

order to run the proposed neural network models in Python, the necessary libraries

were installed and imported. Remotezip was used to inspect the contents of the ZIP file

in which the combined dataset resided. Tqdm was used for the progress bar which

showed as the files were split into their subsets. OpenCV was used in video processing,

performing operations such as extracting frames from the videos. Einops was used to

simplify the complex tensor operations performed. Random was used to shuffle the

dataset randomly while splitting the dataset into subsets. Pathlib provided a more

appropriate file system path representation. Itertools provided several functions built

for iterators to produce more complex iterators. Collections implements container

datatypes in addition to Python’s built-in containers such as list, set, tuple, etc. NumPy

is a commonly used open source Python library when working with numerical data. It

contains multidimensional array and matrix data structures alongside a large variety of

high-level mathematical functions that enables operating on the arrays and matrices.

For example, extracted frames from the videos in this work were contained in a NumPy

array. Pandas is an open source Python library that contains DataFrame object for data

manipulation, tools for reading and writing data, data alignment and handling missing

data, reshaping and merging datasets, etc. Matplotlib is used for creating static,

animated and interactive visualizations including graphs and model layouts. Seaborn

is also a data visualization library based on matplotlib. It provides a high-level

interface for drawing statistical graphics. Matplotlib and Seaborn were used in this

work to create the graphs and confusion matrices. Shutil library provides high-level

operations on files, which was used in this work for checking whether a file already

existed before creating it. Keras is a deep learning API written in Python, running on

top of the ML platform TensorFlow used for building ML models and their

implementations. It has a variety of applications such as importing pre-trained models,

creating existing or custom ML models from scratch and their layers. Keras can be run

on CPUs, GPUs and TPUs (TensorFlow Processing Unit).

4.3 EVALUATION METRICS

The goal of the proposed models is to determine whether an input video

contains a fight or not. After the training phase, videos in the test set are fed to the

network and classified as fights and non-fights. In this phase, the network predicts the

42

label of the input videos based on the learned features. Since both models use

supervised learning, the samples are already labelled as fight or non-fight. To that end,

there are four possible outcomes of the classification executed by the models. A video

of a fight can either be classified correctly as a fight or incorrectly as a non-fight.

Similarly, a non-fight video can either be classified correctly as a non-fight or

incorrectly as a fight. These predicted values can be found in the confusion matrices

created for the test set for each experiment, and certain evaluation metrics can be

calculated using these values to evaluate the performance of the models.

In the extent of the experiments conducted for this work, the event of detecting

a fight has a truth value of 1 (positive) and not detecting a fight has a truth value of 0

(negative). In the confusion matrices created in this work, the vertical axis represents

the actual action, which is the actual label of a video, and the horizontal axis represents

the predicted action, which is the label of a video predicted by the network. The terms

True and False refer to the correct or incorrect predictions made by the network,

respectively, whereas Positive and Negative refer to the labels, which in this case are

Positive for fights and Negative for non-fights. If a fight is predicted as a fight, it is

called a true positive (TP) and if a fight is predicted as a non-fight, it is called a false

negative (FN). If a non-fight is predicted as a fight, it is called a false positive (FP) and

if a non-fight is classified as a non-fight, it is called a true negative (TN). Their

corresponding elements in the confusion matrices are top left corner for TP, top right

corner for FN, bottom left corner for FP and bottom right corner for TN. The evaluation

metrics calculated based on these values are accuracy, precision, recall and F1-score.

4.3.1 Accuracy

Accuracy is calculated by dividing the number of correctly classified videos,

which means the prediction matches the actual label, by the total number of videos.

The accuracy metric does not make the distinction of whether a fight is detected or

not, it is simply the measure of the correctly predictions made by the network, which

correspond to the TP and TN elements in the confusion matrix. The formula for

calculating accuracy is:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4.1)

43

4.3.2 Recall

Recall is calculated by dividing TP values by the total number of positive

samples in the dataset. In the case of the proposed models, this is equal to dividing the

number of fights classified correctly as fights, by the total number of fight videos.

Recall is the measure of the model’s ability to correctly predict the positive samples.

If the number of FN cases are high, the recall of the model would be a small. Recall is

calculated with the formula:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

4.3.3 Precision

Precision is calculated by dividing TP values by the total number of positive

predictions made by the model. In the case of the proposed models, this is equal to

dividing the number of fights classified correctly as fights, by the total number of

videos classified as fights. As the name suggests, precision is the measure of how

precise a model is. If the number of FP cases are high, which are non-fight videos

classified incorrectly as fight videos, the value of precision would decrease. Precision

is calculated as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

4.3.4 F1-Score

F1-score is the harmonic mean of precision and recall values of a model. It is

a combined measure of precision and recall, in the range of [0, 1]. If the value of the

F1-score is close to 1, it means the model has high precision and recall. In most cases,

the values of precision and recall are close to each other, so F1-score is usually a

consistent evaluation metric. It is calculated as follows:

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

(4.2)

(4.3)

(4.4)

44

4.4 RESULTS AND MODEL EVALUATIONS

In this section, separate evaluations of both models based on the experiments

are presented. For each calculation, 6-digit rounding is used.

