

ANALYZING MULTI-OBJECTIVE SOFTWARE TEST EFFORT

ESTIMATION TECHNIQUES

OSMAN BERKCAN DERYA

AUGUST 2023

ÇANKAYA UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

DEPARTMENT OF COMPUTER ENGINEERING

M.Sc. Thesis in

COMPUTER ENGINEERING

ANALYZING MULTI-OBJECTIVE SOFTWARE TEST EFFORT

ESTIMATION TECHNIQUES

OSMAN BERKCAN DERYA

AUGUST 2023

IV

 ABSTRACT

ANALYZING MULTI-OBJECTIVE SOFTWARE TEST EFFORT

ESTIMATION TECHNIQUES

DERYA, OSMAN BERKCAN

M.Sc. in Computer Engineering

Supervisor: Assoc. Prof. Dr. Tansel DÖKEROĞLU

August 2023, 75 pages

Software testing effort estimation is an estimate of the approximate time and

resources required by an engineer during the testing phase of a software project. Effort

estimation of software test process is one of the most significant stages in the software

development process to determine the test effort of the software project. Estimating

the effort closest to the real effort is of great importance for both the company

providing this service and the customers, especially the software testers. Because

wrong software test effort estimations cause projects not to be completed or spread

over a wide period of time. Therefore, different methods have been developed in the

literature for software test effort estimation. In this thesis, machine learning methods

with some feature selection method was used for estimating software test effort.

Estimation of software testing effort is found by running algorithms in the

WEKA data mining tool. Algorithms were applied to 3 data sets (CocomoNasa,

CocomoNasa-2, Cocomo-81) taken from PROMISE (Predictor Models in Software

Engineering) data warehouse with 10-fold cross validation technique. After new

models have been created, correlation coefficient was used for performance

criterion.Besides MAE (Mean Absolute Error) and RAE (Relative AbsoluteError)

were used for error rates.

V

Keywords: Machine learning, Weka, Attribute selection, Software test effort

estimation

VI

ÖZET

ÇOK YÖNLÜ YAZILIM TEST EFORU TAHMİNLEME TEKNİKLERİNİN

ANALİZİ

DERYA, OSMAN BERKCAN

Bilgisayar Mühendisliği Yüksek Lisans

Danışman: Doç. Dr.Tansel DÖKEROĞLU

Ağustos 2023, 75 sayfa

Yazılım test efor tahmini, bir mühendisin yazılım projesinin test aşamasında

ihtiyaç duyduğu yaklaşık süre ve kaynakların tahminidir. Yazılım test efor tahmini,

yazılım projesinin test eforunu belirlemek için yazılım geliştirme sürecindeki en

önemli aşamalardan birisidir. Gerçek efora en yakın efor tahminini yapmak yazılım

test sorumluları başta olmak üzere hem bu hizmeti veren firma hem de hem de

müşteriler için çok önemlidir. Çünkü yanlış yapılan yazılım test efor tahminleri

projelerin tamamlanamamasına ya da geniş bir zaman dilimine yayılmasına neden

olmaktadır.Bu yüzden yazılım test efor tahmini için literatürde farklı yöntemler

geliştirilmiştir. Bu tez çalışmasında, yazılım test projelerinin eforu, Makine

Öğrenmesi (MÖ) algoritmaları kullanılarak ve farklı methodlarla öznitelik seçimi

yapılarak tahmin edilmeye çalışılmıştır.

Yazılım test eforunun tahmini, WEKA (Waikato Environment for Knowledge

Analaysis – Bilgi Analizi için Waikato Ortamı) veri madenciliği aracında bulunan

algoritmaların çalıştırlması sonucu bulunmuştur. Algoritmalar 10 kat çapraz

doğrulama tekniği ile PROMISE (Yazılım Mühendisliğinde Tahmin Modelleri) veri

deposundan alınan 3 adet veri setine (CocomoNasa, CocomoNasa-2, Cocomo-81)

uygulanmıştır. Performans ölçütü olarak korelasyon katsayısı, Ortalama Mutlak Hata

ve Bağıl Mutlak Hata, baz alınarak sonuçlar değerlendirilmiştir.

VII

Anahtar Kelimeler: Makine öğrenimi, Yazılım Test Efor

Tahmini,Weka,Öznitelik Seçimi

VIII

ACKNOWLEDGEMENT

I would like to thank Associate Professor Tansel DOKEROGLU for guiding

me in completing this thesis.

I would like to thank my dear wife, Doğay DERYA, who supported me

throughout my graduate education and never stopped believing in me in every aspect

of life.

Also, I would like to thank you to my family who have always supported me

throughout my life. I am grateful to all of you.

IX

TABLE OF CONTENTS

STAMENT OF NONPLAGIARISM ... III

ABSTRACT .. IV

ÖZET .. VI

ACKNOWLEDGEMENT .. VIII

LIST OF TABLES ... XI

LIST OF FIGURES .. XIII

LIST OF SYMBOLS AND ABBREVIATIONS .. XIV

CHAPTER I ... 1

INTRODUCTION .. 1

1.1 LITERATURE REVIEW .. 2

1.2 THE AIM OF THE THESIS STUDY .. 3

1.3 THE ORGANIZATION OF THE THESIS STUDY 3

CHAPTER II .. 5

RESARCH AND STUDY .. 5

2.1 SOFTWARE TEST ... 5

2.2 SOME EXAMPLES FOR IMPORTANCE OF SOFTWARE TESTING 6

2.3 TYPES OF SOFTWARE TESTİNG ... 6

2.3.1 FUNCTIONAL TESTING ... 7

2.3.2 NON-FUNCTIONAL TESTING ... 8

2.4 ACTIVITIES OF SOFTWARE TESTING .. 8

2.5 EFFORT ESTIMATION WITH SOFTWARE TESTING 9

2.6 MACHINE LEARNING ALGORITHMS ... 10

CHAPTER III .. 12

IMPLEMANTATION ... 12

3.1 MACHINE LEARNING ALGORITHMS .. 12

3.1.1 Random Forest ... 12

3.1.2 Linear Regression ... 12

3.1.3 Bagging .. 13

X

3.1.4 SMOreg .. 14

3.1.5 Multilayer Perceptron ... 14

3.1.6 KStar ... 15

3.1.7 Random Tree .. 15

3.1.8 M5P .. 16

3.1.9 IBK ... 17

3.2 EVALUATION CRITERIA .. 17

3.2.1 Correlation Coefficient ... 17

3.2.2 Mean Absolute Error .. 18

3.2.3 Relative Absolute Error .. 19

3.3 PLATFORM .. 19

3.4 METHODS .. 24

3.4.1 Evaluator Methods ... 24

3.4.2 Search Methods .. 26

3.5 DATASET ... 29

3.5.1 CocomoNasa / Software Cost Estimation: ... 29

3.5.2 CocomoNasa2 / Software Cost Estimation: 30

3.5.3 Cocomo-81 / Software Cost Estimation: .. 31

3.5.4 Summary for Datasets .. 32

3.5.5 The Numeric Values of the Effort Multipliers 32

3.6 FINDINGS ... 33

3.6.1 Models with Original Datasets ... 34

3.6.2 Models with Attribute Selection... 36

CHAPTER IV ... 49

RESULT AND DISCUSSION .. 49

4.1 RESULT AND DISCUSSION FOR COCOMONASA DATASET 49

4.2 RESULT AND DISCUSSION FOR COCOMONASA-2 DATASET 50

4.3 RESULT AND DISCUSSION FOR COCOMO-81 DATASET 51

4.4 CONCLUSION .. 52

REFERENCES ... 57

XI

LIST OF TABLES

Table 3.1: Attribute Selection for CocomoNasa Dataset .. 30

Table 3.2: Attributes Description for CocomoNasa-2 Dataset 31

Table 3.3: Attributes Description for CocomoNasa-81 Dataset 32

Table 3.4: Summary for Datasets .. 32

Table 3.5: The Numeric Values of the Effort Multipliers ... 32

Table 3.6: Models Result for CocomoNasa Dataset ... 34

Table 3.7: Models Result for CocomoNasa-2 Dataset .. 35

Table 3.8: Models Result for Cocomo-81 Dataset .. 35

Table 3.9: CFS + Random Search for CocomoNasa .. 36

Table 3.10: CFS + PSO for CocomoNasa ... 37

Table 3.11: CFS + GS for CocomoNasa ... 38

Table 3.12: Classifier Att. Eval. + Ranker for CocomoNasa 38

Table 3.13: Correlation Att. Eval. + Ranker for CocomoNasa 39

Table 3.14: Relief Att. Eval. + Ranker for CocomoNasa ... 40

Table 3.15: CFS + Random Search for CocomoNasa-2 ... 41

Table 3.16: CFS + PSO for CocomoNasa-2 ... 41

Table 3.17: CFS + GS for CocomoNasa-2 ... 42

Table 3.18: Classifier Att. Eval. + Ranker for CocomoNasa-2 43

Table 3.19: Correlation Att. Eval. + Ranker for CocomoNasa-2 44

Table 3.20: Relief Att. Eval. + Ranker for CocomoNasa-2 44

Table 3.21: CFS + Random Search for Cocomo-81 ... 45

Table 3.22: CFS + PSO for Cocomo-81 ... 46

Table 3.23: CFS + GS for Cocomo-81 ... 46

Table 3.24: Classifier Att. Eval. + Ranker for Cocomo-81 47

Table 3.25: Correlation Att. Eval. + Ranker for Cocomo-81 48

Table 3.26: Relief Att. Eval. + Ranker for Cocomo-81 ... 48

Table 4.1: Result for CocomoNasa Dataset .. 50

Table 4.2: Result for CocomoNasa-2 Dataset .. 51

XII

Table 4.3: Result for Cocomo-81 Dataset .. 52

Table 4.4: Best Results for All Dataset ... 53

Table 4.5: Model Performance Results with Feature Selection 54

Table 4.6: The Improvement Result for All Datasets ... 56

XIII

LIST OF FIGURES

Figure 2.1: Type of Functional Testing .. 7

Figure 2.2: Type of Non-Functional Testing .. 7

Figure 3.1: Correlation Coefficient ... 18

Figure 3.2: Home Page of WEKA .. 20

Figure 3.3: Explorer Page of WEKA .. 21

Figure 3.4: Dataset Selection on WEKA .. 21

Figure 3.5: Algorithm Selection on WEKA ... 22

Figure 3.6: Result Screen of Classify ... 22

Figure 3.7: Attribute Selection on WEKA .. 23

Figure 3.8: Result of Attribute Selection on WEKA .. 24

Figure 4.1: Comparison Graph for Best Result of CocomoNasa Dataset................. 54

Figure 4.2: Comparison Graph for Best Result of CocomoNasa-2 Dataset 55

Figure 4.3: Comparison Graph for Best Result of Cocomo81 dataset 55

XIV

LIST OF SYMBOLS AND ABBREVIATIONS

WEKA :Waikato Environment for Knowledge Analysis

PROMISE :Predictor Models in Software Engineering

MAE :Mean Absolute Error

RAE :Relative Absolute Error

ML :Machine Learning

CFS :Correlation Based Feature Selection

PSO :Particle Swarm Optimization

GS :Genetic Search

1

CHAPTER I

1. INTRODUCTION

With the developments in information technologies, effort estimation has

gained a great importance for both software developers and customers. Software effort

estimation is the process of estimating all kinds of resources that necessary to develop

a software engineering project. Although software effort estimation is simple in

concept, in reality it is difficult and complex. Therefore, many software projects could

not be completed on time or the project costs were much higher than the estimated

amount. More than half (60%) of substantial projects surpassed their planned budgets.

It has been noted that some projects were never finish due to a 15% cost overrun. [1]

In budget works conducted at different stages of software projects, sales amount and

cost analyzes cannot be calculated realistically due to cost estimation difficulties.

These difficulties may arise from the unique characteristics of the project, as well as

the lack of information out of control, subjective interpretations in the evaluation of

the information, direct and indirect cost separation errors that occur in cost analysis

studies, and the inability to accurately estimate the project risks.

Similar to this process, software test effort estimation also severely affects the

time required to complete a project. With the correct estimation of this period, a more

accurate test planning process is entered, a correct job separation and sharing is made,

the management of resources is provided more efficiently, and it plays an important

role in minimizing changes and inconsistencies in project delivery dates. Although the

software testing process was the most neglected of the processes in the software life

cycle in the past, the importance given to this process is increasing thanks to the

experiences today. In the planning phase of the test process, one of the most important

issues is the test effort estimation phase for resource planning. The test process to be

carried out after a correct test effort estimation process will ensure that the software

products that will emerge will contain less errors.

