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ABSTRACT 
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Supervisor: Assoc. Prof. Dr. Tansel DOKEROGLU 

August 2023, 122 pages 

 

Software projects are gaining strategic importance day by day, even in the daily 

operations of companies in various sectors. With the increasing need, many companies 

develop software by creating projects both within their own structure and for the needs 

of different sectors. Accurately estimating the workforce needed for software projects 

is crucial to accurately estimating project costs and ensuring timely completion. 

Since the 1970s, the field of software effort estimation has been the subject of 

extensive research in the literature. While non-algorithmic methods such as expert 

opinion were used in the beginning, as the problems became more complex and 

technology and hardware features diversified, the need for different solution 

approaches emerged. To overcome these difficulties, algorithmic methods such as 

regression and model-based estimation have been developed. In recent years, however, 

with advances in technology, especially in the last decade, there has been an escalating 

interest in applying Machine Learning-based models and Artificial Intelligence to 

software cost estimation. 

The focus of this study is to explore Machine Learning based prediction 

methods in the context of software projects. The aim is to analyze their effectiveness 

by investigating how these methods can improve software cost estimation.



V 

 

Keywords: Software Cost Estimation, Software Effort Estimation, Artificial 

Intelligence, Machine Learning, Feature Selection



VI 

 

ÖZET 

 

GÜNCEL MAKİNE ÖĞRENME YAKLAŞIMLARI İLE ÇOK AMAÇLI 

YAZILIM PROJESİ MALİYET TAHMİNLEMESİ 

 

DERYA, DOĞAY 

Bilgisayar Mühendisliği Yüksek Lisans 

 

Danışman: Doç. Dr.Tansel DÖKEROĞLU 

Ağustos 2023, 122 sayfa 

 

Yazılım projeleri, çeşitli sektörlerdeki şirketlerin günlük operasyonlarında dahi 

günden güne stratejik önem kazanmaktadır. Artan ihtiyaçla birçok şirket gerek kendi 

bünyesinde, gerekse farklı sektörlerin ihtiyacına yönelik olarak projeler yaratarak 

yazılımlar geliştirmektedir. Yazılım projeleri için ihtiyaç duyulan işgücünü doğru 

tahmin etmek, proje maliyetlerini doğru tahmin etmek ve zamanında tamamlanmasını 

sağlamak için çok önemlidir. 

1970'lerden bu yana, yazılım efor tahmini alanı, literatürde kapsamlı 

araştırmaların konusu olmuştur. Başlangıçta uzman görüşü gibi algoritmik olmayan 

yöntemler kullanılırken, sorunlar karmaşıklaştıkça, teknoloji ve donanım özellikleri 

çeşitlendikçe farklı çözüm yaklaşımlarına olan ihtiyaç da ortaya çıkmıştır. Bu 

zorlukların üstesinden gelmek için regresyon ve model tabanlı tahmin gibi algoritmik 

yöntemler geliştirilmiştir. Son yıllarda ise, özellikle son on yılda olmak üzere 

teknolojideki gelişmelerle birlikte, Makine Öğrenimi tabanlı modelleri ve Yapay 

Zekayı yazılım maliyet tahminine uygulamaya yönelik artan bir ilgi olmuştur. 

Bu çalışmanın odak noktası, yazılım projeleri bağlamında Makine Öğrenimi 

tabanlı tahmin yöntemlerini keşfetmektir. Amaç, bu yöntemlerin yazılım maliyet 

tahminini nasıl iyileştirebileceğini araştırarak, etkinliklerini analiz etmektir. 
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CHAPTER I 

1. INTRODUCTION 

 

Effective project management becomes indispensable for software projects that 

increase in importance and scope in parallel with the increase in trust in electronic 

technologies. 

Project predictability is a critical factor in software project management, as it 

makes possible to mitigate potential risks by enabling precise cost and workforce 

planning. Accurate software effort estimation is a crucial component of software 

development, providing essential inputs for feasibility analysis, planning, budgeting, 

bidding. Deviating significantly from the required effort causes losses in terms of cost 

and quality. Thus, it is particularly important to estimate development time accurately 

in the highly competitive software industry, where quality is highly valued.  

Currently, the most prevalent methods for effort estimation rely on expert 

judgment. However, these methods may lack reliability as they can be influenced by 

various factors. Additionally, relying solely on human judgment can be burdensome 

and time-consuming when dealing with numerous estimation items. 

In recent years, the dynamic nature of the market has led to a growing adoption 

of agile methods in software project management, replacing traditional approaches. 

Within the agile project management methodology, the most commonly used metric 

for effort prediction is story scores. Presently, these estimations are typically made 

intuitively by relevant individuals for each request, with subsequent review by unit 

managers. However, this process lacks consistency and continuity, despite consuming 

significant human resources. 

The objective of this study is to propose a machine learning-based approach 

for effort estimation, aiming to accurately and swiftly predict effort. The study will 

handle machine learning approach that establish models by learning from past data to 

predict development efforts. Furthermore, innovative feature selection techniques will 

be employed to enhance the accuracy and effectiveness of the estimation process. 
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In the study, Linear Regression, Multilayer Perceptron, Bagging, SMOreg, 

IBk, KStar, RandomTree, Random Forest, M5P algorithms included in WEKA 

(Waikato Environment for Knowledge Analysis) tool, China, Finnish, Kemerer, 

Maxwell datasets were both trained and tested with the same datasets by choosing the 

10-fold cross-validation technique. In the first part of the application, the results are 

obtained with the original feature set. In the second part, it is aimed to apply feature 

selection by analyzing low-impact features and by focusing on increasing the 

performance of model outputs and to obtain models that prevent overfitting and not to 

include unnecessary inputs. In feature selection, hybrid approaches of evaluation and 

search methods are used together in different configurations. Among the search 

methods, methods such as RandomSearch, PSO, GA, Ranker are selected and the 

capabilities of these methods in searching optimized subsets are utilized. 

 

1.1 RESEARCH OBJECTIVES 

In this thesis, investigated to deal with problems on software cost estimation 

subjects are described below. 

a. How is it possible to gain high performance-low cost application of machine 

learning algorithm as a trendy on estimation techniques in last decades? 

b. Is selection of features which are using as input of models effective on result 

and how optimized subset of features is essential on machine learning algorithms? 

c. Which search techniques is shows success for finding optimized subset of 

features? 

 

1.2 CONTRIBUTIONS OF THE THESIS 

a. High-performance approaches were emphasized by training, testing and 

comparing 9 different machine learning algorithms with 6 different feature selection 

methods in four different datasets. 

b. With the WEKA tool, which is easily accessible due to its open source 

nature, alternatives to low execution time, high predictive models have been presented. 

c. When the estimation error rates obtained were compared with the results in 

the literature, it was observed that successful performances were achieved.



3 

 

CHAPTER II 

2. OVERVIEW 

 

2.1 THE IMPORTANCE OF COST ESTIMATION IN SOFTWARE PROJECTS 

The using area and the volume of needs it is meeting of software is constantly 

increasing nowadays. Due to the highly competitive environment, companies are being 

forced to generate software projects on budget and timely. The precision and reliability 

of the effort estimation of software projects is also gain importance for the 

competitiveness of software companies. This precise and reliable forecast, a solid 

foundation allows to laid for the production of quality and timely software that will 

enable software companies to compete. 

Knowing the approximate cost of a project at the beginning of the project is 

important for the reasons for starting the project. The customers of the project or the 

top management decides whether or not to carry out the project according to the 

predictive values. Incorrect estimations make the institutions or organizations in the 

position of customers economically and strategically affects. For example, 60% of 

large projects exceeded their project budgets. It has been observed that some projects 

were never completed due to a 15% cost overrun [1]. 

When the failures of software projects around the world are examined, the 

reasons are that the constraints of the project cannot be determined exactly, the correct 

cost estimation cannot be made, the changing customer expectations cannot be met, 

the technical aspects of the employees are insufficient, and the customer's expectations 

are not fully reflected. However, most of the software projects is collapsing due to 

incorrect cost estimation and timeout. Software costs is increasing rapidly due to 

wrong estimates. Therefore, these important problems are raising both in the country 

and in the world. 

The increasing need for project planning and management requires software 

project managers to conduct more careful analysis. Project planning, which is the 

initial phase of all project management processes, gains significance due to the 

requirement for all subsequent work to be executed in accordance with this plan.
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Therefore, various techniques have been proposed to assist in the planning 

stages. When it comes to software project management, planning is based on the 

estimation of the required effort/time value to develop the program or service to be 

developed. Once this value is calculated and predicted, other elements of planning 

(such as budget, timeline, etc.) can be determined. The process of estimating the 

resources required for a software project is referred to as software effort estimation. 

Effort estimation becomes an input for calculating the resources and costs needed for 

the development of the system. 

The accuracy of effort estimation for a project has a direct impact on project 

success. Plans are shaped according to the estimates made and other important 

elements, budget, calendar, procurement processes are determined accordingly. 

Therefore, one of the most important issues for a project manager or project team is to 

estimate effort with a high percentage of success. If the actual time-cost exceeds what 

was planned, the project may fail; in the opposite case, a problem such as improper 

use of resources may occur. Project managers are in search of helpful techniques and 

methods so that the effort estimation can be made accurately. 

Software effort estimation is difficult, mainly for two reasons. The first reason 

is that software is intangible and is outside the definition of conventional physical 

product. The second reason is that the software development job is an intellectual 

rather than a physical job. Software startups are easy, but as the software size increases, 

the workforce estimation process becomes more difficult. It is possible to write a 

program that is close to a few thousand lines in a week. But then the speed slows down 

as the program grows. When this program reaches several tens of thousands of lines, 

adding a line is worth a few days' effort, maybe even months. Therefore, it has become 

difficult to follow the side effects of the addition [2]. The dynamically fluctuating 

technology environment in the software development industry also makes effort 

estimation confusing [3]. 

The workforce estimation depends on many parameters such as the 

technologies used, the experience of the software developers, the project history of the 

software team in the same work area, and the detailed features of the functions created. 

Software workforce estimation is a complex field because of the multiplicity of 

parameters and the fact that the relationships between these parameters cannot always 

be accurately predicted. As current challenges persists, techniques are evolving to 



5 

 

remove or minimize them. Many techniques and methods have been proposed that can 

increase the success rate of effort estimation values. 

It has been stated that the history of effort estimation dates back to the 1960s 

[4], but studies mostly concentrate on 1990 and later. Each study is then divided into 

categorical areas, and in this way, a header is provided for the solution method needed. 

In the field of effort estimation, where different approaches and solutions are proposed, 

the studies are divided into certain groups and the effort estimation field is divided into 

certain main categories by classification.  

 

2.2 SOFTWARE EFFORT ESTIMATION METHODS 

The development cost is basically the project labor cost it includes, so the labor 

account is used in both cost and software project timing estimation. In the software 

effort estimation research literature, there is often no distinction between effort and 

cost. This is mainly due to the fact that in software development, almost all costs are 

personnel costs, which are directly tied to effort. However, in global software 

development, cost rates may differ in different areas. This means that effort in one 

region may result in higher costs than effort elsewhere [5]. However, in this research 

effort and costs will be used synonymously unless otherwise stated. 

The effort and time required for a software to be realized can be affected by 

many factors. Various criteria are given in many sources for cost estimation. For 

example, the complexity of the software to be developed, the experience or expertise 

of the institutions and organizations participating in the development and the team 

members who made the development, the technology and hardware infrastructure 

used, quality requirements, customer participation, time may affect the cost of the 

software. However, since the collection of values for the proposed criteria is very 

difficult and demanding, it is recommended to use some of them or the most effective 

set. One strategy for a company could be to start data collection including the standard 

factors and in addition collect factors specific to the organization. Thus, the benefits 

of the global data could be utilized, as well as organizational characteristics could be 

considered.  [6]. 

The history of the models developed to predict the software development effort 

dates back to the 1970s. In a study conducted in 2000, current estimation methods were 

classified under six headings [7]: 
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Model-Based Techniques: Techniques using mathematical equations, based on 

historical data and a theory. (Putnam SLIM, Function Point, Estimacs, COCOMO, 

Checkpoint, SEER) 

Expert-Based Techniques: Techniques based on obtaining the opinions of 

experts with knowledge and experience in a field. (Delphi, Rule) 

Learning-Based Techniques: Automated systems that learn by themselves 

using previous experience and data. (Neural, Genetic, Case-based) 

Dynamic-Based Techniques: Techniques based on the prediction that effort 

factors can change during the software development process and adapting to this. 

(Abdel, Hamid, Madnick) 

Regression-Based Techniques: Techniques that work together with model-

based techniques and rely on statistical regression approaches. (OLS, Robust) 

Mixed Techniques: Techniques that combine several of the above-mentioned 

techniques. (Bayesian, COCOMO II) 

In a study conducted in 2002, software cost estimation methods were basically 

examined under two main groups [8]: “Algorithmic Models”, “Non-Algorithmic 

Models”. “Learning-Based Models” can be added as a third category to this 

classification with the studies carried out in the last 10 years. Approaches below 

provides an analysis of algorithmic, non-algorithmic, and machine learning methods 

for cost estimation, highlighting the strengths and weaknesses of different cost 

estimation. 
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Table 2.1: Comparison of Algorithmic, Non-Algorithmic and Machine Learning 

Approaches 

Approach Description Strengths Weaknesses 

Algorithmic 

 

 

Rely on predefined 

formulas or 

algorithms to 

estimate costs. 

 

Simplicity and transparency 
Reliance on 

assumptions 

Well-defined 

formulas/algorithms 
Limited flexibility 

Quick estimation process 
Lack of 

adaptability 

Non-

algorithmic 

 

 

 

Rely on expert 

judgment and 

experience for cost 

estimation. 

Utilizes expert knowledge 

and experience in the 

estimation process 

Subjectivity and 

bias 

Incorporates human insights 
Difficulty in 

quantification 

Can capture unique project 

factors 
Time-consuming 

 
Lack of 

reproducibility 

Machine 

Learning 

 

 

Use data-driven 

models to estimate 

costs based on 

historical data. 

 

Ability to handle complex 

data 

Dependency on 

quality of data 

Can learn from historical 

data 

Overfitting and 

generalization 

issues 

Adaptability to different 

projects 

Need for 

substantial data 

 

2.2.1 Algorithmic Model 

Algorithmic cost model involves using formula to estimate cost of software 

referring to predictions of project size, the number of programmers, and other process 

and factors of production. A cost model based on algorithms can be created by 

examining the expenses and attributes of finished projects and identifying the equation 

that best matches real-life observations. 

 

2.2.1.1 COCOMO Model 

COCOMO was introduced in 1981 and is one of the most widely used software 

estimation models globally. COCOMO estimates the cost and schedule of a software 

product referring to the size of software product. 

The procedure of this model comprises the following steps: 

● Generate an initial estimate of the development effort by analyzing numerous 

delivered lines of source code (KDLOC). 

● Identify a collection of 15 scaling factors based on various characteristics of 

the project. 
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● Compute the effort estimate by multiplying the initial estimate with all the 

scaling factors, i.e., by combining the values obtained in the first and second steps. 

● The initial estimate (also known as the nominal estimate) is determined using 

a formulation resembling static single-variable models, where KDLOC is employed as 

the size metric. The following equation is utilized to determine the initial effort in 

person-months, represented as Ei. 

     

Ei = a * (KDLOC)^b                                    (2.1) 

 

The values of the constants a and b depend on the project type. 

In COCOMO, projects are categorized into three types: 

o Organic 

o Semidetached 

o Embedded 

Organic: 

A development project can be classified as organic if the project involves 

developing a well-understood application program, the size of the development team 

is reasonably small, and the team members are experienced in developing similar types 

of projects. Examples of this type of projects are simple business systems, 

straightforward inventory management systems, and data processing systems. 

Semidetached: 

A development project can be classified as semidetached if the development 

consists of a mix of experienced and inexperienced staff. Team members may have 

limited experience with similar systems but may be new to certain aspects of the 

project being developed. Examples of semidetached systems include developing a new 

operating system (OS), a Database Management System (DBMS), and complex 

inventory management systems. 