4.4.1 3D CNN Model

The proposed 3D CNN model was experimented with using different numbers

of epochs and it was determined that the most suitable number was 100 epochs. Any

number of epochs less than 100 resulted in low accuracy. It was observed that loss

ceased to improve when the number of epochs was increased beyond 100. The average

length of an epoch was 640 seconds, so the average run-time of the model including

both training and inference phases was 17.8 hours with the GPU used in the

experiments. Although this is a considerably long time, it is common for the training

of 3D CNNs to take this long, especially considering the size of the dataset the

proposed model is being run on and that GPU used in the experiments has fairly low

computational power. The run-time is highly dependent on these two factors. The

combined dataset has a large number of videos and most of the videos are taken from

surveillance cameras which are of low resolutions with diverse contexts. Computing

the feature maps for these types of videos is difficult for the model and thus, it takes

longer than it would for high resolution videos with similar contexts. However,

changing the GPU with one that has higher computational power would result in

shortening the run-time of the model. Regardless, a run-time of 17.8 hours for a 3D

CNN where videos are being processed can be considered as satisfactory performance.

The proposed 3D CNN model is a simple 3D CNN which lacks complex layers with

too many floating-point and matrix operations. As a result, the model has 128,082 total

parameters. This number is significantly lower than most proposed 3D CNNs. In a

way, some accuracy was compromised in order to make the model smaller in size with

lower computational requirements.

The average accuracy of the proposed 3D CNN model was calculated as the

average of all 5 experiments, which was 82.46%. Considering the size of the model

and low resolutions of the videos in the dataset, this result is favorably decent. The

accuracy, loss, recall, precision and F1-scores were computed for each experiment,

which are presented in Table 1. The reason why these values vary significantly for

each experiment is that the dataset was randomly shuffled and split into training, test

and validation tests before each training. Accuracy-loss graphs were drawn during the

45

implementation of the model as well as confusion matrices for both training and test

sets. These figures for each experiment are given in Appendix 1. As mentioned above,

accuracy and loss values were computed during implementation whereas recall,

precision and F1-score values were calculated using their respective formulas using

the values in the confusion matrix of the test set.

Table 1: Accuracy, loss, recall, precision and F1-score percentages of each experiment for

the proposed 3D CNN model

Experiment Accuracy Loss Recall Precision F1-Score

1 0.8144 1.5946 0.813462 0.790654 0.801896

2 0.8250 1.4465 0.844231 0.809963 0.809963

3 0.8231 1.4109 0.803846 0.832669 0.818004

4 0.8163 1.8286 0.875000 0.789931 0.830292

5 0.8442 1.3360 0.871154 0.834254 0.852305

4.4.2 MoViNet 3D CNN

Transfer learning was leveraged in the proposed MoViNet 3D CNN model.

The model was pre-trained on the action dataset Kinetics 600 [62], which has 600

classes of action, each with at least 600 video clips. The proposed model only looked

for similar patterns in the new data, which significantly decreased the number of

epochs and the run-time of the model. After experimenting with higher and lower

number of epochs, it was observed that the value of loss stopped improving after 25

epochs. Thus, each experiment involving the proposed model was executed with 25

epochs. The average length of each epoch was 625 seconds, which resulted in the run-

time of the model being an average of 4.3 hours. Since the model was only required to

become familiar with the new data it was fed instead of being trained from scratch,

this run-time is unusually short for a 3D CNN, yet expected since it leveraged transfer

learning.

The average accuracy of the model was calculated as 91.712%, which is the

average of the 5 experiments that were conducted. This result is remarkable for only

25 epochs, which is an indication of the effectiveness and efficiency of transfer

learning. Since the MoViNet model was trained on an action dataset, it allowed for the

proposed model to recognize violent activity even though most of the combined dataset

used in this work consisted of surveillance footage with low resolution videos and out-

of-focus action. The accuracy, loss, recall, precision and F1-scores were computed for

each experiment, which are presented in Table 2. Since the dataset was shuffled

46

randomly at the beginning of each experiment, these values vary by some amount. The

graphs for accuracy-loss drawn during implementation and confusion matrices of test

sets for each experiment are given in Appendix 2. Evaluation metrics are calculated

using their respective formulas using the values in the confusion matrix created for the

test set.

