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ABSTRACT 

 

SCATTERING WAVES BY A CYLINDRICAL CONDUCTIVE SURFACE 

 

YAYLAK, REFİK KORAY 

M.Sc. in Electronic and Communication Engineering 

 

Supervisor: Assist. Prof. Dr. Göker Şener 

December 2022, 41 pages 

 

Scattering of electromagnetic waves is the process by which electromagnetic 

waves change direction or frequency when interacting with a surface. This scattering 

event occurs as a result of the surface reflected or diffracted electromagnetic waves. 

In this thesis, the scattering of electromagnetic waves on a conductive cylindrical 

surface is discussed. The scattering of electromagnetic waves is usually analyzed using 

Maxwell's equations. The Maxwell's equations set up relations between the electric 

field and magnetic field. It provides mathematical modeling of phenomena such as 

electromagnetic wave propagation and scattering. First, these electromagnetic waves 

are modeled based on Maxwell's equations. Appropriate equations expressing the 

electric field and magnetic field at the surface of the cylinder are used. Then, the far-

field approach is used. However, the far-field approach is valid in cases where the 

wavelength ratio of the distance to the observation point of the scattered 

electromagnetic waves is large enough. The far-field approach; It usually analyzes the 

parameters of the scattering event, such as scattering cross section, propagation angle, 

and scattered wave density. These parameters are used to determine the properties of 

the scattered wave. In this thesis, the behavior of the scattered fields from a cylindrical 

surface is analyzed in theory, and simulation with MATLAB. Then, the results are 

compared with Ansys HFSS software.  

 

Keywords: Cylindrical Surface, Far-Field, Physical Optics 
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ÖZET 

 

İLETKEN SİLİNDİRİK BİR YÜZEYDEN DALGALARIN SAÇILMASI 

 

YAYLAK, REFİK KORAY 

Elektronik ve Haberleşme Mühendisliği Yüksek Lisans 

 

Danışman: Dr. Öğr. Üyesi Göker Şener 

Aralık 2022, 41 sayfa 

  

Elektromanyetik dalgaların saçılması, elektromanyetik dalgaların bir yüzeyle 

etkileşime girdiğinde yön veya frekans değiştirmesi sürecidir. Bu saçılma olayı, 

yüzeyin elektromanyetik dalgaları yansıtması ve kırması sonucu gerçekleşir. Bu tezde, 

iletken bir silindirik yüzey üzerinde elektromanyetik dalgaların saçılması ele 

alınmıştır. Elektromanyetik dalgaların saçılması genellikle Maxwell denklemleri 

kullanılarak analiz edilir. Maxwell denklemleri, elektrik alanı ve manyetik alanı 

birbirine bağlar. Elektromanyetik dalga yayılımı ve saçılması gibi olayların, 

matematiksel modellenmesini sağlar. İlk olarak, bu elektromanyetik dalgalar Maxwell 

denklemlerine dayanan bir şekilde modellenir. Silindirin yüzeyindeki elektrik alanı ve 

manyetik alanı ifade eden uygun denklemler kullanılır. Daha sonra, Uzak alan 

yaklaşımı kullanılır. Ancak, uzak alan yaklaşımı saçılan elektromanyetik dalgaların 

gözlem noktasına olan mesafenin dalga boyu oranının yeterince büyük olduğu 

durumlarda geçerlidir. Uzak alan yaklaşımı; saçılma olayının genellikle, saçılma 

kesitini, yayılım açısını, saçılan dalga yoğunluğu gibi parametreleri analiz eder. Bu 

parametreler, saçılan dalganın özelliklerini belirlemek için kullanılır, ve bununla 

birlikte saçılma olayı analiz edilir. Saçılan alanların davranışı teoride ve MATLAB ile 

simülasyonda analiz edilir, daha sonra sonuçlar Ansys HFSS yazılımı ile karşılaştırılır. 

 

Anahtar Kelimeler: Silindirik Yüzey, Uzak Alan, Fiziksel Optik  
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CHAPTER I 

 

INTRODUCTION  

.  

1.1 REVIEW AND OBJECTIVES 

The aim of this thesis is to investigate the scattering of electromagnetic waves 

by a cylindrical cap with conductive boundary conditions. The theory is verified by 

the simulation results. As far as the author’s knowledge, no study has been found 

investigating this problem with an analytical approach as well as the computer 

simulation. 

In the literature, Fresnel explained diffraction with wave theory. Developing 

the Huygens principle, Fresnel introduced a new principle by considering the 

overlapping interference (Superposition) of waves (Fresnel 1812). According to this 

principle, called the Huygens-Fresnel principle, when the incident wave is refracted 

by an obstacle, its wavelength gets shorter than the dimensions of the obstacle and the 

incident wave is considered as the primary wave. Secondly, each point of the 

advancing wave is approached as the source point of a new wave and these points are 

considered as (isotropic) sources that generate waves in all directions. 

When Maxwell's electromagnetic theory was established, it has been 

understood that light has both particle and wave structure and the studies have 

progressed in this direction (Maxwell 1865). Later, Kirchoff developed the 

mathematical basis of Diffraction Theory with the Helmholtz equations and revealed 

that the diffraction field in the traditional Helmholtz-Kirchhoff approximation can be 

obtained by calculating the effect of waves propagating from all points within the 

aperture area (Kirchhoff 1883). Thereupon, Maggi developed Kirchhoff's Helmholtz 

equation based on it has integral solution. Maggi and Rubinowicz showed that the 

Kirchoff diffraction integral can be decomposed into boundary diffraction waves and 

geometric waves (Maggi 1888).  
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Before Fresnel, Young stated that diffraction is caused by the combination of 

a uniformly propagating wave and some waves reflected from the aperture surface 

(Young 1802). Rubinowicz then examined Young's ideas of diffraction (Rubinowicz 

1917). Based on this, Miyamoto generalized Rubinowicz's studies (Miyamoto 1962). 

