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M.Sc. in Computer Engineering 

 

Supervisor: Assoc. Prof. Dr. Tansel DÖKEROĞLU 

August 2023, 75 pages 

 

Software testing effort estimation is an estimate of the approximate time and 

resources required by an engineer during the testing phase of a software project. Effort 

estimation of software test process is one of the most significant stages in the software 

development process to determine the test effort of the software project. Estimating 

the effort closest to the real effort is of great importance for both the company 

providing this service and the customers, especially the software testers. Because 

wrong software test effort estimations cause projects not to be completed or spread 

over a wide period of time. Therefore, different methods have been developed in the 

literature for software test effort estimation. In this thesis, machine learning methods 

with some feature selection method was used for estimating software test effort. 

Estimation of software testing effort is found by running algorithms in the 

WEKA data mining tool. Algorithms were applied to 3 data sets (CocomoNasa, 

CocomoNasa-2, Cocomo-81) taken from PROMISE (Predictor Models in Software 

Engineering) data warehouse with 10-fold cross validation technique. After new 

models have been created, correlation coefficient was used for performance 

criterion.Besides MAE (Mean Absolute Error) and RAE (Relative AbsoluteError) 

were used for error rates. 
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ÖZET 

 

ÇOK YÖNLÜ YAZILIM TEST EFORU TAHMİNLEME TEKNİKLERİNİN 

ANALİZİ  

 

DERYA, OSMAN BERKCAN 

Bilgisayar Mühendisliği Yüksek Lisans 

 

Danışman: Doç. Dr.Tansel DÖKEROĞLU 

Ağustos 2023, 75 sayfa 

 

Yazılım test efor tahmini, bir mühendisin yazılım projesinin test aşamasında  

ihtiyaç duyduğu yaklaşık süre ve kaynakların tahminidir. Yazılım test efor tahmini, 

yazılım projesinin test eforunu belirlemek için yazılım geliştirme sürecindeki en 

önemli aşamalardan birisidir. Gerçek efora  en yakın efor tahminini yapmak  yazılım 

test sorumluları başta olmak üzere hem bu hizmeti veren firma hem de hem de 

müşteriler için çok önemlidir. Çünkü yanlış yapılan  yazılım test efor tahminleri 

projelerin tamamlanamamasına ya da geniş bir zaman dilimine yayılmasına neden 

olmaktadır.Bu yüzden yazılım test efor tahmini için literatürde  farklı yöntemler 

geliştirilmiştir. Bu tez çalışmasında, yazılım test projelerinin eforu,  Makine 

Öğrenmesi (MÖ)  algoritmaları kullanılarak ve farklı methodlarla  öznitelik seçimi 

yapılarak tahmin edilmeye çalışılmıştır. 

Yazılım test eforunun tahmini, WEKA (Waikato Environment for Knowledge 

Analaysis – Bilgi Analizi için Waikato Ortamı) veri madenciliği aracında bulunan 

algoritmaların çalıştırlması sonucu bulunmuştur. Algoritmalar 10 kat çapraz 

doğrulama tekniği ile PROMISE (Yazılım Mühendisliğinde Tahmin Modelleri) veri 

deposundan alınan 3 adet veri setine (CocomoNasa, CocomoNasa-2, Cocomo-81) 

uygulanmıştır. Performans ölçütü olarak korelasyon katsayısı, Ortalama Mutlak Hata 

ve Bağıl Mutlak Hata,  baz alınarak sonuçlar değerlendirilmiştir.
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CHAPTER I 

1. INTRODUCTION 

 

With the developments in information technologies, effort estimation has 

gained a great importance for both software developers and customers. Software effort 

estimation is the process of estimating all kinds of resources that necessary to develop 

a software engineering project. Although software effort estimation is simple in 

concept, in reality it is difficult and complex. Therefore, many software projects could 

not be completed on time or the project costs were much higher than the estimated 

amount. More than half (60%) of substantial projects surpassed their planned budgets. 

It has been noted that some projects were never finish due to a 15% cost overrun. [1] 

In budget works conducted at different stages of software projects, sales amount and 

cost analyzes cannot be calculated realistically due to cost estimation difficulties. 

These difficulties may arise from the unique characteristics of the project, as well as 

the lack of information out of control, subjective interpretations in the evaluation of 

the information, direct and indirect cost separation errors that occur in cost analysis 

studies, and the inability to accurately estimate the project risks. 

Similar to this process, software test effort estimation also severely affects the 

time required to complete a project. With the correct estimation of this period, a more 

accurate test planning process is entered, a correct job separation and sharing is made, 

the management of resources is provided more efficiently, and it plays an important 

role in minimizing changes and inconsistencies in project delivery dates. Although the 

software testing process was the most neglected of the processes in the software life 

cycle in the past, the importance given to this process is increasing thanks to the 

experiences today. In the planning phase of the test process, one of the most important 

issues is the test effort estimation phase for resource planning. The test process to be 

carried out after a correct test effort estimation process will ensure that the software 

products that will emerge will contain less errors. 

The important thing is to define the right test processes and to ensure continuity 

throughout the project in a controlled manner [2]. Because software testing fulfills the 
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requirements in software, companies form teams among employees for software 

testing activities. In the realm of software testing, various elements such as emulators, 

manual testing, test documentation of test, and independent testing teams all play a 

role in shaping the final product. [3]  Additionally, test managers overseeing testing 

efforts need to carefully plan their resources, including time estimation to incorporate 

testing into the software development process. However, the main challenge in 

achieving project goals often stems from inadequate estimation, insufficient data, and 

project personnel limitations. It's evident that estimating the testing effort in large 

projects is a complex task influenced by both internal and external factors. Relying 

solely on experiential estimates can be misleading. Despite the existence of estimation 

techniques in the literature for more precise and efficient software testing effort 

management, these methods remain underexplored, with a scarcity of research in this 

area. Consequently, there is a need for alternative approaches to accurately assess the 

efforts required in the software testing process. 

In this research, which is the subject of this study, the effort in the software 

testing process was calculated using some machine learning algorithms. Afterwards, 

some feature selection pre-processes were made and hybrid methods were applied. The 

effect of these processes on the forecasting has been observed. 

 

1.1 LITERATURE REVIEW 

In this section, software testing and artificial learning algorithms are used 

together. An extensive literature review on research areas is included in the literature. 

The studies carried out in the software testing world have been used to identify open 

problems. So, it has been very useful in shaping this study. 

Kafle [4], in 2014, examined 5 different companies and on test effort 

estimation. It was used 150 articles. It's been observed that organizations often depend 

on the insights and judgments of experts when making estimations regarding test 

effort. It has been observed that errors in estimating test effort are closely associated 

with errors in estimating the overall project effort. Nonetheless, this research does not 

put forth a particular method for estimating test effort; instead, it underscores the 

importance of conducting more extensive research in this field. 

Hourani [5] mentioned that artificial intelligence sheds light on the future of 

software testing. In addition, as the use of artificial intelligence in software testing 
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increases. He argued that more consistent results would be obtained, tests could be 

performed more automatically, and software development efficiency would increase. 

Sharma [6] studied the estimation of effort for software testing  with the Neuro 

Fuzzy Inference System (NFIS) method in 2017.It was observed that a hybrid 

approach, which combines fuzzy logic and artificial neural networks (Hybrid method), 

yields superior outcomes. 

Cotroneo [7] has conducted a study on adaptively combining test cases as tests 

progress, by teaching past test experiences to machine learning algorithms. He 

experienced an increase in error detection efficiency as he used the methodology he 

developed online during the tests. 

Briand [8] developed a methodology that uses various machine learning 

models to reconfigure test cases for improvement. They achieved very positive results 

using the methodology they proposed in a case study involving black box testing. 

Durelli [9] focused on a mapping study investigating how machine learning 

algorithms are used to improve software testing activities. In their research, it was 

stated that machine learning algorithms are used as a basis in areas such as automatic 

test scenario creation and improvement, test focus evaluation, test activities effort 

estimation. With this study, it is aimed to inform researchers about how software 

testing area and machine learning algorithms intersect and their current status in the 

literature. 

 

1.2 THE AIM OF THE THESIS STUDY 

The aims of this thesis can be summarized as follows: 

-Performing performance analyzes of different ML algorithms on each data set and 

interpreting the results in detail, 

-Cost estimation of software projects using ML algorithms on different datasets that 

are frequently used in the literature obtained from the PROMISE data store. 

-Determining which features in the data sets are used together or which features are 

important and which features are unimportant for the selected algorithm, and which 

algorithms have higher success rates as a result of this. 

 

1.3 THE ORGANIZATION OF THE THESIS STUDY 

The thesis work consists of five main chapter. 
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Chapter 2, General Sections, consists of 6 sub-headings that are, description of  

software testing, examples of software testing importance, software testing types, 

software testing activities, effort estimation with software testing, machine learning 

concept. 

Chapter 3, Applications Section, consists of 5 sub-headings that are machine 

learning algorithms, evaluation criteria, dataset, application platform, and findings. 

The sub-heading of the findings is divided into 2 parts in itself. In the first part, 

software test effort estimation was performed by applying the ML algorithm found in 

the WEKA program to the datasets of CocomoNasa, CocomoNasa-2, Cocomo-81.[10] 

Algorithms applied to the data sets were tested with 10-fold cross-validation technique. 

Correlation coefficient, error rates MAE, RAE were used as evaluation criteria. In the 

second part, feature selection performed on each data set in the WEKA program using 

Random Search, Genetic Search, Particle Swarm Optimization and Ranker. After the 

feature selection applied to the datasets, some attributes remove from the datasets. The 

number of selected features varies according to the applied method and datasets. In 

this way, the effects of feature selection methods on software test effort estimation 

were examined and the performances of the algorithms were calculated and compared. 

Chapter 4, Discussion and Conclusion, the performance results of the ML 

algorithms were evaluated and compared. 
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CHAPTER II 

2. RESARCH AND STUDY 

 

2.1 SOFTWARE TEST  

The main factor that determines the quality of software testing always lies in 

the definition of the software. Basically, the ultimate goal is perceived as making the 

software error-free at the end of the process. However, the main purpose of the test 

should be to understand whether the software successfully has all the functions of its 

creation purpose. [11] The purpose of the tests is to increase confidence in the software 

and its tasks. Sometimes these purposes can be confused. The purpose of the software 

testing process is to add value to the quality of the software as a product. The value 

added by testing shows itself as software quality and system reliability. Increasing 

reliability is achieved by finding and eliminating errors. Therefore, no software tester 

should test to show that the software is working. It should always accept as a 

prerequisite that there are errors in the software and strive to find as many errors as 

possible. It should also be acknowledged that no software is error-free. 

 If we need to make the software test definition again with all this 

infrastructure, "Software testing is the process of running the software to find bugs.” 

[12]. 

There are different definitions of software testing in the literature. 

● It is checking whether a certain number of test cases selected from an infinite 

set comply with a certain behavior. [13] 

● Software testing; It is a process, or series of processes, done to ensure that the 

software does what it was designed to do and not what it was not expected to 

do. [14] 

● Testing is the engineering concurrent lifecycle process that uses test software 

and makes necessary changes in order to improve and measure the quality of 

the tested software. [15]
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The importance of software testing is increasing day by day in software 

projects. While software developers used to test their own codes, today many software 

developers adopt the independent test team model. 