The important thing is to define the right test processes and to ensure continuity

throughout the project in a controlled manner [2]. Because software testing fulfills the

2

requirements in software, companies form teams among employees for software

testing activities. In the realm of software testing, various elements such as emulators,

manual testing, test documentation of test, and independent testing teams all play a

role in shaping the final product. [3] Additionally, test managers overseeing testing

efforts need to carefully plan their resources, including time estimation to incorporate

testing into the software development process. However, the main challenge in

achieving project goals often stems from inadequate estimation, insufficient data, and

project personnel limitations. It's evident that estimating the testing effort in large

projects is a complex task influenced by both internal and external factors. Relying

solely on experiential estimates can be misleading. Despite the existence of estimation

techniques in the literature for more precise and efficient software testing effort

management, these methods remain underexplored, with a scarcity of research in this

area. Consequently, there is a need for alternative approaches to accurately assess the

efforts required in the software testing process.

In this research, which is the subject of this study, the effort in the software

testing process was calculated using some machine learning algorithms. Afterwards,

some feature selection pre-processes were made and hybrid methods were applied. The

effect of these processes on the forecasting has been observed.

1.1 LITERATURE REVIEW

In this section, software testing and artificial learning algorithms are used

together. An extensive literature review on research areas is included in the literature.

The studies carried out in the software testing world have been used to identify open

problems. So, it has been very useful in shaping this study.

Kafle [4], in 2014, examined 5 different companies and on test effort

estimation. It was used 150 articles. It's been observed that organizations often depend

on the insights and judgments of experts when making estimations regarding test

effort. It has been observed that errors in estimating test effort are closely associated

with errors in estimating the overall project effort. Nonetheless, this research does not

put forth a particular method for estimating test effort; instead, it underscores the

importance of conducting more extensive research in this field.

Hourani [5] mentioned that artificial intelligence sheds light on the future of

software testing. In addition, as the use of artificial intelligence in software testing

3

increases. He argued that more consistent results would be obtained, tests could be

performed more automatically, and software development efficiency would increase.

Sharma [6] studied the estimation of effort for software testing with the Neuro

Fuzzy Inference System (NFIS) method in 2017.It was observed that a hybrid

approach, which combines fuzzy logic and artificial neural networks (Hybrid method),

yields superior outcomes.

Cotroneo [7] has conducted a study on adaptively combining test cases as tests

progress, by teaching past test experiences to machine learning algorithms. He

experienced an increase in error detection efficiency as he used the methodology he

developed online during the tests.

Briand [8] developed a methodology that uses various machine learning

models to reconfigure test cases for improvement. They achieved very positive results

using the methodology they proposed in a case study involving black box testing.

Durelli [9] focused on a mapping study investigating how machine learning

algorithms are used to improve software testing activities. In their research, it was

stated that machine learning algorithms are used as a basis in areas such as automatic

test scenario creation and improvement, test focus evaluation, test activities effort

estimation. With this study, it is aimed to inform researchers about how software

testing area and machine learning algorithms intersect and their current status in the

literature.

1.2 THE AIM OF THE THESIS STUDY

The aims of this thesis can be summarized as follows:

-Performing performance analyzes of different ML algorithms on each data set and

interpreting the results in detail,

-Cost estimation of software projects using ML algorithms on different datasets that

are frequently used in the literature obtained from the PROMISE data store.

-Determining which features in the data sets are used together or which features are

important and which features are unimportant for the selected algorithm, and which

algorithms have higher success rates as a result of this.

1.3 THE ORGANIZATION OF THE THESIS STUDY

The thesis work consists of five main chapter.

4

Chapter 2, General Sections, consists of 6 sub-headings that are, description of

software testing, examples of software testing importance, software testing types,

software testing activities, effort estimation with software testing, machine learning

concept.

Chapter 3, Applications Section, consists of 5 sub-headings that are machine

learning algorithms, evaluation criteria, dataset, application platform, and findings.

The sub-heading of the findings is divided into 2 parts in itself. In the first part,

software test effort estimation was performed by applying the ML algorithm found in

the WEKA program to the datasets of CocomoNasa, CocomoNasa-2, Cocomo-81.[10]

Algorithms applied to the data sets were tested with 10-fold cross-validation technique.

Correlation coefficient, error rates MAE, RAE were used as evaluation criteria. In the

second part, feature selection performed on each data set in the WEKA program using

Random Search, Genetic Search, Particle Swarm Optimization and Ranker. After the

feature selection applied to the datasets, some attributes remove from the datasets. The

number of selected features varies according to the applied method and datasets. In

this way, the effects of feature selection methods on software test effort estimation

were examined and the performances of the algorithms were calculated and compared.

Chapter 4, Discussion and Conclusion, the performance results of the ML

algorithms were evaluated and compared.

5

CHAPTER II

2. RESARCH AND STUDY

2.1 SOFTWARE TEST

The main factor that determines the quality of software testing always lies in

the definition of the software. Basically, the ultimate goal is perceived as making the

software error-free at the end of the process. However, the main purpose of the test

should be to understand whether the software successfully has all the functions of its

creation purpose. [11] The purpose of the tests is to increase confidence in the software

and its tasks. Sometimes these purposes can be confused. The purpose of the software

testing process is to add value to the quality of the software as a product. The value

added by testing shows itself as software quality and system reliability. Increasing

reliability is achieved by finding and eliminating errors. Therefore, no software tester

should test to show that the software is working. It should always accept as a

prerequisite that there are errors in the software and strive to find as many errors as

possible. It should also be acknowledged that no software is error-free.

 If we need to make the software test definition again with all this

infrastructure, "Software testing is the process of running the software to find bugs.”

[12].

There are different definitions of software testing in the literature.

● It is checking whether a certain number of test cases selected from an infinite

set comply with a certain behavior. [13]

● Software testing; It is a process, or series of processes, done to ensure that the

software does what it was designed to do and not what it was not expected to

do. [14]

● Testing is the engineering concurrent lifecycle process that uses test software

and makes necessary changes in order to improve and measure the quality of

the tested software. [15]

6

The importance of software testing is increasing day by day in software

projects. While software developers used to test their own codes, today many software

developers adopt the independent test team model.

2.2 SOME EXAMPLES FOR IMPORTANCE OF SOFTWARE TESTING

In this section, the importance of software testing will be mentioned with some

more concrete examples. In projects where software testing is not done enough, serious

economic and physical problems may occur. Some examples that have been

experienced before are below:

In 1983, due to a software error in the Soviet early warning system, III. World

War had almost broken out. The Russians said the system launched five ballistic

missiles from the United States. It turned out that the error was caused by a bug in the

software that prevented satellite triggers from being detected as missiles by collecting

the sun's rays reflected from the clouds. [16]

According to company plan, Denver Airport was scheduled to start service on

10 October 1993.Estimation software cost for Automatically luggage system was 186

million dollars at the beginning. However, due to many errors in this software, airport

could not start to serve at the planned date. When airport started to serve on 28

February 1995, total calculated loss was 340 million dollars because of the delay. [17]

Sometimes, software errors cause dramatic results. An example of this result

occurred during Gulf War on 1991.One of the American Patriot missiles missed its

target and hit American soldiers barracks. Some of American soldiers died due to

missed target. Based on the study findings, the Patriot system's operational duration

exceeding 100 hours and a time discrepancy of 0.34 seconds resulted in a missile

deviation of approximately 600 meters.

2.3 TYPES OF SOFTWARE TESTİNG

Software testing can be divided into 2 category as functional testing and non-

functional testing.

7

Figure 2.1: Type of Functional Testing

Figure 2.2: Type of Non-Functional Testing

2.3.1 FUNCTIONAL TESTING

Functional tests of a system encompass assessments of the system's ability to

execute the required functions. These functions are determined by the functional

requirements, which are typically outlined in various work products such as user

requirements, epics, user stories, use cases, or functional specifications, reflecting the

business needs.

Functions requirements define what the system should do. Functional testing

should be done at all test levels (e.g. unit level functional tests needs), but the focus is

different at each level. [18] Functional testing is not related to the source code of the

application as it is used under Black Box testing. The focus when performing this test

is always the user-friendliness of the main functions of the application. It is checked

whether the requirements are met or not. It largely overlaps with user acceptance tests.

Often the same test sets can be applied to both. System-level functional tests are used

to control system behaviors that meet certain requirement specifications. All functional

Functional

Testing

 Unit Testing
Integration

Testing
Interface
Testing

Regression
Testing

User
Acceptance

Testing

 Non-Functional
Testing

Security
Testing

Installation
Testing

Documentati
on Testing

Reliability
Testing

Performance
Testing

 Load Testing

Stress

Testing

Endurance

Testing

 Spike Testing

8

requirements for the system must be fulfilled by the system. Functional tests are

closed-box tests by nature. All functions should be tested. It should focus on the

following goals:

● All allowed inputs must be accepted by the software. Unauthorized entries

should be rejected.

● All possible system outputs should be examined.

● All system states and state transitions should be implemented and studied.

● It should be applied for all functions.

2.3.2 NON-FUNCTIONAL TESTING

Non-functional tests of a system evaluate aspects of systems and software, such

as usability, performance, or security. Non-functional tests aim to evaluate the

effectiveness of the system in fulfilling its intended purpose. It is important to note that

non-functional testing should be conducted across all test levels, with regularity and

an early initiation. Delayed identification of non-functional errors can pose significant

risks to the project's overall success.

The aim is to determine whether the system is ready or not. The quality

characteristics of the components or the system are tested. It is as important as

functional testing in the quality and correct operation of the software. For example,

how many users can use the system at the same time, is the system secure enough, and

the system is tested to answer such questions.

Non-functional tests can be applied at all test levels. Non-functional testing

usually considers the external behavior of the software

2.4 ACTIVITIES OF SOFTWARE TESTING

Test activities consist of such a process. The tests are run in accordance with

the steps in this process: [19]

1. Test Planning: This is the step where the actions to be taken during the test

are planned. Test objectives, strategy, environment and schedule are

determined at this step.

2. Test Monitoring and Control: Test surveillance uses the test surveillance

metrics defined in the test plan. In addition, in this step, the planned and

actual progress are constantly compared.

3. Test Analysis: In the test analysis step, it is determined what is being tested.

9

4. Test Design: This step contains the preparation of the test environment,

writing the test procedures and test cases.

5. Test Implementation: In this step, if necessary, test software is created or

completed. Test procedures are created from test scenarios.

6. Test Execution: In this step, the tests are run manually or automatically. The

actual test results are compared with the expected results.

7. Test Completion: Test completion activities are an important completion step

in a project, such as the release of a software, the completion of a test project.

This step also checks whether the error reports are turned off or not.

2.5 EFFORT ESTIMATION WITH SOFTWARE TESTING

Software testing effort is an estimate of the time and resources required to

complete software tests. Test effort depends on the scope and complexity of the test

project, the number of tests, the time and resources required to create and execute test

cases, and other factors. [20]

The following steps are usually followed to calculate test effort:

1. The scope and complexity of the test project is determined. This includes the

functionality of the software to be tested, use cases, technical requirements and

other relevant factors.

2. Test scenarios and test cases are created. Test cases are a detailed design that

defines how tests will be run and how their results will be evaluated. The

creation of test cases plays an important role in determining the test effort.

3. The resources required for the execution of the test cases are determined. This

includes the hardware, software and human resources required to run the tests.

4. Estimated timetable for execution of test scenarios and evaluation of results.

This includes the time required to run the tests, the time required to debug and

report the tests, and other factors.

5. Test effort is calculated by combining all these factors. Test effort is usually

expressed in man hours and can vary depending on the number and complexity

of test cases.

Accurate calculation of software test effort can make test planning and resource

management more efficient and help test projects complete successfully.

10

2.6 MACHINE LEARNING ALGORITHMS

Machine learning is a branch of artificial intelligence used for computer

systems to analyze data, recognize patterns, and learn from experience. This field uses

algorithms and statistical models to enable computers to learn from data without

human intervention. [21]

Machine learning aims to develop a system that learns to make inferences based

on data, rather than a set of programmed instructions to perform a specific task. Data-

driven learning enables a model to learn from experience and predict future data. The

key elements of machine learning are:

• Data: For machine learning, processing and analysis requires large amounts

of data. These data are used as training datasets and often contain human-labeled

examples.

• Algorithms: Machine learning algorithms analyze data to discover patterns

and relationships. These algorithms perform statistical analyzes on datasets, train the

model, and are used to predict results.

• Model Training: Machine learning models are trained on data. During the

training phase, a dataset is fed to the model and the model adjusts itself using

algorithms to capture patterns in the data. The model learns statistical parameters to

understand the relationship between input data and outputs.

• Prediction and Results: After the training process, the model can analyze new

data and make predictions. For example, an image recognition model can analyze a

new image to predict what objects it contains. These estimates can receive feedback

for greater accuracy and can be used to improve the performance of the model.

Machine Learning operations can be examined under 3 main sections:

supervised learning, unsupervised learning, and reinforcement learning.

1. Unsupervised Learning: Unsupervised learning uses unlabeled datasets.

These datasets do not have output labels or targets. The algorithm analyzes data based

on structures and patterns in the data and performs operations such as grouping, size

reduction, or discovering hidden structure. K-means clustering, hierarchical clustering

and dimension reduction methods (PCA, t-SNE) are examples of unsupervised

learning algorithms.