Table 2: Accuracy, loss, recall, precision and F1-score percentages of each experiment for

the proposed MoViNet 3D CNN model

Experiment Accuracy Loss Recall Precision F1-Score

1 0.9149 0.3796 0.902885 0.914314 0.908564

2 0.9178 0.3895 0.925000 0.908404 0.916627

3 0.9245 0.3741 0.926923 0.924257 0.925588

4 0.9087 0.5206 0.857692 0.951974 0.902377

5 0.9197 0.3721 0.920192 0.921965 0.921078

4.5 COMPARISON OF THE PROPOSED MODELS

The proposed 3D CNN model was trained from scratch in each experiment

with no weight initialization whereas the MoViNet 3D CNN model uses transfer

learning with a pre-trained model. It was anticipated that the MoViNet model would

outperform the 3D CNN model in all aspects. 3D CNN model learned the data fed to

it with no prior knowledge and the weights were initialized at 0 as default. The weights

were updated in each epoch based on the optimizer’s computations against the value

produced by the loss function. When the loss function stopped improving around the

hundredth epoch, it was determined that the model had reached its highest

performance. Reaching this performance required 100 epochs which took around 17.8

hours. Considering that the model had no weight initialization, had no prior learned

information and no other complex machine learning algorithms were added to it, the

average accuracy reached by the model was considerably high. It must be noted that

this accuracy was reached with an optimal number of parameters, 128,082, which is

significantly lower than most proposed violence detection models.

On the other hand, the proposed MoViNet model outperformed the 3D CNN,

with a significant accuracy difference, which is around 10%. This accuracy difference

was achieved with one-forth number of epochs of the 3D CNN as well as run-time,

which was around 4.3 hours. This run-time is significantly shorter than other proposed

violence detection models. The model was not trained from scratch, rather only

became familiar with the new data it was fed. Another disadvantage of 3D CNNs is

47

that they do not support online inference due to their high computational resources and

memory requirements. Thus, 3D CNNs are not suitable to work on mobile devices

unless they are improved to do so. However, MoViNet models are more

computationally efficient compared to 3D CNNs and they have significantly lower

memory usage. This allows them to work on mobile devices. Interpreting the results,

it is clear that transfer learning has a significant advantage against other simple DL

models. Considering all of these factors contributing to the performance of both

models, they still achieved impressive results within the range of their respective

expectations. The accuracy, loss, recall, precision and F1-score values for both models,

calculated as the average of their 5 respective experiments are given in Table 3.

Table 3: Overall accuracy, loss, recall, precision and F1-score percentages for both models,

calculated by taking the average of each evaluation metric for all experiments of each model

Model Accuracy Loss Recall Precision F1-Score

3D CNN 82.46% 1.523320 84.15386% 81.14942% 82.58478%

MoViNet 3D CNN 91.712% 0.407180 90.65384% 92.41828% 91.48468%

Since the dataset was randomly shuffled and split into training, test and

validation sets for the 3D CNN model and only training and test sets for the MoViNet

3D CNN model at the beginning of each experiment, the evaluation metrics given in

Table 1 and Table 2 vary by some amount. In order to interpret the results

comprehensively, the standard deviation for each metric of both models was calculated

using Equation 4.5, where 𝑛 is the number of data points, 𝑥𝑖 is the values of each data

and 𝑥 is the average (mean) of �̅�.

𝜎 = √
∑ (𝑥𝑖 − �̅�)𝑛

𝑖=1

𝑛 − 1

Since standard deviation is a measure of the amount of variation of a set of

values, it can be said that a low standard deviation value means minimal variation

occurred in the set of values. Judging from the standard deviation values given in Table

4, shuffling the dataset at the beginning of each experiment did not cause a large

amount of dispersion in the results, but did allow for a more accurate evaluation of the

proposed models. The standard deviation values for the evaluation metrics are mostly

consistent with each other. It also must be noted that the overall standard deviation

(4.5)

48

values for the MoViNet model is around 10 times lower than the 3D CNN model. This

shows that shuffling the dataset randomly had less effect on the MoViNet model where

transfer learning was leveraged than it had on the 3D CNN model. This difference

reflects on the consistency achieved by transfer learning.

Table 4: Standard deviation values of accuracy, loss, recall, precision and F1-score for both

models

Model Accuracy Loss Recall Precision F1-Score

3D CNN 0.011827 0.194875 0.032454 0.216102 0.018410

MoViNet 3D CNN 0.005861 0.063762 0.028905 0.016760 0.009385

4.6 COMPARISON WITH OTHER WORKS IN LITERATURE

In this work, a combined dataset is used to evaluate the proposed the models.