 

2.2 SOME EXAMPLES FOR IMPORTANCE OF SOFTWARE TESTING 

In this section, the importance of software testing will be mentioned with some 

more concrete examples. In projects where software testing is not done enough, serious 

economic and physical problems may occur. Some examples that have been 

experienced before are below: 

In 1983, due to a software error in the Soviet early warning system, III. World 

War had almost broken out. The Russians said the system launched five ballistic 

missiles from the United States. It turned out that the error was caused by a bug in the 

software that prevented satellite triggers from being detected as missiles by collecting 

the sun's rays reflected from the clouds. [16] 

According to company plan, Denver Airport was scheduled to start service on 

10 October 1993.Estimation software cost for Automatically luggage system was 186 

million dollars at the beginning. However, due to many errors in this software, airport 

could not start to serve at the planned date. When airport started to serve on 28 

February 1995, total calculated loss was 340 million dollars because of the delay. [17] 

Sometimes, software errors cause dramatic results. An example of this result 

occurred during Gulf War on 1991.One of the American Patriot missiles missed its 

target and hit American soldiers barracks. Some of American soldiers died due to 

missed target. Based on the study findings, the Patriot system's operational duration 

exceeding 100 hours and a time discrepancy of 0.34 seconds resulted in a missile 

deviation of approximately 600 meters. 

 

2.3 TYPES OF SOFTWARE TESTİNG 

Software testing can be divided into 2 category as functional testing and non-

functional testing.  
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Figure 2.1: Type of Functional Testing 

 

 

Figure 2.2: Type of Non-Functional Testing 

 

2.3.1 FUNCTIONAL TESTING 

Functional tests of a system encompass assessments of the system's ability to 

execute the required functions. These functions are determined by the functional 

requirements, which are typically outlined in various work products such as user 

requirements, epics, user stories, use cases, or functional specifications, reflecting the 

business needs. 

Functions requirements define what the system should do. Functional testing 

should be done at all test levels (e.g. unit level functional tests needs), but the focus is 

different at each level. [18] Functional testing is not related to the source code of the 

application as it is used under Black Box testing. The focus when performing this test 

is always the user-friendliness of the main functions of the application. It is checked 

whether the requirements are met or not. It largely overlaps with user acceptance tests. 

Often the same test sets can be applied to both. System-level functional tests are used 

to control system behaviors that meet certain requirement specifications. All functional 
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requirements for the system must be fulfilled by the system. Functional tests are 

closed-box tests by nature. All functions should be tested. It should focus on the 

following goals: 

● All allowed inputs must be accepted by the software. Unauthorized entries 

should be rejected. 

● All possible system outputs should be examined. 

● All system states and state transitions should be implemented and studied. 

● It should be applied for all functions. 

 

2.3.2 NON-FUNCTIONAL TESTING 

Non-functional tests of a system evaluate aspects of systems and software, such 

as usability, performance, or security. Non-functional tests aim to evaluate the 

effectiveness of the system in fulfilling its intended purpose. It is important to note that 

non-functional testing should be conducted across all test levels, with regularity and 

an early initiation. Delayed identification of non-functional errors can pose significant 

risks to the project's overall success. 

The aim is to determine whether the system is ready or not. The quality 

characteristics of the components or the system are tested. It is as important as 

functional testing in the quality and correct operation of the software. For example, 

how many users can use the system at the same time, is the system secure enough, and 

the system is tested to answer such questions. 

Non-functional tests can be applied at all test levels. Non-functional testing 

usually considers the external behavior of the software 

 

2.4 ACTIVITIES OF SOFTWARE TESTING 

Test activities consist of such a process. The tests are run in accordance with 

the steps in this process: [19] 

1. Test Planning: This is the step where the actions to be taken during the test 

are planned. Test objectives, strategy, environment and schedule are 

determined at this step. 

2.  Test Monitoring and Control: Test surveillance uses the test surveillance 

metrics defined in the test plan. In addition, in this step, the planned and 

actual progress are constantly compared. 

3.  Test Analysis: In the test analysis step, it is determined what is being tested.  
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4.  Test Design: This step contains the preparation of the test environment, 

writing the test procedures and test cases. 

5.  Test Implementation: In this step, if necessary, test software is created or 

completed. Test procedures are created from test scenarios. 

6.  Test Execution: In this step, the tests are run manually or automatically. The 

actual test results are compared with the expected results. 

7. Test Completion: Test completion activities are an important completion step 

in a project, such as the release of a software, the completion of a test project. 

This step also checks whether the error reports are turned off or not. 

 

2.5 EFFORT ESTIMATION WITH SOFTWARE TESTING 

Software testing effort is an estimate of the time and resources required to 

complete software tests. Test effort depends on the scope and complexity of the test 

project, the number of tests, the time and resources required to create and execute test 

cases, and other factors. [20] 

The following steps are usually followed to calculate test effort: 

1. The scope and complexity of the test project is determined. This includes the 

functionality of the software to be tested, use cases, technical requirements and 

other relevant factors. 

2. Test scenarios and test cases are created. Test cases are a detailed design that 

defines how tests will be run and how their results will be evaluated. The 

creation of test cases plays an important role in determining the test effort. 

3. The resources required for the execution of the test cases are determined. This 

includes the hardware, software and human resources required to run the tests. 

4. Estimated timetable for execution of test scenarios and evaluation of results. 

This includes the time required to run the tests, the time required to debug and 

report the tests, and other factors. 

5. Test effort is calculated by combining all these factors. Test effort is usually 

expressed in man hours and can vary depending on the number and complexity 

of test cases. 

Accurate calculation of software test effort can make test planning and resource 

management more efficient and help test projects complete successfully. 
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2.6 MACHINE LEARNING ALGORITHMS 

Machine learning is a branch of artificial intelligence used for computer 

systems to analyze data, recognize patterns, and learn from experience. This field uses 

algorithms and statistical models to enable computers to learn from data without 

human intervention. [21] 

Machine learning aims to develop a system that learns to make inferences based 

on data, rather than a set of programmed instructions to perform a specific task. Data-

driven learning enables a model to learn from experience and predict future data. The 

key elements of machine learning are: 

• Data: For machine learning, processing and analysis requires large amounts 

of data. These data are used as training datasets and often contain human-labeled 

examples. 

• Algorithms: Machine learning algorithms analyze data to discover patterns 

and relationships. These algorithms perform statistical analyzes on datasets, train the 

model, and are used to predict results.  

• Model Training: Machine learning models are trained on data. During the 

training phase, a dataset is fed to the model and the model adjusts itself using 

algorithms to capture patterns in the data. The model learns statistical parameters to 

understand the relationship between input data and outputs. 

• Prediction and Results: After the training process, the model can analyze new 

data and make predictions. For example, an image recognition model can analyze a 

new image to predict what objects it contains. These estimates can receive feedback 

for greater accuracy and can be used to improve the performance of the model. 

Machine Learning operations can be examined under 3 main sections: 

supervised learning, unsupervised learning, and reinforcement learning.  

1. Unsupervised Learning: Unsupervised learning uses unlabeled datasets. 

These datasets do not have output labels or targets. The algorithm analyzes data based 

on structures and patterns in the data and performs operations such as grouping, size 

reduction, or discovering hidden structure. K-means clustering, hierarchical clustering 

and dimension reduction methods (PCA, t-SNE) are examples of unsupervised 

learning algorithms. 

2. Reinforcement Learning: Under this category, a model learns through 

experiences by interacting with an environment. The model is reinforced with a 

reward-punishment system to identify correct actions. Reinforcement learning 



11 

 

algorithms are often used in areas such as game theory, robotics and automatic control. 

Example algorithms include Q-Learning, Deep Q-Networks (DQN), and Actor-Critic. 

3. Supervised Learning: Supervised learning works on labeled datasets. In 

these data sets, there is a relationship between the input samples and the target outputs. 

The algorithm tries to learn this relationship to catch patterns in the data and make 

output predictions for new input samples. [22] Supervised learning consist of many 

algorithms. But most know ones are: (SVM), decision trees, neural networks, and 

linear regression.
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CHAPTER III 

3. IMPLEMANTATION 

 

3.1 MACHINE LEARNING ALGORITHMS 

3.1.1 Random Forest 

 The Random Forest Algorithm is one of the collective learning algorithms. 

During the training, result clusters are constructed in accordance with statistical 

models with multiple decision trees and many variables. Basically, the result is decided 

by the average of these result clusters or their separation as clusters. 

This supervised artificial learning algorithm examines historical data and tries 

to create trends with a predictive understanding. It uses decision trees as a classifier. 

The Random Forest Algorithm generates random decision trees. Randomness can be 

expressed in two ways: 

1) Random selection of samples selected at the time of bagging. 

2) Random selection of selected attributes for each decision tree. 

The power of each decision tree classifier and their correlation with each other 

are the main indicators of error percentages in the results of the random forest 

classification algorithm. Random Forest Algorithm works effectively on large 

datasets. It can process thousands of data without the need for input changes, give 

estimates of important variables, and produce a constant generalization error as forest 

growth progresses. 

It has an efficient method for estimating missing data. Even if large data rates 

are declining, there are ways to compensate for class error in datasets against 

unbalanced class populations. The Random Forest Algorithm has pioneered parallel 

applications using multi-threaded, multi-core and parallel architectures.  

 

3.1.2 Linear Regression 

Linear regression is a statistical modeling method used to explain the linear 

relationship of a dependent variable (outcome variable) with one or more independent
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variables. Linear regression estimates the dependent variable using the first order 

function of the independent variables. 

It is founded on the concept of identifying the optimal line or curve that 

characterizes the association between variables. This approach is frequently employed 

to forecast the value of the dependent variable by leveraging the values of the 

independent variables. 

Linear regression models are based on the assumption that the relationship 

between dependent and independent variables is linear; this means that a change in the 

value of the independent variable is associated with a constant change in the value of 

the dependent variable. This relationship is typically represented by a straight line, so 

linear regression is called "linear" regression. 

 

3.1.3 Bagging 

Bagging (Bootstrap Aggregating) is an ensemble learning technique that is 

widely used in the field of machine learning. Bagging provides a stronger and more 

stable model by combining multiple learning models. 

The Bagging algorithm creates different subsets using bootstrap, which is the 

sampling method. Bootstrap creates new datasets by recursively sampling from the 

dataset. Each subset is the same size and contains randomly sampled data from the 

original dataset. On each subset, individual models are trained using the basic learning 

algorithm (usually decision trees). These models capture different aspects of the 

dataset in different ways and make different errors. 

After training is complete, each sub model independently predicts new inputs. In 

classification problems, class estimation is made with the voting method (majority 

vote), while in regression problems, the estimation is made by averaging the outputs 

of the sub-models. 

One of the main advantages of bagging is that it reduces variance. By 

combining different sub models, the errors made by each one is reduced and a more 

stable model is obtained. It can also work effectively on large datasets thanks to its 

parallel computing capability. 

Bagging is more effective especially when used with high variance learning 

algorithms such as decision trees. Random Forest, a popular implementation of 

Bagging, combines many decision trees to create a more powerful classification or 

regression model. 
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3.1.4 SMOreg  

SMOreg is a regression algorithm that stands for Support Vector Machines for 

Regression. Regression analysis is a statistical technique that examines the relationship 

of a dependent variable with independent variables. SMOreg uses the Support Vector 

Machine method to perform this analysis. 

Support Vector Machines is a machine learning algorithm that used in 

regression and classification analysis. SVM generates a hypothesis function to classify 

data points in a space. It draws a decision boundary (hyper plane) between classes and 

uses support vectors that best decompose this boundary. 

SMOreg is SVM adapted for regression analysis. The aim is to create a new 

model in which the data points fit best with a line (regression line). This takes 

advantage of SVM to solve regression problems. It generally performs well on noisy 

and complex datasets. By using the advantages of SVM, models with high accuracy 

and generalizability can be created in regression problems. 