2. Reinforcement Learning: Under this category, a model learns through

experiences by interacting with an environment. The model is reinforced with a

reward-punishment system to identify correct actions. Reinforcement learning

11

algorithms are often used in areas such as game theory, robotics and automatic control.

Example algorithms include Q-Learning, Deep Q-Networks (DQN), and Actor-Critic.

3. Supervised Learning: Supervised learning works on labeled datasets. In

these data sets, there is a relationship between the input samples and the target outputs.

The algorithm tries to learn this relationship to catch patterns in the data and make

output predictions for new input samples. [22] Supervised learning consist of many

algorithms. But most know ones are: (SVM), decision trees, neural networks, and

linear regression.

12

CHAPTER III

3. IMPLEMANTATION

3.1 MACHINE LEARNING ALGORITHMS

3.1.1 Random Forest

 The Random Forest Algorithm is one of the collective learning algorithms.

During the training, result clusters are constructed in accordance with statistical

models with multiple decision trees and many variables. Basically, the result is decided

by the average of these result clusters or their separation as clusters.

This supervised artificial learning algorithm examines historical data and tries

to create trends with a predictive understanding. It uses decision trees as a classifier.

The Random Forest Algorithm generates random decision trees. Randomness can be

expressed in two ways:

1) Random selection of samples selected at the time of bagging.

2) Random selection of selected attributes for each decision tree.

The power of each decision tree classifier and their correlation with each other

are the main indicators of error percentages in the results of the random forest

classification algorithm. Random Forest Algorithm works effectively on large

datasets. It can process thousands of data without the need for input changes, give

estimates of important variables, and produce a constant generalization error as forest

growth progresses.

It has an efficient method for estimating missing data. Even if large data rates

are declining, there are ways to compensate for class error in datasets against

unbalanced class populations. The Random Forest Algorithm has pioneered parallel

applications using multi-threaded, multi-core and parallel architectures.

3.1.2 Linear Regression

Linear regression is a statistical modeling method used to explain the linear

relationship of a dependent variable (outcome variable) with one or more independent

13

variables. Linear regression estimates the dependent variable using the first order

function of the independent variables.

It is founded on the concept of identifying the optimal line or curve that

characterizes the association between variables. This approach is frequently employed

to forecast the value of the dependent variable by leveraging the values of the

independent variables.

Linear regression models are based on the assumption that the relationship

between dependent and independent variables is linear; this means that a change in the

value of the independent variable is associated with a constant change in the value of

the dependent variable. This relationship is typically represented by a straight line, so

linear regression is called "linear" regression.

3.1.3 Bagging

Bagging (Bootstrap Aggregating) is an ensemble learning technique that is

widely used in the field of machine learning. Bagging provides a stronger and more

stable model by combining multiple learning models.

The Bagging algorithm creates different subsets using bootstrap, which is the

sampling method. Bootstrap creates new datasets by recursively sampling from the

dataset. Each subset is the same size and contains randomly sampled data from the

original dataset. On each subset, individual models are trained using the basic learning

algorithm (usually decision trees). These models capture different aspects of the

dataset in different ways and make different errors.

After training is complete, each sub model independently predicts new inputs. In

classification problems, class estimation is made with the voting method (majority

vote), while in regression problems, the estimation is made by averaging the outputs

of the sub-models.

One of the main advantages of bagging is that it reduces variance. By

combining different sub models, the errors made by each one is reduced and a more

stable model is obtained. It can also work effectively on large datasets thanks to its

parallel computing capability.

Bagging is more effective especially when used with high variance learning

algorithms such as decision trees. Random Forest, a popular implementation of

Bagging, combines many decision trees to create a more powerful classification or

regression model.

14

3.1.4 SMOreg

SMOreg is a regression algorithm that stands for Support Vector Machines for

Regression. Regression analysis is a statistical technique that examines the relationship

of a dependent variable with independent variables. SMOreg uses the Support Vector

Machine method to perform this analysis.

Support Vector Machines is a machine learning algorithm that used in

regression and classification analysis. SVM generates a hypothesis function to classify

data points in a space. It draws a decision boundary (hyper plane) between classes and

uses support vectors that best decompose this boundary.

SMOreg is SVM adapted for regression analysis. The aim is to create a new

model in which the data points fit best with a line (regression line). This takes

advantage of SVM to solve regression problems. It generally performs well on noisy

and complex datasets. By using the advantages of SVM, models with high accuracy

and generalizability can be created in regression problems.

3.1.5 Multilayer Perceptron

Multilayer Perceptron (MLP) is one of the most basic and widely used types of

artificial neural networks. MLP is a feed forward neural network with many hidden

layers. Its name means that it is multi-layered and each layer contains more than one

perceptron.

MLP takes data to the input layer and passes it sequentially through one or

more hidden layers. Each hidden layer contains a series of artificial nerve cells

(perceptrons) or neurons. Each neuron weights the inputs, combines them, and passes

them through an activation function. After the outputs are transmitted to the last layer,

they are passed through a final activation function and create the final outputs.

The main purpose of MLP is to model complex relationships between data and

make predictions. Weights are adjusted throughout the training process to reduce

errors on the data and approach expected outputs. The backpropagation algorithm is

used to calculate weight updates. This process is accomplished by calculating

backwards the amount of error between actual outputs and expected outputs and

optimizing the weights.

Advantages of MLP include modeling of complex functions through multiple

layers, flexibility, ability to learn, ability to generalize, and adaptability to different

15

types of datasets. MLP is widely used to solve classification, regression, pattern

recognition and many other machine learning problems.

However, MLP also has some disadvantages. The training process can take

time, especially in large data sets and complex structures. It may also encounter

overfitting problems and may require trial and error to determine the optimum model

structure.

3.1.6 KStar

KStar is a classification algorithm based on the k-NN (k-Nearest Neighbors)

algorithm. KStar is an improved version of the k-NN algorithm and performs better

especially when working with categorical data.

KStar is an instance-based classification algorithm. It uses a measure of

similarity or distance between data points to classify. KStar makes its classification

decision based on the k nearest neighbors around a new data point.The KStar

algorithm, unlike the k-NN algorithm, can be applied not only to numerical values, but

also to categorical data. In order to process categorical data effectively, KStar uses

weighted voting to determine the similarity measure between data points.

When classifying, KStar considers the classes of its neighbors to determine the

class of a new data point. KStar categorizes the data point using either majority vote

or weighted vote. By using weights proportional to the class of neighbors, a

classification is made in which closer neighbors have more influence.

KStar stands out as a classification algorithm suitable for categorical data and

can perform well, especially in classification problems. However, in situations such as

large datasets or datasets with many features, the computational cost may increase.

3.1.7 Random Tree

Random Tree is an algorithm or a concept used in the fields of machine learning

and data mining. It usually refers to an approach based on decision trees.

Random Trees is a classification or regression algorithm used to model patterns

and relationships in datasets. This method represents the dataset with a tree structure

and makes classification or prediction with successive decisions.

Random Trees basically consist of two components: randomness and tree

structure. Randomness allows the algorithm to randomly sample during the training

16

phase. For example, training is performed for each tree by randomly selecting subset

samples from the dataset. This allows the model to diversify and generalize better.

The tree structure is represented by decision nodes and branches based on the

properties of the dataset. Each node takes the decision to split the data using a feature

and a threshold value. These splitting decisions can be interpreted as rules representing

the patterns and classes contained in the data set.

Random Trees are a widely used method for classification problems. It can also

be applied for regression analysis. This algorithm can handle complex relationships in

data and produce easily applicable and interpretable results.

Random Trees use techniques such as random sampling and feature selection

to reduce model overfitting and increase generalization. It can also present information

such as feature importance ranking, so it can be used to identify important features in

the dataset. Random tree models have been extensively developed in the field of ML

in recent years. [23]

3.1.8 M5P

M5P is used to perform regression analysis on datasets. [24] Regression

analysis is a statistical technique that examines the relationship of a dependent variable

with independent variables. The M5P algorithm uses the decision tree structure to

analyze data and make predictions.

M5P solves regression problems using the structure of decision trees. The tree

structure represents the regression functions of the features and target variable in the

dataset. Each node makes regression estimates by dividing the data by the value or

threshold value of a particular feature.

The M5P algorithm takes some measures to reduce overfitting while

constructing the tree's structure. For example, it imposes restrictions to control the

tree's size and prunes branches as needed. This makes the model more generalizable

and better fit to new data.

The M5P algorithm is considered a flexible and effective method for solving

regression problems. It performs particularly well when working with properties with

numeric values. At the same time, the models obtained thanks to the decision tree

structure are easy to interpret.

17

To summarize, M5P is a machine learning algorithm that uses decision tree

structure to perform regression analysis. It is used to make regression predictions on

datasets and attempts to model patterns and relationships in data using tree structure.

3.1.9 IBK

IBk represents the implementation of the k-NN (k-Nearest Neighbors)

algorithm in the Weka library. The k-NN algorithm is an instance-based learning

algorithm used in classification and regression problems. This algorithm uses the k

nearest neighbors around a data point to determine its class or value.

This algorithm makes classification or regression predictions using a measure

of similarity between data points. To classify the data point, it considers the class of

its k nearest neighbor and uses the majority vote method.

The IBk algorithm can be customized with various parameters that Weka

provides. For example, the value of k, the number of neighbors, can be determined by

the user. It also provides options for choosing different measures of similarity or

distance.

Weka has an easy to use interface and offers many different machine learning

algorithms. IBk is an option that implements the k-NN algorithm among these

algorithms. Weka supports classification, regression, clustering, feature selection, and

many other machine learning tasks.

In conclusion, Weka's IBk algorithm represents the implementation of the k-

NN algorithm in the Weka library. It is used to classify data points or make regression

estimates and uses information from the nearest neighbors around it.

3.2 EVALUATION CRITERIA

In this thesis, correlation coefficient, MAE and RAE were used as evaluation

criteria.

3.2.1 Correlation Coefficient

The correlation coefficient indicates the strength and direction of the link

between two different variables. Correlation indicates the relationship between the

variables and the correlation coefficient indicates the state of the relationship. The

correlation coefficient can take a number between −1 and 1 depending on the condition

of the relationship

18

The negative value of the number indicates that there is an inverse relationship

between the variables. That is, as one variable increases, the other decreases. The

positive value of the number indicates that there is a linear relationship between the

variables, that is, as one variable increases, the other also increases. If the number

value indicating the correlation coefficient is zero, it means that there is no relationship

between the two variables. It is understood that the correlation between the variables

increases as the correlation coefficient approaches 1 and decreases as it approaches 0.

There is a range for -1 to 1 and the explanations for the value ranges it receives

are as follow.

Range of Correlation
Coefficient

Values
Level of Correlation

Range of
Correlation

Coefficient Values
Level of Correlation

0.80 to 1.00 Very Strong Positive -1.00 to -0.80 Very Strong Negative
0.60 to 0.79 Strong Positive -0.79 to -0.60 Strong Negative
0.40 to 0.59 Moderate Positive -0.59 to -0.40 Moderate Negative
0.20 to 0.39 Weak Positive -0.39 to -0.20 Weak Negative
0.00 to 0.19 Very Weak Positive -0.19 to -0.01 Very Weak Negative

Figure 3.1: Correlation Coefficient

3.2.2 Mean Absolute Error

MAE (Mean Absolute Error) is the error rate that gives the average of the

difference between the actual values and the predicted value.

 (3.1)

Where:

n = the number of errors,

Σ = summation symbol,

|xi – x| = the absolute errors.

19

3.2.2.1 Importance of Mean Absolute Error

Mean Absolute Error (MAE) is used to evaluate the accuracy of forecasts.

Some of its most important features are that it is easy to understand, interpretable and

reliable. It is a very important performance statistic for regression models because it is

a tool based on these features. Among the many reasons, these are the most

significance.

● All individual differences are given same weight on the average. This makes it

easy to compare the performance of several models or variations of the same

model.

● The MAE interpretation is a basic and obvious statistic that represents the

average size of forecast errors. It is simple for non-technical stakeholders to

understand.

● Resistance to outliers. MAE is not as affected by extreme results as other

metrics such as Mean Squared Error (MSE). This makes it a suitable measure

for datasets with outliers or extreme values.

3.2.3 Relative Absolute Error

Relative absolute error gives a sum of the difference between the predicted

values and the actual values, dividing it by the sum of the difference between the true

value and the mean of the true value.

 (3.2)

where:

n: represents the number of observations

yi: represents the realized value

ŷi: represents the predicted value

ȳ: represents the average of the realized values

3.3 PLATFORM

Weka has a modular design and can perform operations on data sets and data

mining with its features. Weka stands for Waikato Environment for Knowledge

Analysis. Weka software comes with a unique “.arff” extension support. However,

within the Weka software, there are tools for converting CSV files to ARFF format.