There are no other works in literature that uses the same combined dataset, so a

thorough comparison of the models with other works could not be achieved. However,

in order to compare the proposed models with other works in literature, a total of 8

separate experiments were conducted using the datasets in the combined dataset

individually. Both proposed models were trained with the individual datasets once.

The results of these experiments are presented in Table 5 and Table 6 for the 3D CNN

model and the MoViNet 3D CNN model, respectively.

Table 5: Accuracy, loss, recall, precision and F1-score values of each experiment for the

proposed 3D CNN model

Dataset Accuracy Loss Recall Precision F1-Score

Hockey Fights 0.9400 0.3307 0.9400 0.9400 0.9400

Movies 1.0000 4.8123x10-4 1.0000 1.0000 1.0000

RWF-2000 0.7125 1.8605 0.8150 0.687764 0.745996

RLVS 0.8950 0.7723 0.8450 0.944134 0.891821

Table 6: Accuracy, loss, recall, precision and F1-score values of each experiment for the

proposed MoViNet 3D CNN model

Dataset Accuracy Loss Recall Precision F1-Score

Hockey Fights 0.9200 0.4118 0.8950 0.942105 0.917949

Movies 1.0000 0.0083 1.0000 1.0000 1.0000

RWF-2000 0.8788 0.4966 0.9150 0.853147 0.882992

RLVS 0.9638 0.2072 0.9550 0.984536 0.969543

Interpreting the results from the individual dataset experiments, it can be seen

that both models reached a 100% accuracy with the Movies dataset, which is a result

that has been achieved by most works in literature. The MoViNet model significantly

49

outperformed the 3D CNN model with the RWF-2000 and Real Life Violence

Situations datasets. On the other hand, the 3D CNN model slightly outperformed the

MoViNet model in the Hockey Fights dataset. It should be noted that the MoViNet

experiments were conducted with 25 epochs whereas the 3D CNN experiments were

conducted with 100 epochs for the sake of not changing the experimental setting. The

Hockey Fights dataset is rather an easy dataset to train and considering that the 3D

CNN model ran with 100 epochs, it is probable that it outperformed the MoViNet

model with 25 epochs. If the number of epochs of the MoViNet model was to be

increased, it would most likely outperform the 3D CNN model eventually. The Real

Life Violence Situations and RWF-2000 datasets are more difficult to train, so the

accuracy gap between the models were expected.

It is noteworthy to mention that the run-time of the 3D CNN experiments were

1.25 hours, 16.7 minutes, 11.1 hours and 5.5 hours for the Hockey Fights, Movies,

RWF-2000 and Real Life Violence Situations datasets, respectively. The run-time of

the MoViNet experiments, on the other hand, are 17.7 minutes, 5 minutes, 2.7 hours

and 1.3 hours for the Hockey Fights, Movies, RWF-2000 and Real Life Violence

Situations datasets, respectively. The MoViNet model reached mostly higher accuracy

values in a significantly shorter amount of time with individual dataset experiments,

which was also the case with the experiments using the combined dataset. While the

proposed 3D CNN model reached high accuracy values with the individual dataset

experiments, the run-time of the model is too long. Thus, the results from the

individual experiments still point to the efficiency and effectiveness achieved by using

the MoViNet model.

High accuracy values have been reached by other proposed models in literature

for the Hockey Fights and Movies datasets. Both proposed models have achieved a

100% accuracy with the Movies dataset. Although the accuracy of the Hockey Fights

experiments of both models could not come close to other proposed models, the

MoViNet model presented in this work performed extremely well with the RWF-2000

and Real Life Violence Situations datasets. The MoViNet model came close to the

accuracy values reached by other works in literature with the RWF-2000 dataset. In

addition, the MoViNet model especially outperformed the original paper where the

Real Life Violence Situations dataset was introduced, by a significant accuracy

difference of approximately 25%. The models and accuracy values of the experiements

carried out for individual datasets in some other proposed works in literature are given

50

in Table 7. Overall, both proposed models performed well with the combined dataset

as well as individual datasets.