 

3.1.5 Multilayer Perceptron  

Multilayer Perceptron (MLP) is one of the most basic and widely used types of 

artificial neural networks. MLP is a feed forward neural network with many hidden 

layers. Its name means that it is multi-layered and each layer contains more than one 

perceptron. 

MLP takes data to the input layer and passes it sequentially through one or 

more hidden layers. Each hidden layer contains a series of artificial nerve cells 

(perceptrons) or neurons. Each neuron weights the inputs, combines them, and passes 

them through an activation function. After the outputs are transmitted to the last layer, 

they are passed through a final activation function and create the final outputs. 

The main purpose of MLP is to model complex relationships between data and 

make predictions. Weights are adjusted throughout the training process to reduce 

errors on the data and approach expected outputs. The backpropagation algorithm is 

used to calculate weight updates. This process is accomplished by calculating 

backwards the amount of error between actual outputs and expected outputs and 

optimizing the weights. 

Advantages of MLP include modeling of complex functions through multiple 

layers, flexibility, ability to learn, ability to generalize, and adaptability to different 
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types of datasets. MLP is widely used to solve classification, regression, pattern 

recognition and many other machine learning problems. 

However, MLP also has some disadvantages. The training process can take 

time, especially in large data sets and complex structures. It may also encounter 

overfitting problems and may require trial and error to determine the optimum model 

structure. 

 

3.1.6 KStar 

KStar is a classification algorithm based on the k-NN (k-Nearest Neighbors) 

algorithm. KStar is an improved version of the k-NN algorithm and performs better 

especially when working with categorical data. 

KStar is an instance-based classification algorithm. It uses a measure of 

similarity or distance between data points to classify. KStar makes its classification 

decision based on the k nearest neighbors around a new data point.The KStar 

algorithm, unlike the k-NN algorithm, can be applied not only to numerical values, but 

also to categorical data. In order to process categorical data effectively, KStar uses 

weighted voting to determine the similarity measure between data points. 

When classifying, KStar considers the classes of its neighbors to determine the 

class of a new data point. KStar categorizes the data point using either majority vote 

or weighted vote. By using weights proportional to the class of neighbors, a 

classification is made in which closer neighbors have more influence. 

KStar stands out as a classification algorithm suitable for categorical data and 

can perform well, especially in classification problems. However, in situations such as 

large datasets or datasets with many features, the computational cost may increase. 

 

3.1.7 Random Tree 

Random Tree is an algorithm or a concept used in the fields of machine learning 

and data mining. It usually refers to an approach based on decision trees. 

Random Trees is a classification or regression algorithm used to model patterns 

and relationships in datasets. This method represents the dataset with a tree structure 

and makes classification or prediction with successive decisions. 

Random Trees basically consist of two components: randomness and tree 

structure. Randomness allows the algorithm to randomly sample during the training 
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phase. For example, training is performed for each tree by randomly selecting subset 

samples from the dataset. This allows the model to diversify and generalize better. 

The tree structure is represented by decision nodes and branches based on the 

properties of the dataset. Each node takes the decision to split the data using a feature 

and a threshold value. These splitting decisions can be interpreted as rules representing 

the patterns and classes contained in the data set. 

Random Trees are a widely used method for classification problems. It can also 

be applied for regression analysis. This algorithm can handle complex relationships in 

data and produce easily applicable and interpretable results. 

Random Trees use techniques such as random sampling and feature selection 

to reduce model overfitting and increase generalization. It can also present information 

such as feature importance ranking, so it can be used to identify important features in 

the dataset. Random tree models have been extensively developed in the field of ML 

in recent years. [23] 

 

3.1.8 M5P 

M5P is used to perform regression analysis on datasets. [24] Regression 

analysis is a statistical technique that examines the relationship of a dependent variable 

with independent variables. The M5P algorithm uses the decision tree structure to 

analyze data and make predictions. 

M5P solves regression problems using the structure of decision trees. The tree 

structure represents the regression functions of the features and target variable in the 

dataset. Each node makes regression estimates by dividing the data by the value or 

threshold value of a particular feature. 

The M5P algorithm takes some measures to reduce overfitting while 

constructing the tree's structure. For example, it imposes restrictions to control the 

tree's size and prunes branches as needed. This makes the model more generalizable 

and better fit to new data. 

The M5P algorithm is considered a flexible and effective method for solving 

regression problems. It performs particularly well when working with properties with 

numeric values. At the same time, the models obtained thanks to the decision tree 

structure are easy to interpret. 
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To summarize, M5P is a machine learning algorithm that uses decision tree 

structure to perform regression analysis. It is used to make regression predictions on 

datasets and attempts to model patterns and relationships in data using tree structure. 

 

3.1.9 IBK 

IBk represents the implementation of the k-NN (k-Nearest Neighbors) 

algorithm in the Weka library. The k-NN algorithm is an instance-based learning 

algorithm used in classification and regression problems. This algorithm uses the k 

nearest neighbors around a data point to determine its class or value. 

This algorithm makes classification or regression predictions using a measure 

of similarity between data points. To classify the data point, it considers the class of 

its k nearest neighbor and uses the majority vote method. 

The IBk algorithm can be customized with various parameters that Weka 

provides. For example, the value of k, the number of neighbors, can be determined by 

the user. It also provides options for choosing different measures of similarity or 

distance. 

Weka has an easy to use interface and offers many different machine learning 

algorithms. IBk is an option that implements the k-NN algorithm among these 

algorithms. Weka supports classification, regression, clustering, feature selection, and 

many other machine learning tasks. 

In conclusion, Weka's IBk algorithm represents the implementation of the k-

NN algorithm in the Weka library. It is used to classify data points or make regression 

estimates and uses information from the nearest neighbors around it. 

 

3.2 EVALUATION CRITERIA 

In this thesis, correlation coefficient, MAE and RAE were used as evaluation 

criteria. 

 

3.2.1 Correlation Coefficient 

The correlation coefficient indicates the strength and direction of the link 

between two different variables. Correlation indicates the relationship between the 

variables and the correlation coefficient indicates the state of the relationship. The 

correlation coefficient can take a number between −1 and 1 depending on the condition 

of the relationship 
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The negative value of the number indicates that there is an inverse relationship 

between the variables. That is, as one variable increases, the other decreases. The 

positive value of the number indicates that there is a linear relationship between the 

variables, that is, as one variable increases, the other also increases. If the number 

value indicating the correlation coefficient is zero, it means that there is no relationship 

between the two variables. It is understood that the correlation between the variables 

increases as the correlation coefficient approaches 1 and decreases as it approaches 0. 

There is a range for -1 to 1 and the explanations for the value ranges it receives 

are as follow. 

 

Range of Correlation 
Coefficient 

Values 
Level of Correlation 

Range of 
Correlation 

Coefficient Values 
Level of Correlation 

0.80 to 1.00 Very Strong Positive -1.00 to -0.80 Very Strong Negative 
0.60 to 0.79 Strong Positive -0.79 to -0.60 Strong Negative 
0.40 to 0.59 Moderate Positive -0.59 to -0.40 Moderate Negative 
0.20 to 0.39 Weak Positive -0.39 to -0.20 Weak Negative 
0.00 to 0.19 Very Weak Positive -0.19 to -0.01 Very Weak Negative 

 

 

Figure 3.1: Correlation Coefficient 

 

3.2.2 Mean Absolute Error 

MAE (Mean Absolute Error) is the error rate that gives the average of the 

difference between the actual values and the predicted value. 

 

 

      (3.1) 

 

Where:  

n = the number of errors, 

Σ = summation symbol, 

|xi – x| = the absolute errors. 
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3.2.2.1 Importance of Mean Absolute Error 

Mean Absolute Error (MAE) is used to evaluate the accuracy of forecasts. 

Some of its most important features are that it is easy to understand, interpretable and 

reliable. It is a very important performance statistic for regression models because it is 

a tool based on these features. Among the many reasons, these are the most 

significance. 

● All individual differences are given same weight on the average. This makes it 

easy to compare the performance of several models or variations of the same 

model.  

● The MAE interpretation is a basic and obvious statistic that represents the 

average size of forecast errors. It is simple for non-technical stakeholders to 

understand. 

● Resistance to outliers. MAE is not as affected by extreme results as other 

metrics such as Mean Squared Error (MSE). This makes it a suitable measure 

for datasets with outliers or extreme values. 

 

3.2.3 Relative Absolute Error 

Relative absolute error gives a sum of the difference between the predicted 

values and the actual values, dividing it by the sum of the difference between the true 

value and the mean of the true value. 

 

              (3.2) 

 

where: 

n: represents the number of observations 

yi: represents the realized value 

ŷi: represents the predicted value 

ȳ: represents the average of the realized values 

 

3.3 PLATFORM  

Weka has a modular design and can perform operations on data sets and data 

mining with its features. Weka stands for Waikato Environment for Knowledge 

Analysis. Weka software comes with a unique “.arff” extension support. However, 

within the Weka software, there are tools for converting CSV files to ARFF format. 
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The application part of this thesis research was carried out on the Weka 

platform. Version 3.8.6 is used as the Weka platform.  

There are five different interfaces in Weka as Figure 3.2. these areas are 

separated according to the study areas. These workspaces are Explorer, experimenter, 

knowledge Flow, WorkBench, and Simple CLI, as seen below. This thesis work was 

done in the Explorer menu. On the main screen, the Explorer button is pressed and the 

Explorer menu opens. 

 

 

Figure 3.2: Home Page of WEKA 

 

In the window that opens, click the Open File button as Figure 3.3. 
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Figure 3.3: Explorer Page of WEKA 

 

The dataset to be studied is selected from the local computer as Figure 3.4. 

 

 

Figure 3.4: Dataset Selection on WEKA 
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In order to run the ML algorithms on the dataset, the relevant algorithm is 

selected from the window in Figure 3.5 and the Start button is clicked. The algorithm 

selected on the data set is run with default settings. 

 

 

Figure 3.5: Algorithm Selection on WEKA 

 

After start button clicked, the result is seen as Figure 3.6. 

 

 

Figure 3.6: Result Screen of Classify 
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It is the Select attributes menu that enables the selection of attributes on data 

sets using the WEKA program. When the Select attributes menu is clicked, the Select 

attributes window in Figure 3.7 opens. Attribute selection method and search method 

are selected from the Select attributes window. 

 

 

Figure 3.7: Attribute Selection on WEKA 

 

Throughout this study, studies on hybrid methods were carried out by using 

different attribute evaluation selection and different search method selections. For 

example, in Figure 3.8, CfsSubsetEval is used as attribute evaluator and PSO search is 

used as Search Method. As a result, 3 attributes were not selected. The model was 

created with the remaining 21 attributes instead of 24 attributes.  
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Figure 3.8: Result of Attribute Selection on WEKA 

 

3.4 METHODS 

3.4.1 Evaluator Methods 

3.4.1.1 Correlation Based Feature Selection (CFS) 

Correlation-based Feature Selection is an algorithm for feature selection and 

can be implemented with software tools such as Weka. CFS uses a correlation-based 

metric to evaluate the effects of features on classification performance. Its operation 

can be summarized in the following steps: 

1. Dataset preparation: In the first step, Properties (variables) and target 

variable (class) must be determined. 

2. Calculation of correlation between features: First, the correlation of each 

feature with the class effect is calculated. Then, the relationships between 

the features are also evaluated. The correlation of traits with each other is 

measured by considering the class effect. 
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3. Calculation of feature scores: Each feature is assigned a score, which is 

correlated with the feature's classification performance. 