Since the method of Miyamoto and Wolf did not give results similar to Young's model 

for diffraction waves, Rubinowicz called these solutions Miyamoto-Wolf diffraction 

(Rubinowicz 1965). 

In the following period, electromagnetic waves emitted from surfaces are 

observed with the method of Geometric Optics. However, in this method, 

discontinuous diffraction is not observed in the light-dark border crossing regions. 

First, Geometric Optical waves propagate unaffected by obstacles and have the same 

structure as incident fields. Second, the fields emanating from the edge of the obstacle 

are diffraction fields and Geometric Optics cannot be applied to them. For this reason, 

Sommerfeld, stating that the transmitted waves propagate from surfaces other than the 

real surface, found the edge diffraction coefficient by showing the scattered fields in 

terms of Geometric Optics and diffracted waves (Sommerfeld 1896). Sommerfeld's 

solution was reformulated by Wiener and Hopf to solve the integral equations named 

after them. Later, although Radlow analyzed the scattering problem with the Wiener-

Hopf method, he could not fully express the diffracted waves (Radlow 1961). After 

that, Satterwhite developed a definitive solution (Satterwhite 1974). Moreover, Keller 

developed the Sommerfeld solution, one of the known solutions of simple shapes and 

made this theory, called the Geometric Theory of Diffraction, more multi-dimensional 

than the Kirchhoff wave theory. This method developed by Keller is a high-frequency 

approach (Keller 1962). The Geometric Theory of Diffraction for the impedance 

surface was formulated only after the work of Senior, Maliuzhinets, and Volakis 

(Senior 1952, Maliuzhinets 1958, Volakis 1986). 

The asymptotic reduction approach used in Geometric Optics was first used by 

Michaeli (Michaeli 1984). This technique yielded the same results as the methods of 

Maggi and Rubinowicz. Scattering integral with Edge Point method evaluates 

asymptotic broadening of fully diffraction fields for high-frequency. The asymptotic 

diffraction field approaches infinity in the shadow boundary transition region. Regular 

equation expression, which is finite in this region, can be obtained by the Uniform 

Theory of Diffraction (UTD) (Kouyoumjian and Pathak 1974). The Geometrical 

Theory of Diffraction remains incapable in infinite fields at shadow boundaries, so the 
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Uniform Theory of Diffraction was developed to overcome this inadequacy. Also, 

James and Balanis are among the researchers who have conducted notable works in 

these fields (James 1986, Balanis 1987). 

Physical Optics approach which is introduced by Macdonald is used as an 

efficient method to calculate electromagnetic scattering (Macdonald 1913). While 

Geometric Optics is a field-based method, Physical Optics is a current-based method. 

Physical Optics varies with frequency. The method of Physical Optics approximates 

the diffraction coefficients for the Geometric Theory of Diffraction. The most 

important reason why Physical Optics is preferred for calculating scattering fields from 

conductive surfaces is that it can be easily reduced to Geometric Optics equations at 

high frequencies. The solution expression is more general than Geometric Optics. The 

Physical Optics method determines the high frequency reflected fields, approximate 

surface current density and magnetic fields induced at the surface of a perfect 

conductor, but cannot evaluate edge diffraction fields. In this method, the solution of 

the Helmholtz equation for scattered fields is achieved with the help of the second 

scalar Green's theorem. Following, the reflected and refracted areas are expressed by 

applying the Stationary Phase method. Therefore, Umul developed an advanced theory 

of Physical Optics called The Modified Theory of Physical Optics (MTPO), which 

provides a definitive solution to the scattering problem (Umul 2004). Later, Umul 

defined the edge diffraction wave as a continuous field with no phase shift at the 

shadow or reflection boundary. In this way, the fields of Geometric Optics become an 

aperture wave (Umul 2008). Kirchhoff's theory of diffraction does not give edge 

diffractions; this problem also occurs in Physical Optics. Additional currents, called 

fringe currents, are added to obtain precise diffraction. In the next period, Ufimtsev 

introduced the Physical Theory of Diffraction (PTD) to eliminate this problem. In 

other words, Physical Theory of Diffraction was developed to improve the Physical 

Optical surface approach (Ufimtsev 1971). However, the theory has flaws; the 

apparent directions of the fringe currents cannot be evaluated. Nonetheless, the 

Modified Theory of Physical Optics has also removed the flaws of the Physical Theory 

of Diffraction. In this thesis, the corresponding boundary conditional surface current 

is obtained. First, the Physical Optics equation is written for the cylindrical surface. 

Transmitted and reflected waves are evaluated by the Far-Field method. The behavior 

of the evaluated areas is analyzed numerically. 
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1.2 ORGANIZATION OF THE THESIS 

Chapter 1 presents the background on the subject. Chapter 2 gives information 

on the methods and approaches used in the study. In chapter 3, the scattered fields of 

a source originating from a cylindrical surface are examined by using the Physical 

Optics scattering equation. Finally, including the surface width and the position angle 

of the source, total scattered, reflected and diffracted fields are plotted for some 

problem parameters. 