Table 7: Accuracy percentages of some other works in literature

Model Year Hockey Fights Movies RWF-2000 RLVS

MoSIFt+HIK[16] 2011 90.9% 89.5% - -

C3D[25] 2019 96.0% 99.9% - -

VGG16+LSTM[26] 2019 95.1% 99.0% - 71.5%

C3D+SVM[48] 2020 98.5% - - -

VGG16+ConvLSTM[33] 2021 99.1% 100% 92.4% -

Xception+LSTM[29] 2021 96.5% 98.3% - -

SepConvLSTM-M[32] 2021 99.5% 100% 89.75% -

CNN+BiLSTM[35] 2022 94.9% 92.9% - -

51

CHAPTER V

CONCLUSION

The aim of this thesis was to extensively study CNNs, give mathematical

explanations to how they work and implement and compare two types of 3D CNN

models to efficiently and effectively detect violence on video data. One of the models

was a simple 3D CNN whereas the other model was a 3D CNN which leveraged

transfer learning. A combination of 4 different publicly-available violence detection

datasets was used in the experiments with a total of 5200 videos, half of which are

violent and the other half are non-violent. After 5 experiments were conducted on both

models using this combined dataset, it was quantitatively determined that the transfer

learning model, MoViNet, resulted in more accurate results in a significantly shorter

amount of time. The performance of the MoViNet model being higher than the simple

3D CNN model was reasonably expected, because MoViNet model was pre-trained

on an action dataset and the model only needed to become familiar with the new data

whereas the simple 3D CNN model was trained from scratch. Architecture designs,

underlying theoretical foundations and implementation specifics of both models as

well as their comparisons were explained in detail.

In future works, the simple 3D CNN model is planned to be improved by

adding new layers to make the model more efficient such as attention layers and use

weight initialization to shorten the training-time and to increase accuracy. This model

can also be combined with classifiers such as SVMs other DL models such as RNNs.

Additionally, the 3D CNN model can be made smaller in size and lighter in

computational intensity, eventually making them suitable for mobile device inference.

The MoViNet model, on the other hand, has reached its anticipated potential efficiency

with the data it was fed and the GPU it was implemented on. It can be further improved

by using a larger dataset for the training and a more powerful GPU.

52

REFERENCES

[1] PERŠ Janez, SULIĆ Vildana, KRISTAN Matej, PERŠ Matej, POLANEC Klemen

and KOVAČIČ Stanislav (2010), "Histograms of optical flow for efficient

representation of body motion", Pattern Recognition Letters, vol. 31, issue 11,

pp. 1369–1376.

[2] CAO Yongqiang, CHEN Yang and KOSHLA Deepak (2015), "Spiking deep

convolutional neural networks for energy-efficient object recognition",

International Journal of Computer Vision, vol. 113, issue 1, pp. 54–66.

[3] IBM (2022), Convolutional Neural Networks,

https://www.ibm.com/topics/convolutional-neural-networks, DoA.

13.10.2022.

[4] FISHER Robert (2007), CAVIAR Test Case Scenarios,

https://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/, DoA. 12.10.2022.

[5] SULTANI Waqas, CHEN Chen and SHAH Mubarak (2019), UCF-Crime,

https://paperswithcode.com/dataset/ucf-crime, DoA. 12.10.2022.

[6] ZHANG Tao, YANG Zhĳie, JIA Wenjing, YANG Baoqing, YANG Jie and HE

Xiangjian (2016), "A new method for violence detection in surveillance

scenes", Multimedia Tools and Applications, vol. 75, issue 12, pp. 7327–7349.

[7] CHENG Ming, CAI Kunjing and LI Ming (2021), "RWF-2000: an open large scale

video database for violence detection", 25th International Conference on

Pattern Recognition (ICPR), pp. 4183–4190, Milan, Italy.

[8] CHEN Ming-Yu and HAUPTMANN Alexander (2009), "Mosift: Recognizing

human actions in surveillance videos", In Technical Report, CMU-CS-09-161,

Pittsburgh, USA.

[9] HE Kaiming, ZHANG Xiangyu, REN Shaoqing and SUN Jian (2016), "Deep

residual learning for image recognition", Proceedings of the IEEE conference

on computer vision and pattern recognition, pp. 770–778, Las Vegas, Nevada,

USA.

53

[10] LAPTEV Ivan (2005), "On space-time interest points", International journal of

computer vision, vol. 64, issue 2, pp. 107–123.

[11] SIMONYAN Karen and ZISSERMAN Andrew (2014), "Very deep

convolutional networks for large-scale image recognition", arXiv preprint,

arXiv:1409.1556, pp.1-14.

[12] SOOMRO Khurram, ZAMIR Amir Roshan and SHAH Mubarak (2012),

"UCF101: A dataset of 101 human actions classes from videos in the wild",

arXiv preprint, arXiv:1212.0402, pp. 1-7.

[13] SANDLER Mark, HOWARD Andrew, ZHU Menglong, ZHMOGINOV Andrey

and CHEN Liang-Chieh (2018), "Mobilenetv2: Inverted residuals and linear

bottlenecks", Proceedings of the IEEE conference on computer vision and

pattern recognition, pp. 4510–4520, Salt Lake City, Utah, USA.