20

The application part of this thesis research was carried out on the Weka

platform. Version 3.8.6 is used as the Weka platform.

There are five different interfaces in Weka as Figure 3.2. these areas are

separated according to the study areas. These workspaces are Explorer, experimenter,

knowledge Flow, WorkBench, and Simple CLI, as seen below. This thesis work was

done in the Explorer menu. On the main screen, the Explorer button is pressed and the

Explorer menu opens.

Figure 3.2: Home Page of WEKA

In the window that opens, click the Open File button as Figure 3.3.

21

Figure 3.3: Explorer Page of WEKA

The dataset to be studied is selected from the local computer as Figure 3.4.

Figure 3.4: Dataset Selection on WEKA

22

In order to run the ML algorithms on the dataset, the relevant algorithm is

selected from the window in Figure 3.5 and the Start button is clicked. The algorithm

selected on the data set is run with default settings.

Figure 3.5: Algorithm Selection on WEKA

After start button clicked, the result is seen as Figure 3.6.

Figure 3.6: Result Screen of Classify

23

It is the Select attributes menu that enables the selection of attributes on data

sets using the WEKA program. When the Select attributes menu is clicked, the Select

attributes window in Figure 3.7 opens. Attribute selection method and search method

are selected from the Select attributes window.

Figure 3.7: Attribute Selection on WEKA

Throughout this study, studies on hybrid methods were carried out by using

different attribute evaluation selection and different search method selections. For

example, in Figure 3.8, CfsSubsetEval is used as attribute evaluator and PSO search is

used as Search Method. As a result, 3 attributes were not selected. The model was

created with the remaining 21 attributes instead of 24 attributes.

24

Figure 3.8: Result of Attribute Selection on WEKA

3.4 METHODS

3.4.1 Evaluator Methods

3.4.1.1 Correlation Based Feature Selection (CFS)

Correlation-based Feature Selection is an algorithm for feature selection and

can be implemented with software tools such as Weka. CFS uses a correlation-based

metric to evaluate the effects of features on classification performance. Its operation

can be summarized in the following steps:

1. Dataset preparation: In the first step, Properties (variables) and target

variable (class) must be determined.

2. Calculation of correlation between features: First, the correlation of each

feature with the class effect is calculated. Then, the relationships between

the features are also evaluated. The correlation of traits with each other is

measured by considering the class effect.

25

3. Calculation of feature scores: Each feature is assigned a score, which is

correlated with the feature's classification performance.

4. Ranking and selection of features: After the scores are calculated, the

features are ranked. CFS encourages selection of the highest rated

properties. This enables the selection of more important and relevant

features from an informatic point of view.

5. Filtering out irrelevant features: CFS filters out features that have low

impact on classification performance or unnecessary.

Using these steps, CFS evaluates the correlation between features and tries to

select important features. Feature selection helps build more efficient and performant

machine learning models with less dimensional datasets.

3.4.1.2 Classifier Attribute Evaluator

Classifier Attribute Evaluation is a feature selection algorithm and evaluates

each feature based on the performance of the classifier model. A classifier model is

used to determine the effect of features on classification, and this model evaluates

features in order of importance.

In this method, a metric is used for the performance of the classifier model. For

example, metrics such as accuracy, precision, precision, or sensitivity can be used. The

contribution of each feature to the performance of the model is expressed as the feature

evaluation score or degree of importance.

Classifier Attribute Evaluation offers the benefits of feature selection with the

classifier model. This method filters out unnecessary or noisy features in the dataset

while highlighting the more informative or more important features. The basis of the

algorithm is to create a good subset of features with features that are highly correlated

with the output class. [25] As a result, a less dimensional subset of features is created

and the performance of the model can be improved.

3.4.1.3 Correlation Attribute Evaluator

Correlation Attribute Evaluation is a method that evaluates the correlation of

features with the target variable or classification effect when selecting features.

Correlation Attribute Evaluation is a feature selection algorithm and evaluates each

feature based on its correlation with the target variable. Correlation is a statistical

26

measure that measures the relationship between the characteristics and the target

variable.

In this method, the correlation of each feature with the target variable is

calculated. Positive correlation indicates that the feature behaves similarly to the target

variable, while negative correlation indicates that the feature is inversely related to the

target variable. If the correlation is nearly zero, it indicates that the relationship of the

feature with the target variable is weak.

Correlation Attribute Evaluation evaluates features based on their correlation

scores or severity ratings. Features with high correlation scores are considered

important features that provide more information in classification and increase the

performance of the model.

3.4.1.4 Relief Attribute Evaluator

Relief Attribute Evaluation is a feature selection algorithm and uses the Relief

algorithm to determine the effect of features on classification. This method determines

the importance of each feature by measuring the differences between classes.

The relief algorithm measures the discriminating power of features between

classes. For this purpose, similarity and difference scores between close neighbors for

each sample are calculated. For example, if an instance has close neighbors to two

different classes, that instance may have a property that discriminates between those

classes.

Relief Attribute Evaluation evaluates features using the Relief algorithm.

Discrimination scores are calculated for each feature and the features are ranked

according to their importance. Features with a high discriminative power score are

considered more effective and informative in classification.

3.4.2 Search Methods

Four search methods were used in this thesis study, details of methods are given in

following section.

3.4.2.1 Random Search

Random Search is a method for hyperparameter tuning in machine learning

models. Hyperparameters are user-specified adjustable parameters that affect the

performance of a machine learning algorithm. Random Search does random trials to

27

find the best combination of hyperparameters. This method, after defining parameter

ranges and possible values, trains and evaluates a model by randomly selecting values

from these ranges. This process is repeated for a certain amount of time or number of

attempts. As a result, the hyperparameter combination that provides the best

performance is selected and the model is retrained with these values.

However, the downside of Random Search is that it doesn't use a specific

optimization strategy like other optimizer algorithms. Therefore, this method may

sometimes not guarantee the best performance. However, it can be an effective option

in situations where computational resources are limited or there is no obvious

relationship between hyperparameters.

3.4.2.2 Particle Swarm Optimization (PSO) Search

PSO is a natural meta-heuristic optimization method. This method mimics a

group of particles in nature working together to discover a target. PSO aims to find the

best solution by moving many solution candidates in the potential solution area. One

of the widely accepted fundamental benefits of metaheuristic algorithms is that they

provide mechanisms to solve large or intractable problems in reasonable execution

times while the exact algorithms fail to succeed due to time limitations. [26]

Weka's PSO algorithm is often used for hyperparameter tuning in machine

learning models. In machine learning models, the correct setting of hyperparameters

significantly affects the performance and generalization ability of the model. The PSO

algorithm updates the motions and positions of particles to optimize a target function.

Each particle tracks the best available position (best solution) and the best position of

all particles (global best solution). This teamwork allows the particles to perform a

search in the solution space.

3.4.2.3 Genetic Search

Genetic Search in Weka can be used to optimize for machine learning models

such as feature selection or hyperparameter tuning. Genetic Search is a population-

based search method based on genetic algorithm principles. Below is a general

explanation of how Genetic Search works:

1. Population generation: In the first step, an initial population is randomly

generated. Each individual expresses a solution represented as genes. Genes

represent a particular combination of traits or hyperparameters.

28

2. Calculation of fitness value: Each individual is evaluated using a fitness

function. The fitness function is used to measure how well an individual is

performing.

3. Selection: Individuals with high fitness are transferred to the next generation

using the selection operator.

4. Crossover: Crossover operation is performed between selected individuals.

Crossover creates new individuals by combining the genetic material of two

individuals. This increases genetic diversity and potentially helps discover

better solutions.

5. Mutation: Mutation process can be applied in newly created individuals.

Mutation enables the discovery of new solutions by making random changes

in the genetic material of individuals. This helps to explore a potentially wider

search area.

6. Iteration: Starting from the second step, the fitness value is calculated and new

generations are created. The genetic algorithm process continues by using

selection, crossover and mutation operators. This process continues until the

iteration count or stopping criterion is met.

As a result, the Genetic Search algorithm in Weka makes feature selection

using the principles of genetic algorithms. This method aims to make the dataset less

dimensional and to find better performing feature combinations.

3.4.2.4 Ranker

"Ranker" is a term used as a feature selection or ranking method. Ranker

evaluates features in the dataset and ranks them in order of importance.

A ranker rates each feature with a point or importance value. These scores may

be based on the classification performance of the features or their relationship to a

target variable. Higher rated features are considered more important or more

informative.

Ranker methods are used for feature selection in machine learning models.

Feature selection is used to filter out redundant or noisy features in the dataset or to

create a less dimensional feature subset. The ranker performs this selection by

determining their importance in classification or prediction. Ranker methods are a

widely used tool in feature selection and ranking problems. Ranking the features in

29

order of importance provides better understanding and can give the model a better

generalizability.

3.5 DATASET

In this section, the datasets used in the research will be discussed in detail.

Three different datasets were used for this study the data of real software projects are

kept in the data sets obtained from the data warehouse. There are linked and

independent attributes in datasets, each of which contains a different number of project

data. These attributes are used to perform the test effort cost estimation. If an attribute

gives the true cost value, the linked attribute; If it gives cost-related values, it is called

an independent attribute. The independent attributes in the data sets determine the

value of the linked attribute.

The datasets used are publicly available datasets. The names of the datasets

used are CocomoNASA/Software cost estimation, COCOMONASA 2 / Software cost

estimation, Cocomo-81/Software cost estimation.

3.5.1 CocomoNasa / Software Cost Estimation:

The dataset consists of 60 NASA projects. These projects took place in different

locations between 1980 and 1990. There are sixty instances and seventeen attributes.

The Name of attributes are analyst’s capability, programmer’s capability, application

experience, modern programing practices, use of software tools, virtual machine

experience, language experience, schedule constraint, main memory constraint, data

base size, time constraint for CPU, turnaround time, machine volatility, process

complexity, required software reliability, line of code measure, actual effort in

person/months.

30

Table 3.1: Attribute Selection for CocomoNasa Dataset

Attribute Name Description

acap analyst’s capability

pcap programmer’s capability

aexp application experience

modp modern programing practices

tool use of software tool

vexp virtual machine experience

lexp language experience

sced schedule constraint

stor main memory constraint

data data base size

time time constraint for CPU

turn turnaround time

virt machine volatility

rely required software reliability

cplx process complexity

loc line of code measure

act_effort actual effort

3.5.2 CocomoNasa2 / Software Cost Estimation:

The dataset consists of 93 NASA projects. These projects took place in

different locations between 1971 and 1987.There are 93 instances and 24 attributes.

15 of them are standard COCOMO-I discrete attributes and 7 of them are describing

the project, one of them is lines of code measure, and last one is actual effort in person

months. Name of attributes are analysts capability, programmers capability,

application experience, modern programing practices, use of software tools, virtual

machine experience, language experience, schedule constraint, main memory

constraint, data base size, time constraint for CPU, turnaround time, machine volatility,

process complexity, required software reliability, line of code measure, actual effort in

person/months, record number, project name, category of application, flight or ground

system, which NASA center, year of development, development mode.

31

Table 3.2: Attributes Description for CocomoNasa-2 Dataset

Attribute

Name
Description

record number real unique id

project name project name

cat2
category of application (Avionics, application ground, avionics

monitoring….)

forg flight or ground system

center which NASA center

year year of development

mode development mode (embedded, organic, semidetached)

acap analyst’s capability

pcap programmer’s capability

aexp application experience

modp modern programing practices

tool use of software tool

vexp virtual machine experience

lexp language experience

sced schedule constraint

stor main memory constraint

data data base size

time time constraint for CPU

turn turnaround time

virt machine volatility

rely required software reliability

cplx process complexity

loc line of code measure

act_effort actual effort

3.5.3 Cocomo-81 / Software Cost Estimation:

There are 63 instances and 17 attributes. Name of attributes are analyst’s

capability, programmer’s capability, application experience, modern programing

practices, use of software tools, virtual machine experience, language experience,

schedule constraint, main memory constraint, data base size, time constraint for CPU,

turnaround time, machine volatility, process complexity, required software reliability,

line of code measure, actual effort in person/months.

32

Table 3.3: Attributes Description for CocomoNasa-81 Dataset

Attribute Name Description

acap analyst’s capability

pcap programmer’s capability

aexp application experience

modp modern programing practices

tool use of software tool

vexp virtual machine experience

lexp language experience

sced schedule constraint

stor main memory constraint

data data base size

time time constraint for CPU

turn turnaround time

virt machine volatility

rely required software reliability

cplx process complexity

loc line of code measure

act_effort actual effort

3.5.4 Summary for Datasets

The summary dataset table is below as Table 3.4.

Table 3.4: Summary for Datasets

Data Set Instance Attribute Number Measurement Unit Effort

CocomoNasa 60 17 Loc Man/ Month

CocomoNasa-2 93 24 Loc Man/ Month

Cocomo-81 63 17 Loc Man/ Month

3.5.5 The Numeric Values of the Effort Multipliers

The largest and smallest value ranges that the attributes in the data sets can take

were examined.