 

1.3 BACKGROUNDS 

In this section, brief information is given about the functions used in the 

equations. 

 

1.3.1 Conductive Surface 

Surfaces that allow heat or electric current to pass through are called conductive 

surfaces. The conductive surface, here, is a type of scattering that maintains a magnetic 

surface density. This character is defined as the electromagnetic coupling of the 

resistive surface.  

 

Γ =  
sin∅0

sin∅0 + sin𝜃𝑛 
                                                          (1.1) 

and 

𝑇 =  
sin𝜃𝑛

sin∅0 + sin𝜃𝑛 
                                                          (1.2) 

 

respectively. T and Γ are the transmission and reflection coefficients of a conductive 

surface. sin𝜃𝑛 is the angle of incidence and equal to 2𝑅𝑚𝑍0. 𝑍0 is the free-space 

impedance. The electromagnetic fields satisfy the boundary conditions given in 

respectively, 

 

𝑛 𝑥 (𝐸+ - 𝐸− )|𝑠= -𝐽𝑚𝑠                                                (1.3) 

 

n x H = n. 𝑅𝑚 x 𝐽𝑚𝑠                                                  (1.4) 

 

𝑛 𝑥 (𝐻+ - 𝐻− )|𝑠= 0                                                  (1.5) 
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“+” and “−” refers to upper and lower parts of the conductive surface. n is the unit 

normal vector. d refers to width of dielectric surface. 𝜇 and 𝜇0 are the permeability of  

surface and free-space in respectively. The parameter 𝑅𝑚 known as the surface 

conductivity, models the conductive surface. The surface conductivity is denoted by 

𝑅𝑚 which is equal to -j/[𝜔d(𝜇-𝜇0)].  

 

1.3.2 Bessel Function 

The Bessel function, a special function used in mathematics, physics and 

engineering, was introduced by Friedrich Bessel. Being used to explain the distribution 

and reflection of electromagnetic waves, Bessel functions are utilized to model the 

reflection of planar electromagnetic waves from a circular conductor, in particular. 

The Bessel function is defined by, 

 

𝐽𝑛(𝑥) =
1

𝜋
∫ cos

𝜋

0
cos (𝑛𝑡 − 𝑥sin𝑡)  𝑑𝑡=

1

2𝜋
∫ 𝑒𝑖(𝑛𝑡−𝑥sin𝑡)𝜋

−𝜋
𝑑𝑡         (1.6) 

and  

𝐽−𝑛(𝑥) = (−1)𝐽𝑛(𝑥)                                           (1.7) 

 

Bessel functions represent the root component of a function in cylindrical coordinates, 

that is, they are used to solve wave equations in cylindrical coordinates. 

 

1.3.3 Hankel Function 

Hankel function was introduced by Hermann Hankel. Being closely related to 

the Bessel functions, Hankel function is a special type of function used in mathematics 

physics and engineering. There are two types of Hankel functions; denotes the inward 

and outward propagation values of the cylindrical wave functions, respectively, and 

are used to model the dispersion and reflection of an electromagnetic wave. The 

Hankel function is defined by the equation, 

 

𝐻𝑎
(1)(𝑥) =  

1

𝑖𝜋
∫ 𝑒𝑥sinℎ𝑡 − 𝑎𝑡∞ + 𝑖𝜋

−∞
𝑑𝑡                                       (1.8) 

 

𝐻𝑎
(2)(𝑥) =  −

1

𝑖𝜋
∫ 𝑒𝑥sinℎ𝑡  −𝑎𝑡∞ − 𝑖𝜋

−∞
𝑑𝑡                                     (1.9) 

and 
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𝐻−𝑎
(1)(𝑥) = 𝑒𝑖𝜋𝑎𝐻𝑎

(1)(𝑥)                                                   (1.10) 

 

𝐻−𝑎
(2)(𝑥) = 𝑒−𝑖𝜋𝑎𝐻𝑎

(2)(𝑥)                                                        (1.11) 

and 

𝐻𝑎
(1)(𝑥) =  

𝐽−𝑎(𝑥)− 𝑒−𝑖𝜋𝑎𝐽𝑎(𝑥)

𝑖sin𝜋𝑎
                                             (1.12) 

 

𝐻𝑎
(2)(𝑥) =  

𝐽−𝑎(𝑥)− 𝑒−𝑖𝜋𝑎𝐽𝑎(𝑥)

−𝑖sin𝜋𝑎
                                            (1.13) 

 

That is, Hankel functions are used to solve wave equations in cylindrical coordinates 

and are defined in a similar way to Bessel functions, so they are also called Bessel 

functions of the third kind. 

 

1.3.4 Fresnel Function 

Introduced by Augustin Fresnel, The Fresnel Function is widely used in optics, 

radio communications, microwave engineering, surface science and other fields. It is 

applied in calculating electromagnetic field intensity in a medium where light is 

diffracting around objects.  The Fresnel function is defined by the equation, 

 

F|x| = 
𝑒𝑗𝜋/4

√𝜋
∫ 𝑒−𝑗𝑡2∞

𝑥
dt                                               (1.14) 

 

That is, in electromagnetic wave theory, solving problems such as surface propagation, 

reflection, and diffraction. 