4. Ranking and selection of features: After the scores are calculated, the 

features are ranked. CFS encourages selection of the highest rated 

properties. This enables the selection of more important and relevant 

features from an informatic point of view. 

5. Filtering out irrelevant features: CFS filters out features that have low 

impact on classification performance or unnecessary. 

Using these steps, CFS evaluates the correlation between features and tries to 

select important features. Feature selection helps build more efficient and performant 

machine learning models with less dimensional datasets. 

 

3.4.1.2 Classifier Attribute Evaluator 

Classifier Attribute Evaluation is a feature selection algorithm and evaluates 

each feature based on the performance of the classifier model. A classifier model is 

used to determine the effect of features on classification, and this model evaluates 

features in order of importance. 

In this method, a metric is used for the performance of the classifier model. For 

example, metrics such as accuracy, precision, precision, or sensitivity can be used. The 

contribution of each feature to the performance of the model is expressed as the feature 

evaluation score or degree of importance. 

Classifier Attribute Evaluation offers the benefits of feature selection with the 

classifier model. This method filters out unnecessary or noisy features in the dataset 

while highlighting the more informative or more important features. The basis of the 

algorithm is to create a good subset of features with features that are highly correlated 

with the output class. [25] As a result, a less dimensional subset of features is created 

and the performance of the model can be improved. 

 

3.4.1.3 Correlation Attribute Evaluator 

Correlation Attribute Evaluation is a method that evaluates the correlation of 

features with the target variable or classification effect when selecting features. 

Correlation Attribute Evaluation is a feature selection algorithm and evaluates each 

feature based on its correlation with the target variable. Correlation is a statistical 
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measure that measures the relationship between the characteristics and the target 

variable. 

In this method, the correlation of each feature with the target variable is 

calculated. Positive correlation indicates that the feature behaves similarly to the target 

variable, while negative correlation indicates that the feature is inversely related to the 

target variable. If the correlation is nearly zero, it indicates that the relationship of the 

feature with the target variable is weak. 

Correlation Attribute Evaluation evaluates features based on their correlation 

scores or severity ratings. Features with high correlation scores are considered 

important features that provide more information in classification and increase the 

performance of the model. 

 

3.4.1.4 Relief Attribute Evaluator 

Relief Attribute Evaluation is a feature selection algorithm and uses the Relief 

algorithm to determine the effect of features on classification. This method determines 

the importance of each feature by measuring the differences between classes. 

The relief algorithm measures the discriminating power of features between 

classes. For this purpose, similarity and difference scores between close neighbors for 

each sample are calculated. For example, if an instance has close neighbors to two 

different classes, that instance may have a property that discriminates between those 

classes. 

Relief Attribute Evaluation evaluates features using the Relief algorithm. 

Discrimination scores are calculated for each feature and the features are ranked 

according to their importance. Features with a high discriminative power score are 

considered more effective and informative in classification. 

 

3.4.2 Search Methods 

Four search methods were used in this thesis study, details of methods are given in 

following section. 

 

3.4.2.1 Random Search 

Random Search is a method for hyperparameter tuning in machine learning 

models. Hyperparameters are user-specified adjustable parameters that affect the 

performance of a machine learning algorithm. Random Search does random trials to 



27 

 

find the best combination of hyperparameters. This method, after defining parameter 

ranges and possible values, trains and evaluates a model by randomly selecting values 

from these ranges. This process is repeated for a certain amount of time or number of 

attempts. As a result, the hyperparameter combination that provides the best 

performance is selected and the model is retrained with these values. 

However, the downside of Random Search is that it doesn't use a specific 

optimization strategy like other optimizer algorithms. Therefore, this method may 

sometimes not guarantee the best performance. However, it can be an effective option 

in situations where computational resources are limited or there is no obvious 

relationship between hyperparameters. 

 

3.4.2.2 Particle Swarm Optimization (PSO) Search 

PSO is a natural meta-heuristic optimization method. This method mimics a 

group of particles in nature working together to discover a target. PSO aims to find the 

best solution by moving many solution candidates in the potential solution area. One 

of the widely accepted fundamental benefits of metaheuristic algorithms is that they 

provide mechanisms to solve large or intractable problems in reasonable execution 

times while the exact algorithms fail to succeed due to time limitations. [26] 

Weka's PSO algorithm is often used for hyperparameter tuning in machine 

learning models. In machine learning models, the correct setting of hyperparameters 

significantly affects the performance and generalization ability of the model. The PSO 

algorithm updates the motions and positions of particles to optimize a target function. 

Each particle tracks the best available position (best solution) and the best position of 

all particles (global best solution). This teamwork allows the particles to perform a 

search in the solution space. 

 

3.4.2.3 Genetic Search 

Genetic Search in Weka can be used to optimize for machine learning models 

such as feature selection or hyperparameter tuning. Genetic Search is a population-

based search method based on genetic algorithm principles. Below is a general 

explanation of how Genetic Search works: 

1. Population generation: In the first step, an initial population is randomly 

generated. Each individual expresses a solution represented as genes. Genes 

represent a particular combination of traits or hyperparameters. 
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2. Calculation of fitness value: Each individual is evaluated using a fitness 

function. The fitness function is used to measure how well an individual is 

performing. 

3. Selection: Individuals with high fitness are transferred to the next generation 

using the selection operator. 

4. Crossover: Crossover operation is performed between selected individuals. 

Crossover creates new individuals by combining the genetic material of two 

individuals. This increases genetic diversity and potentially helps discover 

better solutions. 

5. Mutation: Mutation process can be applied in newly created individuals. 

Mutation enables the discovery of new solutions by making random changes 

in the genetic material of individuals. This helps to explore a potentially wider 

search area. 

6. Iteration: Starting from the second step, the fitness value is calculated and new 

generations are created. The genetic algorithm process continues by using 

selection, crossover and mutation operators. This process continues until the 

iteration count or stopping criterion is met. 

As a result, the Genetic Search algorithm in Weka makes feature selection 

using the principles of genetic algorithms. This method aims to make the dataset less 

dimensional and to find better performing feature combinations. 

 

3.4.2.4 Ranker 

"Ranker" is a term used as a feature selection or ranking method. Ranker 

evaluates features in the dataset and ranks them in order of importance. 

A ranker rates each feature with a point or importance value. These scores may 

be based on the classification performance of the features or their relationship to a 

target variable. Higher rated features are considered more important or more 

informative. 

Ranker methods are used for feature selection in machine learning models. 

Feature selection is used to filter out redundant or noisy features in the dataset or to 

create a less dimensional feature subset. The ranker performs this selection by 

determining their importance in classification or prediction. Ranker methods are a 

widely used tool in feature selection and ranking problems. Ranking the features in 
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order of importance provides better understanding and can give the model a better 

generalizability. 

 

3.5 DATASET 

In this section, the datasets used in the research will be discussed in detail. 

Three different datasets were used for this study the data of real software projects are 

kept in the data sets obtained from the data warehouse. There are linked and 

independent attributes in datasets, each of which contains a different number of project 

data. These attributes are used to perform the test effort cost estimation. If an attribute 

gives the true cost value, the linked attribute; If it gives cost-related values, it is called 

an independent attribute. The independent attributes in the data sets determine the 

value of the linked attribute. 

The datasets used are publicly available datasets. The names of the datasets 

used are CocomoNASA/Software cost estimation, COCOMONASA 2 / Software cost 

estimation, Cocomo-81/Software cost estimation. 

 

3.5.1 CocomoNasa / Software Cost Estimation: 

The dataset consists of 60 NASA projects. These projects took place in different 

locations between 1980 and 1990. There are sixty instances and seventeen attributes. 

The Name of attributes are analyst’s capability, programmer’s capability, application 

experience, modern programing practices, use of software tools, virtual machine 

experience, language experience, schedule constraint, main memory constraint, data 

base size, time constraint for CPU, turnaround time, machine volatility, process 

complexity, required software reliability, line of code measure, actual effort in 

person/months. 
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Table 3.1: Attribute Selection for CocomoNasa Dataset 

Attribute Name Description 

acap analyst’s capability 

pcap programmer’s capability 

aexp application experience 

modp modern programing practices 

tool use of software tool 

vexp virtual machine experience 

lexp language experience 

sced schedule constraint 

stor main memory constraint 

data data base size 

time time constraint for CPU 

turn turnaround time 

virt machine volatility 

rely required software reliability 

cplx process complexity 

loc line of code measure 

act_effort actual effort 

 

3.5.2 CocomoNasa2 / Software Cost Estimation: 

The dataset consists of 93 NASA projects. These projects took place in 

different locations between 1971 and 1987.There are 93 instances and 24 attributes. 

15 of them are standard COCOMO-I discrete  attributes and 7 of them are  describing 

the project, one of them is lines of code measure, and last one is actual effort in person 

months. Name of attributes are  analysts capability, programmers capability, 

application experience, modern programing practices, use of  software tools, virtual 

machine experience, language experience, schedule constraint, main memory 

constraint, data base size, time constraint for CPU, turnaround time, machine volatility, 

process complexity, required software reliability, line of code measure, actual effort in 

person/months, record number, project name, category of application, flight or ground 

system, which NASA center, year of development, development mode. 
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Table 3.2: Attributes Description for CocomoNasa-2 Dataset 

Attribute 

Name 
Description 

record number real unique id 

project name project name 

cat2 
category of application (Avionics, application ground, avionics 

monitoring….) 

forg flight or ground system 

center which NASA center 

year year of development 

mode development mode (embedded, organic, semidetached) 

acap analyst’s capability 

pcap programmer’s capability 

aexp application experience 

modp modern programing practices 

tool use of software tool 

vexp virtual machine experience 

lexp language experience 

sced schedule constraint 

stor main memory constraint 

data data base size 

time time constraint for CPU 

turn turnaround time 

virt machine volatility 

rely required software reliability 

cplx process complexity 

loc line of code measure 

act_effort actual effort 

 

3.5.3 Cocomo-81 / Software Cost Estimation: 

There are 63 instances and 17 attributes. Name of attributes are analyst’s 

capability, programmer’s capability, application experience, modern programing 

practices, use of software tools, virtual machine experience, language experience, 

schedule constraint, main memory constraint, data base size, time constraint for CPU, 

turnaround time, machine volatility, process complexity, required software reliability, 

line of code measure, actual effort in person/months. 
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Table 3.3: Attributes Description for CocomoNasa-81 Dataset 

Attribute Name Description 

acap analyst’s capability 

pcap programmer’s capability 

aexp application experience 

modp modern programing practices 

tool use of software tool 

vexp virtual machine experience 

lexp language experience 

sced schedule constraint 

stor main memory constraint 

data data base size 

time time constraint for CPU 

turn turnaround time 

virt machine volatility 

rely required software reliability 

cplx process complexity 

loc line of code measure 

act_effort actual effort 

 

3.5.4  Summary for Datasets 

 

The summary dataset table is below as Table 3.4. 

Table 3.4: Summary for Datasets 

Data Set Instance Attribute Number Measurement Unit Effort 

CocomoNasa 60 17 Loc Man/ Month 

CocomoNasa-2 93 24 Loc Man/ Month 

Cocomo-81 63 17 Loc Man/ Month 

 

3.5.5 The Numeric Values of the Effort Multipliers 

The largest and smallest value ranges that the attributes in the data sets can take 

were examined. 