Table 3.5: The Numeric Values of the Effort Multipliers

Attributes

Very

Low Low Normal High

Very

High

Extra

High Productivity

acap 1.46 1.19 1 0.86 0.71 2.06

pcap 1.42. 1.17 1 0.86 0.7 1.67

aexp 1.29 1.13 1 0.91 0.82 1.57

modp 1.24. 1.1 1 0.91 0.82 1.34

tool 1.24 1.1 1 0.91 0.83 1.49

vexp 1.21 1.1 1 0.9 1.34

lexp 1.14 1.07 1 0.95 1.2

sced 1.23 1.08 1 1.04 1.1 e

stor 1 1.06 1.21 1.56 -1.21

data 0.94 1 1.08 1.16 -1.23

time 1 1.11 1.3 1.66 -1.3

turn 0.87 1 1.07 1.15 -1.32

virt 0.87 1 1.15 1.3 -1.49

rely 0.75 0.88 1 1.15 1.4 -1.87

cplx 0.7 0.85 1 1.15 1.3 1.65 -2.36

33

3.6 FINDINGS

It is frequently mentioned in the literature that a certain percentage of software

effort data can be used for test effort estimation [27]. Due to this situation, 40% of the

software effort data was taken. [28] According to the results, the new data formed was

accepted as a software test effort.

In this research, model trainings were carried out on three data sets by using

different machine learning algorithms. These algorithms are, respectively, linear

regression, random forest, bagging, multilayer perceptron, SMOreg, M5P, IBk, KStar

and random tree. Datasets are randomly divided into training and test data using 10-

fold cross validation technique. The created models evaluated according to correlation

coefficient, error rate MAE and RAE. In WEKA, the default values for the 3.8.6

version of these algorithms are used: The values used in this study from the adjustable

parameters for selected algorithms are as follows:

• For Linear Regression, attributeSelectionMethhod parameter is selected as M5

Method.

• For the MLP algorithm, the "hiddenLayers" parameter is selected as "a". This

means that the number of hidden layers and the number of neurons are

automatically determined based on the data. LearningRate is 0.3 and momentum

is 0.2.

• The SMOReg complexity parameter c 1 is selected. FilterType is Nomalize

training data, Kernel is PolyKernel, and regOptimzer is RegSMOImproved.

• KNN 1, distanceWeighting No distance weighting is selected in IBk.

• KStar globalBlend 20, missingMode Avarage entropy curves are selected.

• For Bagging, the classifier REPTRee is selected, numExecutions used to set up the

ensemble model are 1, and numerations are 10.

• In M5P, 4 is selected as the minimum instance to be accepted for the leaf node.

• In RandomForest, a value of 0, which represents no limit, is processed for

maxDepth. numIterations 100, numExecutions 1 used to set up the ensemble model

is selected.

• In RandomTree, minNum 1, which represents the total weight of the instances in

the leaf, is selected, and for maxDepth, 0, which represents no limit, is selected.

The effort estimation of the software projects was carried out in two parts by

using the ML algorithms in the WEKA environment. In the first part; The default

34

settings of WEKA environment algorithms are preferred. No attribute selection has

been implemented for each algorithm used. In the second part, hybrid methods are

tried with Select Attributes on Weka and the results are tested for all algorithms and

datasets one by one. The following hybrid methods were tried respectively.

● CfsRandomEvaluater + RandomSearch

● CfsRandomEvaluater + PSOSearch

● CfsRandomEvaluater + GeneticSearch

● ClassifierAttributeEvaluation + Ranker

● CorrelationAttributeEvaluation + Ranker

● ReliefAttributeEvaluation + Ranker

As a result, the results obtained in the first part and the second part were

compared.

3.6.1 Models with Original Datasets

 For software test effort estimation, performance measurements of

machine learning algorithms applied to the CocomoNasa CocomoNasa-2 ve Cocomo-

81 are given. No attribute selection is made and the original data is used.

3.6.1.1 CocomoNasa Dataset

According to Table 3.6, M5P give the best result. The correlation coefficient is

0.922, MAE 60.3936 and RAE 35.0178 % for M5P.

The worst performance is Random Tree. The correlation coefficient is 0.3915,

MAE 137.1558 and RAE 79.5265 % for Random Tree.

Table 3.6: Models Result for CocomoNasa Dataset

CocomoNasa

Algorithms Correlation Coefficient MAE RAE (%)

Linear Regression 0.7994 98.8186 57.2976

Random Forest 0.7281 93.4642 54.193

Bagging 0.8083 74.0699 42.9476

Multilayer Perceptron 0.8931 71.781 41.6205

SMOreg 0.7178 99.5863 57.7427

IBk 0.5768 118.1707 68.5184

KStar 0.6772 88.1806 51.1294

Random Tree 0.3915 137.1558 79.5265

M5p 0.922 60.3936 35.0178

35

3.6.1.2 CocomoNasa-2 Dataset

According to Table 3.7, KStar give the best result. The correlation coefficient

is 0.7437, MAE is 146.6103 and RAE is 56.7453 % for KStar.

The worst performance is Linear Regression. The correlation coefficient is -

0.3101, MAE is 258.3653 and RAE is 100 %.

Table 3.7: Models Result for CocomoNasa-2 Dataset

CocomoNasa-2

Algorithms Correlation Coefficient MAE RAE (%)

Linear Regression -0.3101 258.3653 100

Random Forest 0.667 164.1404 339.9489

Bagging 0.4241 195.6914 75.7421

Multilayer Perceptron 0.5058 303.8009 117.5858

SMOreg 0.4176 307.0868 118.8576

IBk 0.6581 198.9049 76.9859

KStar 0.7437 146.6103 56.7453

Random Tree 0.637 201.0081 77.8

M5p 0.7092 147.0593 56.9191

3.6.1.3 Cocomo-81 Dataset

According to Table 3.8, Random Forest give the best result. The correlation

coefficient is 0.7529, MAE is 215.6668 and RAE is 59.421 %.

The worst performance is IBK. The correlation coefficient is 0.0768, MAE is

313.021 and RAE is 86.2442 %.

Table 3.8: Models Result for Cocomo-81 Dataset

Cocomo-81

Algorithms
Correlation Coefficient MAE

RAE

(%)

Linear Regression 0.6102 349.7908 96.3751

Random Forest 0.7529 215.6668 59.421

Bagging 0.4622 268.7705 74.0522

Multilayer Perceptron 0.6739 264.9429 72.9976

SMOreg 0.6625 191.8657 52.8632

IBk 0.0768 313.021 86.2442

KStar 0.5621 210.9438 58.1197

Random Tree 0.6439 226.4391 62.389

M5p 0.6843 206.9436 57.0175

36

3.6.2 Models with Attribute Selection

3.6.2.1 CocomoNasa Dataset with Attribute Selection

Attribute selections is made before applying the selected ML algorithms to the

CocomoNasa datasets.

3.6.2.1.1 CFS + Random Search for CocomoNasa

According to Table 3.9, CfsSubsetEval and Random Search have been applied

to the CocomoNasa dataset under the select attributes menu of Weka. In this case, 10

out of 17 attributes was selected. The selected attributes are Rely, Data, Time, Stor,

Turn, Lexp, Modp, Tool, Loc, Act. Effort.

According to Table 3-9, Multilayer Perceptron gave the best performance. The

correlation coefficient is 0.9245, MAE is 57.5215 and RAE 33.3525 %. The worst

performance is IBK. The Correlation Coefficient is 0.5511, MAE is 118.1307 and

the RAE is 68.4952.

Compared with the original dataset, Correlation Coefficient of Random Tree

increased by 44%. Even if not the best result, it is the model that showed the most

improvement. When comparing the all algorithms, the CFS + Random Search model

showed improvement in 5 out of 9 algorithms compared to the original model.

Table 3.9: CFS + Random Search for CocomoNasa

CocomoNasa / CFS + Random Search

Algorithms Correlation Coefficient MAE RAE (%)

Linear Regression 0.7782 105.5529 61.2023

Random Forest 0.7281 93.4642 54.193

Bagging 0.8111 74.6154 74.6154

Multilayer Perceptron 0.9245 57.5215 33.3525

SMOreg 0.7691 90.0964 52.2402

IBk 0.5511 118.1307 68.4952

KStar 0.7818 75.6172 43.8448

Random Tree 0.8331 74.3994 43.1387

M5p 0.903 69.6416 40.38

3.6.2.1.2 CFS + PSO for CocomoNasa

According to Table 3.10, CfsSubsetEval and PSO have been applied under the

select attributes menu of Weka. In this case, 12 out of 17 attributes were selected. The

selected attributes are Rely, Data, Time, Stor, Turn, Virt, Vexp, Lexp, Modp, Tool,

Loc, Act_effort.

37

According to Table 3.10, M5P gave the best performance. The correlation

coefficient is 0.9021, MAE is 70.3909 and RAE is 40.815%. There is no change in

the best result comparison with the original model. However, the model created with

the Random tree achieved 36% improvement over the original model. However, it did

not achieve the best result. The worst performance is IBk. The Correlation Coefficient

is 0.5504, MAE is 120.4973 and RAE 69.8675 %.

Table 3.10: CFS + PSO for CocomoNasa

CocomoNasa / CFS + PSO

Algorithms Correlation Coefficient MAE RAE (%)

Linear Regression 0.7396 135.8567 78.7732

Random Forest 0.8115 80.0985 46.4432

Bagging 0.8103 74.934 43.4487

Multilayer Perceptron 0.8956 64.8591 37.607

SMOreg 0.6779 113.7726 65.9683

IBk 0.5504 120.4973 69.8675

KStar 0.7592 79.0905 45.8587

Random Tree 0.7531 87.2165 50.5704

M5p 0.9021 70.3909 40.8145

3.6.2.1.3 CFS + Genetic Search for CocomoNasa

According to Table 3.11, CfsSubsetEval and GS have been applied under the

select attributes menu of Weka. In this case, 10 out of 17 attributes were selected. The

selected attributes are Rely, Data, Time, Stor, Virt, Turn, Lexp, Tool, Loc, Act_effort.

According to Table 3.11, M5P gave the best performance. The correlation

coefficient is 0.9118, MAE is 67.1147 and RAE is 38.914 %. The worst performance

is Random Tree. Correlation Coefficient is 0.3915, MAE is 137.1558 and RAE is

79.5265 %.

Although M5P gave the best results, the success rate decreased when compared

to the original dataset. Even if it didn't give the best results, KStar was the algorithm

that showed the most improvement when CFS+GA was applied. When compared to

the original model, an improvement of 10% was observed.

38

Table 3.11: CFS + PSO for CocomoNasa

CocomoNasa / CFS + GS

Algorithms Correlation Coefficient MAE RAE (%)

Linear Regression 0.7648 111.1063 64.4223

Random Forest 0.8193 81.1336 47.0434

Bagging 0.8154 73.2855 42.4928

Multilayer Perceptron 0.8879 68.7779 39.8792

SMOreg 0.7492 96.0769 55.7078

IBk 0.555 118.0807 68.4662

KStar 0.7759 82.247 47.6889

Random Tree 0.3915 137.1558 79.5265

M5p 0.9118 67.1147 38.9148

3.6.2.1.4 Classifier Attribute Evaluation + Ranker for CocomoNasa

According to Table 3.12, Classifier Att. Eval. and Ranker have been applied

under the select attributes menu of Weka. In this case, attributes are listed in order of

importance. The last three elements in the order of importance are removed from the

list. These three elements: rely, vexp, pcap. Therefore, the model was created with the

remaining 14 attributes.

According to Table 3.12, M5P gave the best performance. The correlation

coefficient is 0.9103, MAE is 62.9752 and RAE 36.5147 %. The worst performance

is Random Tree. The Correlation Coefficient is 0.5973, MAE is 115.0607 and the RAE

is 66.7151.

Compared to the original dataset, improvement was seen in 8 out of 9

algorithms. Only a slight decrease was seen in M5P. However, it has the best

correlation coefficient performance. Random Tree showed an improvement of 20%.

However, it has the worst result for this method and dataset.

Table 3.12: Classifier Att. Eval. + Ranker for CocomoNasa

CocomoNasa / Classifier Att.Eval + Ranker

Algorithms
Correlation Coefficient MAE

RAE

(%)

Linear Regression 0.8849 67.5768 39.1828

Random Forest 0.824 81.691 47.3666

Bagging 0.8132 74.1465 42.9921

Multilayer Perceptron 0.9054 62.768 36.3945

SMOreg 0.8045 74.7173 43.323

IBk 0.6164 101.91 59.0901

KStar 0.7568 78.9804 45.7949

Random Tree 0.5973 115.061 66.7151

M5p 0.9103 62.9752 36.5147

39

3.6.2.1.5 Correlation Attribute Evaluation + Ranker for CocomoNasa

According to Table 3.13, Correlation Att. Eval. and Ranker have been applied

under the select attributes menu of Weka. In this case, attributes are listed in order of

importance. The last three elements in the order of importance are removed from the

list. These three elements: virt, vexp, acap. Therefore, the model was created with the

remaining 14 attributes.