Embedded: 

A development project is classified as embedded if the software being 

developed is tightly coupled to complex hardware or if stringent rules on the 

operational procedure exist. Examples include ATMs and air traffic control systems. 

According to Boehm, it is possible to do software cost estimation with three phases: 
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➢ Basic Model 

➢ Intermediate Model 

➢ Detailed Model 

 

2.2.1.2 Putnam's Model 

Putnam was suggested and improved based on labor distribution and research 

of various software projects. Putnam's Model ‘s main equation is: 

 

 S = E * (Effort)^(1/3) * (td)^(4/3)                                (2.2) 

 

In Putnam's Model, the environment factor E represents the environment 

capability, while td denotes the delivery time. The measures of effort and S are 

expressed in person-years and lines of code, respectively. Additionally, Putnam's 

Model introduces an additional equation to calculate the effort involved. 

 

Effort = D0 * (td)^3                                  (2.3) 

 

The manpower build-up factor, denoted as D0, ranges from 8 to 27 depending 

on whether the software is newly developed or rebuilt. 

 

2.2.1.3 Function-Point Based Model 

In 1983, Albrecht presented the Function Point Metric, a measurement 

designed to assess project effectiveness. This model incorporates five variables, which 

are as follows: 

● User Inputs,  

● User Outputs,  

● Logic Files,  

● Inquiries, and  

● Interfaces,  

to assess the size of the project. The complexity of a function is determined 

based on its simplicity or complexity, measured on a scale of 1, 2, or 3. Each variable 

is assigned a weight ranging from 3 to 15. 
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2.2.2 Non-Algorithmic Model 

The Non-Algorithmic Model, in contrast to Algorithmic techniques, relies on 

analytical examinations and inference [9]. To use Non-Algorithmic techniques, it is 

necessary to have information about previous projects that are similar to the project 

being estimated. Typically, the estimation process in these techniques involves 

analyzing past datasets. 

 

2.2.2.1 Expert Judgment 

"Master Judgment" is a technique where evaluations are based on a specific set 

of criteria and the expertise acquired in a particular field of knowledge, application 

domain, product area, specific discipline, or industry. So on such mastery might be 

furnished by any gathering or individual with particular schooling, information, 

expertise, experience, or training [10]. The knowledge base for expert judgment can 

come from members of the project team, multiple individuals within the team, team 

leaders, or project managers. However, expert judgment often requires expertise that 

is not available within the project team, so it is common to seek external individuals 

or groups with a specific relevant skill set or knowledge base for consultation. Any 

group or individual with specialized knowledge or training can offer such expertise, 

and it can be acquired from a variety of sources. Such as customers or sponsors, 

professional and technical associations, industry groups, subject matter experts 

(SMEs), project management offices (PMOs), and suppliers [11]. 

 

2.2.2.2 Estimation by Analogy 

Estimation by Analogy involves determining the cost of a project by comparing 

it to a similar project in the same application domain. In order to make this estimation, 

specific conditions must be satisfied. These conditions encompass gathering data from 

previous and ongoing projects, such as weekly work hours per team member, project 

completion costs, the similarity between the current project and previous ones, and the 

existence of modules or activities in past projects resembling those in the current one. 

If the current project is novel and lacks prior similar projects, alternative methods may 

be necessary. The selected data from past projects are used in conjunction with the 

expertise of the project manager and the estimation team to ensure informed judgment 

in the estimations. 
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2.2.2.3 Top-Down Estimating Method 

The Top-Down estimating method, commonly referred to as the Macro Model, 

entails obtaining a comprehensive cost estimation is determined by taking into account 

the software project's overarching characteristics. This estimation is then further 

broken down into various low-level mechanisms or components. The Putnam model 

is often employed as a means for implementing this approach. The Top-Down method 

is particularly suitable for early cost estimation when only high-level information 

about the project is available. In the early phase of the software cost estimation, top-

down is very useful because there is no detailed information available [12]. 

 

2.2.2.4 Bottom-up Estimating Method 

The Bottom-Up estimating method involves assessing the cost of each 

individual software component and then combining the results to arrive at an estimated 

cost for the entire project. The Bottom-Up method focuses on building the estimate of 

a system by considering the information gathered about the small software components 

and their relationships. The strategy utilizing this methodology is COCOMO's point 

by point model [12]. 

 

2.2.2.5 Parkinson's Law 

Parkinson's Law states that the project costs will expand to consume the 

available resources. This means that the cost estimation is based solely on the resources 

at hand, such as hardware, software, power, space, etc. For example, if the customer 

requires the software to be completed within 10 months and only 4 people are 

available, the cost estimate would be calculated as 10 * 4, resulting in 40 person-

months. In this strategy, consider just the client spending plan, and not the number of 

people is needed for building up the product or some other assets for estimation [13]. 

 

2.2.2.6 Pricing to Win 

Pricing to Win is a method that relies solely on the customer's budget rather 

than the functionality of the software. In this approach, only the customer's budget is 

considered, without considering the number of people required for software 

development or any other resources. For instance, if the client can burn through 40 

man/month, yet real exertion is 60 man/month. At that point assessor is approached to 
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alter in assessment and fit in 40 man/months. Again, this strategy isn't better for 

acceptable programming rehearses [13]. 

 

2.2.3 Machine Learning Model 

Most cost estimation procedures rely on statistical methods, which may lack 

explanation and reliable results. However, machine learning techniques can be suitable 

as they can enhance the accuracy of estimation by training assessment rules and 

iterating the process.  

Machine learning is a scientific field that deals with ways in which machines 

can learn through experience. Learning is the fundamental characteristic of what is 

commonly referred to as intelligent entities. The goal of machine learning is to build 

computer systems that can learn. Machine learning can be seen as a collection of 

methods that acquire knowledge from existing data using various mathematical 

techniques and can make predictions based on this acquired knowledge. Machine 

learning algorithms extract more meaningful data representations that represent the 

raw data before using them. For example, during the training phase, the existing 

training data is processed using mathematical methods used in the algorithm, and a 

model is derived. With this model, predictions can be made about any test data. 

Machine learning algorithms can be broadly categorized into three main categories, 

namely supervised learning, unsupervised learning, and reinforcement learning. 

• Supervised Learning 

• Unsupervised Learning 

• Reinforcement Learning 

In supervised learning, there is a teacher during the learning process. In this 

process, input values and expected outputs are already presented to the network. 

Examples of these methods include regression and classification algorithms. In 

unsupervised learning, there is no teacher during the learning process. Expected 

outputs are not presented to the network. The system learns by discovering and 

adapting the structural features in the input data model. Examples of these methods 

include clustering algorithms. In reinforcement learning, there is a teacher, but the 

expected output is not available in the network. Only whether the output is correct or 

incorrect is indicated. In this method, a penalty is given for incorrect output and a 

reward is given for correct output. Commonly used machine learning techniques are 

shown in Table 2.2. 
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Table 2.2: Machine Learning Techniques 

 

 

2.3 MACHINE LEARNING ALGORITHM SELECTION METHOD 

Because there are dozens of supervised, unsupervised and reinforcement 

machine learning algorithms, and the accuracy of the data-specific algorithm results 

that can be provided will vary, choosing the algorithm that will give the best results 

for solving the problem under consideration is a grueling process. 

It is important to note that there is no universal best method that applies to all 

scenarios. Determining the right algorithm often just possible with trial and error. 

Evaluating multiple variables simultaneously, such as data variability, quality, 

accuracy, and parameter values, can be challenging, making it difficult to determine if 

an algorithm will perform effectively on a given dataset without experimentation. 

Nevertheless, the choice of algorithm also depends on factors such as the size and 

nature of the data, the desired insights to be gained, and how those insights will be 

utilized. 

It is difficult to determine which technique gives more accurate results on 

which dataset. In the literature, a lot of research has been conducted in the field of 

machine education techniques. These findings suggest that machine learning 

techniques have the potential to provide more adequate prediction models for software 

development projects [14]. These studies have shown that machine learning methods 

can provide more adequate predictions models, especially in software development 

projects compared to traditional models.  
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In machine learning application, it offers various techniques and models that 

can be selected according to the size of the data being handled and the type of problem 

to be solved. A successful deep learning application requires huge amounts of data 

(thousands) to train the model and GPUs or graphics processing units to process the 

data quickly. 

When choosing between machine learning and deep learning, it is necessary to 

consider whether you have a high-performance GPU and lots of tagged data. While 

not having any of these, it's more feasible to use machine learning instead of deep 

learning. Deep learning is usually more complex, so thousands are needed to get 

reliable results. 

When machine learning is chosen, it will be possible to have the option to train 

the model on many different classifiers, and also be available to try which features can 

be selected to achieve the best results. Additionally, having the flexibility to try a 

combination of approaches and use different classifiers and features to see which 

arrangement works best for the data is possible. As a result, machine learning methods 

that can be used in a wide area will be progressed, as they allow working with more 

limited data, allowing use on less qualified hardware, and allowing easy application of 

hybrid methods. 

 

2.4 FEATURE SELECTION 

Estimating the cost in software projects relies on various factors, including the 

technology employed, the expertise of developers, the team's past project experiences 

in a similar domain, and the specific characteristics of the functions being developed. 

Software workforce estimation is a challenging task due to the multitude of parameters 

involved, and accurately predicting the relationships between these parameters is not 

always feasible. To address these ongoing challenges, techniques are continuously 

evolving to mitigate their impact. Numerous approaches and methods have been 

suggested to enhance the accuracy and success rate of effort estimation values. 

In general, useful features are unpredictable, and features with low correlation 

and missing data can affect classification performance. Including low-impact variables 

in model training reduces the model's ability to generalize and may also reduce the 

overall accuracy of a classifier. Also, adding more variables to a model increases the 

overall complexity of the model. Therefore, deciding on the optimum features to 

include in model training is critical in obtaining a generically high-performing model. 
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Various techniques are used in various fields to eliminate unnecessary features. 

Generally, useful features are unpredictable, and features with low correlation 

and additional data can affect classification performance. Including low-impact 

variables in model training reduces the model's ability to generalize and may also 

reduce the overall accuracy of a classifier. Also, adding extra variables to a model 

increases the overall complexity of the model, add noise to your model and make 

model interpretation problematic. Therefore, deciding on the optimum features to be 

included in the model training is critical in obtaining a model with high performance 

as generically. 

Various techniques are used in various fields to eliminate unnecessary features. 

The techniques for feature selection in machine learning can be broadly classified into 

the following categories: 

➢ Feature selection based on combining the features for evaluation 

➢ Feature selection based on the supervised learning algorithm used 

Feature selection through the amalgamation of features for assessment is 

categorized into two types: feature subset-centered and feature ranking-centered 

techniques. Within the feature subset-centered approach, features are amalgamated in 

potential combinations forming feature subsets, employing any one of several search 

strategies. These feature subsets are subsequently assessed employing statistical 

metrics or supervised learning algorithms to gauge the importance of each subset. The 

most substantial subset is then chosen as the significant feature subset tailored to a 

specific dataset. If the subset is evaluated using the supervised learning algorithm, then 

this method is known as wrapper method [15] PSO, GA are heuristic searching 

strategies. One of the widely accepted fundamental benefits of metaheuristic 

algorithms is that they provide mechanisms to solve large or intractable problems in 

reasonable execution times while the exact algorithms fail to succeed due to time 

limitations [16]. Numerous research works on feature selection have utilized the 

genetic algorithm to create subsets of features for evaluation, with the supervised 

machine learning algorithm employed to assess these subsets. For instance, Erguzel et 

al. utilized the genetic algorithm and artificial neural network to classify 

electroencephalogram  signals [17]. Oreski & Oreski proposed an approach for feature 

selection that combined GA with neural networks for credit risk assessment [18]. 

Additionally, Wang et al. applied the GA to generate subsets alongside SVM in the 

process of feature selection for data classification applications [19]. In their research, 
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Yang et al. created a feature selection method for land cover classification using PSO 

[20]. Feature ranking-based methods involve weighting each feature in a dataset based 

on statistical or information-theoretic measures and then ranking them according to 

their weights. The noteworthy attributes are picked utilizing a pre-established 

threshold that dictates the number of features to be selected from the dataset. As these 

techniques do not necessitate the use of a supervised learning algorithm for appraising 

feature importance, they adhere to a filter-based methodology. As a result, feature 

ranking-based methods are more versatile and computationally efficient, regardless of 

the specific supervised learning algorithm used. Hence, they are a viable choice for 

selecting important features from datasets with high dimensions. From a taxonomic 

point of view, these techniques are classified into filter, wrapper, embedded, and 

hybrid methods. 

Hybrid methods are a fusion of filter and wrapper-based approaches. Dealing 

with high-dimensional data can be challenging when using the wrapper method. To 

address this, Bermejo et al. devised a hybrid feature selection method called the 

approach which used filter methods and wrapper methods together. In this method, 

they initially employ a statistical measure to rank the features based on their relevance. 

The features with superior rankings are subsequently forwarded to the wrapper 

technique, resulting in a substantial reduction in the number of necessary assessments, 

rendering it an efficient linear process. As a result, this hybrid approach reduces the 

computational complexity when applied to medical data classification tasks. . The 

hybrid algorithms are developed by combining the current metaheuristics or classical 

algorithms. The main purpose of hybrid algorithms is to combine the skills of diverse 

algorithms to obtain better results. Therefore, hybrid metaheuristic algorithms have 

significant improvements compared to single metaheuristic algorithms [21]The feature 

selection algorithm developed by Ruiz and colleagues, which employs a statistical 

ranking method to identify genes for medical diagnosis, was integrated into the 

wrapper approach. This combination of the filter and wrapper approach was used to 

distinguish the significant genes causing cancer disease in the diagnosis process [22]. 

 

2.5 LITERATURE REVIEW 

In the literature, there are many studies conducted with machine learning 

algorithms for effort estimation in software projects, which differ according to the 

applied project management methodologies, the indicators that the effort is 
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represented, the data sets used, performance evaluation metrics, the application 

platform and the applied methods. Some examples of these studies will be described 

below. 

In 2013 Nassif, Ho and Capretz studied on a comparison between the MLP and 

log-linear regression models was conducted based on the size of the projects. Results 

demonstrate that the MLP model can surpass the regression model when small projects 

are used, but the log-linear regression model gives better results when estimating larger 

projects [23]. 

Sharma and Singh  concludes that significant amount of research has carried 

out in software effort estimation using machine learning approaches. The distribution 

of research over years is stable. The major machine learning approaches used are 

Artificial Neural Networks, Fuzzy Logics, Genetic Algorithms and Regression Trees 

for software effort estimation. Most of the studies recommended the use of Line of 

Code (LOC) and Function Point (FP) software metrics for effort estimations. The 

review further revealed the lack of real-life datasets which are in accordance to current 

software development methods and also need of other reliable metrics that can be used 

for estimation of effort. Diverse validation methods are available which could be 

considered in augmenting studies to validate the results of software effort estimations. 

The major validation methods are Cross Validations, Jacknife method and Iterative 

method [24]. 

In 2018, Pospieszny, Chrobot and Koylinski conducted a study by applying 

smart data preparation to dataset of ISBSG, three different ML algorithms as SVM, 

Neural Networks and Generalized Linear Models in predicting the effort required for 

software development [25]. 

In 2018 BaniMustafa suggests performing prediction using three machine 

learning techniques that were applied to a preprocessed COCOMO NASA benchmark 

data which covered 93 projects: Naïve Bayes, Logistic Regression and Random 

Forests. [26]. 

Asad and Carmine’s analysis reveals that artificial neural network (ANN) as 

ML model, NASA as dataset, and mean magnitude of relative error (MMRE) as 

accuracy measure are widely used in the selected studies. ANN and support vector 

machine (SVM) are the two techniques which have outperformed other ML techniques 

in more studies. Regression techniques are the mostly used among the non-ML 

techniques, which outperformed other ML techniques in about 19 studies. Moreover, 
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SVM and regression techniques in combination are characterized by better predictions 

when compared with other ML and non-ML techniques [27]. 