 
Table 3.5: The Numeric Values of the Effort Multipliers 

Attributes 

Very 

Low Low Normal High 

Very 

High 

Extra 

High Productivity 

acap 1.46 1.19 1 0.86 0.71  2.06 

pcap 1.42. 1.17 1 0.86 0.7  1.67 

aexp 1.29 1.13 1 0.91 0.82  1.57 

modp 1.24. 1.1 1 0.91 0.82  1.34 

tool 1.24 1.1 1 0.91 0.83  1.49 

vexp 1.21 1.1 1 0.9   1.34 

lexp 1.14 1.07 1 0.95   1.2 

sced 1.23 1.08 1 1.04 1.1  e 

stor   1 1.06 1.21 1.56 -1.21 

data  0.94 1 1.08 1.16  -1.23 

time   1 1.11 1.3 1.66 -1.3 

turn  0.87 1 1.07 1.15  -1.32 

virt  0.87 1 1.15 1.3  -1.49 

rely 0.75 0.88 1 1.15 1.4  -1.87 

cplx 0.7 0.85 1 1.15 1.3 1.65 -2.36 
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3.6 FINDINGS 

It is frequently mentioned in the literature that a certain percentage of software 

effort data can be used for test effort estimation [27]. Due to this situation, 40% of the 

software effort data was taken. [28] According to the results, the new data formed was 

accepted as a software test effort.  

In this research, model trainings were carried out on three data sets by using 

different machine learning algorithms. These algorithms are, respectively, linear 

regression, random forest, bagging, multilayer perceptron, SMOreg, M5P, IBk, KStar 

and random tree. Datasets are randomly divided into training and test data using 10-

fold cross validation technique. The created models evaluated according to correlation 

coefficient, error rate MAE and RAE. In WEKA, the default values for the 3.8.6 

version of these algorithms are used: The values used in this study from the adjustable 

parameters for selected algorithms are as follows: 

• For Linear Regression, attributeSelectionMethhod parameter is selected as M5 

Method. 

• For the MLP algorithm, the "hiddenLayers" parameter is selected as "a". This 

means that the number of hidden layers and the number of neurons are 

automatically determined based on the data. LearningRate is 0.3 and momentum 

is 0.2. 

• The SMOReg complexity parameter c 1 is selected. FilterType is Nomalize 

training data, Kernel is PolyKernel, and regOptimzer is RegSMOImproved. 

• KNN 1, distanceWeighting No distance weighting is selected in IBk. 

• KStar globalBlend 20, missingMode Avarage entropy curves are selected. 

• For Bagging, the classifier REPTRee is selected, numExecutions used to set up the 

ensemble model are 1, and numerations are 10. 

• In M5P, 4 is selected as the minimum instance to be accepted for the leaf node. 

• In RandomForest, a value of 0, which represents no limit, is processed for 

maxDepth. numIterations 100, numExecutions 1 used to set up the ensemble model 

is selected. 

• In RandomTree, minNum 1, which represents the total weight of the instances in 

the leaf, is selected, and for maxDepth, 0, which represents no limit, is selected. 

The effort estimation of the software projects was carried out in two parts by 

using the ML algorithms in the WEKA environment. In the first part; The default 
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settings of WEKA environment algorithms are preferred. No attribute selection has 

been implemented for each algorithm used. In the second part, hybrid methods are 

tried with Select Attributes on Weka and the results are tested for all algorithms and 

datasets one by one. The following hybrid methods were tried respectively.  

● CfsRandomEvaluater + RandomSearch 

● CfsRandomEvaluater + PSOSearch  

● CfsRandomEvaluater + GeneticSearch  

● ClassifierAttributeEvaluation  +  Ranker  

● CorrelationAttributeEvaluation  +  Ranker 

● ReliefAttributeEvaluation  +  Ranker 

As a result, the results obtained in the first part and the second part were 

compared. 

 

3.6.1 Models with Original Datasets 

 For software test effort estimation, performance measurements of 

machine learning algorithms applied to the CocomoNasa   CocomoNasa-2 ve Cocomo-

81 are given. No attribute selection is made and the original data is used. 

 

3.6.1.1 CocomoNasa Dataset 

According to Table 3.6, M5P give the best result. The correlation coefficient is 

0.922, MAE 60.3936 and RAE 35.0178 % for M5P.  

The worst performance is Random Tree. The correlation coefficient is 0.3915, 

MAE 137.1558   and RAE 79.5265 % for Random Tree. 

 

Table 3.6: Models Result for CocomoNasa Dataset 

CocomoNasa 

Algorithms Correlation Coefficient MAE RAE (%) 

Linear Regression 0.7994 98.8186 57.2976 

Random Forest 0.7281 93.4642 54.193 

Bagging 0.8083 74.0699 42.9476 

Multilayer Perceptron 0.8931 71.781 41.6205 

SMOreg 0.7178 99.5863 57.7427 

IBk 0.5768 118.1707 68.5184 

KStar 0.6772 88.1806 51.1294 

Random Tree 0.3915 137.1558 79.5265 

M5p 0.922 60.3936 35.0178 
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3.6.1.2 CocomoNasa-2 Dataset 

According to Table 3.7, KStar give the best result. The correlation coefficient 

is 0.7437, MAE is 146.6103 and RAE is 56.7453 % for KStar.  

The worst performance is Linear Regression. The correlation coefficient is -

0.3101, MAE is 258.3653 and RAE is 100 %. 

 

Table 3.7: Models Result for CocomoNasa-2 Dataset 

CocomoNasa-2 

Algorithms Correlation Coefficient MAE RAE (%) 

Linear Regression -0.3101 258.3653 100 

Random Forest 0.667 164.1404 339.9489 

Bagging 0.4241 195.6914 75.7421 

Multilayer Perceptron 0.5058 303.8009 117.5858 

SMOreg 0.4176 307.0868 118.8576 

IBk 0.6581 198.9049 76.9859 

KStar 0.7437 146.6103 56.7453 

Random Tree 0.637 201.0081 77.8 

M5p 0.7092 147.0593 56.9191 

 

3.6.1.3 Cocomo-81 Dataset 

According to Table 3.8, Random Forest give the best result. The correlation 

coefficient is 0.7529, MAE is 215.6668 and RAE is 59.421 %. 

The worst performance is IBK.  The correlation coefficient is 0.0768, MAE is 

313.021 and RAE is 86.2442 %. 

 

Table 3.8: Models Result for Cocomo-81 Dataset 

Cocomo-81 

Algorithms 
Correlation Coefficient MAE 

RAE 

(%) 

Linear Regression 0.6102 349.7908 96.3751 

Random Forest 0.7529 215.6668 59.421 

Bagging 0.4622 268.7705 74.0522 

Multilayer Perceptron 0.6739 264.9429 72.9976 

SMOreg 0.6625 191.8657 52.8632 

IBk 0.0768 313.021 86.2442 

KStar 0.5621 210.9438 58.1197 

Random Tree 0.6439 226.4391 62.389 

M5p 0.6843 206.9436 57.0175 
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3.6.2 Models with Attribute Selection 

3.6.2.1 CocomoNasa Dataset with Attribute Selection 

Attribute selections is made before applying the selected ML algorithms to the 

CocomoNasa datasets. 

 

3.6.2.1.1   CFS + Random Search for CocomoNasa  

According to Table 3.9, CfsSubsetEval and Random Search have been applied 

to the CocomoNasa dataset under the select attributes menu of Weka. In this case, 10 

out of 17 attributes was selected. The selected attributes are Rely, Data, Time, Stor, 

Turn, Lexp, Modp, Tool, Loc, Act. Effort. 

According to Table 3-9, Multilayer Perceptron gave the best performance. The 

correlation coefficient is 0.9245, MAE is 57.5215 and RAE 33.3525 %. The worst 

performance is IBK. The Correlation Coefficient is 0.5511, MAE is 118.1307   and 

the RAE is 68.4952. 

Compared with the original dataset, Correlation Coefficient of Random Tree 

increased by 44%. Even if not the best result, it is the model that showed the most 

improvement. When comparing the all algorithms, the CFS + Random Search model 

showed improvement in 5 out of 9 algorithms compared to the original model. 

 

Table 3.9: CFS + Random Search for CocomoNasa 

CocomoNasa / CFS + Random Search  

Algorithms Correlation Coefficient MAE RAE (%) 

Linear Regression 0.7782 105.5529 61.2023 

Random Forest 0.7281 93.4642 54.193 

Bagging 0.8111 74.6154 74.6154 

Multilayer Perceptron 0.9245 57.5215 33.3525 

SMOreg 0.7691 90.0964 52.2402 

IBk 0.5511 118.1307 68.4952 

KStar 0.7818 75.6172 43.8448 

Random Tree 0.8331 74.3994 43.1387 

M5p 0.903 69.6416 40.38 

 

3.6.2.1.2   CFS + PSO for CocomoNasa 

According to Table 3.10, CfsSubsetEval and PSO have been applied under the 

select attributes menu of Weka. In this case, 12 out of 17 attributes were selected. The 

selected attributes are Rely, Data, Time, Stor, Turn, Virt, Vexp, Lexp, Modp, Tool, 

Loc, Act_effort. 
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According to Table 3.10, M5P gave the best performance. The correlation 

coefficient is 0.9021, MAE is 70.3909 and RAE is 40.815%.  There is no change in 

the best result comparison with the original model. However, the model created with 

the Random tree achieved 36% improvement over the original model. However, it did 

not achieve the best result. The worst performance is IBk. The Correlation Coefficient 

is 0.5504, MAE is 120.4973 and RAE 69.8675 %. 

 
Table 3.10: CFS + PSO for CocomoNasa 

CocomoNasa / CFS + PSO 

Algorithms Correlation Coefficient MAE RAE (%) 

Linear Regression 0.7396 135.8567 78.7732 

Random Forest 0.8115 80.0985 46.4432 

Bagging 0.8103 74.934 43.4487 

Multilayer Perceptron 0.8956 64.8591 37.607 

SMOreg 0.6779 113.7726 65.9683 

IBk 0.5504 120.4973 69.8675 

KStar 0.7592 79.0905 45.8587 

Random Tree 0.7531 87.2165 50.5704 

M5p 0.9021 70.3909 40.8145 

 

3.6.2.1.3   CFS + Genetic Search for CocomoNasa  

According to Table 3.11, CfsSubsetEval and GS have been applied under the 

select attributes menu of Weka. In this case, 10 out of 17 attributes were selected. The 

selected attributes are Rely, Data, Time, Stor, Virt, Turn, Lexp, Tool, Loc, Act_effort. 

According to Table 3.11, M5P gave the best performance. The correlation 

coefficient is 0.9118, MAE is 67.1147 and RAE is 38.914 %.  The worst performance 

is Random Tree. Correlation Coefficient is 0.3915, MAE is 137.1558 and RAE is 

79.5265 %. 

Although M5P gave the best results, the success rate decreased when compared 

to the original dataset. Even if it didn't give the best results, KStar was the algorithm 

that showed the most improvement when CFS+GA was applied. When compared to 

the original model, an improvement of 10% was observed.  
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Table 3.11: CFS + PSO for CocomoNasa 

CocomoNasa / CFS + GS 

Algorithms Correlation Coefficient MAE RAE (%) 

Linear Regression 0.7648 111.1063 64.4223 

Random Forest 0.8193 81.1336 47.0434 

Bagging 0.8154 73.2855 42.4928 

Multilayer Perceptron 0.8879 68.7779 39.8792 

SMOreg 0.7492 96.0769 55.7078 

IBk 0.555 118.0807 68.4662 

KStar 0.7759 82.247 47.6889 

Random Tree 0.3915 137.1558 79.5265 

M5p 0.9118 67.1147 38.9148 

 

3.6.2.1.4   Classifier Attribute Evaluation + Ranker for CocomoNasa 

According to Table 3.12, Classifier Att. Eval.  and Ranker have been applied 

under the select attributes menu of Weka. In this case, attributes are listed in order of 

importance. The last three elements in the order of importance are removed from the 

list. These three elements: rely, vexp, pcap. Therefore, the model was created with the 

remaining 14 attributes. 