According to Table 3.13, Multilayer Perceptron gave the best performance. The

correlation coefficient is 0.9147, MAE is 61.8765 and RAE 35.8776 %. The worst

performance is IBK. The Correlation Coefficient is 0.6036, MAE is 108.3573 and the

RAE is 62.8284.

Compared to the original dataset, improvement was seen in 8 out of 9

algorithms. Only a slight decrease was seen in M5P. Random Tree showed an

improvement of 32%.

Table 3.13: Correlation Att. Eval. + Ranker for CocomoNasa

CocomoNasa / Correlation Att.Eval + Ranker

Algorithms
Correlation Coefficient MAE

RAE

(%)

Linear Regression 0.8778 89.4276 51.8524

Random Forest 0.7744 86.8572 50.3621

Bagging 0.8094 73.6507 42.7046

Multilayer Perceptron 0.9147 61.8765 35.8776

SMOreg 0.7912 85.6615 49.6687

IBk 0.6036 108.357 62.8284

KStar 0.7674 75.7444 43.9186

Random Tree 0.7113 93.3438 54.1231

M5p 0.8945 69.3779 40.2271

3.6.2.1.6 Relief Attribute Evaluation + Ranker for CocomoNasa

According to Table 3.14, Relief Att. Eval. and Ranker have been applied under

the select attributes menu of Weka. In this case, attributes are listed in order of

importance. The last three elements in the order of importance are removed from the

list. These three elements: vexp, time, lexp. Therefore, the model was created with the

remaining 14 attributes.

According to Table 3.14, M5P gave the best performance. The correlation

coefficient is 0.9088, MAE is 63.6781 and RAE 36.9222 %. The worst performance

is Random Tree. The Correlation Coefficient is 0.576, MAE is 124.3087 and the RAE

is 72.0774 %.

40

Compared to the original dataset, improvement was seen in 7 out of 9

algorithms. Only a slight decrease was seen in M5P and IBK. Random Tree showed

an improvement of 18%.

Table 3.14: Relief Att. Eval. + Ranker for CocomoNasa

CocomoNasa / Relief Att.Eval + Ranker

Algorithms
Correlation Coefficient MAE

RAE

(%)

Linear Regression 0.8558 86.2261 49.9961

Random Forest 0.7995 86.1667 49.9617

Bagging 0.8094 74.3053 43.0841

Multilayer Perceptron 0.8976 70.4519 40.8498

SMOreg 0.8334 73.8929 42.845

IBk 0.5768 117.491 68.1241

KStar 0.7697 79.2382 45.9444

Random Tree 0.576 124.309 72.0774

M5p 0.9088 63.6781 36.9222

3.6.2.2 CocomoNasa-2 Dataset with Attribute Selection

3.6.2.2.1 CFS + Random Search for CocomoNasa-2

According to Table 3.15, CfsSubsetEval and Random Search have been

applied under the select attributes menu of Weka. In this case, 21 out of 24 attributes

were selected. The selected attributes are Record number, project name, cat2, forg,

year, mode, rely, data, cplx, time, stor, virt, turn, acap, aexp, pcap, vexp, modp, sced,

equivphyskloc, act_effort.

According to Table 3.15, KStar gave the best performance. The correlation

coefficient is 0.7433, MAE is 147.7978 and RAE is 57.205%. The worst performance

is Linear Regression. Correlation Coefficient is -0.3101, MAE is 258.3653 and RAE

is 100 %.

Compared to the original dataset, the Multilayer Perceptron Correlation

Coefficient has increased by 15%. It is the model that shows the most improvement, if

not the best result. KStar, which showed the best overall result, showed no

improvement. Although it shows a small decrease, it can be interpreted that it almost

maintains its success rate.

41

Table 3.15: CFS + Random Search for CocomoNasa-2

CocomoNasa-2 / CFS + Random Search

Algorithms
Correlation Coefficient MAE

RAE

(%)

Linear Regression -0.3101 258.3653 100

Random Forest 0.6376 174.4391 67.5165

Bagging 0.4184 195.3487 75.6095

Multilayer Perceptron 0.6575 221.4978 85.7305

SMOreg 0.4176 307.0868 118.8576

IBk 0.5889 213.1759 82.5095

KStar 0.7433 147.7978 57.205

Random Tree 0.2493 202.0807 78.2151

M5p 0.734 134.5333 52.0709

3.6.2.2.2 CFS + PSO for CocomoNasa-2

According to Table 3.16, CfsSubsetEval and PSO have been applied under the

select attributes menu of Weka. In this case, 22 out of 24 attributes were selected. The

selected attributes are Record number, project name, cat2, forg, center, year, mode, rely,

data, cplx, time, stor, virt, turn, acap, aexp, pcap, vexp, modp, sced, equivphyskloc,

act_effort.

According to Table 3.16, KStar gave the best performance. The correlation

coefficient is 0.7505, MAE is 146.7144 and RAE is 56.7856%. The worst

performance is Linear Regression. Correlation Coefficient is -0.3101, MAE is 258.3653

and RAE is 100 %.

Compared to the original dataset, the Multilayer Perceptron Correlation

Coefficient has increased by 16%. It is the model that shows the most improvement, if

not the best result. Random Tree shows a huge decrease with 24%.

Table 3.16: CFS + PSO for CocomoNasa-2

CocomoNasa-2 / CFS + PSO

Algorithms Correlation Coefficient MAE RAE (%)

Linear Regression -0.3101 258.3653 100

Random Forest 0.6411 172.1151 66.617

Bagging 0.4184 195.3487 75.6095

Multilayer Perceptron 0.6603 240.6701 93.1511

SMOreg 0.3958 267.5702 103.5628

IBk 0.6464 212.0916 82.0898

KStar 0.7505 146.7144 56.7856

Random Tree 0.3947 225.2032 87.1647

M5p 0.734 134.5333 52.0709

42

3.6.2.2.3 CFS + Genetic Search for CocomoNasa-2

According to Table 3.17, CfsSubsetEval and GS have been applied under the

select attributes menu of Weka. In this case, 22 out of 24 attributes were selected. The

selected attributes are Record number, projectname, cat2, forg, center, year, mode, rely,

data, cplx, time, stor, virt, turn, acap, aexp, pcap, vexp, modp, sced, equivphyskloc,

act_effort.

According to Table 3.17, It has been observed that CFS + GS and CFS + PSO

gave the same results.

Table 3.17: CFS + GS for CocomoNasa-2

CocomoNasa-2 / CFS + GS

Algorithms Correlation Coefficient MAE RAE (%)

Linear Regression -0.3101 258.3653 100

Random Forest 0.6411 172.1151 66.617

Bagging 0.4184 195.3487 75.6095

Multilayer Perceptron 0.6603 240.6701 93.1511

SMOreg 0.3958 267.5702 103.5628

IBk 0.6464 212.0916 82.0898

KStar 0.7505 146.7144 56.7856

Random Tree 0.3947 225.2032 87.1647

M5p 0.734 134.5333 52.0709

3.6.2.2.4 Classifier Attribute Evaluation + Ranker for CocomoNasa-2

According to Table 3.18, Classifier Att. Eval. and Ranker have been applied

under the select attributes menu of Weka. In this case, attributes are listed in order of

importance. The last three elements in the order of importance are removed from the

list. These three elements: Record number, aexp, acap. Therefore, the model was

created with the remaining 21 attributes.

According to Table 3.18, KStar gave the best performance. The correlation

coefficient is 0.8046, MAE is 132.7143 and RAE 51.3669 %. The worst performance

is Linear Regression. The Correlation Coefficient is -0.3101, MAE is 258.3653 and

the RAE is 100. However, it didn’t change according to original model. Except Linear

Regression, worst performance has SMOreg. The Correlation Coefficient is 0.4107,

MAE is 294.7582 and the RAE is 114.0858.

Compared to the original dataset, improvement was seen in 5 out of 9

algorithms. Only a slight decrease was seen in Random tree, SMOreg and Bagging.

Multilayer Perceptron showed an improvement of 18%.

43

Table 3.18: Classifier Att. Eval. + Ranker for CocomoNasa-2

CocomoNasa-2 / Classifier Attribute Evaluation

Algorithms Correlation Coefficient MAE RAE (%)

Linear Regression -0.3101 258.365 100

Random Forest 0.7085 157.227 60.8545

Bagging 0.4122 195.52 75.6757

Multilayer Perceptron 0.6806 213.479 82.6269

SMOreg 0.4107 294.758 114.086

IBk 0.662 195.298 75.5897

KStar 0.8046 132.714 51.3669

Random Tree 0.5459 204.892 79.3032

M5p 0.7209 136.542 52.8485

3.6.2.2.5 Correlation Attribute Evaluation + Ranker for CocomoNasa-2

According to Table 3.19, Correlation Att. Eval. and Ranker have been applied under

the select attributes menu of Weka. In this case, attributes are listed in order of

importance. The last three elements in the order of importance are removed from the

list. These three elements: Tool, lexp, year. Therefore, the model was created with the

remaining 21 attributes.

According to Table 3.19, Random Forest gave the best performance. The

correlation coefficient is 0.6994, MAE is 164.1088 and RAE 63.5181 %. The worst

performance is Linear Regression. The Correlation Coefficient is -0.3101, MAE is

258.3653 and the RAE is 100. However, it didn’t change according to original model.

Except Linear Regression, worst performance has SMOreg. The Correlation

Coefficient is 0.3777, MAE is 267.3135 and the RAE is 103.4634.

Compared to the original dataset, improvement was seen in 3 out of 9

algorithms. Multilayer Perceptron showed an improvement of 12%. A slight decrease

was seen in MP5, KStar, IBK and SMOreg. However Random Tree showed a huge

decrease of 25%.

44

Table 3.19: Correlation Att. Eval. + Ranker for CocomoNasa-2

CocomoNasa-2 / Correlation Attribute Evaluation

Algorithms Correlation Coefficient MAE RAE (%)

Linear Regression -0.3101 258.365 100

Random Forest 0.6994 164.109 63.5181

Bagging 0.4247 193.069 74.7272

Multilayer Perceptron 0.6215 245.462 95.0057

SMOreg 0.3777 267.314 103.463

IBk 0.6403 218.712 84.6522

KStar 0.6864 157.635 61.0124

Random Tree 0.3899 257.03 99.4831

M5p 0.6765 159.244 61.6352

3.6.2.2.6 Relief Attribute Evaluation + Ranker for CocomoNasa-2

According to Table 3.20, Relief Att. Eval. and Ranker have been applied under

the select attributes menu of Weka. In this case, attributes are listed in order of

importance. The last three elements in the order of importance are removed from the

list. These three elements: Stor, year, record. Therefore, the model was created with

the remaining 21 attributes.

According to Table 3.20, M5P gave the best performance. The correlation

coefficient is 0.7508, MAE is 140.4593 and RAE 54.3646 %. The worst performance

is Linear Regression. The Correlation Coefficient is -0.3101, MAE is 258.3653 and

the RAE is 100. However, it didn’t change according to original model. Except Linear

Regression, worst performance has Bagging. The Correlation Coefficient is 0.4098,

MAE is 194.7614 and the RAE is 75.3822%.

Compared to the original dataset, improvement was seen in 5 out of 9

algorithms. A slight decrease was seen in KStar, IBK and Bagging. Multilayer

Perceptron showed a huge improvement with 18%.

Table 3.20: Relief Att. Eval. + Ranker for CocomoNasa-2

CocomoNasa-2 / Relief Attribute Evaluation

Algorithms Correlation Coefficient MAE RAE (%)

Linear Regression -0.3101 258.365 100

Random Forest 0.7311 150.459 58.235

Bagging 0.4098 194.761 75.3822

Multilayer Perceptron 0.6805 213.719 82.7196

SMOreg 0.4754 273.58 105.889

IBk 0.6564 199.429 77.1887

KStar 0.7308 144.878 56.075

Random Tree 0.7162 192.323 74.4385

M5p 0.7508 140.459 54.3646

45

3.6.2.3 Cocomo-81 Dataset with Attribute Selection

3.6.2.3.1 CFS + Random Search for Cocomo-81

According to Table 3.21, CfsSubsetEval and Random Search have been

applied under the select attributes menu of Weka. In this case, 11 out of 17 attributes

were selected. The selected attributes are relying, data, time, stor, turn, acap, pcap, vexp,

modp, loc, actual.

According to Table 3.21, KStar gave the best performance. The correlation

coefficient is 0.9097, MAE is 183.1173 and RAE is 50.4529 %. The worst

performance is Random Tree. Correlation Coefficient is 0.4613, MAE is 307.7039 and

RAE is 84.7792 %.