[14] CHOLLET François (2017), "Xception: Deep learning with depthwise separable

convolutions", Proceedings of the IEEE conference on computer vision and

pattern recognition, 1251–1258, Honolulu, Hawaii, USA.

[15] KRIZHEVSKY Alex, SUTSKEVER Ilya and HINTON Geoffrey E. (2017)

"Imagenet classification with deep convolutional neural networks",

Communications of the ACM, vol. 60, issue 6, pp. 84–90.

[16] BERMEJO NIEVAS Enrique, DENIZ SUARES Oscar, BUENO GARCIA

Gloria and SUKTHANKAR Rahul (2011), "Violence detection in video using

computer vision techniques", International conference on Computer analysis

of images and patterns, pp. 332–339, Seville, Spain.

[17] ARCEDA V. Machaca, FABIÁN K. Fernández and GUTIERREZ, Juan Carlos

(2016), "Real time violence detection in video", International Conference on

Pattern Recognition Systems, pp. 6-7, Talca, Chile.

[18] HASSNER Tal, ITCHER Yossi and KLIPER-GROSS, Orit (2012), "Violent

flows: Real-time detection of violent crowd behavior", IEEE Computer Society

Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–6,

Providence, Rhode Island, USA.

[19] XU Long, GONG Chen, YANG Jie WU Qiang and YAO Lixiu ((2014), "Violent

video detection based on MoSIFT feature and sparse coding", IEEE

International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pp. 3538–3542, Florence, Italy.

54

[20] XIE Jianbin, YAN Wei, MU Chundi, LIU Tong, LI Peiqin and YAN Shuicheng

(2016), "Recognizing violent activity without decoding video streams", Optik,

vol. 127, issue 2, pp. 795–801.

[21] ARCEDA V. Machaca, FABIÁN K. Fernández, LAURA P.C. Laguna, TĲO J.J.

Rivera and CÁCERES J.C. Gutiérrez (2016), "Fast face detection in violent

video scenes", Electronic Notes in Theoretical Computer Science, vol. 329, pp.

5–26.

[22] TRAN Du, BOURDEV Lubomir, FERGUS Rob, TORRESANI Lorenzo and

PALURI Manohar (2015), "Learning spatiotemporal features with 3d

convolutional networks", Proceedings of the IEEE international conference on

computer vision, pp. 4489–4497, Washington, DC, USA.

[23] SUDHAKARAN Swathikiran and LANZ Oswald (2017), "Learning to detect

violent videos using convolutional long short-term memory", 14th IEEE

international conference on advanced video and signal based surveillance

(AVSS), pp. 1–6, Lecce, Italy.

[24] ABDALI Al-Maamoon R. and AL-TUMA Rana F. (2019), "Robust real-time

violence detection in video using cnn and lstm", 2nd Scientific Conference of

Computer Sciences (SCCS), pp. 104–108, Baghdad, Iraq.

[25] ULLAH Fath U. Min, ULLAH Amin, MUHAMMAD Khan, HAQ Ijaz Ul and

BAIK Sung Wook (2019), "Violence detection using spatiotemporal features

with 3D convolutional neural network", Sensors, vol. 19, issue 11, pp. 2472.

[26] SOLIMAN Mohamed Mostafa, KAMAL Mohamed Hussein, NASHED Mina

Abd El-Massih, MOSTAFA Youssed Mohamed, CHAWKY Bassel Safwat

and KHATTAB Dina (2019), "Violence recognition from videos using deep

learning techniques", Ninth International Conference on Intelligent Computing

and Information Systems (ICICIS), pp. 80-85, Cairo, Egypt.

[27] SUMON Shakil Ahmed, GONI Raihan, HASHEM Niyaz Bin, SHAHRIA Tanzil

and RAHMAN Rashedur M. (2020), "Violence detection by pretrained

modules with different deep learning approaches", Vietnam Journal of

Computer Science, vol. 7, issue 01, pp. 19–40.

[28] LIANG Jinhua, ZHANG Tao and FENG Guoqing (2020), "Channel compression:

Rethinking information redundancy among channels in CNN architecture",

IEEE Access, vol. 8, pp. 147265–147274.

55

[29] SHARMA Sarthak, SUDHARSAN B., NARAHARISETTI Saamaja, TREHAN

Vimarsh and JAYAVEL Kayalvizhi (2021), "A fully integrated violence

detection system using CNN and LSTM", International Journal of Electrical

& Computer Engineering (2088-8708), vol. 11, issue 4, pp. 3374-3380.

[30] KANG Min-seok, PARK Rae-Hong and PARK Hyung-Min (2021), "Efficient

spatiotemporal modeling methods for real-time violence recognition", IEEE

Access, vol. 9, pp. 76270–76285.