According to Table 3.12, M5P gave the best performance. The correlation 

coefficient is 0.9103, MAE is 62.9752 and RAE 36.5147 %. The worst performance 

is Random Tree. The Correlation Coefficient is 0.5973, MAE is 115.0607 and the RAE 

is 66.7151. 

Compared to the original dataset, improvement was seen in 8 out of 9 

algorithms. Only a slight decrease was seen in M5P. However, it has the best 

correlation coefficient performance. Random Tree showed an improvement of 20%. 

However, it has the worst result for this method and dataset. 

 

Table 3.12: Classifier Att. Eval. + Ranker for CocomoNasa 

CocomoNasa / Classifier Att.Eval + Ranker 

Algorithms 
Correlation Coefficient MAE 

RAE 

(%) 

Linear Regression 0.8849 67.5768 39.1828 

Random Forest 0.824 81.691 47.3666 

Bagging 0.8132 74.1465 42.9921 

Multilayer Perceptron 0.9054 62.768 36.3945 

SMOreg 0.8045 74.7173 43.323 

IBk 0.6164 101.91 59.0901 

KStar 0.7568 78.9804 45.7949 

Random Tree 0.5973 115.061 66.7151 

M5p 0.9103 62.9752 36.5147 
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3.6.2.1.5  Correlation Attribute Evaluation + Ranker for CocomoNasa 

According to Table 3.13, Correlation Att. Eval.  and Ranker have been applied 

under the select attributes menu of Weka. In this case, attributes are listed in order of 

importance. The last three elements in the order of importance are removed from the 

list. These three elements: virt, vexp, acap. Therefore, the model was created with the 

remaining 14 attributes. 

According to Table 3.13, Multilayer Perceptron gave the best performance. The 

correlation coefficient is 0.9147, MAE is 61.8765 and RAE 35.8776 %. The worst 

performance is IBK. The Correlation Coefficient is 0.6036, MAE is 108.3573 and the 

RAE is 62.8284. 

Compared to the original dataset, improvement was seen in 8 out of 9 

algorithms. Only a slight decrease was seen in M5P. Random Tree showed an 

improvement of 32%.  

 

Table 3.13: Correlation Att. Eval. + Ranker for CocomoNasa 

CocomoNasa / Correlation Att.Eval + Ranker 

Algorithms 
Correlation Coefficient MAE 

RAE 

(%) 

Linear Regression 0.8778 89.4276 51.8524 

Random Forest 0.7744 86.8572 50.3621 

Bagging 0.8094 73.6507 42.7046 

Multilayer Perceptron 0.9147 61.8765 35.8776 

SMOreg 0.7912 85.6615 49.6687 

IBk 0.6036 108.357 62.8284 

KStar 0.7674 75.7444 43.9186 

Random Tree 0.7113 93.3438 54.1231 

M5p 0.8945 69.3779 40.2271 

 

3.6.2.1.6  Relief Attribute Evaluation + Ranker for CocomoNasa 

According to Table 3.14, Relief Att. Eval.  and Ranker have been applied under 

the select attributes menu of Weka. In this case, attributes are listed in order of 

importance. The last three elements in the order of importance are removed from the 

list. These three elements: vexp, time, lexp. Therefore, the model was created with the 

remaining 14 attributes. 

According to Table 3.14, M5P gave the best performance. The correlation 

coefficient is 0.9088, MAE is 63.6781 and RAE 36.9222 %. The worst performance 

is Random Tree. The Correlation Coefficient is 0.576, MAE is 124.3087 and the RAE 

is 72.0774 %. 
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Compared to the original dataset, improvement was seen in 7 out of 9 

algorithms. Only a slight decrease was seen in M5P and IBK. Random Tree showed 

an improvement of 18%.  

 

Table 3.14: Relief Att. Eval. + Ranker for CocomoNasa 

CocomoNasa / Relief Att.Eval + Ranker 

Algorithms 
Correlation Coefficient MAE 

RAE 

(%) 

Linear Regression 0.8558 86.2261 49.9961 

Random Forest 0.7995 86.1667 49.9617 

Bagging 0.8094 74.3053 43.0841 

Multilayer Perceptron 0.8976 70.4519 40.8498 

SMOreg 0.8334 73.8929 42.845 

IBk 0.5768 117.491 68.1241 

KStar 0.7697 79.2382 45.9444 

Random Tree 0.576 124.309 72.0774 

M5p 0.9088 63.6781 36.9222 

 

3.6.2.2 CocomoNasa-2 Dataset with Attribute Selection 

3.6.2.2.1   CFS + Random Search for CocomoNasa-2  

According to Table 3.15, CfsSubsetEval and Random Search have been 

applied under the select attributes menu of Weka. In this case, 21 out of 24 attributes 

were selected. The selected attributes are Record number, project name, cat2, forg, 

year, mode, rely, data, cplx, time, stor, virt, turn, acap, aexp, pcap, vexp, modp, sced, 

equivphyskloc, act_effort. 

According to Table 3.15, KStar gave the best performance. The correlation 

coefficient is 0.7433, MAE is 147.7978 and RAE is 57.205%.  The worst performance 

is Linear Regression.  Correlation Coefficient is -0.3101, MAE is 258.3653 and RAE 

is 100 %.  

Compared to the original dataset, the Multilayer Perceptron Correlation 

Coefficient has increased by 15%. It is the model that shows the most improvement, if 

not the best result. KStar, which showed the best overall result, showed no 

improvement. Although it shows a small decrease, it can be interpreted that it almost 

maintains its success rate. 
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Table 3.15: CFS + Random Search for CocomoNasa-2 

CocomoNasa-2 / CFS + Random Search 

Algorithms 
Correlation Coefficient MAE 

RAE 

(%) 

Linear Regression -0.3101 258.3653 100 

Random Forest 0.6376 174.4391 67.5165 

Bagging 0.4184 195.3487 75.6095 

Multilayer Perceptron 0.6575 221.4978 85.7305 

SMOreg 0.4176 307.0868 118.8576 

IBk 0.5889 213.1759 82.5095 

KStar 0.7433 147.7978 57.205 

Random Tree 0.2493 202.0807 78.2151 

M5p 0.734 134.5333 52.0709 

 

3.6.2.2.2   CFS + PSO for CocomoNasa-2   

According to Table 3.16, CfsSubsetEval and PSO have been applied under the 

select attributes menu of Weka. In this case, 22 out of 24 attributes were selected. The 

selected attributes are Record number, project name, cat2, forg, center, year, mode, rely, 

data, cplx, time, stor, virt, turn, acap, aexp, pcap, vexp, modp, sced, equivphyskloc, 

act_effort. 

According to Table 3.16, KStar gave the best performance. The correlation 

coefficient is 0.7505, MAE is 146.7144 and RAE is 56.7856%.  The worst 

performance is Linear Regression.  Correlation Coefficient is -0.3101, MAE is 258.3653 

and RAE is 100 %.  

Compared to the original dataset, the Multilayer Perceptron Correlation 

Coefficient has increased by 16%. It is the model that shows the most improvement, if 

not the best result. Random Tree shows a huge decrease with 24%. 

 

Table 3.16: CFS + PSO   for CocomoNasa-2 

CocomoNasa-2 / CFS + PSO 

Algorithms Correlation Coefficient MAE RAE (%) 

Linear Regression -0.3101 258.3653 100 

Random Forest 0.6411 172.1151 66.617 

Bagging 0.4184 195.3487 75.6095 

Multilayer Perceptron 0.6603 240.6701 93.1511 

SMOreg 0.3958 267.5702 103.5628 

IBk 0.6464 212.0916 82.0898 

KStar 0.7505 146.7144 56.7856 

Random Tree 0.3947 225.2032 87.1647 

M5p 0.734 134.5333 52.0709 
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3.6.2.2.3   CFS + Genetic Search for CocomoNasa-2   

According to Table 3.17, CfsSubsetEval and GS have been applied under the 

select attributes menu of Weka. In this case, 22 out of 24 attributes were selected. The 

selected attributes are Record number, projectname, cat2, forg, center, year, mode, rely, 

data, cplx, time, stor, virt, turn, acap, aexp, pcap, vexp, modp, sced, equivphyskloc, 

act_effort. 

According to Table 3.17, It has been observed that CFS + GS and CFS + PSO 

gave the same results. 

 

Table 3.17: CFS + GS for CocomoNasa-2 

CocomoNasa-2 / CFS + GS  

Algorithms Correlation Coefficient MAE RAE (%) 

Linear Regression -0.3101 258.3653 100 

Random Forest 0.6411 172.1151 66.617 

Bagging 0.4184 195.3487 75.6095 

Multilayer Perceptron 0.6603 240.6701 93.1511 

SMOreg 0.3958 267.5702 103.5628 

IBk 0.6464 212.0916 82.0898 

KStar 0.7505 146.7144 56.7856 

Random Tree 0.3947 225.2032 87.1647 

M5p 0.734 134.5333 52.0709 

 

3.6.2.2.4   Classifier Attribute Evaluation + Ranker for CocomoNasa-2 

According to Table 3.18, Classifier Att. Eval.  and Ranker have been applied 

under the select attributes menu of Weka. In this case, attributes are listed in order of 

importance. The last three elements in the order of importance are removed from the 

list. These three elements: Record number, aexp, acap. Therefore, the model was 

created with the remaining 21 attributes. 

According to Table 3.18, KStar gave the best performance. The correlation 

coefficient is 0.8046, MAE is 132.7143 and RAE 51.3669 %. The worst performance 

is Linear Regression. The Correlation Coefficient is -0.3101, MAE is 258.3653 and 

the RAE is 100. However, it didn’t change according to original model. Except Linear 

Regression, worst performance has SMOreg. The Correlation Coefficient is 0.4107, 

MAE is 294.7582 and the RAE is 114.0858. 

Compared to the original dataset, improvement was seen in 5 out of 9 

algorithms. Only a slight decrease was seen in Random tree, SMOreg and Bagging. 

Multilayer Perceptron showed an improvement of 18%. 
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Table 3.18: Classifier Att. Eval.  + Ranker for CocomoNasa-2 

CocomoNasa-2 / Classifier Attribute Evaluation   

Algorithms Correlation Coefficient MAE RAE (%) 

Linear Regression -0.3101 258.365 100 

Random Forest 0.7085 157.227 60.8545 

Bagging 0.4122 195.52 75.6757 

Multilayer Perceptron 0.6806 213.479 82.6269 

SMOreg 0.4107 294.758 114.086 

IBk 0.662 195.298 75.5897 

KStar 0.8046 132.714 51.3669 

Random Tree 0.5459 204.892 79.3032 

M5p 0.7209 136.542 52.8485 

 

3.6.2.2.5   Correlation Attribute Evaluation + Ranker for CocomoNasa-2 

According to Table 3.19, Correlation Att. Eval.  and Ranker have been applied under 

the select attributes menu of Weka. In this case, attributes are listed in order of 

importance. The last three elements in the order of importance are removed from the 

list. These three elements: Tool, lexp, year. Therefore, the model was created with the 

remaining 21 attributes. 

According to Table 3.19, Random Forest gave the best performance. The 

correlation coefficient is 0.6994, MAE is 164.1088 and RAE 63.5181 %. The worst 

performance is Linear Regression. The Correlation Coefficient is -0.3101, MAE is 

258.3653 and the RAE is 100. However, it didn’t change according to original model. 