Compared to the original dataset, the IBK Correlation Coefficient has huge

increased from 0.0768 to 0.5258. It is the model that shows the most improvement, if

not the best result. Random Tree shows a huge decrease with approximately 18%.

Table 3.21: CFS + Random Search for Cocomo-81

CocomoNasa-81 / CFS + Random Search

Algorithms Correlation Coefficient MAE
RAE

(%)

Linear Regression 0.6314 329.8316 90.8759

Random Forest 0.8048 193.219 53.2361

Bagging 0.4769 264.1178 72.7703

Multilayer Perceptron 0.5413 352.0298 96.992

SMOreg 0.661 191.3021 52.708

IBk 0.5258 290.6483 80.08

KStar 0.9097 183.1173 50.4529

Random Tree 0.4613 307.7039 84.7792

M5p 0.6674 218.1156 60.0957

3.6.2.3.2 CFS + PSO for Cocomo-81

According to Table 3.22, CfsSubsetEval and PSO have been applied under the

select attributes menu of Weka. In this case, 12 out of 17 attributes were selected. The

selected attributes are relying, data, time, stor, turn, acap, pcap, vexp, lexp, modp, loc,

actual.

According to Table 3.22, KStar gave the best performance. The correlation

coefficient is 0.8597, MAE is 201.859 and RAE is 55.6166 %. The worst performance

is Random Tree. Correlation Coefficient is 0.4117, MAE is 304.489 and RAE is

83.8936 %.

46

Compared to the original dataset, improvement was seen in 5 out of 9

algorithms. A decrease was seen in Random Tree by 23%. IBk showed a huge

improvement with 44%.

Table 3.22: CFS + PSO for Cocomo-81

Cocomo-81 / CFS + PSO

Algorithms Correlation Coefficient MAE RAE (%)

Linear Regression 0.6328 330.793 91.1408

Random Forest 0.7422 202.496 55.792

Bagging 0.4773 264.13 72.7738

Multilayer Perceptron 0.6118 307.926 84.8405

SMOreg 0.6726 186.926 51.5023

IBk 0.5206 303.708 83.6783

KStar 0.8597 201.859 55.6166

Random Tree 0.4117 304.489 83.8936

M5p 0.6773 208.567 57.4648

3.6.2.3.3 CFS + Genetic Search for Cocomo-81

According to Table 3.23, CfsSubsetEval and PSO have been applied under the

select attributes menu of Weka. In this case, 12 out of 17 attributes were selected. The

selected attributes are relying, data, time, stor, turn, acap, pcap, vexp, lexp, modp, loc,

actual.

According to Table 3.23, It has been observed that CFS + GS and CFS + PSO

gave the same results.

Table 3.23: CFS + GS for Cocomo-81

Cocomo-81 / CFS + GS

Algorithms Correlation Coefficient MAE RAE (%)

Linear Regression 0.6328 330.793 91.1408

Random Forest 0.7422 202.496 55.792

Bagging 0.4773 264.13 72.7738

Multilayer Perceptron 0.6118 307.926 84.8405

SMOreg 0.6726 186.926 51.5023

IBk 0.5206 303.708 83.6783

KStar 0.8597 201.859 55.6166

Random Tree 0.4117 304.489 83.8936

M5p 0.6773 208.567 57.4648

3.6.2.3.4 Classifier Attribute Evaluation + Ranker for Cocomo-81

According to Table 3.24, Classifier Att. Eval. and Ranker have been applied

under the select attributes menu of Weka. In this case, attributes are listed in order of

importance. The last three elements in the order of importance are removed from the

47

list. These three elements: Pcap, vexp, rely. Therefore, the model was created with the

remaining 14 attributes.

According to Table 3.24, Random Forest gave the best performance. The

correlation coefficient is 0.764, MAE is 220.5193 and RAE 60.758 %. The worst

performance has Bagging. The Correlation Coefficient is 0.4225, MAE is 273.9946

and the RAE is 75.4916.

Compared to the original dataset, improvement was seen in 5 out of 9

algorithms. Only a slight decrease was seen in M5P, Random Tree, SMOreg and

Bagging. IBk showed a huge improvement of 44%.

Table 3.24: Classifier Att. Eval. + Ranker for Cocomo-81

Cocomo-81 / Classifier Attribute Evaluation

Algorithms Correlation Coefficient MAE RAE (%)

Linear Regression 0.6184 334.931 92.281

Random Forest 0.764 220.519 60.758

Bagging 0.4225 273.995 75.4916

Multilayer Perceptron 0.7224 267.257 73.6353

SMOreg 0.6556 193.899 53.4235

IBk 0.5598 265.961 73.278

KStar 0.7409 202.687 55.8449

Random Tree 0.5528 267.414 73.6785

M5p 0.6697 221.118 60.9229

3.6.2.3.5 Correlation Attribute Evaluation + Ranker for Cocomo-81

According to Table 3.25, Correlation Att. Eval. and Ranker have been applied

under the select attributes menu of Weka. In this case, attributes are listed in order of

importance. The last three elements in the order of importance are removed from the

list. These three elements: Tool, aexp, acap. Therefore, the model was created with the

remaining 14 attributes.

According to Table 3.25, Random Forest gave the best performance. The

correlation coefficient is 0.8379, MAE is 197.6953 and RAE 54.4694 %. The worst

performance has Bagging. The Correlation Coefficient is 0.4098, MAE is 276.8935

and the RAE is 76.2903.

Compared to the original dataset, improvement was seen in 6 out of 9

algorithms. Only a slight decrease was seen in M5P, Random Tree, and Bagging.

KStar showed a huge improvement of 23%.

48

Table 3.25: Correlation Att. Eval. + Ranker for Cocomo-81

Cocomo-81 / Correlation Attribute Evaluation

Algorithms Correlation Coefficient MAE RAE (%)

Linear Regression 0.6388 333.727 91.9491

Random Forest 0.8379 197.695 54.4694

Bagging 0.4098 276.894 76.2903

Multilayer Perceptron 0.6865 279.547 77.0213

SMOreg 0.6791 194.345 53.5462

IBk 0.5508 271.7 74.8594

KStar 0.7967 201.259 55.4513

Random Tree 0.598 259.095 71.3863

M5p 0.679 206.685 56.9462

3.6.2.3.6 Relief Attribute Evaluation + Ranker for Cocomo-81

According to Table 3.26 Relief Att. Eval. and Ranker have been applied under

the select attributes menu of Weka. In this case, attributes are listed in order of

importance. The last three elements in the order of importance are removed from the

list. These three elements: Cplx, sced, pcap. Therefore, the model was created with the

remaining 14 attributes.

According to Table 3.26, Random Forest gave the best performance. The

correlation coefficient is 0.7811, MAE is 202.192 and RAE 55.7084 %. The worst

performance has Random Tree. The Correlation Coefficient is 0.2225, MAE is

349.914 and the RAE is 96.4091 %.

Compared to the original dataset, improvement was seen in 2 out of 9

algorithms that are Linear Algorithm and Random Forest.

Table 3.26: Relief Att. Eval. + Ranker for Cocomo-81

Cocomo-81 / Relief Attribute Evaluation

Algorithms Correlation Coefficient MAE RAE (%)

Linear Regression 0.6216 329.365 90.7472

Random Forest 0.7811 202.192 55.7084

Bagging 0.4339 271.4 74.7768

Multilayer Perceptron 0.6409 278.156 76.6381

SMOreg 0.6591 184.564 50.8513

IBk 0.0665 326.587 89.982

KStar 0.4731 220.061 60.6317

Random Tree 0.2225 349.914 96.4091

M5p 0.6708 224.265 61.7899

49

CHAPTER IV

4. RESULT AND DISCUSSION

In this section, a detailed analysis of the new models created using machine

learning algorithms and their results has been made. The analyzes obtained as a result

of the examination of the researched studies are presented in detail in the Tables.

Existing studies were compared according to the software test effort estimation

method, the data sets they used, whether they made feature selection and evaluation

criteria. In these analyzes and comparisons, Correlation Coefficient, MAE and RAE

were used as performance evaluation criteria.

The main purpose of this section is to help researchers learn which machine

learning method provides promising accuracy estimation in software test effort

estimation.

4.1 RESULT AND DISCUSSION FOR COCOMONASA DATASET

The results of the models created with the CocomoNasa data set are given in

the Table 4.1. It gave improved results with different algorithms in each applied

method. Classification Att.Eval. and Correlation Att.Eval. methods showed

improvement in 8 of 9 algorithms. They showed an improvement rate of 89 %. Relief

Att.Eval. showed improvement in 7 of 9 algorithms.

The algorithm that showed the most improvement was the Random tree as 44%

with CFS + Random Search. However, Multilayer Perceptron gave the best results.

Multilayer Perceptron gives the best results with CFS + Random Search. Mp5 gave

the closest result to the best result with the original model. No improvement was

observed in the models created with M5P.

When all methods are compared, the analysis of the highest values that each

algorithm could reach was made. These values were captured 3 times with the CFS +

50

Random Search and Classifier Att.Eval. + Ranker. With a rate of 33 percent,

they had the best rate among other methods.

Table 4.1: Result for CocomoNasa Dataset

4.2 RESULT AND DISCUSSION FOR COCOMONASA-2 DATASET

The results of the models created with the CocomoNasa-2 data set are given in

the Table 4.2. It gave improved results with different algorithms in each applied

method. Classification Att.Eval. and Relief Att.Eval. methods showed improvement

in 5 of 9 algorithms. They showed an improvement rate of 55 %.

The algorithm that showed the most improvement was the Multilayer

Perceptron with 18% with Classifier Att.Eval. + Ranker. However, KStar gave the best

results. KStar gives the best results with Classifier Att.Eval. + Ranker. Mp5 gave the

closest result to the best result with the 0.7508 of correlation coefficient.

When all methods are compared, the analysis of the highest values that each

algorithm could reach was made. These values were captured 4 times with the Relief

Att.Eval. + Ranker. With a rate of 44 percent except linear regression. It had the best

rate among other methods. It was not included in this analysis as no change was

observed in linear regression.

51

Table 4.2: Result for CocomoNasa-2 Dataset

4.3 RESULT AND DISCUSSION FOR COCOMO-81 DATASET

The results of the models created with the Cocomo-81 data set are given in the

Table 4.3. It gave improved results with different algorithms in each applied method.

Correlation Att.Eval + Ranker. methods showed improvement in 6 of 9 algorithms.

They showed an improvement rate of 66 %.

The algorithm that showed the most improvement was the IBK as 48% with

Classifier Att.Eval. + Ranker. However, KStar gave the best results. KStar gives the

best results with Cfs + Random Search.

When all methods are compared, the analysis of the highest values that each

algorithm could reach was made. These values were captured 3 times with the

Correlation Att.Eval. + Ranker with a rate of 33 percent.

52

Table 4.3: Result for Cocomo-81 Dataset

4.4 CONCLUSION

The software testing process is one of the most important stages of software

development projects. The fact that the software is intangible and contains many

unknowns both complicates the software testing process and takes time. Incorrect

software testing effort and time estimations play a role in the failure of software

projects.

Therefore, many software test effort estimation methods have been developed

to improve the accuracy of software test effort estimation. One of these estimation

methods is Artificial Intelligence methods. In this thesis, six different models have

been developed using ML algorithms for the estimation of test effort of software test

projects. Each developed model was applied on the datasets. The attributes of the data

sets used in software test effort estimation significantly affect the estimation accuracy.

It has been determined that ignoring the feature selection in the estimation

process of the software test effort negatively affects the estimation result. Feature

selection is one of the commonly used preprocessing techniques of the machine

learning community for the removal of irrelevant, noisy, and redundant data while

increasing the learning accuracy and improving the quality of the classification results.

[29]. In the thesis study, CfsSubsetEval, Classifier Att.Eval as the evaluator method

for software test effort estimation., Correlation Att.Eval and Relief Att.Eval are used.

53

For the search method, Genetic Search, PSO Search, Random Search and Ranker

search algorithms were used respectively.

In this way, it is seen how feature selection improves test effort estimation

accuracy.

The first developed model was implemented in two different ways using the

ML algorithms in the WEKA program on the COCOMO-81, COCOMONASA and

COCOMONASA2 datasets.

In the first part; In the simulations where the default settings of the algorithms

in the WEKA program were preferred, the Random Forest algorithm gave the best

estimate in the COCOMO-81 dataset, and the IBK algorithm gave the worst estimate.

In the COCOMONASA dataset, the best algorithm in estimation is M5P, the worst

estimated one is Random Tree. In the COCOMONASA2 dataset, the KStar algorithm

is the best estimate and the Linear Regression algorithm is the worst estimated.

In the second part, new models were created by making feature selections on

the data sets. In the newly created models, the best estimated KStar algorithm in the

COCOMO-81 data set. The Multilayer Perceptron algorithm gave the best estimate in

the COCOMONASA dataset, and the KStar algorithm gave the best estimate in the

COCOMONASA2 dataset.