 

1.3.5 Helmholtz Equation 

The Helmholtz equation, a wave equation used in mathematics, physics, and 

engineering, was introduced by Hermann Helmholtz. Also known as the reduced wave 

equation, the Helmholtz equation is used in the mathematical solution of 

electromagnetic wave problems, acoustic wave problems, hydrodynamic problems, 

and many other physical problems. Finding separable solutions to Helmholtz equations 

can be solved in cylindrical or spherical coordinates to produce Bessel functions. 

Substituting V(r,t) = V(r) = 𝑒𝑗𝜔𝑡 into the wave equation leads to a differential equation 

for the complex amplitude V(r); 
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𝛻2V + 𝑘2V = 0                                                 (1.15) 

 

which is known as the Helmholtz equation, where, 

 

c = 1/√𝜇𝜀                                                        (1.16) 

 

k = 𝜔√𝜇𝜀                                                        (1.17) 

 

k = 𝜔/c                                                           (1.18) 

 

k refers to as the wavelength. c is the speed of light. μ is the permeability, ε is the 

permittivity. Different solutions are obtained from other boundary conditions, defined 

by the equation on cylindrical coordinates. 

 

R
𝜕

𝜕𝑅
(R

𝜕𝐺

𝜕𝑅
) + 

𝜕2𝐺

𝑑𝛽2 +𝑘2𝑅2𝐺 =  0                                     (1.19) 

 

Where R refers to the vector, G refers to the Green’s function in three-dimensional 

space. The Helmholtz equation demonstrates the propagation of electromagnetic 

waves in an environment and the field distribution in the environment excited by 

electromagnetic waves. 

 

1.3.6 Green Function 

Green's function was introduced by George Green. Green’s functions, a type 

of function used in mathematics, physics, and engineering, facilitate the solution of 

inhomogeneous differential equations under certain boundary conditions. A Green's 

function can be expressed as the integral of a source function, and this function is used 

to solve the differential equation. That is, any linear differential operator can be 

modeled as a particular Green's function based on the dirac-delta function. The Green’s 

function is defined by, 

 

G(�⃗�, �⃗�′) = 
𝑒−𝑗𝑘𝑅

𝑅
                                                   (1.20) 

and 
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R = ||�⃗⃗�|| = ||�⃗� − �⃗�′||                                               (1.21) 

 

Green's function, which is used for the propagation and dispersion of electromagnetic 

waves in electromagnetic wave problems, includes the phase and shows the distance 

from the source. 
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CHAPTER II 

 

CURRENT BASED TECHNIQUES 

 

2.1       FUNDAMENTAL OF TECHNIQUES 

In this thesis, "Scattering from Conductive Cylindrical Surface" of 

electromagnetic waves emitted from a linear current source is investigated. Several 

methods have been developed so far to solve these problems. With these methods, 

calculations are made for various geometries and surfaces. Due to the deficiencies in 

each process, new techniques have been continued to be designed. In the thesis, the 

theory of Physical Optics is explained. In the following stages, the fields scattered from 

the infinitely long conductive cylindrical surface in the region of the linear current 

source are examined. 

 

2.2       FAR-FIELD METHOD 

The far-field approximation is a numerical method used to analyze the 

scattering of reflected and transmitted waves from cylindrical surfaces, especially 

considering the radiation pattern of the scattered wave and at the far-field region. It 

assumes that the observation point is far enough away that the wave front can be 

approached as a plane wave. In the context of other numerical methods, the far-field 

approach is typically applied when assessing diffuse fields at distant observation 

points. When using other numerical methods, the computational space is typically 

finite and computations are performed within a limited region. To obtain the far-field 

scattering pattern, the scattering field must be evaluated at observation points far 

enough from the scattering object. The far-field approach involves determining the 

angular spectrum of the scattered field, which characterizes the directional distribution 

of the wave in the far-field region. Various techniques such as Fourier transform, 

spherical wave broadening or plane wave decomposition can be used to extract far-

field information from near-field results obtained in the computational field. Since the 

wave can be characterized by its direction and intensity in the far-field region, the far-
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field approximation allows for simplifications in the analysis and calculation of the 

scattering problem. Using the far-field approach, the radiation pattern of a conductive 

cylindrical surface, and scattering properties such as directionality and polarization 

can be analyzed at distant observation points. This knowledge is valuable for 

applications where the behavior of the scattered wave in the far-field region is of 

primary concern, such as antenna design, radar systems, and wireless communications. 

 

2.3       PHYSICAL OPTICS 

Physical Optics studies the propagation, reflection and diffraction of 

electromagnetic waves. That is, it is a method used to calculate the distribution of 

electromagnetic waves on surfaces. In this method, the surface is exposed to 

electromagnetic waves and the distribution of the surface is obtained by calculating 

the currents dispersed from these waves. The method also regards the features of 

electromagnetic waves such as wavelength, frequency, and polarization. Physical 

Optics approximates the field scattered from the target object, assuming the total area 

at each point on the target surface is the field that would be there if the target were flat, 

with the assumption that the target is far-field. When an electromagnetic wave 

illuminates a surface, the current is induced on the surface. These induced currents act 

as a second source, emitting electromagnetic fields in all directions. According to the 

Physical Optics approach, it is assumed that there are surface currents in the 

illuminated parts of the target and the current drops directly to zero in the shaded parts. 

Due to this sharp transition, the current values calculated away from the regular 

reflection regions and at the shadow boundaries deviate from the values they should 

be. Corner diffraction, multiple reflections, and surface waves are scattering processes 

that are not considered by the Physical Optics approach. 