In 2020, Singh and Kumar Linear Regression (LR), Multi-layer perceptron 

(MLP), Random Forest (RF) algorithms are implemented using WEKA toolkit, and 

results shows that Linear Regression shows better estimation accuracy than Multilayer 

Perceptron and Random Forest [28]. 

In 2021, Asad and Gravino the authors performed six bio-inspired feature 

selection algorithms (GA, PSO, ACO, TS, HS, and FA) and four traditional non-bio-

inspired algorithms (Best-First Search, Greedy Stepwise, Subset Forward Selection, 

and Random Search), used in combination with five widely used estimation techniques 

(MultiLayerPerceptron, Support Vector Regression, Random Forest, Linear 

Regression, and M5P algorithm) and applied to eight publicly available datasets 

widely used in the SDEE community (Albrecht, China, COCOMO, Finnish, Kemerer, 

Maxwell, Miyazaki, and NASA) [29]. 

Similarly, Ritu and Gang’ s paper suggests different machine learning 

techniques such as Naïve Bayes, Random Forests Logistic Regression, stochastic 

gradient boosting, decision tree, and story point for estimation to assess prediction 

more efficiently [30]. 

In 2022, Sharma and Chaudhary a comparative study has been done for agile 

development and traditional development using the neural network (NN) and genetic 

algorithm (GA). The minimum error and maximum accuracy for estimated values of 

effort achieved using the machine learning methods. The dataset with the story point 

give best results followed by projects with lines of code [31]. 

Also, in 2023, Jadhav and Shandilya applied eight different machine learning 

based regression algorithms namely; SVM, Random Forest (RF), Decision Tree (DT), 

Stochastic Gradient Boosting (SGB), Naïve Bayes (NB), MLP, LinearRegression (LR) 

and kNN over twelve different publicly available datasets; Albrecht, China, 

COCOMO81, Desharnais, Finnish, Kemerer, Kitchenham, Maxwell, Miyazaki, 

NASA18, NASA93 and Telecom. On considering RF outperforms other ML 

algorithms. Considering 36 cases, top three cases of each dataset; RF proves to be more 

accurate in terms of prediction accuracy. RF gives high prediction accuracy with 9 

datasets, followed by kNN which gives higher accuracy with 6 datasets, NB with 5 

datasets, DT and LR with 4 datasets, MLP and SGB with 3 datasets and finally SVM 

with only 2 datasets. [32]. 
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CHAPTER III 

3. METHODOLOGY 

 

In this section, the datasets discussed in problem solving, the tool used, the 

machine learning algorithms to be applied, and then the feature selection techniques 

to obtain the optimized dataset subset, the performance measurement metrics used to 

measure the success of the models applied in the study are explained in detail. 

 

3.1 DATASET 

In this study, Finnish, Kemerer, Maxwell and China datasets were examined for 

software cost estimation from the Promise Data repository [33] The primary objective behind 

utilizing these datasets is their widespread recognition, simplicity, and accessibility to the 

public. This facilitates easy replication and verification of results, and potentially encourages 

further exploration and expansion. It is important to note that the approach is not limited to 

any specific dataset or model, but can be applied across various datasets and models. Related 

datasets ‘s information given in Table 3.1. 

 

Table 3.1: Information of Datasets 

Dataset 
Project 

Number 

Feature 

Number 

Size 

(Measure Unit) 

Cost 

(Measure Unit) 

China 499 19 Function Point Man-Hour 

Finnish 38 9 Function Point Man-Hour 

Kemerer 15 8 KSLOC Man-Month 

Maxwell 62 27 Function Point Man-Hour 

 

3.1.1 Finnish 

Finnish Dataset: The dataset from Finland includes 40 project records gathered 

by the TIEKE organization from nine companies in Finland. The size and complexity 

of the projects were assessed using the function point approach introduced by 

Kitchenham and Kansala in 1993. Detailed statistics of the Finnish dataset are 

presented in the Table 3.2.
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Table 3.2: Finnish Dataset Statistics 

No Feature Description Min Max Mean 

1 ID Project no 1 38 1905 

2 Dev.eff,hrs Development effort hours 460 26670 767829 

3 hw Hardware type 1 3 126 

4 at Application type 1 5 224 

5 FP Function point data 65 1814 76354 

6 co Application area 2 10 626 

7 prod Project duration (calendar months) 147 2947 1007 

8 lnsize 
System requirements size in raw 

Albrecht function points 
417 75 636 

9 lneff Effort provided by application user 613 1019 840 

 

3.1.2 China 

China Dataset: The China dataset is a more recent addition to the PROMISE 

repository, included in 2010. It consists of 499 records, as documented by Bosu and 

MacDonell in 2019. The China dataset comprises 19 features, with 18 being 

independent variables and 1 being the dependent variable. The Table 3.3 provides 

statistical information regarding the China dataset.  

 

Table 3.3: China Dataset Statistics 

No Feature Min Max Mean 

1 ID 1 499 250 

2 AFP 9 17518 487 

3 Input 0 9404 167 

4 Output 0 2455 114 

5 Enquiry 0 952 62 

6 File 0 2955 91 

7 Interface 0 1572 24 

8 Added 0 13580 360 

9 Changed 0 5193 85 

10 Deleted 0 2657 12 

11 PDR_AFP 0.3 83.8 12 

12 PDR_UFP 0.3 96.6 12 

13 NPDR_AFP 0.4 101 13 

14 NPDU_UFP 0.4 108 14 

15 Resource 1 4 1 

16 Dev.Type 0 0 0 

17 Duration 1 84 9 

18 N_effort 31 54620 4278 

19 Effort 26 54620 3921 

 

3.1.3 Kemerer 

Kemerer Dataset: The Kemerer dataset, collected in 1987, originates from an 

American company engaged in the development of data processing software. It 
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comprises 15 projects, each having eight attributes. The dataset contains projects that 

began between 1981 and 1983, with data collected in 1985. Specific statistical details 

for the Kemerer dataset can be found in the Table 3.4. 

 

Table 3.4: Kemerer Dataset Statistics 

No Feature Description Min Max Mean 

1 ID Project ID 1 15 8 

2 Language Software used 1 3 12 

3 Hardware Hardware used 1 6 233 

4 Duration Duration 5 31 1427 

5 KSLOC Number of source lines code in thousands 39 450 18657 

6 AdjFP Adjusted function points 999 23068 99914 

7 RAWFP Raw function points 97 2284 99387 

8 EffortMM Effort Man Months 232 110731 21925 

 

3.1.4 Maxwell 

Maxwell Dataset: Collected from a Finnish commercial bank, the Maxwell 

dataset encompasses 62 projects described by 27 attributes. Maxwell documented this 

dataset in 2002. The projects in the dataset initiated between 1985 and 1993. 

Comprehensive statistical information for the Maxwell dataset is provided in the Table 

3.5.  
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Table 3.5: Maxwell Dataset Statistics 

No Feature Description Min Max Mean 

1 Syear Year 85 93 8958 

2 App Application type 1 5 235 

3 Har Hardware platform 1 5 261 

4 Dba Database 0 4 103 

5 Ifc User interface 1 2 193 

6 Source Where developed 1 2 187 

7 Telonuse Telon use 0 1 24 

8 Nlan # of development languages 1 4 255 

9 T01 Customer participation 1 5 305 

10 T02 Development Env, adequacy 1 5 305 

11 T03 Staff availability 2 5 303 

12 T04 Standards use 2 5 319 

13 T05 Methods use 1 5 305 

14 T06 Tools use 1 4 290 

15 T07 Software logical complexity 1 5 324 

16 T08 Requirements volatility 2 5 381 

17 T09 Quality requirements 2 5 406 

18 T10 Efficiency requirements 2 5 361 

19 T11 Installation requirements 2 5 342 

20 T12 Staff analysis skills 2 5 382 

21 T13 Staff application 1 5 306 

22 T14 Staff tool skills 1 5 326 

23 T15 Staff team skills 1 5 334 

24 Duration Duration 4 54 1721 

25 Size Function points 48 3643 67330 

26 Time Time 1 9 558 

27 Effort Work hours Effort 583 63694 822321 

 

3.2 APPLICATION PLATFORM 

This study was conducted utilizing the WEKA platform, which is an open-

source application written in Java. It was originally developed by a PhD student at the 

University of Waikato in New Zealand and is governed by the General Public License. 

WEKA offers a range of algorithms for performing machine learning and data 

engineering tasks, including classification, clustering, visualization, estimation, 

correlation analysis, feature selection, and data preprocessing for scientific research. 

The version utilized in this study was WEKA 3.8.6 which published in 2022.  

While WEKA is installed, it presents the weka.jar file, which includes the 

necessary libraries. WEKA Jar allows for the development of projects by accessing 

WEKA classes from other platforms such as Java or C#. Within WEKA, datasets are 

typically in the arff (Attribute Relationship File Format) extension, although it also 

supports other formats such as textual csv, dat, libsvm, json, and xrff. 
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The opening screen of WEKA, as depicted in the provided Figure 3.1 The 

opening screen of WEKA, serves as the interface from which the platform is launched. 

 

 

Figure 3.1: The opening screen of WEKA 

  

● Explorer button enables users to perform tasks such as loading datasets, 

conducting classification, clustering, preprocessing, and feature selection 

operations.  

● By utilizing the Experimenter button, users can identify the most suitable 

methods and parameter values for classification and regression techniques. 

● Knowledge Flow button handles extensive data manipulations, allowing 

users to create a workflow by dragging and combining boxes representing 

learning algorithms and data sources.  

● Workbench button provides a consolidated interface that incorporates the 

functionality of other buttons and allows for the inclusion of user-added 

plug-ins. 
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● On the other hand, Simple CLI button opens the console screen, enabling 

users to execute all WEKA operations using text commands. 

In addition, some algorithms, attribute selection tools, etc. that are not already 

installed can be included in the relevant version by selecting Package Manager from 

the Tool tab in the top menu. In this study, it has been added to the version via PSO 

and GA tool. 

After this stage, it was proceeded to load the dataset and develop the model 

directly with the explorer tab. Which is given Figure 3.2 Explorer Tab Content of 

WEKA. 

 

 

Figure 3.2: Explorer Tab Content of WEKA  

 

Descriptions of some of the key features available in the Explorer menu are as 

follows: 

o Open File/URL/DB: These options allows users to load a dataset from 

specified location. It supports various formats such as ARFF (Attribute-

Relation File Format), CSV (Comma-Separated Values), and more. 

o Save: Users can save the modified dataset or the results of their analysis 

using this option. They can choose the desired file format and specify the 

destination to save the file. 

o Preprocess: The Preprocess option provides a range of data preprocessing 

techniques. It allows users to perform tasks such as attribute selection, 

attribute transformation, instance filtering, and missing value handling. 
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Users can apply these techniques to clean and prepare their data for further 

analysis. 

o The "Choose" option in the WEKA Explorer menu allows users to select 

the target attribute or class for their machine learning tasks.  

Additionally, after selecting the target attribute using the "Choose" option, 

users can transform unusual datas to valid forms, apply filters which enables attribute 

selection, classification implementation further configure and customize the machine 

learning algorithms, evaluation metrics, and visualization options to refine the analysis 

and could achieve the desired results. 

In this section, the previously acquired China.arff data is imported into the 

system by using the open file option. Attributes of the data become visible in rows in 

the data window. In addition, 499 samples in the dataset are also depicted as visible. 

Analysis of the existing data can be performed on the Edit Data tab or on the graphic 

images created when each attribute is selected. As described, data types can be 

changed from nominal to numeric in the Choose/Filter tab, etc. preprocessing is 

allowed. 

At this stage, firstly, model training was carried out by going to the Classify 

tab on the original dataset. Secondly, with the Attribute Selection function in the 

Preprocess/Choose/Filter tab, it was tried to optimize the number of features by 

applying hybrid feature selection techniques in different configurations before model 

training. An example is given in which the number of features is reduced from 19 to 

10 by testing the Genetic Algorithm, which is the search method, with Cfs, which is 

the evaluator in WEKA. 

 Classify: This option enables users to build and evaluate classification models 

using various algorithms. Users can select the target class attribute and choose from a 

wide range of classifiers, including decision trees, support vector machines, naive 

Bayes, and more as given at with Figure 3.3. The Classify option also provides 

evaluation metrics and visualization tools to assess the performance of the models. 

Firstly, the classify application, which was carried out on the original dataset, 

then reduced to 10 and the model training was carried out by selecting the SMOreg 

function containing the Support Vector Machine for Regression feature from the 

Choose button and selecting 10-fold cross validation from the left Test Options menu. 
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Figure 3.3: Classify Section of WEKA 

 

 

Figure 3.4: Classifier Details in WEKA 
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As seen in Figure 3.4, the right panel shows the model training time and results. 

Model performance parameters Correlation Coefficient, Mean Absolute Error, Root 

Mean Squared Error, Relative Absolute Error, Root Relative Squared Error are 

presented and Total Number of Instances which give the number of samples used in 

model training and testing is showed. 

Cluster: The Cluster option allows users to perform clustering analysis on their 

dataset. Users can select from a variety of clustering algorithms, such as k-means, 

hierarchical clustering, and density-based clustering. They can explore the resulting 

clusters and analyze the patterns within their data. 

Associate: The Associate option is used for association rule mining. It enables 

users to discover interesting associations and relationships between different attributes 

in their dataset. Users can set parameters, such as minimum support and confidence 

thresholds, and generate association rules based on their data. 

Visualize: The Visualize option provides visual representations of the data, 

models, or evaluation results. Users can explore different visualization techniques, 

such as scatter plots, line charts, decision tree visualizations, and more, to gain insights 

and understand the patterns and relationships in their data. 

Evaluate: This option allows users to evaluate the performance of their models 

using various evaluation metrics. Users can assess classification accuracy, precision, 

recall, F-measure, and other measures to gauge the effectiveness of their models. 

These are some of the main features typically found in the Explorer menu of 

WEKA 3.8.6. They provide a comprehensive set of tools to load, preprocess, model, 

evaluate, and visualize data for machine learning tasks. 

 

3.3 MACHINE LEARNING ALGORITHMS 

In this section, the ML algorithms used in the thesis study and included in the 

classification area of the WEKA tool are presented. 

ML algorithms in WEKA are listed under the following headings and the 

algorithms used in model training in the thesis study are listed under the relevant 

headings. 

a. Functions 

o LinearRegression 

o Multilayer Perceptron 

o SMOreg (Sequential Minimal Optimization Regression) 
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b. Lazy Classifiers 

o IBk (K-nearest neighbors classifier) 

o KStar (Instance-based classifier) 

c. Meta 

o Bagging 

d. Tree 

o M5P (M5 Model trees) 

o RandomForest 

o RandomTree 

 

3.3.1 Linear regression 

Linear regression is a prediction algorithm that is frequently used in the field 

of machine learning. This algorithm is used to model the relationship of a dependent 

variable (target variable) with independent variables. Basically, a linear equation is 

created by multiplying the features in the dataset by a weight and adding them together.  

The main purpose of the linear regression algorithm is to determine the 

relationship between the independent variables and the effect of these variables on the 

dependent variable. In this way, we can make predictions for new data points. The 

results show that linear-regression-based methods show some advantages than deep 

learning such as being applicable to a small number of training samples and 

complicated natural object image [34]. 

As an example, we can use linear regression to estimate the selling price of a 

house. In this case, the dependent variable is the selling price, and the independent 

variables are the size of the house, location, number of rooms, etc. it could be. The 

model can predict the selling price by determining the weights of these independent 

variables. 

Linear regression has some important assumptions, such as the assumptions 

that the errors are normally distributed, that the errors are independent, and that there 

is no heteroscedasticity. These assumptions can affect the accuracy of the model and 

are points that need to be analyzed. 

Weaknesses: 

⮚ Linear regression assumes that the relationships in the dataset are 

linear. It may have poor performance in nonlinear relationships. 

⮚ Outliers can affect the performance of the model. 
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⮚ In the case of multiple collinearity (a high correlation between 

features), the performance of the model may decrease. 

Strengths: 

⮚ It is a simple and fast algorithm. 

⮚ It is easy to interpret. The weights of the model show the effect of the 

features on the target variable. 