Algorithms that give the best results for each data set, hybrid methods used and

Correlation coefficient, Mae, Rae ratios are listed. When the datasets are compared,

KStar has been the algorithm that has achieved the best result 2 times.

Table 4.4: Best Results for All Dataset

It was observed in Table 4.4 that the random search method was used for 2

datasets to achieve the best results for CocomoNasa and Cocomo-81 datasets. Even if

the best result is obtained with Classifier Att.Eval. + Ranker in CocomoNasa-2 dataset,

given Table 4.5 shows that the Correlation Coefficient value is close to the best result

when CFS + Random Search is applied. The Correlation Coefficient value for CFS +

Random search is 0.7433.

54

 In addition, with the feature selections applied in Table 4.5, it is seen that

successful results are obtained with reduced features compared to the results obtained

with the original feature.

Table 4.5: Model Performance Results with Feature Selection

For the CocomoNasa dataset, best algorithm is Multilayer Perceptron. The

comparison results of the best results are given Figure 4.1. CFS and Random Search

methods were applied.

Figure 4.1: Comparison Graph for Best Result of CocomoNasa Dataset

For the CocomoNasa-2 dataset, best algorithm is KStar. The comparison

results of the best results are given Figure 4.2. Classifier Attribute Evaluator and

Ranker methods were applied.

Dataset

Orginal

Feature

Set

Model

Correlation

Coefficient Before

Feature Selection

FeatureSelection

Selected

Feature

Set

Correlation

Coefficient

CocomoNasa 17 Multilayer Perceptron 0.8931 CFS+ RandomSearch 10 0.9245

CocomoNasa 17 M5p 0.922 CFS+ PSO 12 0.9021

CocomoNasa 17 M5p 0.922 CFS+ GA 10 0.9118

CocomoNasa 17 M5p 0.922 ClassifierAttEval+ Ranker 14 0.9103

CocomoNasa 17 Multilayer Perceptron 0.8931 Corr. Att.Evaluation + Ranker 14 0.9147

CocomoNasa 17 M5p 0.922 Relief. Att.Evaluation + Ranker 14 0.9088

CocomoNasa-2 24 K Star 0.7437 Original Feature Set 24 0.7437

CocomoNasa-2 24 K Star 0.7437 CFS+ RandomSearch 21 0.7433

CocomoNasa-2 24 K Star 0.7437 CFS+ PSO 22 0.7505

CocomoNasa-2 24 K Star 0.7437 CFS+ GA 22 0.7505

CocomoNasa-2 24 M5p 0.7092 ClassifierAttEval+ Ranker 21 0.8046

CocomoNasa-2 24 Random Forest 0.667 Corr. Att.Evaluation + Ranker 21 0.6994

CocomoNasa-2 24 M5p 0.7092 Relief. Att.Evaluation + Ranker 21 0.7508

CocomoNasa-81 17 K Star 0.5621 CFS+ RandomSearch 11 0.9097

CocomoNasa-81 17 K Star 0.5621 CFS+ PSO 12 0.8597

CocomoNasa-81 17 K Star 0.5621 CFS+ GA 12 0.8597

CocomoNasa-81 17 Random Forest 0.7529 ClassifierAttEval+ Ranker 14 0.764

CocomoNasa-81 17 Random Forest 0.7529 Corr. Att.Evaluation + Ranker 14 0.8379

CocomoNasa-81 17 Random Forest 0.7529 Relief. Att.Evaluation + Ranker 14 0.7811

-500

0

500

1000

1500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

CocomoNasa

actual predicted

55

Figure 4.2: Comparison Graph for Best Result of CocomoNasa-2 Dataset

For the CocomoNasa-81 dataset, best algorithm is KStar. The comparison

results of the best results are given Figure 4.3. CFS and Random Search methods were

applied.

 Figure 4.3 Comparison Graph for Best Result of Cocomo81 dataset

 In addition, the models showing the most improvement are listed in Table 4.6.

When all datasets are examined, improvements have been found in all models and

algorithms in general. Although there are cases where the correlation coefficient value

deteriorates in some cases, this was not so much.

In CocomoNasa CFS + Random Search Method was the hybrid method that

showed the most improvement. In the CocomoNasa dataset, the Random Tree

algorithm showed an improvement of 44%. In the Cocomo-81 dataset, the IBK

algorithm showed 48% improvement with Classifier Att.Eval. + Ranker. On the other

hand, the CocomaNasa-2 dataset showed an improvement of 18% with the Multilayer

Perceptron algorithm and the Classifier Att.Eval. + Ranker hybrid method.

0

1000

2000

3000

4000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91

CocomoNasa-2

actual predicted

0

1000

2000

3000

4000

5000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

Cocomo-81

actual predicted

56

Table 4.6: The Improvement Result for All Datasets

In this study, the performance of WEKA program and ML algorithms in

software cost estimation using COCOMO81, COCOMONASA, COCOMONASA2

datasets in PROMISE data repository were examined.

When the estimation results are examined, it has been determined that the error

rates and correlation coefficients of the algorithms vary according to the data sets they

are applied to. It has been observed that an algorithm does not always produce the best

results, while some algorithms produce very good results in some data sets, but may

give bad results with different parameters and different data sets.

 In addition, it has been noticed that the features in the data sets greatly affect

the estimation result of the feature selection method used to determine the features.

When the performance values are examined, it has been seen that the feature selection

on the data sets used for software cost estimation provides improvement results in ML

algorithms in general.

It has been observed that the model created with the Classifier Att. Eval. +

Ranker hybrid method on the datasets discussed in this thesis shows more

improvement than other models. In future studies, it can be aimed to increase the

estimation accuracy of the model for more projects by multiplying the data sets.

Dataset Algorithm Method
Original Model for

Correlation Coefficient

Highest Improvement for

Correlation Coefficient

Improvement

Rate

CocomoNasa RandomTree CFS + Random Search 0.3915 0.8331 0.44

CocomoNasa-2 MultiLayerPerceptron Classifier Att. Eval. + Ranker 0.5058 0.6806 0.18

Cocomo-81 IBk Classifier Att. Eval. + Ranker 0.0768 0.5598 0.48

BEST IMPROVEMENT RATE

57

REFERENCES

[1] LIU Qin and MINTRAM Robert (2005), "Preliminary Data Analysis Methods in

Software Estimation", Software Quality Journal, Volume 13, pp. 91-115.

[2] AHMAD Nurain Sabrina, KHAN Mohammad G. M. and RAFI Loriza S. (2009),

"Study of Testing-Effort Dependent Inflection S-Shaped Software Reliability

Growth Models with Imperfect Debugging", International Journal of Quality

& Reliability Management, Volume 27, No 1, pp. 89-100.

[3] CIBIR Esra (2021), Savunma Sistemlerinde Test Efor Tahminlenmesi (Master’s

Thesis), Başkent University Graduate School of Natural and Applied,

Ankara.

[4] KAFLE Lava (2014), "An Empirical Study on Software Test Effort Estimation",

International Journal of Soft Computing and Artificial Intelligence, Volume

2, No 2, pp. 48082-48087.

[5] HOURANI Hussam, HAMMAD Ahmad and LAFI Mohammad (2019), "The

impact of artificial intelligence on software testing", Jordan International

Joint Conference on Electrical Engineering and Information Technology

(JEEIT), pp. 565-570, Amman, Jordan.

[6] SHARMA Aditi and RANJAN Ravi (2017), "Software Effort Estimation using

Neuro Fuzzy Inference System: Past and Present", International Journal on

Recent and Innovation Trends in Computing and Communication, Volume 5,

No 8, pp. 78-83.

[7] COTRONEO Domenico, PIETRANTUONO Roberto and RUSSO Stefano

(2013), "A learning-based method for combining testing techniques", 35th

International Conference on Software Engineering (ICSE), pp. 142-151, San

Francisco, CA, USA.

58

[8] BRIAND Lionel C., LABICHE Yvan and BAWAR Zaheer (2008), "Using

Machine Learning to Refine Black-Box Test Specifications and Test Suites",

2008 The Eighth International Conference on Quality Software, pp. 135-144,

Oxford, UK.

[9] DURELLI Vinicius H. S., DURELLI Rafael S. and BORGES Simone S. (2019),

"Machine learning applied to software testing a systematic mapping study",

IEEE Transactions on Reliability, Volume 68, No 3, pp. 1189–1212.

[10] BOEHM Barry W., ABTS Chris, CHULANI Sunita, CLARK Bradford K.,

HOROWITZ Ellis, MADACHY Ray, REIFER Donald J. and STEEECE Bert

(2000), Software cost estimation with COCOMO II, Prentice Hall, California.

[11] SINGH Sanjay Kumar and SINGH Amarjeet (2019), Software Testing, Vandana

Publications, Lucknow, India .

[12] NAWAZ Ahsan and MALIK Kashif Masood (2008), Software Testing Process

In Agile Development (Master’s Thesis), Blekinge Institute of Technology

,Department of Computer Science School of Engineering, Ronneby,

Sweeden.

[13] IEEE Standards Board and Standards Coordinating committee of the Computer

Society of the IEEE (1990), IEEE Standard Glossary of Software

Engineering Terminology, IEEE The Institute of Electrical and Electronics

Engineer, New York.

[14] MYERS Glenford (2004), The Art of Software Testing, Second Edition, Wiley,

New Jersey.

[15] CRAIG Rick D. and JASKIEL Stefan P. (2002), Systematic Software Testing,

Artech House Publishers, Artech House, Boston.

[16] YAGCI Nurhan (2013), Yazilim Kalite Metrikleri İle Test Eforu Arasindaki

İlişkinin Belirlenip Tarihsel Verinin Olusturulmasi (Master’s Thesis),

Sakarya University Graduate School of Natural and Applied Sciences,

Sakarya.

[17] AKAGUNDUZ Serkan, KURNAZ Salih and SARI Mustafa (2013), “Factors

That Make the Success of The Project in Software Project Management”, XV.

Akademik Bilişim Konferans Bildirileri, pp. 983-986 Akdeniz University,

Antalya.

59

[18] BEIZER Boris (1995), Black Box Testing: Techniques for Functional Testing of

Software and Systems, Second Edition, Wiley, New York.

[19] AFZAL Wasif (2007), Metrics in Software Test Planning and Test (Master’s

Thesis), School of Engineering Blekinge Institute of Technology, Karlskrona.

[20] KITCHENHAM Barbara A. and MENDES Emilia (2004), “Software Test Effort

Estimation: A Review of Analytical Models”, Software Testing, Verification

and Reliability, Volume 14, No 2, pp. 105-154.

[21] JORDAN Micheal I. and MITCHELL Tom (2015), “Machine Learning: Trends,

Perspectives, and Prospects”, Science, Volume 349, No 6245, pp. 255-60.

[22] SINGH Amanpreet, THAKUR Narina and SHARMA Aakanksha (2016), “A

review of supervised machine learning algorithms”, 3rd International

Conference on Computing for Sustainable Global Development

(INDIACom), pp. 1310-1315, New Delhi, India.

[23] ZHAO Yongheng and ZHANG Yanxia (2008), “Comparison of Decision Tree

Methods for Finding Active Objects”, Advances in Space Research, Volume

41, No 12, pp. 1955–1959.

[24] MOHAMMED Ahmed, RAFIQ Serwan, SIHAG Parveen, KURDA Rawaz,

MAHMOOD Wael, GHAFOR Kawan and SARWAR Warzer (2020), “ANN,

M5P-Tree and Nonlinear Regression Approaches with Statistical Evaluations

to Predict the Compressive Strength of Cement-Based Mortar Modified with

Fly Ash”, Journal of Materials Research and Technology, Volume 9, No 6,

pp. 12416-12427.

[25]

[26]

HALLL Mark A. (1999), Correlation-Based Feature Selection for Machine

Learning (Doctoral Dissertation), University of Waikato, Hamilton.

 DOKEROGLU Tansel, SEVINC Ender, KUCUKYILMAZ Tayfun and COSAR

Ahmet (2019), "A Survey on New Generation Metaheuristic Algorithms",

Computers & Industrial Engineering, Volume 137, pp. 106040, DOI:

10.1016/j.cie.2019.106040. DoA. 08.07.2023.

[27] CHAHAR Vikas and BHATIA Pradeep Kumar (2022), "Performance Analysis

of Software Test Effort Estimation using Genetic Algorithm and Neural

Network," (IJACSA) International Journal of Advanced Computer Science

and Applications, Volume 13, No 10, pp. 101-107.

60

[28]

[29]

SRIVASTAVA Praveen Ranjan (2016), “Estimation of software testing effort

using fuzzy multiple linear regression”, International Journal of Software

Engineering Technology and Application (IJSETA), Volume 14, pp. 145-154.

DOKEROGLU Tansel, DENIZ Ayca and KIZILOZ Hakan Ezgi (2022), "A

comprehensive survey on recent metaheuristics for feature selection",

Neurocomputing, Volume 494, No 14, pp. 269-296.