 

 
Figure 1: Induced surface by incident wave 
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J is the surface current induced by the incident wave can be seen in Figure 1. The 

boundary conditions are defined by the surfaces, 

 

𝐽𝑒𝑠 = {�⃗⃗� 𝑥 �⃗⃗⃗�𝑡 , 𝑅𝑎𝑑𝑖𝑎𝑡𝑒𝑑
0,        𝑆ℎ𝑎𝑑𝑜𝑤

                                                 (2.1) 

 

                                     𝐽𝑚𝑠 = {−�⃗⃗� 𝑥 �⃗⃗�𝑡 , 𝑅𝑎𝑑𝑖𝑎𝑡𝑒𝑑
0 ,         𝑆ℎ𝑎𝑑𝑜𝑤

                                         (2.2) 

 

�⃗⃗�𝑖 =  �⃗⃗�𝑟                                                      (2.3) 

 

2�⃗⃗�𝑖 =  �⃗⃗�𝑡                                                     (2.4) 

 

�⃗⃗⃗�𝑖 = �⃗⃗⃗�𝑟                                                       (2.5) 

 

2�⃗⃗⃗�𝑖 = �⃗⃗⃗�𝑡                                                      (2.6) 

 

𝐽𝑒𝑠 is the surface current density and 𝐽𝑚𝑠 is the magnetic surface intensity. The total 

field on the surface is twofold the incident field in the Physical Optics. (the reflected 

fields as Geometric Optics fields). The total electric and magnetic field is equal to the 

sum of the scattered and incident fields. 

 

�⃗⃗�𝑡 = �⃗⃗�𝑖 + �⃗⃗�𝑠                                                  (2.7) 

 

�⃗⃗⃗�𝑡 = �⃗⃗⃗�𝑖 +  �⃗⃗⃗�𝑠                                                 (2.8) 

                                                 

Calculations of scattering fields from similar scattering objects such as spheres and 

cylinders are also frequently used in practice. According to this approach, the current 

density of a perfectly conductive scattering surface is twice the current density of the 

source it is in. With the solution of the Helmholtz equation of the Hertz vector obtained 

for the scattered field from this surface, the scattered field expressions of a local 

surface are obtained through the help of the second scalar Green's theorem. In addition, 

it is generally the preferred high-frequency approximation method since it gives quite 
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accurate results when the observation point is the regular reflection of the far-field. 

Surface current density and magnetic field intensity are defined by, 

 

𝐽𝑚𝑠(�⃗�′) = - (�⃗⃗� x �⃗⃗�𝑡)|𝑠                                           (2.9) 

 

 𝐽𝑒𝑠(�⃗�′) = (�⃗⃗� x �⃗⃗⃗�𝑡)|𝑠                                           (2.10) 

 

The hertz equation is defined to be used in the scattering integral. 17. and 18. equations 

are written in the equation, 

G(�⃗�, �⃗�′) = 
𝑒−𝑗𝑘𝑅

𝑅
                                                 (2.11) 

where 

R = ||�⃗⃗�|| = ||�⃗� − �⃗�′||                                             (2.12) 

 

The required relations for electric vector potential and magnetic vector potential are 

given to establish the scattering integral as, 

 

𝐴 =
𝜇0

4𝜋
∬  𝐽𝑒𝑠(�⃗�′)

𝑒−𝑗𝑘𝑅

𝑅
dS’                                           (2.13) 

 

𝐹 =
𝜀0

4𝜋
∬  𝐽𝑚𝑠(�⃗�′)

𝑒−𝑗𝑘𝑅

𝑅
dS’                                           (2.14) 

 

where A refers to electric vector potential and F refers to magnetic vector potential. 

Rotational equations of electric and magnetic vector potential equation for electric and 

magnetic field are given in respectively. 

 

E = -jwA - 
1

𝜀0
∇𝑥𝐹                                                 (2.15) 

 

H = -jwF - 
1

𝜇0
∇𝑥A                                                 (2.16) 

 

where E refers to electrical fields and H refers to magnetic fields. The electric and 

magnetic fields equations are found in as, 
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E = 
𝑗𝑤𝜇0

4𝜋
∬  𝐽𝑒𝑠(𝑝′)

𝑒−𝑗𝑘𝑅

𝑅
dS’                                           (2.17) 

 

H = −
𝑗𝑤𝜀0

4𝜋
∬  𝐽𝑚𝑠(�⃗�′)

𝑒−𝑗𝑘𝑅

𝑅
dS’                                        (2.18) 

 

The following formulas are used to convert the electrical and magnetic fields equations 

to each other. 

 

E = 
1

𝑗𝑤𝜀0
∇𝑥H                                                 (2.19) 

 

H = - 
1

𝑗𝑤𝜇0
∇𝑥E                                                (2.20) 

 

The solution of the Helmholtz equation of the hertz vector for the scattered field from 

the surface is obtained with the help of the second scalar Green's theorem. The Hertz 

equation is defined by, 

 

𝜋  = - 
𝑗𝜔𝜀0

4𝜋
∬

𝑠′
(�⃗⃗� 𝑥 �⃗⃗⃗�𝑡)|𝑠 G(�⃗�, �⃗�′)ds′                                    (2.21) 

 

Shadow boundaries by a source can be seen in Figure 2 

 

 
Figure 2: Shadow boundaries by the source 

 

However, for electrically large targets, it is often the preferred high-frequency 

approximation method because it gives quite accurate results when the point of 

observation is in the far-field regular reflection zone. 
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2.4       DEBYE’S ASYMPTOTIC EXPANSION 

The Debye Asymptotic is an asymptotic expansion for the Hankel Function of 

the first type. The technique, which is frequently used in microwave technology, the 

design of electromagnetically compatible devices, and applications such as radar 

systems, is also applied in electromagnetic wave problems, where the wavelength is 

short and the distribution is observed over long distances. This method provides 

asymptotic analysis of integral expressions used to calculate the dispersion of an 

electromagnetic wave. 