⮚ If the data is linearly correlated, it can give good results. 

 

3.3.2 Multilayer Perceptron 

Multilayer perceptron (MLP) is a multilayer artificial neural network-based 

algorithm. While creating the model, a multi-layered sensor network is created. This 

network includes the input layer, hidden layer(s), and output layer. The study 

investigated the application of Multilayer Perceptron (MLP) neural networks with 

back-propagation learning for churn prediction in a telecommunication company[35]. 

Nodes in each layer are associated with activation functions (usually sigmoid 

or ReLU). The weights of the connections in the model are initialized with random 

initial values. Using Forward Propagation, a sample in the dataset is passed in the 

forward direction of the network, starting from the input layer. By using activation 

functions in each layer, the outputs at the nodes are calculated and transmitted to the 

next layer. Also, using Backpropagation, the predictions in the output layer are 

compared with the target values to calculate the error. Then the error propagates 

backwards to the layers and the gradient descent method is used to update the weights. 

This step is aimed at reducing the model's errors and improving its performance. 

Updating the weights and training the model with repeated forward propagation and 

back propagation steps on the dataset. At the same time, a separate validation dataset 

is used so that the model does not overfit. The model trained for Evaluation of the 

Model is evaluated on the test dataset. 

Weaknesses: 

The training process can take time and require computational power, especially 

for large datasets and complex network structures. 

⮚ The model has the risk of overfitting, that is, it can overfit the training 

dataset and reduce the generalization performance. 
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⮚ Setting up the structure and parameters of the network correctly may 

require experience and trial and error. 

Strengths: 

⮚ Multilayer perceptrons are powerful when modeling complex 

relationships and non-linear problems. 

⮚ Since it is based on artificial neural networks, it has the ability to 

capture non-linear features. 

⮚ It performs well overall and is effective in a variety of data analysis and 

forecasting problems. 

MLP is used in many fields, especially image processing, natural language 

processing, financial analysis and control systems. In WEKA, MLP is an algorithm 

used especially in datasets with complex structures and non-linear relationships. 

 

3.3.3 SMOreg (Sequential Minimal Optimization Regression) 

SMOreg (Sequential Minimal Optimization for Regression) is a machine 

learning algorithm used for support vector regression (SVR). The SMO algorithm 

addresses the dual optimization problem of SVMs using a coordinate descent 

approach. By selecting two variables at a time for optimization, the SMO algorithm 

efficiently converges to the global solution. Experimental results on various datasets 

demonstrate the effectiveness of SMO in training SVMs with competitive 

classification performance. The study provides insights into the underlying principles 

of SMO and its role in training SVM models [36]. SMOreg aims to best order data 

points around a regression line or plane. 

● SMOreg creates a regression line or plane by projecting data points onto a high-

dimensional feature space. This projection is performed using the kernel function. 

For example, the RBF (Gaussian) kernel is a frequently used option. 

● SMOreg solves an optimization problem by splitting the dataset into support 

vectors. This problem aims to identify support vectors that line the regression line 

or plane. 

● SMOreg selects support vectors to solve the optimization problem. These support 

vectors are the points that best describe the regression line or plane. 
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● SMOreg iteratively solves the optimization problem. In each iteration, a pair of 

support vectors is selected and optimization is performed on this pair. This helps 

to update the support vectors and the regression line/plane. 

● SMOreg generates the regression line or plane using support vectors and kernel 

function. This model is used to make predictions of the regression problem. 

Some features of the SMOreg algorithm are: 

● SMOreg is resistant to outliers within the dataset and therefore ensures that the 

regression model is stable. 

● Projecting into a high-dimensional feature space using a kernel function is suitable 

for solving non-linear regression problems. 

● SMOreg performs well on low-size datasets, but there may be scalability issues for 

large datasets. 

● The complexity of the model depends on the choice of kernel function and number 

of nodes. Therefore, the model may tend to overfit. 

Strengths: 

⮚ SMOreg is an efficient algorithm for support vector regression (SVR). 

SVR can provide high performance in regression problems. 

⮚ Support vector regression is robust to outliers and can reduce the effect 

of outliers in the dataset on the model. 

⮚ It is capable of solving non-linear regression problems, by using kernel 

function to project onto high-dimensional feature space. 

⮚ SMOreg can perform well on low dimensional datasets and can run 

quickly in some cases. 

⮚ It may be capable of making good generalizations by ordering the 

support vectors around the regression line or plane in the best way 

possible. 

Weaknesses: 

⮚ SMOreg can cause scalability issues for large datasets. It may take time 

to train the model and make predictions on large datasets. 

⮚ It may be necessary to set the parameters of the kernel function and 

model correctly. This may require experience and trial and error with 

hyperparameter optimization. 
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⮚ SMOreg may be prone to overfitting in some cases. Overfitting of the 

model may reduce the generalization performance of the model. 

⮚ SMOreg may not be able to fully solve nonlinear regression problems 

in some cases. In this case, it may be necessary to use other kernel 

functions or different models. 

SMOreg is an efficient algorithm for solving regression problems and is also 

available in machine learning tools such as WEKA. 

 

3.3.4 IBk (Instance-Based learning with k parameter) 

IBk (Instance-Based learning with k parameter) or k-nearest neighbors (k-NN) 

is a machine learning algorithm. IBk is an algorithm used to solve classification and 

regression problems. The study invesgtigated several methods have been studied in 

text categorization and mostly are inspired by the statistical distribution features in the 

texts, such as the implementation of Machine Learning (ML) methods.  The SMO and 

IBk methods were the best, while AdaBoost was the worst. [37]. 

The IBk algorithm chooses a proximity metric to calculate similarity between 

samples. Euclidean distance is a commonly used measure of sample distance, but other 

metrics can be used. 

Creates a model that represents the dataset in the feature space of the samples. 

This model includes all samples and their labels. 

When a test sample arrives, the IBk algorithm chooses the k number of training 

samples closest to that sample. Estimates are made using the labels of the nearest 

neighbors. While choosing the most common class label for classification, the mean 

or weighted average of the target values of the nearest neighbors can be used for 

regression. 

Weaknesses: 

⮚ Memory and computational requirements: The IBk algorithm stores all 

training samples and their labels in memory. Memory and computing 

power issues can arise when working with large datasets and a large 

number of features. 

⮚ Scaling issues: Proximity measurement is affected if features in the 

dataset have different scales. This is why it's important to pre-scale 

features. 
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⮚ Sensitivity to outliers: The IBk algorithm makes a prediction based on 

close neighbors. Outliers may affect the proximity measurement and 

adversely affect the results. 

Strengths: 

⮚ Simple and straightforward: The IBk algorithm uses a simple approach 

and is easy to understand. 

⮚ Flexibility: The algorithm can solve classification and regression 

problems. It can also be customized using different proximity 

measures. 

⮚ Effective results: The IBk algorithm gives successful results in many 

application areas. In particular, it can perform well where relationships 

in the dataset are complex. 

⮚ Adjusting parameters: k, a parameter of the algorithm, affects the 

performance of the model. Choosing a good k value can improve the 

accuracy of the model. 

 

3.3.5 KStar (Instance-based classifier) 

The KStar algorithm in WEKA is based on models in the literature. The KStar 

algorithm is an extension of the C4.5 decision tree algorithm proposed by Quinlan. 

The C4.5 algorithm is a method used to construct decision trees in classification 

problems, and the KStar algorithm is built on this basic idea. KStar uses the k-NN (k-

nearest neighbor) method when classifying, and therefore KStar can be considered as 

an extension of the k-NN algorithm in the literature. 

Unlike the C4.5 algorithm, the KStar algorithm is customized to work on 

nominal datasets. Therefore, numeric features may need to be converted to categorical 

format. Also, data preprocessing steps such as filling in or removing missing data can 

be applied. The Star algorithm is effectively used in classification problems. By 

learning the relationship of the features in the dataset with the class labels, they can 

classify the new samples. 

The system takes into account various project attributes, such as lines of code, 

complexity, and team experience, to estimate effort required for future projects. The 

performance of the estimation system was evaluated using metrics such as mean 
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absolute error and coefficient of determination. The  K-star  algorithm  uses  similarity  

measurements  to classify  the  data  based  on  the  classes'  likelihood [38]. 

The KStar algorithm creates a model based on the dataset. The model is 

represented as a decision tree structure. The decision tree contains rules that are used 

to make class predictions based on the values of the properties. When a test sample 

arrives, the KStar algorithm makes a class prediction using the decision tree. For 

example, a class label is determined for the test sample by following the relevant path 

in the decision tree. 

Strengths: 

⮚ Understandability: The KStar algorithm makes it easier to understand 

the results thanks to the decision tree structure it creates. This increases 

the interpretability of the model. 

⮚ Dealing with missing data: Instead of filling in missing data or 

subtracting it, KStar can make predictions by taking this data into 

account in the model building process. 

⮚ Feature selection: The KStar algorithm can perform feature selection to 

identify important features. This can help make the model more 

effective and less complex. 

Weaknesses: 

⮚ Scaling issues: The KStar algorithm is numerically insensitive when 

operating on nominal datasets. Therefore, it may be necessary to pre-

convert numeric features or use data preprocessing methods. 

⮚ Memory requirements: The KStar algorithm uses memory to store 

samples and relationships. Memory requirements may increase when 

working with large datasets. 

⮚ Calculation time: The KStar algorithm may require computation time 

when creating models and making predictions. Especially in case of 

large datasets or complex tree structures, the computation time can be 

longer. 

 

3.3.6 Bagging 

The Bagging algorithm is one of the ensemble learning methods and is used in 

classification or regression problems. Ensemble methods aim to create a stronger and 
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more generalizing model by combining multiple learning models. Bagging is short for 

Bootstrap Aggregating. 

The Bagging algorithm creates multiple sub-datasets from the dataset with the 

bootstrap sampling method. Each sub-dataset is generated by randomly drawing 

samples from the original dataset. This sampling process increases the diversity in the 

dataset. Independent learning models are created using the same learning algorithm on 

each sub-dataset. These models usually represent a single algorithm, such as decision 

trees or support vector machines. Each sub model predicts a new sample. Bagging 

provides unification of estimates, often using the majority voting method in 

classification problems. In regression problems, the average of the estimates is taken. 

Strengths: 

⮚ Variance Reduction: Bagging reduces variance by combining the 

estimates of multiple models. This results in more stable and reliable 

forecasts. 

⮚ Generalization Ability: Bagging reduces overfitting by increasing the 

diversity in the dataset and increases the generalizability of the model. 

⮚ Outlier Resistance: Bagging can reduce the effect of outliers as each 

sub model is trained on different samples. 

Weaknesses: 

⮚ Computation Cost: Because bagging requires training and estimating 

multiple models, the computational cost can increase. 

⮚ High Diversity: Bagging sometimes fails to provide high diversity due 

to the random generation of sub-datasets. In this case, the performance 

of the model may decrease 

Bagging is generally used in classification and regression problems. The 

bagging algorithm is available in machine learning tools such as WEKA and in many 

machine learning libraries. 

 

3.3.7 M5P (M5 Model trees) 

The M5P algorithm in WEKA is based on a regression model known in the 

literature as M5P (M5's Model Tree). M5P is an expansion of the M5 algorithm 

developed by Ross Quinlan. 
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The M5P model is a tree structure used as a regression model. The model 

consists of a parent tree and its subtrees. The M5P algorithm uses the tree structure to 

model complex relationships in the dataset. The tree structure draws attention with its 

ability to capture non-linear relationships and interactions between variables. The M5P 

algorithm was developed based on the M5P model in the literature, but the M5P 

application used in WEKA is a unique application and designed specifically for the 

WEKA library. Therefore, the M5P algorithm in WEKA may show some differences 

from the M5P model in the literature. However, the basic principles and model 

structure are the same. 

In the main tree created with M5P, the most important bisectable node is 

selected and similar operations are applied to the subtrees coming out of this node. 

This tree structure is suitable for capturing complex relationships in the dataset. After 

the model is created, tree editing can be done as needed. The editing process involves 

removing or trimming unnecessary branches. This makes the model simpler and 

clearer. After the model is created and edited, the M5P model is used to predict a new 

sample. The model estimates the target value using the input properties, for example. 

The M5P algorithm in WEKA is used in regression problems and is particularly 

effective when there are complex relationships in the dataset. Also, here are some 

strengths and weaknesses of the M5P algorithm: 

Strengths: 

⮚ Modeling Complex Relationships: M5P is capable of modeling 

complex relationships in the dataset through tree structure and node 

splits. 

⮚ Understandability: The tree structure created ensures that the model is 

understandable and interpretable. 

Weaknesses: 

⮚ Overfitting Tendency: M5P may tend to overfit the dataset. Therefore, 

over-learning of the model should be controlled considering the dataset 

size and complexity. 

⮚ Sensitivity: M5P can be sensitive to noises and outliers in the dataset. 

Therefore, cleaning and preprocessing of the dataset is important. 
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3.3.8 RandomForest 

Random Forest is one of the ensemble learning methods and is used for 

classification, regression and feature importance ranking problems in machine 

learning algorithms. Random Forest is a model created by combining multiple decision 

trees. 

Random Forest does random sampling for each decision tree with Bootstrap 

Sampling. This sampling process is performed by randomly selecting samples from 

the dataset. Although each sample is the same size, some data may be selected more 

than once, while others may not. 

A decision tree is created on each sample. While constructing the decision tree, 

a subset of the dataset is used and branch splitting is performed on this subset. The 

splitting operation selects the combination of features and thresholds that will provide 

the best separation. This step is repeated for each decision tree. 

Classification or regression estimation of a new sample is made using all the 

decision trees created. In the case of classification, the majority class is determined by 

voting. In the case of regression, the estimates obtained from the decision trees are 

averaged. 

Strengths: 

⮚ High Performance: Random Forest generally provides high 

performance because it is built by combining multiple decision trees. 

May be more resistant to overfitting. 

⮚ Feature Significance Rating: Random Forest provides a severity rating 

to evaluate the importance of each feature in classification or 

regression. 

⮚ Resistance to Outlier and Missing Data: Random Forest can better deal 

with missing or abnormal values in the dataset. 

Weaknesses: 

⮚ Model Explainability: The Random Forest model may be less 

explainable than a single tree because it consists of combining multiple 

decision trees. 

⮚ Computation Cost: Because Random Forest requires training and 

predictions of multiple decision trees, the computation cost may be 

higher. 
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It is available in Random Forest, WEKA and many other machine learning 

libraries and has a wide range of applications. 

 

3.3.9 Random Tree 

The RandomTree algorithm is often used to solve classification and regression 

problems. RandomTree algorithm is a classification and regression method based on 

decision trees. RandomTree creates decision trees using random feature selection and 

division operations. Each decision tree provides diversity through random feature 

selection and division operations and is associated with Random Forest, one of the 

ensemble learning methods. 

Random feature selection randomly selects the features used in each node as a 

subset. The splitting operation selects the combination of features and thresholds that 

will provide the best separation. This step is repeated until the decision tree is 

complete. 

By using the created decision tree, classification or regression estimation of a 

new sample is made. In the case of classification, the majority class estimate is taken 

at the leaf nodes. In the case of regression, the target values at the leaf nodes are 

averaged. 

Strengths: 

⮚ Simplicity and Speed: Because RandomTree is a decision tree-based 

algorithm, it can work quickly and present a simple model. 

⮚ Good Generalization: RandomTree can be resistant to overfitting and 

show good generalization performance. 

Weaknesses: 

⮚ Feature Severity Rating: RandomTree can sometimes fail to provide 

feature severity ratings. 

⮚ Less Flexibility: RandomTree may provide less flexibility than some 

other algorithms. 

Random Tree offers classification problems such as medical diagnosis, spam 

filtering, customer segmentation, etc., and regression problems such as home price 

forecasting, income forecasting, energy consumption forecasting, etc. can be used in 

the fields. 
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3.4 FEATURE SELECTION TECHNIQUES 

Attribute selection in WEKA is performed by the Attribute Evaluator and 

Search method working together. Attribute Evaluator evaluates the importance of the 

attributes and tries to find the best set of attributes, guided by the Search method. This 

approach is used to evaluate the quality of features and to eliminate unimportant 

features, so that a smaller and more meaningful set of features can be obtained. This 

can provide the model with a better generalization ability and a faster training time. 