Except Linear Regression, worst performance has SMOreg. The Correlation 

Coefficient is 0.3777, MAE is 267.3135 and the RAE is 103.4634. 

Compared to the original dataset, improvement was seen in 3 out of 9 

algorithms. Multilayer Perceptron showed an improvement of 12%. A slight decrease 

was seen in MP5, KStar, IBK and SMOreg. However Random Tree showed a huge 

decrease of 25%.  
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Table 3.19: Correlation Att. Eval. + Ranker for CocomoNasa-2 

CocomoNasa-2 / Correlation Attribute Evaluation   

Algorithms Correlation Coefficient MAE RAE (%) 

Linear Regression -0.3101 258.365 100 

Random Forest 0.6994 164.109 63.5181 

Bagging 0.4247 193.069 74.7272 

Multilayer Perceptron 0.6215 245.462 95.0057 

SMOreg 0.3777 267.314 103.463 

IBk 0.6403 218.712 84.6522 

KStar 0.6864 157.635 61.0124 

Random Tree 0.3899 257.03 99.4831 

M5p 0.6765 159.244 61.6352 

  

3.6.2.2.6 Relief Attribute Evaluation + Ranker for CocomoNasa-2 

According to Table 3.20, Relief Att. Eval.  and Ranker have been applied under 

the select attributes menu of Weka. In this case, attributes are listed in order of 

importance. The last three elements in the order of importance are removed from the 

list. These three elements: Stor, year, record. Therefore, the model was created with 

the remaining 21 attributes. 

According to Table 3.20, M5P gave the best performance. The correlation 

coefficient is 0.7508, MAE is 140.4593 and RAE 54.3646 %. The worst performance 

is Linear Regression. The Correlation Coefficient is -0.3101, MAE is 258.3653 and 

the RAE is 100. However, it didn’t change according to original model. Except Linear 

Regression, worst performance has Bagging. The Correlation Coefficient is 0.4098, 

MAE is 194.7614 and the RAE is 75.3822%. 

Compared to the original dataset, improvement was seen in 5 out of 9 

algorithms. A slight decrease was seen in KStar, IBK and Bagging. Multilayer 

Perceptron showed a huge improvement with 18%.  

 

Table 3.20: Relief Att. Eval.  + Ranker for CocomoNasa-2 

CocomoNasa-2 / Relief Attribute Evaluation   

Algorithms Correlation Coefficient MAE RAE (%) 

Linear Regression -0.3101 258.365 100 

Random Forest 0.7311 150.459 58.235 

Bagging 0.4098 194.761 75.3822 

Multilayer Perceptron 0.6805 213.719 82.7196 

SMOreg 0.4754 273.58 105.889 

IBk 0.6564 199.429 77.1887 

KStar 0.7308 144.878 56.075 

Random Tree 0.7162 192.323 74.4385 

M5p 0.7508 140.459 54.3646 
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3.6.2.3 Cocomo-81 Dataset with Attribute Selection 

3.6.2.3.1   CFS + Random Search for Cocomo-81 

According to Table 3.21, CfsSubsetEval and Random Search have been 

applied under the select attributes menu of Weka. In this case, 11 out of 17 attributes 

were selected. The selected attributes are relying, data, time, stor, turn, acap, pcap, vexp, 

modp, loc, actual. 

According to Table 3.21, KStar gave the best performance. The correlation 

coefficient is 0.9097, MAE is 183.1173 and RAE is 50.4529 %. The worst 

performance is Random Tree.  Correlation Coefficient is 0.4613, MAE is 307.7039 and 

RAE is 84.7792 %.   

Compared to the original dataset, the IBK Correlation Coefficient has huge 

increased from 0.0768 to 0.5258. It is the model that shows the most improvement, if 

not the best result. Random Tree shows a huge decrease with approximately 18%. 

 

Table 3.21: CFS + Random Search   for Cocomo-81 

CocomoNasa-81 / CFS + Random Search  

Algorithms Correlation Coefficient MAE 
RAE 

(%) 

Linear Regression 0.6314 329.8316 90.8759 

Random Forest 0.8048 193.219 53.2361 

Bagging 0.4769 264.1178 72.7703 

Multilayer Perceptron 0.5413 352.0298 96.992 

SMOreg 0.661 191.3021 52.708 

IBk 0.5258 290.6483 80.08 

KStar 0.9097 183.1173 50.4529 

Random Tree 0.4613 307.7039 84.7792 

M5p 0.6674 218.1156 60.0957 

 

3.6.2.3.2   CFS + PSO for Cocomo-81 

According to Table 3.22, CfsSubsetEval and PSO have been applied under the 

select attributes menu of Weka. In this case, 12 out of 17 attributes were selected. The 

selected attributes are relying, data, time, stor, turn, acap, pcap, vexp, lexp, modp, loc, 

actual. 

According to Table 3.22, KStar gave the best performance. The correlation 

coefficient is 0.8597, MAE is 201.859 and RAE is 55.6166 %. The worst performance 

is Random Tree.  Correlation Coefficient is 0.4117, MAE is 304.489 and RAE is 

83.8936 %.   
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Compared to the original dataset, improvement was seen in 5 out of 9 

algorithms. A decrease was seen in Random Tree by 23%. IBk showed a huge 

improvement with 44%.  

 

Table 3.22: CFS + PSO   for Cocomo-81 

Cocomo-81 / CFS + PSO 

Algorithms Correlation Coefficient MAE RAE (%) 

Linear Regression 0.6328 330.793 91.1408 

Random Forest 0.7422 202.496 55.792 

Bagging 0.4773 264.13 72.7738 

Multilayer Perceptron 0.6118 307.926 84.8405 

SMOreg 0.6726 186.926 51.5023 

IBk 0.5206 303.708 83.6783 

KStar 0.8597 201.859 55.6166 

Random Tree 0.4117 304.489 83.8936 

M5p 0.6773 208.567 57.4648 

 

3.6.2.3.3   CFS + Genetic Search for Cocomo-81 

According to Table 3.23, CfsSubsetEval and PSO have been applied under the 

select attributes menu of Weka. In this case, 12 out of 17 attributes were selected. The 

selected attributes are relying, data, time, stor, turn, acap, pcap, vexp, lexp, modp, loc, 

actual. 

According to Table 3.23, It has been observed that CFS + GS and CFS + PSO 

gave the same results. 

 

Table 3.23: CFS + GS   for Cocomo-81 

Cocomo-81 / CFS + GS 

Algorithms Correlation Coefficient MAE RAE (%) 

Linear Regression 0.6328 330.793 91.1408 

Random Forest 0.7422 202.496 55.792 

Bagging 0.4773 264.13 72.7738 

Multilayer Perceptron 0.6118 307.926 84.8405 

SMOreg 0.6726 186.926 51.5023 

IBk 0.5206 303.708 83.6783 

KStar 0.8597 201.859 55.6166 

Random Tree 0.4117 304.489 83.8936 

M5p 0.6773 208.567 57.4648 

 

3.6.2.3.4   Classifier Attribute Evaluation + Ranker for Cocomo-81 

According to Table 3.24, Classifier Att. Eval.  and Ranker have been applied 

under the select attributes menu of Weka. In this case, attributes are listed in order of 

importance. The last three elements in the order of importance are removed from the 
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list. These three elements: Pcap, vexp, rely. Therefore, the model was created with the 

remaining 14 attributes. 

According to Table 3.24, Random Forest gave the best performance. The 

correlation coefficient is 0.764, MAE is 220.5193 and RAE 60.758 %. The worst 

performance has Bagging. The Correlation Coefficient is 0.4225, MAE is 273.9946 

and the RAE is 75.4916.  

Compared to the original dataset, improvement was seen in 5 out of 9 

algorithms. Only a slight decrease was seen in M5P, Random Tree, SMOreg and 

Bagging. IBk showed a huge improvement of 44%.  

 

Table 3.24: Classifier Att. Eval.  + Ranker for Cocomo-81 

Cocomo-81 / Classifier Attribute Evaluation   

Algorithms Correlation Coefficient MAE RAE (%) 

Linear Regression 0.6184 334.931 92.281 

Random Forest 0.764 220.519 60.758 

Bagging 0.4225 273.995 75.4916 

Multilayer Perceptron 0.7224 267.257 73.6353 

SMOreg 0.6556 193.899 53.4235 

IBk 0.5598 265.961 73.278 

KStar 0.7409 202.687 55.8449 

Random Tree 0.5528 267.414 73.6785 

M5p 0.6697 221.118 60.9229 

   

3.6.2.3.5 Correlation Attribute Evaluation + Ranker for Cocomo-81 

According to Table 3.25, Correlation Att. Eval.  and Ranker have been applied 

under the select attributes menu of Weka. In this case, attributes are listed in order of 

importance. The last three elements in the order of importance are removed from the 

list. These three elements: Tool, aexp, acap. Therefore, the model was created with the 

remaining 14 attributes. 

According to Table 3.25, Random Forest gave the best performance. The 

correlation coefficient is 0.8379, MAE is 197.6953 and RAE 54.4694 %. The worst 

performance has Bagging. The Correlation Coefficient is 0.4098, MAE is 276.8935 

and the RAE is 76.2903.   

Compared to the original dataset, improvement was seen in 6 out of 9 

algorithms. Only a slight decrease was seen in M5P, Random Tree, and Bagging. 

KStar showed a huge improvement of 23%.  
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Table 3.25: Correlation Att. Eval.  + Ranker for Cocomo-81 

Cocomo-81 / Correlation Attribute Evaluation   

Algorithms Correlation Coefficient MAE RAE (%) 

Linear Regression 0.6388 333.727 91.9491 

Random Forest 0.8379 197.695 54.4694 

Bagging 0.4098 276.894 76.2903 

Multilayer Perceptron 0.6865 279.547 77.0213 

SMOreg 0.6791 194.345 53.5462 

IBk 0.5508 271.7 74.8594 

KStar 0.7967 201.259 55.4513 

Random Tree 0.598 259.095 71.3863 

M5p 0.679 206.685 56.9462 

 

3.6.2.3.6  Relief Attribute Evaluation + Ranker for Cocomo-81 

According to Table 3.26 Relief Att. Eval.  and Ranker have been applied under 

the select attributes menu of Weka. In this case, attributes are listed in order of 

importance. The last three elements in the order of importance are removed from the 

list. These three elements: Cplx, sced, pcap. Therefore, the model was created with the 

remaining 14 attributes. 

According to Table 3.26, Random Forest gave the best performance. The 

correlation coefficient is 0.7811, MAE is 202.192 and RAE 55.7084 %. The worst 

performance has Random Tree. The Correlation Coefficient is 0.2225, MAE is 

349.914 and the RAE is 96.4091 %.   

Compared to the original dataset, improvement was seen in 2 out of 9 

algorithms that are Linear Algorithm and Random Forest.  

 

Table 3.26: Relief Att. Eval.  + Ranker for Cocomo-81 

Cocomo-81 / Relief Attribute Evaluation   

Algorithms Correlation Coefficient MAE RAE (%) 

Linear Regression 0.6216 329.365 90.7472 

Random Forest 0.7811 202.192 55.7084 

Bagging 0.4339 271.4 74.7768 

Multilayer Perceptron 0.6409 278.156 76.6381 

SMOreg 0.6591 184.564 50.8513 

IBk 0.0665 326.587 89.982 

KStar 0.4731 220.061 60.6317 

Random Tree 0.2225 349.914 96.4091 

M5p 0.6708 224.265 61.7899 
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CHAPTER IV 

4. RESULT AND DISCUSSION 

 

In this section, a detailed analysis of the new models created using machine 

learning algorithms and their results has been made. The analyzes obtained as a result 

of the examination of the researched studies are presented in detail in the Tables. 