 

𝐻0
(1)(𝑘𝑝) ≈  √

2

𝜋
 
𝑒−𝑗𝑘𝑝+𝑗𝜋/4

√𝑘𝑝
                                            (2.22) 

and 

𝐻0
(2)(𝑘𝑝2) ≈  √

2

𝜋
 
𝑒−𝑗𝑘𝑝2+𝑗𝜋/4

√𝑘𝑝2
                                         (2.23) 

 

are defined respectively. Debye Asymptotic expresses the solution of the wave 

scattering problem as a series; that is known as Debye functions. Debye functions vary 

depending on the wavelength and the angle of scattering and approach zero as the 

angle of scattering increases. It is used in scattering integral analysis. 
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CHAPTER III 

 

SCATTERING FROM A CYLINDRICAL CONDUCTIVE SURFACE 

.  

3.1       APPROACH TO THE PROBLEM 

An electromagnetic wave emitted from a linear source of electricity is scattered 

when it strikes a conductive cylindrical surface. To analyze this scattering event, some 

basic information and methods are considered. First, the electromagnetic wave emitted 

from the linear source of electricity can be regarded as a plane wave. This wave has 

properties such as wavelength (λ), frequency (f), wave number (k), polarization and 

propagation speed. To analyze scattering from a conductive cylindrical surface, a four-

step approach is usually used. 

 

3.1.1   Calculation of Inside and Outside Areas 

The electromagnetic wave propagates inside and outside the conducting 

cylinder. The interior and exterior areas are calculated using Maxwell's equations and 

appropriate boundary conditions. At this stage, the wave field is expressed inside and 

outside the cylinder. 

 

3.1.2   Calculation of Surface Flux Density 

The surface flux density describes the interaction between the scattered 

electromagnetic wave and a conductive cylindrical surface. This intensity depends on 

the wave field integrated around the surface and the scattering angle. Methods such as 

Physical Optics are used to calculate this density. 

 

3.1.3 Separation of Surface Flux Density into Reflection and Transmission 

Regions 

The scattered electromagnetic wave is split into surface flux density 

components. These components are reflection and transmission components. This is 

called the Transition zone. The reflection component refers to the wave field reflected 



16 

 

back from a conductive cylindrical surface, while the transition component refers to 

the transmitted wave field from the surface. 

 

3.1.4   Integration of Surface Flux Density and Calculation of Surface Emitted 

Area 

By integrating the reflection and transition components of the surface flux 

density, the radiated area on the surface is calculated. This calculation provides the 

magnitude, direction and distribution of the electromagnetic wave field scattered from 

a conductive cylindrical surface. It can be complex and difficult to fully analyze 

electromagnetic wave scattering emitted from a linear electric source from a 

conductive cylindrical surface. Therefore, numerical methods and simulations are 

often used. These methods are used to model and analyze electromagnetic wave 

scattering in detail. 

 

3.2       GEOMETRY OF THE PROBLEM 

This section explains the reflection from the cylindrical surface. TM mode 

planar wave is incident and R is the reflected ray, ρ is the direct ray for O observation 

point. S is the reflected point. ∅ 𝑎𝑛𝑑 ∅′ represent the angle of the incident and direct 

ray respectively as shown in Figure 3. 

 
Figure 3: Geometry of a cylindrical surface (Incident TM wave) 

 

3.3       CONSTRUCTING OF SCATTERING EQUATION 

Plane wave is normally incident upon a conductive cylindrical surface of radius 

a, as shown in Figure 3. The electric field can be written as, 

 

𝐸𝑖 = e𝑧𝐸0e−𝑗𝑘𝜌cos∅                                           (3.1) 
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The Green’s function and surface current density is, 

 

𝐽𝑃𝑂 = 2n x Hi                                                                           (3.2) 

 

G(O,S) = 
𝑒−𝑗𝑘𝑅

𝑅
                                                 (3.3) 

 

using the geometry of the surface given in figure, for the vector in three-dimensional 

space, 

R = √𝜌2 +  𝜌′2 − 2𝜌𝜌′cos (∅ − ∅′)                                  (3.4) 

 

the Debye’s asymptotic expansion for kp →∞ of the second-order Hankel function of 

the zeroth order; 

 

𝐻0
(2)(𝑘𝜌 ) ≈  √

2

𝜋
 
𝑒−𝑗𝑘𝜌 +𝑗𝜋/4

√𝑘𝜌
                                         (3.5) 

 

which, according to the transformation can also be expressed as, 

 

𝐸𝑖 = e𝑧𝐸0 ∑ 𝐽−n∞
−∞ 𝐽(𝑘𝜌)e𝑗𝑛∅ = e𝑧𝐸0 ∑ (−𝐽)n∞

0 𝜀0𝐽n(𝑘𝜌) cos(𝑛∅)       (3.6) 