Feature selection can reduce the dimensionality to enable many data mining algorithms 

to work effectively on data with large dimensionality [39]. 

Selecting Attribute Evaluator: The first step is to select the Attribute Evaluator 

method. The Attribute Evaluator measures the effect of each attribute on classification 

or regression. Weka has various Attribute Evaluator methods, such as Information 

Gain, Gain Ratio, ReliefF, Chi-Square, etc. Choosing one of these methods determines 

the evaluator who will rate the importance of the features. 

Search Method Selection: The second step is the selection of the Search method 

to be used in the feature selection. Search methods try to find the best set of attributes 

based on the importance rating generated by the Attribute Evaluator. Various Search 

methods are available in Weka, for example GreedyStepwise, BestFirst, 

GeneticSearch, etc. Choosing one of these methods determines a search strategy to 

find the best feature set. 

Attribute Selection: Attribute selection is performed using the selected 

Attribute Evaluator and Search method. In this step, the necessary parameters for 

feature selection are set and the selection process is started. Evaluation and selection 

of features are performed on a specific criterion or threshold value. As a result, the 

best feature set is determined. 

In this section, the Attribute Evaluators and Search Methods used in the thesis 

study and included in the SelectAttributes area of the WEKA tool are presented. 

Attribute Evaluators 

● CfsSubsetEval 

● ClassifierAttEval 

● Corr. Att.Evaluation  

● Relief Att.Evaluation  

  



40 

 

Search Methods 

● Random Search 

● Particle Swarm Optimization (PSO)  

● Genetic Algorithm (GA)  

● Ranker 

In Title 4.2 results from hybrid techniques obtained using the given Evaluators 

and Search Methods in different configurations will be compared and analyzed. 

 

3.4.1 Attribute Evaluators for Feature Selection 

3.4.1.1  Correlation Based Feature Selection (CFS) 

In Weka, Correlation Based Feature Selection (CFS) named as CFSubsetEval 

and it is a feature selection algorithm. The CFSubsetEval algorithm is derived from a 

filter known in the literature. CFSubsetEval is a filter evaluation method for feature 

selection. This algorithm is based on the k-NN (k-nearest neighbor) classifier and uses 

classification performance to evaluate feature subsets. 

The sequence of the CFSubsetEval algorithm consists of the following steps: 

⮚ The feature subset size is determined. 

⮚ All possible subsets of features are generated. 

⮚ A sub model is created for each feature subset and its performance is 

evaluated. 

⮚ Subsets of features are ranked by performance criterion (for example, 

classification accuracy or mean square error). 

⮚ The feature subset with the best performance is selected and reported 

as a result. 

That is, the algorithm considers all feature subsets, builds a model for each 

subset, and evaluates its performance. It then sorts by performance criteria and selects 

the subset of features with the best performance. 

 

3.4.1.2  ClassifierAttEval 

Classifier Attribute Evaluation is used to measure the contribution of attributes 

to classification performance and to identify important attributes. In this way, it is 

possible to identify unnecessary or low-impact features and to make the classification 

model more effective. 
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Classifier Attribute Evaluation performs the following operations in the 

process of evaluating attributes and calculating their effects on classification: 

The effect of the features in the dataset on the classification is evaluated. 

Classifier Attribute Evaluation determines the importance of attributes using various 

statistical calculations or algorithms. 

 

3.4.1.3  Corr. Att.Evaluation  

Correlation Attribute Evaluation (Corr. Att. Evaluation) is an attribute 

selection method used in Weka. This method tries to select the most important features 

by evaluating the relationship between the features. corr. Att. The Evaluation method 

makes selection by evaluating the relationship of the attributes to the dataset. 

Attributes with a higher relevance are considered more important and selected. This 

class evaluates by calculating the correlation between attributes. The correlation value 

between the features is calculated using the Pearson correlation coefficient. The 

Pearson correlation coefficient measures the linear relationship between two 

continuous variables. The correlation coefficient between attributes shows the 

relationship of one attribute with other attributes. Builds the importance ranking of 

each attribute using correlation values. A higher correlation value indicates that the 

features have a stronger relationship and are considered more important. 

It requires a search method to select the most important features above a certain 

threshold or a certain number of features based on the feature evaluation with the 

determined importance levels. 

 

3.4.1.4  Relief Att.Evaluation  

In this method, the RELIEF algorithm is used. The RELIEF (ReliefF) 

algorithm is a machine learning algorithm for determining the order of importance 

among attributes. This algorithm measures the relationship of attributes to class labels 

and tries to identify the most informative attributes. 

The RELIEF algorithm considers each sample in the dataset and randomly 

selects a neighboring sample. If the selected instance is an instance of the same class, 

it simulates the attributes of this instance to those of the current instance. If it is an 

instance that does not belong to the same class, it makes the attributes of that instance 

oppositely similar to those of the current instance. This process is repeated to calculate 

the importance score given to the sample. 
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The RELIEF algorithm calculates the importance score for each attribute and 

evaluates the attributes' relationship to the class label. A higher importance score 

indicates that the attribute has a stronger association with the class label and is 

considered more important. 

The Relief Attribute Evaluation method needs a search method to sort the 

attributes based on these importance scores. Thus, an effective selection method is 

obtained to evaluate the relationship of the attributes with the class label and to identify 

the most effective attributes in the dataset. 

 

3.4.2 Search Methods for Feature Selection 

3.4.2.1 Random Search 

RandomSearch, on the other hand, is a search method used to optimize the 

operation of the feature selection algorithm. 

RandomSearch works by generating random feature subsets for a given feature 

subset size. Initially, a random feature subset is chosen for a given feature subset size. 

This random subset of features is then evaluated against performance criteria. 

Evaluation is performed based on a specific performance measure (for 

example, classification accuracy or mean square error). If the performance of the 

current feature subset exceeds the current best performance, the current feature subset 

is considered the best. Otherwise, a new random subset of features is selected and the 

evaluation is done again. 

This process is repeated over a certain number of iterations (steps). Each step 

seeks to achieve the best available performance. RandomSearch helps optimize the 

feature selection process by randomly selecting a subset of features and trying to find 

the best feature subset with a performance-based evaluation. 

 

3.4.2.2  Particle Swarm Optimization (PSO)  

PSO is a naturally inspired optimization algorithm, where a set of particles tries 

to find the best solution by moving in a given search space. An optimization algorithm, 

PSO (Particle Swarm Optimization), becomes a feature selection method when a filters 

(CFS etc.) used for feature selection in the Weka library are used with various 

optimization algorithms to evaluate the feature subset. 

PSO aims to move particles in the feature subset search space and find the best 

feature subset. Steps: 
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⮚ The feature subset search space is defined and a random set of particles 

is initially generated. 

⮚ Each particle represents a subset of features. The velocity and position 

of the particles are then updated, and the performance of each particle 

is evaluated using the fitness function. 

⮚ The position of the best performing particles is recorded. 

⮚ These steps are repeated until a certain number of iterations or stopping 

criteria. The PSO algorithm handles the movements of particles by 

tracking the best position and doing a balance of search and exploration 

to collectively find the best solution. 

⮚ As a result, PSO aims to find the best feature subset for feature selection 

by working with feature evaluation methods. 

Due to the nature of PSO, it can navigate a large search space effectively and 

find the subset of features with better classification performance. 

 

3.4.2.3 Genetic Algorithm (GA)  

Genetic Algorithm (GA) is an optimization algorithm inspired by natural 

selection and genetic processes. GA is a population-based approach in which one 

generation is passed on to another using genetic operators (selection, crossover, 

mutation). 

GA (Genetic Algorithm), which is an optimization algorithm, becomes a 

feature selection method that aims to find the best feature subset for feature selection 

when used with feature evaluation function. 

When working with GA to find the best feature subset: 

⮚ Initially, a population is created. Each individual represents a subset of 

traits. 

⮚ Then, the fitness values of the population are calculated and the 

performance of each individual is evaluated. 

⮚ Then, individuals with better performance are selected based on their 

fitness values using the selection operator, and new individuals are 

produced by applying the crossover and mutation operators. 

⮚ These steps are repeated until a certain number of iterations or stopping 

criteria. 
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⮚ The GA algorithm allows the population to evolve to produce better-fit 

individuals. 

⮚ The selection operator transfers individuals with better performance to 

the next generation, the crossover operator creates new solutions by 

combining the genetic material, and the mutation operator provides 

variation by making random gene changes. 

As a result, due to the nature of GA, it evolves the population using genetic 

operators and can find the subset of traits with better classification performance. 

 

3.4.2.4  Ranker 

The Ranker algorithm needs an evaluation function to evaluate the features. 

This function measures the importance of attributes. In Weka, the 

ClassifierAttributeEval function etc. is often used as an evaluation function. The 

Ranker ranks the features while selecting the features and selects the most important 

ones. The Ranker algorithm has a parameter that is used to determine the number of 

attributes to be selected. These parameters affect the feature selection process. For 

example, parameters such as the number of attributes to be selected or the cut-off point 

of the criterion should be set. That is, the Ranker algorithm is capable of specifying a 

certain number of features for feature selection. In this way, a choice can be made 

between assigning fewer attributes to the model or using all attributes. This parameter 

is called "-N" and can take a value greater than zero. 

If the "-N" parameter is set to a certain number, The Ranker algorithm uses the 

entered parameter value or threshold value to select the most important ones from 

among the best ranked attributes. The selected attributes will be the ones at the top of 

the ranking. 

If the "-N" parameter is not set or set to zero, the Ranker algorithm uses all 

attributes and returns all attributes to the model. In this case, the contribution of the 

features to the model varies depending on their order. 

It can be observed that the selected features are important and can provide good 

performance on the dataset. In addition, the outputs of the evaluation function can be 

examined to understand the importance of the selected features and which features are 

less important. 

As mentioned in Title 3.2, in order for the Ranker to select the N attributes that 

have priority in this ranking or which are above a certain threshold value, the value is 
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entered by double-clicking on the Ranker selection in WEKA. In the study, "Number 

of features - 3" was entered as N so that the lowest 3 features were not given as input 

to the model. 

 

3.5 PERFORMANCE MEASURES 

3.5.1 Correlation Coefficient 

The Correlation Coefficient is a statistical value that measures the strength and 

direction of the relationship between two variables. It is often called the Pearson 

Correlation Coefficient and takes values between -1 and +1. 

The formula for the Pearson Correlation Coefficient is expressed as: 

 

                    r = (Σ((xi - x)̄ * (yi - ȳ))) / √((Σ(xi - x)̄²) * (Σ(yi - ȳ)²))                     (3.1) 

 

Formula: 

⮚ r represents the Correlation Coefficient. 

⮚ xi and yi represent the values of the data points. 

⮚ x̄ and ȳ represent the mean values of xi and yi. 

The correlation coefficient is used to evaluate the relationship between the 

variables in the dataset. If the relationship between two variables is positive, the 

coefficient approaches +1, and if it is negative, it approaches -1. A value of 0 indicates 

that there is no relationship between the variables. 

The correlation coefficient evaluates whether the relationship between the 

variables is linear. If the relationship is linear, the coefficient can be used as a good 

estimator. However, the correlation coefficient does not indicate that the relationship 

is causal or the effect of other variables. Therefore, care should be taken for the 

interpretation of the correlation coefficient and should be used in conjunction with 

other analysis methods. 

 

3.5.2 Mean Absolute Error (MAE) 

Mean Absolute Error (MAE) is a method of evaluating the accuracy of a 

prediction model by calculating the mean of the absolute differences between the 

measured and predicted values. MAE measures how close a model's predictions are to 

the true values and represents the mean errors of the predictions. 
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The formula for MAE is expressed as follows: 

 

                   MAE = (1/n) * Σ|yi - xi|                  (3.2) 

 

Formula: 

⮚ MAE stands for Mean Absolute Error. 

⮚ n stands for the total number of data points. 

⮚ yi represents the true value. 

⮚ xi represents the predicted value. 

The MAE converts the differences between the measured and predicted values 

into their absolute values, so that negative and positive errors have the same 

significance. Then it adds up these differences and divides by the number of data points 

to get the mean error value. 

The closer the value of the MAE is to zero, the closer the model's predictions 

are to the true values and perform better. However, one downside of MAE is that major 

errors are of the same importance as minor ones. That is, outliers can have a large 

impact and mislead the overall performance of the model. Therefore, when MAE is 

used alone, the distribution of estimation errors and other performance measures must 

be considered. 

 

3.5.3 Relative Absolute Error (RAE) 

Relative Absolute Error (RAE) calculates the accuracy of a predictive model. 

RAE can be used in machine learning. Furthermore, RAE is expressed as the ratio; it 

computes the mean error (residual) of errors produced by a trivial or naive model. The 

model is considered non-trivial if the result is less than 1. This is the model for a dataset 

(k): 

 

 

     (3.3) 

       

where Ei’s is prediction, Di’s is actual values, and Rae is the measure of forecast 

accuracy. D is the mean of Di’s; n is the size of the dataset (in data points)  
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3.5.4 Mean Relative Error (MRE) 

Mean Relative Error (MRE) is a performance metric that measures the mean 

errors of a prediction model's predictions relative to actual values. The MRE calculates 

the ratio of the prediction errors to the true values for each data point and averages 

them. In this way, estimation errors are evaluated proportionally to the actual values. 

The lower the value, the more accurate the predictions are considered. However, one 

disadvantage of MRE is that true values of zero or very small greatly affect the MRE. 

Therefore, a model's performance should be more thoroughly evaluated using other 

performance metrics and evaluation metrics besides the MRE. The formula for MRE 

is expressed as follows:        

 

MRE = Σ(|Ei - Ai| / Ai) / k                      (3.4) 

 

Formula: 

⮚ MRE stands for Mean Relative Error. 

⮚ k represents the total number of data points. 

⮚ Ei stands for the estimated value. 

⮚ Ai express true value 

 

3.5.5 Mean Magnitude of Relative Error (MMRE) 

It is a metric used to measure the accuracy of a predictive model, particularly 

in the context of regression analysis.  

         (3.5) 

 

3.5.6 Percentage of Estimations (PRED (0.25)) 

This measurement is called as PRED (0.25) with the definition of percentage of 

estimations which fall within 25 percent of the original values. 

 

                         (3.6) 
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CHAPTER IV 

4. FINDINGS 

 

At this stage, considering the Finnish, Kemerer, China, Maxwell datasets 

presented in 3.1 DATASET, using the algorithms given in Title 3.3 and choosing the 

10-fold cross-validation technique as the validation technique: 

⮚ In the first part, with the original datasets, 

⮚ In the second part, by using the hybrid configurations of given below 

evaluation and search methods among feature selection methods given in 

Title 3.4, wit same datasets made up of optimized and formed most effective 

features subsets. 

1. CFS+ RandomSearch 

2. CFS+ PSO 

3. CFS+ GA 

4. ClassifierAttEval + Ranker 

5. Corr. Att.Evaluation + Ranker 

6. Relief Att.Evaluation + Ranker 

The performance of the models created was evaluated according to the 

Correlation Coefficient and the error rate according to MAE, RMSE, RAE and RRSE 

which mentioned in Title 3.5. 

Thus, each algorithm discussed in the Title 3.3 was first tested with the original 

data and then the most effective subsets of the features were created with the six 

different hybrid methods discussed eight times on different features and the results 

were evaluated. In the first phase, the results obtained with the original dataset will be 

examined, and in the second phase, the findings obtained as a result of the feature 

selection applied dataset will be presented. Finally, by examining the performance 

criteria reached with different subsets obtained without feature selection and with 

different feature selection methods,
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▪ The highest performances that can be achieved with the original 

datasets, 

▪ Dataset-specific and holistic analysis of algorithms that tend to show 

the highest performance in the model formed with the original data, 

▪ Highest achievements after attribute selection 

▪ Analysis of which feature selection is superior compared to the others, 

specific to the dataset and holistically, 

Ultimately, the goal is to obtain a generic approach that is not reliant on the 

specific dataset by considering the overall evaluation of these results. 