Existing studies were compared according to the software test effort estimation 

method, the data sets they used, whether they made feature selection and evaluation 

criteria. In these analyzes and comparisons, Correlation Coefficient, MAE and RAE 

were used as performance evaluation criteria. 

The main purpose of this section is to help researchers learn which machine 

learning method provides promising accuracy estimation in software test effort 

estimation. 

 

4.1 RESULT AND DISCUSSION FOR COCOMONASA DATASET 

The results of the models created with the CocomoNasa data set are given in 

the Table 4.1. It gave improved results with different algorithms in each applied 

method. Classification Att.Eval. and Correlation Att.Eval. methods showed 

improvement in 8 of 9 algorithms. They showed an improvement rate of 89 %. Relief 

Att.Eval. showed improvement in 7 of 9 algorithms. 

The algorithm that showed the most improvement was the Random tree as 44% 

with CFS + Random Search. However, Multilayer Perceptron gave the best results. 

Multilayer Perceptron gives the best results with CFS + Random Search. Mp5 gave 

the closest result to the best result with the original model. No improvement was 

observed in the models created with M5P. 

When all methods are compared, the analysis of the highest values that each 

algorithm could reach was made. These values were captured 3 times with the CFS + 
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Random Search and Classifier Att.Eval. + Ranker. With a rate of 33 percent, 

they had the best rate among other methods. 

 

Table 4.1: Result for CocomoNasa Dataset 

 

 

4.2 RESULT AND DISCUSSION FOR COCOMONASA-2 DATASET 

The results of the models created with the CocomoNasa-2 data set are given in 

the Table 4.2. It gave improved results with different algorithms in each applied 

method. Classification Att.Eval. and Relief Att.Eval. methods showed improvement 

in 5 of 9 algorithms. They showed an improvement rate of 55 %.  

The algorithm that showed the most improvement was the Multilayer 

Perceptron with 18% with Classifier Att.Eval. + Ranker. However, KStar gave the best 

results. KStar gives the best results with Classifier Att.Eval. + Ranker. Mp5 gave the 

closest result to the best result with the 0.7508 of correlation coefficient. 

When all methods are compared, the analysis of the highest values that each 

algorithm could reach was made. These values were captured 4 times with the Relief 

Att.Eval. + Ranker. With a rate of 44 percent except linear regression. It had the best 

rate among other methods. It was not included in this analysis as no change was 

observed in linear regression. 
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Table 4.2:  Result for CocomoNasa-2 Dataset 

 

 

4.3 RESULT AND DISCUSSION FOR COCOMO-81 DATASET 

The results of the models created with the Cocomo-81 data set are given in the 

Table 4.3. It gave improved results with different algorithms in each applied method. 

Correlation Att.Eval + Ranker. methods showed improvement in 6 of 9 algorithms. 

They showed an improvement rate of 66 %.  

The algorithm that showed the most improvement was the IBK as 48% with 

Classifier Att.Eval. + Ranker. However, KStar gave the best results. KStar gives the 

best results with Cfs + Random Search.  

When all methods are compared, the analysis of the highest values that each 

algorithm could reach was made. These values were captured 3 times with the 

Correlation Att.Eval. + Ranker with a rate of 33 percent. 
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Table 4.3:  Result for Cocomo-81 Dataset 

 

 

4.4 CONCLUSION 

The software testing process is one of the most important stages of software 

development projects. The fact that the software is intangible and contains many 

unknowns both complicates the software testing process and takes time. Incorrect 

software testing effort and time estimations play a role in the failure of software 

projects. 

Therefore, many software test effort estimation methods have been developed 

to improve the accuracy of software test effort estimation. One of these estimation 

methods is Artificial Intelligence methods. In this thesis, six different models have 

been developed using ML algorithms for the estimation of test effort of software test 

projects. Each developed model was applied on the datasets. The attributes of the data 

sets used in software test effort estimation significantly affect the estimation accuracy. 

It has been determined that ignoring the feature selection in the estimation 

process of the software test effort negatively affects the estimation result. Feature 

selection is one of the commonly used preprocessing techniques of the machine 

learning community for the removal of irrelevant, noisy, and redundant data while 

increasing the learning accuracy and improving the quality of the classification results. 

[29]. In the thesis study, CfsSubsetEval, Classifier Att.Eval as the evaluator method 

for software test effort estimation., Correlation Att.Eval and Relief Att.Eval are used. 
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For the search method, Genetic Search, PSO Search, Random Search and Ranker 

search algorithms were used respectively. 

In this way, it is seen how feature selection improves test effort estimation 

accuracy. 

The first developed model was implemented in two different ways using the 

ML algorithms in the WEKA program on the COCOMO-81, COCOMONASA and 

COCOMONASA2 datasets. 

In the first part; In the simulations where the default settings of the algorithms 

in the WEKA program were preferred, the Random Forest algorithm gave the best 

estimate in the COCOMO-81 dataset, and the IBK algorithm gave the worst estimate. 

In the COCOMONASA dataset, the best algorithm in estimation is M5P, the worst 

estimated one is Random Tree. In the COCOMONASA2 dataset, the KStar algorithm 

is the best estimate and the Linear Regression algorithm is the worst estimated. 

In the second part, new models were created by making feature selections on 

the data sets. In the newly created models, the best estimated KStar algorithm in the 

COCOMO-81 data set. The Multilayer Perceptron algorithm gave the best estimate in 

the COCOMONASA dataset, and the KStar algorithm gave the best estimate in the 

COCOMONASA2 dataset. 

Algorithms that give the best results for each data set, hybrid methods used and 

Correlation coefficient, Mae, Rae ratios are listed. When the datasets are compared, 

KStar has been the algorithm that has achieved the best result 2 times.  

 

Table 4.4: Best Results for All Dataset 

 
 

It was observed in Table 4.4 that the random search method was used for 2 

datasets to achieve the best results for CocomoNasa and Cocomo-81 datasets. Even if 

the best result is obtained with Classifier Att.Eval. + Ranker in CocomoNasa-2 dataset, 

given Table 4.5 shows that the Correlation Coefficient value is close to the best result 

when CFS + Random Search is applied. The Correlation Coefficient value for CFS + 

Random search is 0.7433. 
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 In addition, with the feature selections applied in Table 4.5, it is seen that 

successful results are obtained with reduced features compared to the results obtained 

with the original feature. 

 

Table 4.5: Model Performance Results with Feature Selection 

 

 

For the CocomoNasa dataset, best algorithm is Multilayer Perceptron. The 

comparison results of the best results are given Figure 4.1. CFS and Random Search 

methods were applied. 

 

 

Figure 4.1: Comparison Graph for Best Result of CocomoNasa Dataset 

 

For the CocomoNasa-2 dataset, best algorithm is KStar. The comparison 

results of the best results are given Figure 4.2.  Classifier Attribute Evaluator and 

Ranker methods were applied. 

Dataset

Orginal 

Feature 

Set

Model

Correlation 

Coefficient Before 

Feature Selection

FeatureSelection

Selected 

Feature 

Set

Correlation 

Coefficient

CocomoNasa 17 Multilayer Perceptron 0.8931 CFS+ RandomSearch 10 0.9245

CocomoNasa 17 M5p 0.922 CFS+ PSO 12 0.9021

CocomoNasa 17 M5p 0.922 CFS+ GA 10 0.9118

CocomoNasa 17 M5p 0.922 ClassifierAttEval+ Ranker 14 0.9103

CocomoNasa 17 Multilayer Perceptron 0.8931 Corr. Att.Evaluation + Ranker 14 0.9147

CocomoNasa 17 M5p 0.922 Relief. Att.Evaluation + Ranker 14 0.9088

CocomoNasa-2 24 K Star 0.7437 Original Feature Set 24 0.7437

CocomoNasa-2 24 K Star 0.7437 CFS+ RandomSearch 21 0.7433

CocomoNasa-2 24 K Star 0.7437 CFS+ PSO 22 0.7505

CocomoNasa-2 24 K Star 0.7437 CFS+ GA 22 0.7505

CocomoNasa-2 24 M5p 0.7092 ClassifierAttEval+ Ranker 21 0.8046

CocomoNasa-2 24 Random Forest 0.667 Corr. Att.Evaluation + Ranker 21 0.6994

CocomoNasa-2 24 M5p 0.7092 Relief. Att.Evaluation + Ranker 21 0.7508

CocomoNasa-81 17 K Star 0.5621 CFS+ RandomSearch 11 0.9097

CocomoNasa-81 17 K Star 0.5621 CFS+ PSO 12 0.8597

CocomoNasa-81 17 K Star 0.5621 CFS+ GA 12 0.8597

CocomoNasa-81 17 Random Forest 0.7529 ClassifierAttEval+ Ranker 14 0.764

CocomoNasa-81 17 Random Forest 0.7529 Corr. Att.Evaluation + Ranker 14 0.8379

CocomoNasa-81 17 Random Forest 0.7529 Relief. Att.Evaluation + Ranker 14 0.7811
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Figure 4.2: Comparison Graph for Best Result of CocomoNasa-2 Dataset 

 

For the CocomoNasa-81 dataset, best algorithm is KStar. The comparison 

results of the best results are given Figure 4.3.  CFS and Random Search methods were 

applied. 

 

 

 Figure 4.3 Comparison Graph for Best Result of Cocomo81 dataset 

 

 In addition, the models showing the most improvement are listed in Table 4.6. 

When all datasets are examined, improvements have been found in all models and 

algorithms in general. Although there are cases where the correlation coefficient value 

deteriorates in some cases, this was not so much. 

In CocomoNasa CFS + Random Search Method was the hybrid method that 

showed the most improvement. In the CocomoNasa dataset, the Random Tree 

algorithm showed an improvement of 44%. In the Cocomo-81 dataset, the IBK 

algorithm showed 48% improvement with Classifier Att.Eval. + Ranker. On the other 

hand, the CocomaNasa-2 dataset showed an improvement of 18% with the Multilayer 

Perceptron algorithm and the Classifier Att.Eval. + Ranker hybrid method. 
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Table 4.6: The Improvement Result for All Datasets 

 

 

In this study, the performance of WEKA program and ML algorithms in 

software cost estimation using COCOMO81, COCOMONASA, COCOMONASA2 

datasets in PROMISE data repository were examined. 

When the estimation results are examined, it has been determined that the error 

rates and correlation coefficients of the algorithms vary according to the data sets they 

are applied to. It has been observed that an algorithm does not always produce the best 

results, while some algorithms produce very good results in some data sets, but may 

give bad results with different parameters and different data sets. 

  In addition, it has been noticed that the features in the data sets greatly affect 

the estimation result of the feature selection method used to determine the features. 

When the performance values are examined, it has been seen that the feature selection 

on the data sets used for software cost estimation provides improvement results in ML 

algorithms in general. 

It has been observed that the model created with the Classifier Att. Eval. + 

Ranker hybrid method on the datasets discussed in this thesis shows more 

improvement than other models. In future studies, it can be aimed to increase the 

estimation accuracy of the model for more projects by multiplying the data sets. 

Dataset Algorithm Method
Original Model for 

Correlation Coefficient

Highest Improvement for 

Correlation Coefficient

Improvement 

Rate

CocomoNasa RandomTree CFS + Random Search 0.3915 0.8331 0.44

CocomoNasa-2 MultiLayerPerceptron Classifier Att. Eval. + Ranker 0.5058 0.6806 0.18

Cocomo-81 IBk Classifier Att. Eval. + Ranker 0.0768 0.5598 0.48

BEST IMPROVEMENT RATE 
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