 

The equation obtained using Maxwell's Faraday equation and reduced for the 

corresponding magnetic field components, 

 

𝐻𝑖 =  
−1

𝑗𝜇𝜔
∇x𝐸𝑖 = 

−1

𝑗𝜇𝜔
(e𝜌

1

𝜌

∂𝐸𝑖

∂∅
 - e∅

∂𝐸𝑖

∂𝜌
)                             (3.7) 

 

𝐻𝑖
𝑝 =

−1

𝑗𝜇𝜔

1

𝜌

∂𝐸𝑖

∂∅
 = = 

𝜀𝑜

𝑗𝜇𝜔

1

𝜌
∑ n𝑗−n+1∞

−∞ 𝐽n(kρ)e𝑗𝑛∅                     (3.8) 

 

𝐻𝑖
∅ = 

1

𝑗𝜇𝜔

∂𝐸𝑖

∂𝜌
 = - 

𝜀𝑜𝑘

𝑗𝜇𝜔
∑ 𝑗−n∞

−∞ 𝐽n

∂

∂(𝑘𝜌)
(kρ)e𝑗𝑛∅                           (3.9) 

 

The total field is equal to, 

𝐸𝑇= 𝐸𝑖 + 𝐸𝑠                                                         (3.10) 
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As scattered fields move outward, should be represented by cylindrically moving wave 

functions, 

𝐸𝑠 =  e𝑧𝐸0 ∑ ℎ(𝑄)∞
−∞ Hn

2(kρ)                                   (3.11) 

 

where ℎ(𝑄) represents the unknown amplitude coefficients and it can be found by 

applying the boundary conditions, 

 

𝐸𝑇 = ∑ [𝐽−n𝐽n(𝑘𝜌)e𝑗𝑛∅ + ℎ(𝑄)Hn
(2)

]∞
−∞  = 0                        (3.12) 

and 

ℎ(𝑄) = -𝐽−n 𝐽n(𝑘𝜌)

Hn
(2)

(𝑘𝜌)
e𝑗𝑛∅                                       (3.13) 

 

the scattered field reduces to, 

 

𝐸𝑠 =  −𝐸0 ∑ 𝐽−n 𝐽n(𝑘𝜌)

Hn
(2)

(𝑘𝜌)

∞
−∞ Hn

(2)(𝑘𝜌) e𝑗𝑛∅ =  

 

−𝐸0 ∑ 𝜀0(−𝐽)n 𝐽n(𝑘𝜌)

Hn
(2)

(𝑘𝜌)

∞
−∞ Hn

(2)
(𝑘𝜌)cos(𝑛∅)                          (3.14) 

 

Using Maxwell's equations, the corresponding scattered magnetic field components 

are obtained, 

 

𝐻𝑠
𝑝 =  

−1

𝑗𝜇𝜔

1

𝜌

∂𝐸𝑠

∂∅
 =

𝜀𝑜

𝑗𝜇𝜔

1

𝜌
∑ n𝑗−n+1∞

−∞
𝐽n(𝑘𝜌)

Hn
(2)

(𝑘𝜌)
Hn

(2)(𝑘𝜌) e𝑗𝑛∅                 (3.15) 

 

𝐻𝑠
∅ = 

1

𝑗𝜇𝜔

∂𝐸𝑠

∂𝜌
 = - 

𝐸𝑜𝑘

𝑗𝜇𝜔
∑ 𝑗−n∞

−∞
𝐽n(𝑘𝜌)

Hn
(2)

(𝑘𝜌)
Hn

2′(kρ) e𝑗𝑛∅                       (3.16) 

 

The total electric and magnetic field components are written as, 

 

𝐸𝑇
𝑝 = 𝐸𝑇

∅ = 𝐻𝑇 = 0                                                     (3.17) 

 

𝐸𝑇 =  𝐸0 ∑ 𝑗−n∞
−∞ [𝐽n(𝑘𝜌) −

𝐽n(𝑘𝜌)

Hn
(2)

(𝑘𝜌)
Hn

(2)(𝑘𝜌)] e𝑗𝑛∅                       (3.18) 
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𝐻𝑇
𝑝
= - 

𝐸𝑜

𝑗𝜇𝜔

1

𝜌
∑ n𝑗−n+1∞

−∞ [𝐽n(𝑘𝜌) −
𝐽n(𝑘𝜌)

Hn
(2)

(𝑘𝜌)
Hn

(2)
(𝑘𝜌)] e𝑗𝑛∅                    (3.19) 

 

𝐻𝑇
∅ =  

𝐸𝑜𝑘

𝑗𝜇𝜔
∑ 𝑗−n∞

−∞ [𝐽n′(𝑘𝜌) −
𝐽n(𝑘𝜌)

Hn
(2)

(𝑘𝜌)
Hn

(2)′
(kρ)] e𝑗𝑛∅                        (3.20) 

 

Bessel functions are converted with Wronskians equations, 

 

Yn′(𝑘𝜌)𝐽n(kρ) - 𝐽n′(𝑘𝜌)Yn(kρ) = 2/𝜋𝑘𝜌                               (3.21) 

 

𝐽𝑠 = 𝑛 𝑥 𝐻𝑇                                                           (3.22) 

 

𝐻𝑇
∅ =  

𝐸𝑜𝑘

𝑗𝜇𝜔
∑ 𝑗−n∞

−∞ [
𝐽n(𝑘𝜌)Yn

′ (𝑘𝜌)− 𝐽n
′ (𝑘𝜌)Yn(𝑘𝜌)