The computer hardware information used while performing the studies is as 

follows 

Processor: Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz 2.11GHz 

Installed RAM: 16.0 GB (usable: 15.2 GB) 

System type: 64-bit operating system, x64-based processor 

 

4.1 MACHINE LEARNING MODELS EXPERIMENTS AND RESULTS 

 In this section of the study, Finnish, Kemerer, China and Maxwell datasets are used 

with their original feature sets, with the choice of 10-fold cross validation technique, 

with WEKA's LinearRegression, RandomForest, Bagging, MultilayerPerceptron, 

SMOreg, IBk, KStar, Random Tree, M5p algorithms which given in Title 3.3 one by 

one. Models were created and the results were evaluated according to the correlation 

coefficient, MAE and RAE. In WEKA version 3.8.6, the default parameter values of 

the algorithms are utilized. The specific parameter values employed in this study for 

the chosen algorithms are outlined below: 

➢ In Linear Regression, the attributeSelectionMethod parameter is designated as 

the M5 Method. 

➢ In the MLP algorithm, the "hiddenLayers" parameter is set as "a." This implies 

that the quantity of hidden layers and neurons is automatically determined 

based on the data. The LearningRate is 0.3, and the momentum is 0.2. 

➢ The SMOReg complexity parameter c1 is opted for. The FilterType is 

Normalize training data, Kernel is PolyKernel, and regOptimizer is 

RegSMOImproved. 

➢ In KNN (k-nearest neighbors), k is set to 1, and distanceWeighting is disabled 

in IBk. 
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➢ KStar is configured with a globalBlend of 20, and missingMode utilizes 

Average entropy curves. 

➢ Bagging employs the REPTree classifier. The numExecutions for setting up 

the ensemble model is 1, and the number of iterations is 10. 

➢ For M5P, the minimum instance count required for acceptance in a leaf node 

is set to 4. 

➢ In RandomForest, the maxDepth is set to 0, indicating no depth limit. 

numIterations is 100, and numExecutions is 1 for ensemble model setup. 

➢ RandomTree utilizes a minNum of 1 for the total instance weight in a leaf and 

sets maxDepth to 0 for no depth restriction. 

The performance evaluation criteria obtained by applying machine learning 

algorithms to the original feature sets of Finnish, China, Maxwell and Kemerer 

datasets are given in Table 4.1, Table 4.2, Table 4.3, Table 4.4. 

 

Table 4.1: Performance Measures of Models Constructed with Finnish Original Feature 

Machine Learning 

Algorithms 

Finnish Dataset 

(Original Feature Set) 

Correlation 

Coefficient 
MAE RAE (%) 

LinearRegression 0.9607 0.254 24.8268 

RandomForest 0.9818 0.1649 16.1147 

Bagging 0.9801 0.1747 17.074 

MultilayerPerceptron 0.9575 0.2297 22.4464 

SMOreg 0.962 0.2341 22.8759 

IBk 0.7697 0.539 52.6711 

KStar 0.9889 0.1344 13.1344 

Random Tree 0.9029 0.3654 35.7136 

M5p 0.9692 0.2146 20.9732 

 

Table 4.2: Performance Measures of Models Constructed with China Original Feature 

Machine Learning 

Algorithms 

China Dataset (Original Feature Set) 

Correlation 

Coefficient 
MAE RAE (%) 

LinearRegression 0.9889 362.939 9.809 

RandomForest 0.9591 557.7718 15.0747 

Bagging 0.9605 511.9898 13.8374 

MultilayerPerceptron 0.9733 461.3901 12.4698 

SMOreg 0.9897 270.4561 7.3095 

IBk 0.8918 1571.1824 42.4638 

KStar 0.9646 628.608 16.9892 

Random Tree 0.9283 943.0361 25.4871 

M5p 0.9842 392.7912 10.6158 
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Table 4.3: Performance Measures of Models Constructed with Maxwell Original Feature 

Machine Learning 

Algorithms 

Maxwell Dataset (Original Feature Set) 

Correlation 

Coefficient 
MAE RAE (%) 

LinearRegression 0.8085 4157.5897 66.1746 

RandomForest 0.7612 3998.2174 63.638 

Bagging 0.7711 3949.1671 62.8573 

MultilayerPerceptron 0.7641 4764.3788 75.8327 

SMOreg 0.8191 3812.9653 60.6894 

IBk 0.463 5517.129 87.8139 

KStar 0.7336 4618.2302 73.5065 

Random Tree 0.569 5686.9672 90.5171 

M5p 0.8175 3718.2692 59.1822 

 

 

Table 4.4: Performance Measures of Models Constructed with Kemerer Original Feature 

Machine Learning 

Algorithms 

Kemerer Dataset (Original Feature Set) 

Correlation 

Coefficient 
MAE RAE (%) 

LinearRegression 0.3692 173.2407 107.6474 

RandomForest 0.3532 129.0567 80.1926 

Bagging 0.1277 185.4463 115.2317 

MultilayerPerceptron 0.3511 129.4589 80.4425 

SMOreg 0.5737 114.3301 71.0419 

IBk 0.4665 142.054 88.2688 

KStar 0.5589 134.6747 83.6835 

Random Tree -0.0271 250.9131 155.9111 

M5p 0.3291 176.3236 109.5631 

 

When examining the obtained results in terms of performance metrics: 

⮚ While KStar algorithm found the best result with 0.9889 in the Finnish 

original set, RandomForest and Bagging gave 0.9818, 0.9801 results, 

respectively, and were above 0.98, and M5P, SMOreg, LinearRegression, 

MultilayerPerceptron and RandomTree algorithms, respectively, showed 

high success over 0.90, It was seen that the worst result was achieved with 

the IBk algorithm, while the lowest result was obtained with the IBk 

algorithm with 0.7697, 

⮚ While SMOreg algorithm found the best result with 0.9897 in the original 

set of China, LinearRegression and M5P gave 0.9889, 0.9842 results, 

respectively, watching over 090, the worst result was IBk algorithm, and the 

lowest result was IBk algorithm with 0.8918. It has been found that with 

⮚ While Maxwell found the best result with 0.8191 in the original set, SMOreg 

algorithm found the best result, LinearRegression and M5P gave 0.8175 and 
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0.8085 results, respectively, and were above 080, the worst result was IBk 

algorithm, the lowest result was IBk algorithm with 0.8918. It has been found 

that, 

⮚ In Kemerer 's original set, the SMOreg algorithm found the best result with 

05737, while the KStar algorithm gave 05589 results and remained above 

050, while the worst result was obtained with the RandomTree algorithm, 

with a high performance of -0.0271. 

has been obtained. 

Examining the first results obtained with the original datasets, it was observed 

that the SMOreg algorithm was successful in reaching the best result, while the 

LinearRegression, M5P and KStar algorithms converged to high performance, while 

the IBk algorithm showed low performance. 

 

4.2 BY USING FEATUE SELECTION MACHINE LEARNING MODELS 

EXPERIMENTS AND RESULTS  

At Title 4.1, LinearRegression, RandomForest, Bagging, Multilayer 

Perceptron, SMOreg, IBk, KStar, Random Tree, M5p algorithms were applied by 

using the original datasets of Finnish, Kemerer, China, Maxwell. On the other hand, 

in this section; among the feature selection methods given in Title 3.4, by using hybrid 

configurations of the evaluation and search methods given below were applied to the 

datasets one by one to find out the most effective features. Each algorithm was run and 

model established separately by taking as input the feature subset obtained by applying 

each hybrid feature selection method, all results were recorded and the method that 

gave the most optimized feature subset was analyzed.  In addition, the improvement 

results were also recorded by looking at which feature selection method showed an 

increase in performance compared to the original datasets. Also, the techniques which 

gained to best performance by selecting the feature were recorded. 

1. CfsSubsetEval + RandomSearch 

2. CfsSubsetEval + PSO 

3. CfsSubsetEval + GA 

4. ClassifierAttEval + Ranker 

5. Corr. Att.Evaluation + Ranker 

6. Relief Att.Evaluation + Ranker 
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4.2.1 Finnish Dataset Cost Estimation Results with Feature Selection Methods 

4.2.1.1 CfsSubset Evaluation and Random Search Method Results 

For the Finnish dataset, attribute selection was applied by selecting the 

evaluation criterion CfsSubsetEval and the search criterion RandomSearch from the 

SelectionAttributes function of WEKA. The number of attributes, which was 9 before 

the process, was reduced to 5 by applying the method, by selecting the attributes named 

Development effort hours, Hardware type, Function point data, Project duration 

(calendar months), System requirements size in raw Albrecht function points. With the 

addition of the dependent variable, Effort provided by application Use, 6 attributes 

selected for the most effective subset of attributes were determined as the model input. 

The results of the algorithms obtained without feature selection and the performance outputs 

of the model created with feature subset after feature selection is given in Table 4.5. 

 

Table 4.5: Performance Measures of Models with Finnish Original Feature and Selected 

Feature Set by RandomSearch 

Machine Learning 

Algorithms 

Finnish Original Dataset 

(9 Feature) 

Feature Selection with 

CFS+ RandomSearch 

(6 Feature) 

Correlation 

Coefficient 
MAE RAE (%) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

LinearRegression 0.9607 0.254 24.8268 0.9607 0.254 24.8268 

RandomForest 0.9818 0.1649 16.1147 0.989 0.1344 13.1385 

Bagging 0.9801 0.1747 17.074 0.9854 0.1548 15.1257 

MultilayerPerceptron 0.9575 0.2297 22.4464 0.9724 0.1595 15.5839 

SMOreg 0.962 0.2341 22.8759 0.9654 0.2311 22.5861 

IBk 0.7697 0.539 52.6711 0.931 0.3319 32.4397 

KStar 0.9889 0.1344 13.1344 0.9916 0.1208 11.8098 

Random Tree 0.9029 0.3654 35.7136 0.9563 0.2403 23.4836 

M5p 0.9692 0.2146 20.9732 0.9715 0.2158 21.0941 

 

The best performance was obtained by KStar before and after the feature 

selection was applied. The performance measures, which were 0.9889 Correlation 

Coefficient, 0.1344 MAE, 13.1344 RAE (%) before the feature selection was applied, 

improved to 0.9916 Correlation Coefficient, 0.1208 MAE, 11.8098 RAE (%) after the 

feature selection was applied. 

Similarly, the lowest performance was obtained with IBk before and after 

feature selection. The performance measures, which were 0.7697 Correlation 

Coefficient, 0.539 MAE, 52.6711 RAE (%) before the feature selection was applied, 

improved to 0.931 Correlation Coefficient, 0.3319 MAE, 32.4397 RAE (%) after the 

feature selection was applied, and a great improvement was achieved. 



54 

 

In addition, after applying this method, 8 out of 9 algorithms showed the 

improvement and the highest improvement of this method was recorded as 17% 

improvement in the correlation coefficient in the first and last results of the IBk 

algorithm. 

 

4.2.1.2 CfsSubset Evaluation and Particle Swarm Optimization (PSO) Method 

Results 

Attribute selection was applied by selecting the evaluation criterion 

CfsSubsetEval and the search criterion Particle Swarm Optimization (PSO) from the 

SelectionAttributes function of WEKA. The number of attributes, which was 9 before 

the process, was reduced to 4 by applying the method, by selecting the attributes named 

Development effort hours, Function point data, Project duration (calendar months), 

System requirements size in raw Albrecht function points. With the addition of the 

dependent variable, Effort provided by application Use, 5 attributes selected for the 

most effective subset of attributes were determined as the model input. 

The results of the algorithms obtained without feature selection and the 

performance outputs of the model created with feature subset after feature selection is 

given in Table 4.6. 

 

Table 4.6: Performance Measures of Models with Finnish Original Feature and Selected 

Feature Set by PSO 

Machine Learning 

Algorithms 

Finnish Original Dataset 

(9 Feature) 

Feature Selection with 

CFS+ PSO 

(5 Feature) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

Correlation 

Coefficient 
MAE 

RAE  

(%) 

LinearRegression 0.9607 0.254 24.8268 0.9607 0.254 24.8268 

RandomForest 0.9818 0.1649 16.1147 0.9942 0.0976 9.5354 

Bagging 0.9801 0.1747 17.074 0.9857 0.1532 14.967 

MultilayerPerceptron 0.9575 0.2297 22.4464 0.9853 0.1376 13.4468 

SMOreg 0.962 0.2341 22.8759 0.9702 0.2213 21.6292 

IBk 0.7697 0.539 52.6711 0.934 0.3142 30.7074 

KStar 0.9889 0.1344 13.1344 0.9923 0.1127 11.0156 

Random Tree 0.9029 0.3654 35.7136 0.9843 0.1461 14.2734 

M5p 0.9692 0.2146 20.9732 0.9715 0.2158 21.0941 

 

The best performance was obtained by KStar before feature selection, and 

performance measurements were recorded as 0.9889 Correlation Coefficient, 0.1344 

MAE, 13.1344 RAE (%). By applying feature selection in Finnish dataset, the 

improvement was gained in RandomForest algorithm and the best performance was 
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revised as RandomForest. Performance measures were observed as 0.9942 Correlation 

Coefficient, 0.0976 MAE, 9.5354 RAE (%). It has been observed that higher results 

have been achieved. Based on this improvement, it has succeeded in being the method 

that can achieve higher results compared to the original feature set. 

The lowest performance was obtained with IBk before and after feature 

selection. The performance measures, which were 0.7697 Correlation Coefficient, 

0.539 MAE, 52.6711 RAE (%) before the feature selection. By application of GA to 

select of features, performance measures improved to 0.934 Correlation Coefficient, 

0.3142 MAE, 30.7074 RAE (%) after. And a great improvement was achieved. 

In addition, application of CfsSubsetEval by selecting PSO Search, 8 out of 9 

algorithms showed the improvement and the highest improvement of this method was 

recorded as 17% improvement in the correlation coefficient in the first and last results 

of the IBk algorithm.  

 

4.2.1.3 CfsSubset Evaluation and Genetic Algorithm (GA) Method Results 

Attribute selection was applied by selecting the evaluation criterion 

CfsSubsetEval and the search criterion RandomSearch from the SelectionAttributes 

function of WEKA. The number of attributes, which was 9 before the process, was 

reduced to 4 by applying the method, by selecting the attributes named Development 

effort hours, Function point data, Project duration (calendar months), System 

requirements size in raw Albrecht function points. With the addition of the dependent 

variable, Effort provided by application Use, 5 attributes selected for the most effective 

subset of attributes were determined as the model input. 

The results of the algorithms obtained without feature selection and the 

performance outputs of the model created with feature subset after feature selection is 

given in Table 4.7.  
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Table 4.7: Performance Measures of Models with Finnish Original Feature and Selected 

Feature Set by GA 

Machine Learning 

Algorithms 

Finnish Original Dataset 

(9 Feature) 

Feature Selection with 

CFS+ GA 

(5 Feature) 

Correlation 

Coefficient 
MAE RAE (%) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

LinearRegression 0.9607 0.254 24.8268 0.9607 0.254 24.8268 

RandomForest 0.9818 0.1649 16.1147 0.9942 0.0976 9.5354 

Bagging 0.9801 0.1747 17.074 0.9857 0.1532 14.967 

MultilayerPerceptron 0.9575 0.2297 22.4464 0.9853 0.1376 13.4468 

SMOreg 0.962 0.2341 22.8759 0.9702 0.2213 21.6292 

IBk 0.7697 0.539 52.6711 0.934 0.3142 30.7074 

KStar 0.9889 0.1344 13.1344 0.9923 0.1127 11.0156 

Random Tree 0.9029 0.3654 35.7136 0.9843 0.1461 14.2734 

M5p 0.9692 0.2146 20.9732 0.9715 0.2158 21.0941 

 

The best performance was obtained by KStar before feature selection, and 

performance measurements were recorded as 0.9889 Correlation Coefficient, 0.1344 

MAE, 13.1344 RAE (%). By applying feature selection in Finnish dataset, the 

improvement was gained in RandomForest algorithm and the best performance was 

revised as RandomForest. Performance measures were observed as 0.9942 Correlation 

Coefficient, 0.0976 MAE, 9.5354 RAE (%). 