[31] ALDAHOUL Nouar, KARIM Hezerul Abdul, DATTA Rishav, GUPTA

Shreyash, AGRAWAL Kashish and ALBUNNI Ahmad (2021),

"Convolutional Neural Network-Long Short Term Memory based IOT Node

for Violence Detection", IEEE International Conference on Artificial

Intelligence in Engineering and Technology (IICAIET), pp. 1–6, Kota

Kinabalu, Sabah, Malaysia.

[32] ISLAM Zahidul, RUKONUZZAMAN Mohammad, AHMED Raiyan, KABIR

Md. Hasanul and FARAZI Moshiur (2021), "Efficient two-stream network for

violence detection using separable convolutional lstm", International Joint

Conference on Neural Networks (ĲCNN), pp. 1–8, Shenzhen, China.

[33] MUGUNGA Israel, DONG Junyu, RIGALL Eric, GUO Shaoxiang, MADESSA

Amanuel Hirpa and NAWAZ Hafiza Sadia (2021), "A Frame-Based Feature

Model for Violence Detection from Surveillance Cameras Using ConvLSTM

Network", 6th International Conference on Image, Vision and Computing

(ICIVC), pp. 55–60, Qingdao, China.

[34] VOSTA Soheil and YOW Kin-Choong (2022), "A cnn-rnn combined structure

for real-world violence detection in surveillance cameras", Applied Sciences,

vol. 12, issue 3, pp. 1021.

[35] TALHA Khalid Raihan, BANDAPADYA Koushik and KHAN Mohammad

Monirujjaman (2022), "Violence Detection Using Computer Vision

Approaches", IEEE World AI IoT Congress (AIIoT), pp. 544–550, Seattle,

USA.

[36] VO-LE Cuong, VO Hung Sy, VU Thien Duy and SON Nguyen Hong (2022),

"Violence Detection using Feature Fusion of Optical Flow and 3D CNN on

AICS Violence Dataset", IEEE Ninth International Conference on

Communications and Electronics (ICCE), pp. 395–399, Seoul, South Korea.

56

[37] O’SHEA Keiron and NASH Ryan (2015), "An introduction to convolutional

neural networks", arXiv preprint, arXiv:1511.08458, pp.1-11.

[38] NAM Jeho, ALGHONIEMY Masoud and TEWFIK Ahmed H. (1998),

"Audiovisual content-based violent scene characterization", Proceedings

International Conference on Image Processing. ICIP98 (Cat. No.

98CB36269), vol. 1, pp. 353–357, Chicago, Illinois, USA.

[39] SIVIC Josef and ZISSERMAN Andrew (2003), "Video Google: A text retrieval

approach to object matching in videos", IEEE International Conference on

Computer Vision, vol. 3, pp. 1470–1470, Nice, France.

[40] CHENG Wen-Huang, CHU Wei-Ta and WU Ja-Ling (2003), "Semantic context

detection based on hierarchical audio models", Proceedings of the 5th ACM

SIGMM international workshop on Multimedia information retrieval, pp. 109–

115, Berkeley, California, USA.

[41] CLARIN Christine T., DIONISIO Judith Ann M., ECHAVEZ Michael T. and

NAVAL Prospero C. (2005), "DOVE: Detection of movie violence using

motion intensity analysis on skin and blood", PCSC, vol. 6, pp. 150–156.

[42] CHEN Datong, WACTLAR Howard, CHEN Ming-Yu, GAO Can, BHARUCHA

Ashok and HAUPTMANN Alex (2008), "Recognition of aggressive human

behavior using binary local motion descriptors", 30th Annual International

Conference of the IEEE Engineering in Medicine and Biology Society, pp.

5238–5241, Vancouver, British Columbia, Canada.

[43] YUJIAN Li and BO Liu (2007), "A Normalized Levenshtein Distance Metric",

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29,

issue 6, pp. 1091-1095.

[44] SCHILLING Fabian (2016), The effect of batch normalization on deep

convolutional neural networks (Master’s Thesis), KTH, Stockholm.

[45] Tensorflow (2022), Video classification with a 3D convolutional neural network,

https://www.tensorflow.org/tutorials/video/video_classification, DoA.

06.20.2022.

[46] Tensorflow (2023), Transfer learning for video classification with MoViNet,

https://www.tensorflow.org/tutorials/video/video_classification, DoA.

01.10.2023.

57

[47] SONG Wei, ZHANG Dongliang, ZHAO Xiaobing, YU Jing, ZHENG Rui and

WANG Antai (2019), "A novel violent video detection scheme based on

modified 3D convolutional neural networks", IEEE Access, vol. 7, pp. 39172–

39179.