Hn
(2)

(𝑘𝜌)
]e𝑗𝑛∅ = 

 

   e𝑧
2𝐸𝑜𝑘

𝜋𝜌𝜇𝜔
∑ 𝑗−n∞

−∞
e𝑗𝑛∅

Hn
(2)

(𝑘𝜌)
                                       (3.23) 

 

Far-Field for kρ->L 

 

Hn
(2)(𝑘𝜌) = √

2𝑗

𝜋𝑘𝜌
𝑗ne−𝑗𝑘𝜌                                     (3.24) 

 

the modified expression is substituted into the scattering equation, 

 

               
|𝐸𝑠|

|𝐸𝑖|
 = 

|−𝐸0√
2𝑗

𝜋𝑘

e−𝑗𝑘𝜌

√𝜌
∑

𝐽n(𝑘𝜌)

Hn
(2)

(𝑘𝜌)

∞
−∞ e𝑗𝑛∅|

|𝐸0e−𝑗𝑘𝑥|
 = √

2

𝜋𝑘𝜌
|∑

𝐽n(𝑘𝜌)

Hn
(2)

(𝑘𝜌)

∞
−∞ e𝑗𝑛∅|              (3.25) 

where 

                 𝐸𝑠 = -𝐸0√
2𝑗

𝜋𝑘

e−𝑗𝑘𝜌

√𝜌
∑

𝐽n(𝑘𝜌)

Hn
(2)

(𝑘𝜌)

∞
−∞ e𝑗𝑛∅                                  (3.26) 

 

Conductivity for 2D, 

lim
𝜌→∞

(2𝜋𝜌
|𝐸𝑠|2

|𝐸𝑖|2) = 
4

𝜌
| ∑

𝐽n(𝑘𝜌)

Hn
(2)

(𝑘𝜌)

∞
−∞ e𝑗𝑛∅|2 = 
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2𝜆

𝜋
|∑ 𝜀0

𝐽n(𝑘𝜌)

Hn
(2)

(𝑘𝜌)

∞
−∞ cos (𝑛∅)| |∑ 𝜀0

𝐽n(𝑘𝜌)

Hn
(2)

(𝑘𝜌)

∞
−∞ cos(𝑛∅)|                     (3.27) 

 

ρ<<λ for small radiuses, 

 

𝐽0(𝑘𝜌)

Hn
(2)

(𝑘𝜌)
 = 

1

−
2𝑗

𝜋
ln (0.89𝑘𝜌)

 = 
𝜋𝑗

2𝑙𝑛 (0.89𝑘𝜌)
                                   (3.28) 

 

Conductivity for 2D, 

2𝜆

𝜋
(

𝜋2

4
) |

1

ln(0.89𝑘𝜌)
|2 = 

2𝜆

𝜋
|

1

ln(0.89𝑘𝜌)
|2                                (3.29) 

 

(Balanis 2012) 
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CHAPTER IV 

 

RESULTS 

 

In the analysis of the results, the scattering wave expression in equation (3.26) 

is plotted in Matlab. This analytic result is compared with the Ansys HFSS simulation. 

Fig. 4a shows the HFSS simulation setup where a cylindrical perfectly conducting rod 

with various radius lengths is placed in front of a planar wave coming from far-field. 

The wave is TM polarized with respect to the conducting cylindrical surface as it was 

analyzed in the theory.  The frequency is 10 GHz and the simulation is conducted in 

free space. The radiation patterns obtained from the HFSS simulation are sampled and 

transferred into Matlab. Later, the pattern obtained by the scattering electric field 

expression in (3.26) is compared with the HFSS results at different cylinder radiuses. 

The normalized electric field radiation pattern results are shown in Figure 6 and Figure 

7. 

 

 

 

 

 

 



22 

 

 
Figure 4: HFSS simulation setup 

 

 
Figure 5: HFSS simulation setup side view
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Figure 6: Radiation pattern in dB, cylinder radius = 10mm 

 

 
Figure 7: Radiation pattern in dB, cylinder radius = 1mm 
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In all simulations, the summation in (3.26) is truncated to n=[-100, 100]. However, 

even for n=[-10,10] truncation resulted in a very accurate plots. The Matlab code for 

plotting the scattered electric far-field pattern is shown in Figure 7. 

 

 
Figure 8: Matlab simulation 

 

The results show that equation (3.26) is a good approximation to scattered fields from 

a conducting cylindrical surface when the incident field is a TM wave. The HFSS 

scattered fields are slightly different than the theoretical patterns due to the fact that 

edge diffractions are not accounted in Physical Optics. 
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CHAPTER V 

 

CONCLUSION 

 

The total field is the summation of the scattered and incident waves. For the 

total field, an alternate representation can be referred to by the following equation, 

 

𝐸𝑖
𝑆 + 𝐸𝑟

𝑆 = 𝐸𝑇
                                                       (5.1) 

 

The Physical Optics (PO) equation is derived for the conductive surface. The method 

of Physical Optics (PO) is used to obtain scattered fields. The results are compared 

with the Ansys HFSS simulation software, and it is concluded that Physical optics 

method yields good results for the scattering of electromagnetic waves from 

conducting cylindrical surfaces. In addition, edge diffraction algorithms can be 

employed with the Physical optics method in order to obtain more accurate results. 
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