The lowest performance was obtained with IBk before and after feature 

selection. The performance measures, which were 0.7697 Correlation Coefficient, 

0.539 MAE, 52.6711 RAE (%) before the feature selection. By application of GA to 

select of features, performance measures improved to 0.934 Correlation Coefficient, 

0.3142 MAE, 30.7074 RAE (%) after. And a great improvement was achieved. 

In addition, application of CfsSubsetEval by selecting GA Search, 8 out of 9 

algorithms showed the improvement and the highest improvement of this method was 

recorded as 17% improvement in the correlation coefficient in the first and last results 

of the IBk algorithm. 

 

4.2.1.4 ClassifierAtt. Evaluation and Ranker Search Method Results 

Attribute selection was applied by selecting the evaluation criterion 

ClassifierAttEval and the search criterion Ranker from the SelectionAttributes 

function of WEKA. The number of attributes was 9 before the process. The ranker 

search method, sorts the attributes in order of impact on the model when implemented 

with ClassifierAttEval the resulting sequence was obtained as: Insize, prod, 

dev.eff.hrs., hw, at, FP, co, ID. In order not to insert the most ineffective features into 
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the model as unnecessary inputs, the last 3 features FP, co, ID were removed from the 

set. 

The results of the algorithms obtained without feature selection and the 

performance outputs of the model created with feature subset after feature selection is 

given Table 4.8 

 

Table 4.8: Performance Measures of Models with Finnish Original Feature and Selected 

Feature Set by ClassifierAtt.Evaluation + Ranker 

Machine Learning 

Algorithms 

Finnish Original Dataset 

(9 Feature) 

Feature Selection with 

ClassifierAtt.Evaluation + 

Ranker 

(6 Feature) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

Correlation 

Coefficient 
MAE 

RAE  

(%) 

LinearRegression 0.9607 0.254 24.8268 0.9658 0.235 22.9611 

RandomForest 0.9818 0.1649 16.1147 0.9892 0.1378 13.4643 

Bagging 0.9801 0.1747 17.074 0.9807 0.1692 16.5387 

MultilayerPerceptron 0.9575 0.2297 22.4464 0.9656 0.2006 19.6052 

SMOreg 0.962 0.2341 22.8759 0.9629 0.2445 23.8935 

IBk 0.7697 0.539 52.6711 0.7421 0.5756 56.2528 

KStar 0.9889 0.1344 13.1344 0.9948 0.0873 8.5274 

Random Tree 0.9029 0.3654 35.7136 0.9642 0.2274 22.2251 

M5p 0.9692 0.2146 20.9732 0.9783 0.1868 18.2566 
 

The best performance was obtained by KStar before and after the feature 

selection was applied. The performance measures, which were 0.9889 Correlation 

Coefficient, 0.1344 MAE, 13.1344 RAE (%) before the feature selection. By selecting 

the feature subset by ClassifierAttEval and Ranker technique, the results are improved 

to 0.9948 Correlation Coefficient, 0.0873 MAE, 8.53274 RAE (%). 

The lowest performance was obtained with IBk before and after feature 

selection. The performance measures, which were 0.7697 Correlation Coefficient, 

0.539 MAE, 52.6711 RAE (%) before the feature selection. When applied 

ClassifierAttEval and Ranker to select the feature subset, performance measures are 

noted as 0.7421 Correlation Coefficient, 0.0873 MAE, 8.5274 RAE (%) and decrease 

was observed. 

In addition, application of ClassifierAttEval by selecting Ranker Search, 8 out 

of 9 algorithms showed the improvement and the highest improvement of this method 

was recorded as 6% improvement in the correlation coefficient on RandomTree 

algorithm. 
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4.2.1.5 Corr. Att. Evaluation and Ranker Search Method Results 

Attribute selection was applied by selecting the evaluation criterion Corr. 

Att.Evaluation and the search criterion Ranker from the SelectionAttributes function 

of WEKA. The number of attributes was 9 before the process. The ranker search 

method, sorts the attributes in order of impact and gives coefficient to the feature in 

accordance with rank value to take with coefficient the impact of feature, when 

implemented with Corr. Att.Evaluation.  

The final sequence was obtained as: dev.eff.hrs., Insize, FP, Prod, co, ID, at, 

hw. In order not to insert the most ineffective features into the model as unnecessary 

inputs, the last 3 features ID, at, hw were removed from the set. 

The results of the algorithms obtained without feature selection and the 

performance outputs of the model created with feature subset after feature selection is 

given in Table 4.9. 

 

Table 4.9: Performance Measures of Models with Finnish Original Feature and Selected 

Feature Set by Corr. Att.Evaluation + Ranker 

Machine Learning 

Algorithms 

Finnish Original Dataset 

(9 Feature) 

Feature Selection with 

Corr. Att.Evaluation + 

Ranker 

(6 Feature) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

Correlation 

Coefficient 
MAE 

RAE  

(%) 

LinearRegression 0.9607 0.254 24.8268 0.9607 0.254 24.8268 

RandomForest 0.9818 0.1649 16.1147 0.9901 0.1298 12.6897 

Bagging 0.9801 0.1747 17.074 0.9845 0.1587 15.5069 

MultilayerPerceptron 0.9575 0.2297 22.4464 0.9833 0.1535 15.0001 

SMOreg 0.962 0.2341 22.8759 0.9686 0.2221 21.7002 

IBk 0.7697 0.539 52.6711 0.9158 0.3518 34.3834 

KStar 0.9889 0.1344 13.1344 0.9912 0.1284 12.546 

Random Tree 0.9029 0.3654 35.7136 0.9663 0.2324 22.7083 

M5p 0.9692 0.2146 20.9732 0.9729 0.2006 19.6081 

 

The best performance was obtained by KStar before and after the feature 

selection was applied. The performance measures, which were 0.9889 Correlation 

Coefficient, 0.1344 MAE, 13.1344 RAE (%) before the feature selection. By selecting 

the feature subset by Corr. Att.Evaluation and Ranker technique, the results are 

improved to 0.9912 Correlation Coefficient, 0.1284 MAE, 12.546 RAE (%). 

The lowest performance was obtained with IBk before and after feature 

selection. The performance measures, which were 0.7697 Correlation Coefficient, 

0.539 MAE, 52.6711 RAE (%) before the feature selection. When applied Corr. 
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Att.Evaluation and Ranker to select the feature subset, performance measures are 

noted as 0.9158 Correlation Coefficient, 0.3518 MAE, 34.3834 RAE (%) and high 

improvement was observed. 

In addition, application of Corr. Att.Evaluation by selecting Ranker Search, 8 

out of 9 algorithms showed the improvement and the highest improvement of this 

method was recorded as 15% improvement in the correlation coefficient on IBk 

algorithm.  

 

4.2.1.6 Relief Att.Evaluation and Ranker Search Method Results 

Attribute selection was applied by selecting the evaluation criterion Relief 

Att.Evaluation and the search criterion Ranker from the SelectionAttributes function 

of WEKA. The number of attributes was 9 before the process. The ranker search 

method, sorts the attributes in order of impact and gives coefficient to the feature in 

accordance with rank value to take with coefficient the impact of feature, when 

implemented with Relief Att.Evaluation.  

The final sequence was obtained as: dev.eff.hrs., Insize, prod, FP, hw, co, ID, 

at. In order not to insert the most ineffective features into the model as unnecessary 

inputs, the last 3 features co, ID, at were removed from the set. 

The results of the algorithms obtained without feature selection and the 

performance outputs of the model created with feature subset after feature selection is 

given in Table 4.10. 

 

Table 4.10: Performance Measures of Models with Finnish Original Feature and Selected 

Feature Set by Relief Att.Evaluation + Ranker 

Machine Learning 

Algorithms 

Finnish Original Dataset 

(9 Feature) 

Feature Selection with 

Relief Att.Evaluation + 

Ranker 

(6 Feature) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

LinearRegression 0.9607 0.254 24.8268 0.9607 0.254 24.8268 

RandomForest 0.9818 0.1649 16.1147 0.9907 0.118 11.5345 

Bagging 0.9801 0.1747 17.074 0.9852 0.1544 15.0929 

MultilayerPerceptron 0.9575 0.2297 22.4464 0.9647 0.1809 17.6834 

SMOreg 0.962 0.2341 22.8759 0.9653 0.2314 22.6141 

IBk 0.7697 0.539 52.6711 0.931 0.3319 32.4397 

KStar 0.9889 0.1344 13.1344 0.9916 0.1208 11.8098 

Random Tree 0.9029 0.3654 35.7136 0.9705 0.2041 19.9438 

M5p 0.9692 0.2146 20.9732 0.9729 0.2006 19.6081 
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The best performance was obtained by KStar before and after the feature 

selection was applied. The performance measures, which were 0.9889 Correlation 

Coefficient, 0.1344 MAE, 13.1344 RAE (%) before the feature selection. By selecting 

the feature subset by Relief Att.Evaluation and Ranker technique, the results are 

improved to 0.9916 Correlation Coefficient, 0.1208 MAE, 11.8098 RAE (%). 

The lowest performance was obtained with IBk before and after feature 

selection. The performance measures, which were 0.7697 Correlation Coefficient, 

0.539 MAE, 52.6711 RAE (%) before the feature selection. When applied Relief 

Att.Evaluation and Ranker to select the feature subset, performance measures are 

noted as 0.931 Correlation Coefficient, 0.3319 MAE, 32.4397 RAE (%) and high 

improvement was observed. 

In addition, application of Relief Att.Evaluation by selecting Ranker Search, 8 

out of 9 algorithms showed the improvement and the highest improvement of this 

method was recorded as 17% improvement in the correlation coefficient on IBk 

algorithm.  

 

4.2.2 China Dataset Cost Estimation Results with Feature Selection Methods 

4.2.2.1 CfsSubset Evaluation and Random Search Method Results 

For the China dataset, attribute selection was applied by selecting the 

evaluation criterion CfsSubsetEval and the search criterion RandomSearch from the 

SelectionAttributes function of WEKA. The number of attributes, which was 19 before 

the process, was reduced to 6 by applying the method, by selecting the attributes named 

ID, Output, Interface, Added, Duration, N_effort. With the addition of the dependent 

variable, Effort, provided by application Use, 7 attributes selected for the most 

effective subset of attributes were determined as the model input. 

The results of the algorithms obtained without feature selection and the 

performance outputs of the model created with feature subset after feature selection is 

given in Table 4.11. 
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Table 4.11: Performance Measures of Models with China Original Feature and Selected 

Feature Set by CFS+ RandomSearch 

Machine Learning 

Algorithms 

China Original Dataset 

(19 Feature) 

Feature Selection with 

CFS+ RandomSearch 

(7 Feature) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

LinearRegression 0.9889 362.939 9.809 0.986 365.1502 9.8688 

RandomForest 0.9591 557.7718 15.0747 0.9681 553.6869 14.9643 

Bagging 0.9605 511.9898 13.8374 0.9625 508.1267 13.733 

MultilayerPerceptron 0.9733 461.3901 12.4698 0.9776 548.369 14.8206 

SMOreg 0.9897 270.4561 7.3095 0.9866 351.7668 9.5071 

IBk 0.8918 1571.1824 42.4638 0.9362 1175.988 31.783 

KStar 0.9646 628.608 16.9892 0.9648 496.0903 13.4077 

Random Tree 0.9283 943.0361 25.4871 0.9244 850.8577 22.9958 

M5p 0.9842 392.7912 10.6158 0.9832 372.001 10.0539 

 

The best performance was obtained by SMOreg before and after the feature 

selection was applied.  Before the selection of feature, performance measures was 

noted as 0.9897 Correlation Coefficient, 362.939 MAE, 9.809 RAE (%). After 

selection of features, performance measures observed as 0.9866 Correlation 

Coefficient, 365.1502 MAE, 9.8688 RAE (%) and the improvement could not be 

obtained. 

The lowest performance was obtained with IBk before selection of feature, 

which saved performance measures as 0.8918 Correlation Coefficient, 1571.1824 

MAE, 42.4638 RAE (%). After feature selection, while IBk performance measures 

gained improvement as 0.9362 Correlation Coefficient, 1175.988, MAE, 31.783 RAE 

(%), the lowest performing algorithm is updated as RandomTree with 0. 9244 

Correlation Coefficient, 850.8577 MAE, 22.9958 RAE (%). 

Although there was no improvement in the best result compared to the original 

dataset by applying feature selection in the China dataset, after applying this method, 

5 out of 9 algorithms showed the improvement and the highest improvement of this 

method was recorded as 4% improvement on the correlation coefficient of IBk 

algorithm. 

 

4.2.2.2 CfsSubset Evaluation and Particle Swarm Optimization (PSO) Method 

Results 

Attribute selection was applied by selecting the evaluation criterion 

CfsSubsetEval and the search criterion RandomSearch from the SelectionAttributes 

function of WEKA. The number of attributes, which was 19 before the process, was 
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reduced to 8 by applying the method, by selecting the attributes named ID, Input, 

Output, Enquiry, File, Resource, Duration, N_effort. With the addition of the 

dependent variable, Effort provided by application Use, 9 attributes selected for the 

most effective subset of attributes were determined as the model input. 

The results of the algorithms obtained without feature selection and the performance 

outputs of the model created with feature subset after feature selection is given in Table 4.12. 

 

Table 4.12: Performance Measures of Models with China Original Feature and Selected 

Feature Set by CFS+ PSO 

Machine Learning 

Algorithms 

China Original Dataset 

(19 Feature) 

Feature Selection with 

CFS+ PSO 

(9 Feature) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

LinearRegression 0.9889 362.939 9.809 0.986 395.7794 10.6966 

RandomForest 0.9591 557.7718 15.07 0.9602 583.8073 15.7784 

Bagging 0.9605 511.9898 13.83 0.9597 519.3041 14.035 

MultilayerPerceptron 0.9733 461.3901 12.46 0.9767 514.2803 13.8993 

SMOreg 0.9897 270.4561 7.30 0.9853 360.9192 9.7544 

IBk 0.8918 1571.182 42.46 0.9081 1500.1563 40.5442 

KStar 0.9646 628.608 16.98 0.9717 528.6757 14.2883 

Random Tree 0.9283 943.0361 25.48 0.9155 872.0081 23.5675 

M5p 0.9842 392.7912 10.61 0.9832 391.7027 10.5864 

 

Before feature selection, the best performance was obtained with 

LinearRegression in the China dataset, however, with the application of feature 

selection with PSO, the best result among the algorithms was SMOReg with 0.9853 

Correlation Coefficient, 360.9192 MAE, 9.7544 RAE (%) performance 

measurements. However, it was observed that the correlation coefficient obtained in 

the original dataset could not be reached. 

The lowest performance was obtained with IBk before and after feature 

selection. Before the feature selection, the performance measures were 0.8918 

Correlation Coefficient, 1571.182 MAE, 42.46 RAE (%). The measures improved to 

0.9081 Correlation Coefficient, 1500.1563 MAE, 40.5442 RAE (%) after the feature 

selection. 

Although there was no improvement in the best result compared to the original 

dataset by applying feature selection in the China dataset, by applying this method, 4 

out of 9 algorithms showed improvement, and the highest improvement of this method 

was recorded as 1.5% improvement on the correlation coefficient of IBk algorithm. 
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4.2.2.3 CfsSubset Evaluation and Genetic Algorithm (GA) Method Results 

Attribute selection was applied by selecting the evaluation criterion 

CfsSubsetEval and the search criterion GA from the SelectionAttributes function of 

WEKA. The number of attributes, which was 19 before the process, was reduced to 9 

by applying the method, by selecting the attributes named ID, Input, Output, Enquiry, 

File, PDR_UFP, Resource, Duration, N_effort. With the addition of the dependent 

variable, Effort provided by application Use, 10 attributes selected for the most 

effective subset of attributes were determined as the model input. 

The results of the algorithms obtained without feature selection and the 

performance outputs of the model created with feature subset after feature selection is 

given in Table 4.13. 