[48] ACCATOLI Simone, SERNANI Paolo, FALCIONELLI Nicola, MEKURIA

Dagmawi Neway and DRAGONI Aldo Franco (2020), "Violence detection in

videos by combining 3D convolutional neural networks and support vector

machines", Applied Artificial Intelligence, vol. 34, issue 4, pp. 329–344.

[49] JI Shuiwang, XU Wei, YANG Ming and YU Kai (2012), "3D convolutional

neural networks for human action recognition", IEEE transactions on pattern

analysis and machine intelligence, vol. 35, issue 1, pp. 221–231.

[50] IOFFE Sergey and SZEGEDY Christian (2015), "Batch normalization:

Accelerating deep network training by reducing internal covariate shift",

International conference on machine learning, pp. 448–456, Lille, France.

[51] LI Chengyang, ZHU Liping, ZHU Dandan, CHEN Jiale, PAN Zhanghui, LI Xue

and WANG Bing (2018), "End-to-end multiplayer violence detection based on

deep 3D CNN", Proceedings VII international conference on network,

communication and computing, pp. 227–230, Taipei City, Taiwan.

[52] VĲEIKIS Romas, RAUDONIS Vidas and DERVINIS Gintaras (2022),

"Efficient violence detection in surveillance", Sensors, vol. 22, issue 6, pp.

2216.

[53] HUSSAIN Tariq, IQBAL Arshad, YANG Bailin and HUSSAIN Altaf (2022),

"Real time violence detection in surveillance videos using Convolutional

Neural Networks", Multimedia Tools and Applications, vol. 81, issue 26, pp.

38151–38173.

[54] LECUN Yann, JACKEL Lawrence D., BOTTOU Léon, CORTES Corinna,

DENKER John S., DRUCKER Harris, GUYON Isabelle, MULLER Urs A.,

SACKINGER Eduard, SIMARD Patrice and VAPNIK Vladimir (1995),

"Learning algorithms for classification: A comparison on handwritten digit

recognition", Neural networks: the statistical mechanics perspective, vol. 261,

issue 276, pp. 2.

58

[55] KONDRATYUK Dan, YUAN Liangzhe, LI Yandong, ZHANG Li, TAN

Mingxing, BROWN Matthew and GONG Boqing (2021), "Movinets: Mobile

video networks for efficient video recognition", Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pp. 16020–16030,

Montreal, Canada.

[56] HOWARD Andrew, SANDLER Mark, CHU Grace, CHEN Liang-Chieh, CHEN

Bo, TAN Mingxing, WANG Weĳun, ZHU Yukun, PANG Ruoming,

VASUDEVAN Vĳay, LE Quoc V., ADAM Hartwig (2019), "Searching for

mobilenetv3", Proceedings of the IEEE/CVF international conference on

computer vision, pp. 1314–1324, Seoul, Korea.

[57] OORD Aaron van den, DIELEMAN Sander, ZEN Heiga, SIMONYAN Karen,

VINYALS Oriol, GRAVES Alex, KALCHBRENNER Nal, SENIOR Andrew

and KAVUKCUOGLU Koray (2016), "Wavenet: A generative model for raw

audio", arXiv preprint, arXiv:1609.03499, pp. 1-15.

[58] SHARMA Sagar, SHARMA Simone and ATHAIYA Anidhya (2017),

"Activation functions in neural networks", Towards Data Science, vol. 6, issue

12, pp. 310–316.

[59] RUMELHART David E., HINTON Geoffrey E. and WILLIAMS Ronald J.

(1986), "Learning representations by back-propagating errors", Nature, vol.

323, issue 6088, pp. 533–536.

[60] KINGMA Diederik P. and BA Jimmy (2014), "Adam: A method for stochastic

optimization", arXiv preprint, arXiv:1412.6980, pp. 1-15.

[61] KARPATHY Andrej, TODORICI George, SHETTY Sanketh, LEUNG Thomas,

SUKTHANKAR Rahul and FEI-FEI Li (2014), "Large-scale video

classification with convolutional neural networks", Proceedings of the IEEE

conference on Computer Vision and Pattern Recognition, pp. 1725–1732,

Columbus, Ohio, USA.

[62] CARREIRA Joao, NOLAND Eric, BANKI-HORVATH Andras, HILLIER

Chloe and ZISSERMAN Andrew (2018), "A short note about kinetics-600",

arXiv preprint, arXiv: 1808.01340, pp. 1-6.

59

APPENDICES

APPENDIX 1: 3D CNN Loss-Accuracy Graphs and Confusion Matrices for the Test

Set for Each Experiment

60

APPENDIX 2: MoViNet 3D CNN Loss-Accuracy Graphs and Confusion Matrices

for the Test Set for Each Experiment