 

Table 4.13: Performance Measures of Models with China Original Feature and Selected 

Feature Set by CFS+ GA 

Machine Learning 

Algorithms 

China Original Dataset 

(19 Feature) 

Feature Selection with 

CFS+ GA 

(10 Feature) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

LinearRegression 0.9889 362.939 9.809 0.9859 411.7442 11.1281 

RandomForest 0.9591 557.7718 15.0747 0.9584 578.3479 15.6308 

Bagging 0.9605 511.9898 13.8374 0.9596 519.546 14.0416 

MultilayerPerceptron 0.9733 461.3901 12.4698 0.9746 497.3849 13.4426 

SMOreg 0.9897 270.4561 7.3095 0.9847 358.5216 9.6896 

IBk 0.8918 1571.182 42.4638 0.9076 1444.875 39.0501 

KStar 0.9646 628.608 16.9892 0.9726 543.4151 14.6867 

Random Tree 0.9283 943.0361 25.4871 0.8726 1056.691 28.5588 

M5p 0.9842 392.7912 10.6158 0.984 401.4127 10.8488 

 

Before feature selection, the best performance was obtained with SMOreg in 

the China dataset, however, with the application of feature selection with GA, the best 

result among the algorithms is LinearRegression with 0.9859 Correlation Coefficient, 

411.7442 MAE, 11.1281 RAE (%) performance measurements. However, it was 

observed that the correlation coefficient obtained as 0.9897 in the original dataset 

could not be reached. 

The lowest performance was obtained with IBk before and after feature 

selection. Before the feature selection, the performance measures were 0.8918 

Correlation Coefficient, 1571.1824 MAE, 42.4638 RAE (%). The measures improved 

to 0.9076 Correlation Coefficient, 1444.8758 MAE, 39.0501 RAE (%) after the feature 

selection. 
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Although there was no improvement in the best result compared to the original 

dataset by applying feature selection in the China dataset, by applying this method, 3 

out of 9 algorithms showed improvement, and the highest improvement of this method 

was recorded as 1.5% improvement on the correlation coefficient of IBk algorithm. 

 

4.2.2.4 ClassifierAtt. Evaluation and Ranker Search Method Results 

Attribute selection was applied by selecting the evaluation criterion 

ClassifierAttEval  and the search criterion Ranker from the SelectionAttributes 

function of WEKA. The number of attributes was 19 before the process. The ranker 

search method, sorts the attributes in order of impact on the model when implemented 

with ClassifierAttEval. The resulting sequence was obtained as: N_effort, Enquiry, 

Interface, File, Output, Duration, Input, AFP, Added, Changed, Deleted, PDR_AFP, 

Dev.Type, Resource, NPDU_UFP, NPDR_AFP, PDR_UFP, ID. In order not to insert 

the most ineffective features into the model as unnecessary inputs, the last 3 features 

NPDR_AFP, PDR_UFP, ID were removed from the set. 

The results of the algorithms obtained without feature selection and the 

performance outputs of the model created with feature subset after feature selection is 

given in Table 4.14. 

 

Table 4.14: Performance Measures of Models with China Original Feature and Selected 

Feature Set by ClassifierAttEvaluation + Ranker 

Machine Learning 

Algorithms 

China Original Dataset 

(19 Feature) 

Feature Selection with 

ClassifierAttEvaluation + 

Ranker 

(16 Feature) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

LinearRegression 0.9889 362.939 9.809 0.9872 413.9045 11.1865 

RandomForest 0.9591 557.7718 15.0747 0.9583 586.4616 15.8501 

Bagging 0.9605 511.9898 13.8374 0.9642 492.293 13.305 

MultilayerPerceptron 0.9733 461.3901 12.4698 0.965 549.6564 14.8554 

SMOreg 0.9897 270.4561 7.3095 0.9887 304.4746 8.2289 

IBk 0.8918 1571.1824 42.4638 0.847 1343.4469 36.3089 

KStar 0.9646 628.608 16.9892 0.9694 596.5132 16.1218 

Random Tree 0.9283 943.0361 25.4871 0.8617 1073.5312 29.0139 

M5p 0.9842 392.7912 10.6158 0.9835 390.3778 10.5506 

 

Before feature selection, the best performance was obtained with SMOreg in 

the China dataset, similarly, with the application of feature selection with 

ClassifierAttEval and Ranker, the best result among the algorithms again SMOreg with 
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0.9887 Correlation Coefficient, 304.4746 MAE, 8.2289 RAE (%) performance 

measurements. However, it was observed that the correlation coefficient obtained in 

the original dataset could not be reached. 

The lowest performance was obtained with IBk before and after feature 

selection. Before the feature selection, the performance measures were 0.847 

Correlation Coefficient, 1343.4369 MAE, 42.4638 RAE (%). The measures improved 

to 0.9076 Correlation Coefficient, 1444.8758 MAE, 36.3089 RAE (%) after the feature 

selection. And decrease has saved for IBk. 

In addition, application of ClassifierAttEval  by selecting Ranker Search, 2 out 

of 9 algorithms showed the improvement and the highest improvement of this method 

was recorded as 0.5% improvement in the correlation coefficient on KStar algorithm. 

 

4.2.2.5 Corr. Att. Evaluation and Ranker Search Search Method Results 

Attribute selection was applied by selecting the evaluation criterion Corr. 

Att.Evaluation and the search criterion Ranker from the SelectionAttributes function 

of WEKA. The number of attributes was 9 before the process. The ranker search 

method, sorts the attributes in order of impact and gives coefficient to the feature in 

accordance with rank value to take with coefficient the impact of feature, when 

implemented with Corr. Att.Evaluation.  

The final sequence was obtained as: N_effort, Added, AFP, File, Input, Output, 

Enquiry, Duration, Interface, PDR_UFP, NPDU_UFP, PDR_AFP, Resource, 

NPDR_AFP, Changed, ID, Deleted, Dev.Type. In order not to insert the most 

ineffective features into the model as unnecessary inputs, the last 3 features ID, 

Deleted, Dev.Type were removed from the set. 

The results of the algorithms obtained without feature selection and the 

performance outputs of the model created with feature subset after feature selection is 

given in Table 4.15. 
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Table 4.15: Performance Measures of Models with China Original Feature and Selected 

Feature Set by Corr. Att.Evaluation + Ranker 

Machine Learning 

Algorithms 

China Original Dataset 

(19 Feature) 

Feature Selection with 

Corr. Att.Evaluation + Ranker 

(16 Feature) 

Correlation 

Coefficient 
MAE 

RAE  

(%) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

LinearRegression 0.9889 362.939 9.809 0.989 362.2063 9.7892 

RandomForest 0.9591 557.7718 15.0747 0.9623 543.9122 14.7001 

Bagging 0.9605 511.9898 13.8374 0.9618 503.6359 13.6116 

MultilayerPerceptron 0.9733 461.3901 12.4698 0.9912 406.1195 10.976 

SMOreg 0.9897 270.4561 7.3095 0.9898 270.2385 7.3036 

IBk 0.8918 1571.182 42.4638 0.8396 1418.9499 38.3495 

KStar 0.9646 628.608 16.9892 0.9638 619.7006 16.7484 

Random Tree 0.9283 943.0361 25.4871 0.8409 1142.3578 30.8741 

M5p 0.9842 392.7912 10.6158 0.9835 386.561 10.4474 

 

Before feature selection, the best performance was obtained with SMOreg in 

the China dataset. However, with the application of feature selection with Corr. 

Att.Evaluation and Ranker, the best result among the algorithms is 

MultilayerPerceptron with 0. 9912 Correlation Coefficient, 406. 1195 MAE, 10.976 

RAE (%) performance measurements. It has been observed that higher results have 

been achieved even if it is with low rate. Based on this low improvement, it has 

succeeded in being the method that can achieve higher results compared to the original 

feature set. 

The lowest performance was obtained with IBk before and after feature 

selection. Before the feature selection, the performance measures were 0.8918 

Correlation Coefficient, 1571.1824MAE, 42.4638 RAE (%). The measures noted as 

0.8396 Correlation Coefficient, 1418.94998 MAE, 38.3495 RAE (%) after the feature 

selection. And decrease has saved for IBk. 

In addition, application of Corr. Att.Evaluation by selecting Ranker Search, 5 

out of 9 algorithms showed the improvement and the highest improvement of this 

method was recorded as 2% improvement in the correlation coefficient on 

MultilayerPerceptron algorithm. 

 

4.2.2.6 Relief Att. Evaluation and Ranker Search Method Results 

Attribute selection was applied by selecting the evaluation criterion Relief 

Att.Evaluation and the search criterion Ranker from the SelectionAttributes function 

of WEKA. The number of attributes was 9 before the process. The ranker search 

method, sorts the attributes in order of impact and gives coefficient to the feature in 
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accordance with rank value to take with coefficient the impact of feature, when 

implemented with Relief Att.Evaluation.  

The final sequence was obtained as: N_effort, File, AFP, Added, Enquiry, 

Output, Input, Resource, Interface, Duration, ID, PDR_AFP, PDR_UFP, NPDU_UFP, 

NPDR_AFP, Deleted, Dev.Type. In order not to insert the most ineffective features 

into the model as unnecessary inputs, the last 3 features NPDR_AFP, Deleted, 

Dev.Type were removed from the set. 

The results of the algorithms obtained without feature selection and the 

performance outputs of the model created with feature subset after feature selection is 

given in Table 4.16.  

 

Table 4.16: Performance Measures of Models with China Original Feature and Selected 

Feature Set by Relief Att.Evaluation + Ranker 

Machine Learning 

Algorithms 

China Original Dataset 

(19 Feature) 

Feature Selection with 

Relief Att.Evaluation + 

Ranker 

(16 Feature) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

LinearRegression 0.9889 362.939 9.809 0.9886 366.1417 9.8956 

RandomForest 0.9591 557.7718 15.0747 0.9627 546.8556 14.7797 

Bagging 0.9605 511.9898 13.8374 0.9629 501.3717 13.5504 

MultilayerPerceptron 0.9733 461.3901 12.4698 0.9914 370.1846 10.0048 

SMOreg 0.9897 270.4561 7.3095 0.9898 269.3637 7.28 

IBk 0.8918 1571.182 42.4638 0.887 1581.3467 1581.34 

KStar 0.9646 628.608 16.9892 0.965 617.641 16.6928 

Random Tree 0.9283 943.0361 25.4871 0.8098 1263.9482 34.1603 

M5p 0.9842 392.7912 10.6158 0.9852 378.51 10.2299 

 

Before feature selection, the best performance was obtained with SMOreg in 

the China dataset. However, with the application of feature selection with Corr. 

Att.Evaluation and Ranker, the best result among the algorithms is 

MultilayerPerceptron with 0. 9914 Correlation Coefficient, 370.1846 MAE, 10.0048 

RAE (%) performance measurements. It has been observed that higher results have 

been achieved even if it is with low rate. Based on this low improvement, it has 

succeeded in being the method that can achieve higher results compared to the original 

feature set. 

The lowest performance was obtained with IBk before feature selection. The 

performance measures were 0.8918 Correlation Coefficient, 1571.1824MAE, 42.4638 

RAE (%). By applying feature selection technique, the lowest measured algorithm is 
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updated as RandomTree and measures noted as 0.8098 Correlation Coefficient, 

1263.9482 MAE, 34.1603 RAE (%) after the feature selection. 

In addition, application of Relief Att.Evaluation by selecting Ranker Search, 6 

out of 9 algorithms showed the improvement and the highest improvement of this 

method was recorded as 2% improvement in the correlation coefficient on 

MultilayerPerceptron algorithm. 

 

4.2.3 Maxwell Dataset Cost Estimation Results with Feature Selection Methods 

4.2.3.1 CfsSubset Evaluation and Random Search Method Results 

For the Maxwell dataset, attribute selection was applied by selecting the 

evaluation criterion CfsSubsetEval and the search criterion RandomSearch from the 

SelectionAttributes function of WEKA. The number of attributes, which was 27 before 

the process, was reduced to 15 by applying the method, by selecting the attributes 

named Year, Application type, Hardware platform, Development Env, adequacy, Staff 

availability, Software logical complexity, Requirements volatility, Quality 

requirements, Efficiency requirements, Installation requirements, Staff application 

knowledge, Staff tool skills, Duration, Function points, Time. With the addition of the 

dependent variable, Work hours Effort, 16 attributes selected for the most effective 

subset of attributes were determined as the model input. 

The results of the algorithms obtained without feature selection and the 

performance outputs of the model created with feature subset after feature selection is 

given in Table 4.17. 

 

Table 4.17: Performance Measures of Models with Maxwell Original Feature and Selected 

Feature Set by CFS+ RandomSearch 

Machine Learning 

Algorithms 

Maxwell Original Dataset 

(27 Feature) 

Feature Selection with 

CFS+ RandomSearch 

(16 Feature) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

LinearRegression 0.8085 4157.5897 66.1746 0.8354 3610.4878 57.4666 

RandomForest 0.7612 3998.2174 63.638 0.7624 3768.4553 59.9809 

Bagging 0.7711 3949.1671 62.8573 0.7753 3835.1733 61.0429 

MultilayerPerceptron 0.7641 4764.3788 75.8327 0.7215 5389.5218 85.7828 

SMOreg 0.8191 3812.9653 60.6894 0.8091 3520.7457 56.0383 

IBk 0.463 5517.129 87.8139 0.7427 4725.7419 75.2177 

KStar 0.7336 4618.2302 73.5065 0.8174 4154.1848 66.1204 

Random Tree 0.569 5686.9672 90.5171 0.6147 5068.6745 80.676 

M5p 0.8175 3718.2692 59.1822 0.8173 3677.0131 58.5255 
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The highest performance was obtained with SMOreg before feature selection, 

and performance measurements were recorded as 0.8191 Correlation Coefficient, 

3812.9653 MAE, 60.6894 RAE. By applying feature selection in Maxwell dataset, 3% 

improvement was achieved in LinearRegression algorithm and the best performance 

was revised as LinearRegression. Performance measures were observed as 0.8354 

Correlation Coefficient, 3610.4878, MAE, 57.4666 RAE (%). 

The lowest performance was obtained with IBk before selection of feature, 

which saved performance measures as 0. 463 Correlation Coefficient, 5517.129 MAE, 

87.8139 RAE (%). After feature selection, while IBk performance measures gained 

improvement as 0.7427 Correlation Coefficient, 4725.7419, MAE, 75.2177 RAE (%), 

and the lowest performing algorithm is updated as RandomTree with 0. 6147 

Correlation Coefficient, 5068.6745 MAE, 80.676 RAE (%). 

By applying CfsSubsetEval and Random Search before the model was set up, 

6 out of 9 algorithms showed the improvement and the highest improvement of this 

method was recorded as 28% improvement in the correlation coefficient of IBk 

algorithm. 

 

4.2.3.2 CfsSubset Evaluation and Particle Swarm Optimization (PSO) Method 

Results 

Attribute selection was applied by selecting the evaluation criterion 

CfsSubsetEval and the search criterion PSO from the SelectionAttributes function of 

WEKA. The number of attributes, which was 27 before the process, was reduced to 15 

with the implementation of the method, Year, Hardware platform, Database, 

Development Env, adequacy, Staff availability, Software logical complexity, 

Requirements volatility, Quality requirements, Efficiency requirements, Installation 

requirements, Staff application knowledge, Staff tool skills, Duration, Function points, 

Time. With the addition of the dependent variable, Effort provided by application Use, 

16 attributes selected for the most effective subset of attributes were determined as the 

model input. 

The results of the algorithms obtained without feature selection and the 

performance outputs of the model created with feature subset after feature selection is 

given in Table 4.18. 
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Table 4.18: Performance Measures of Models with Maxwell Original Feature and Selected 

Feature Set by CFS+ PSO 

Machine Learning 

Algorithms 

Maxwell Original Dataset 

(19 Feature) 

Feature Selection with 

CFS+ PSO 

(9 Feature) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

Correlation 

Coefficient 
MAE 

RAE  

(%) 

LinearRegression 0.8085 4157.5897 66.1746 0.835 3550.9565 56.5191 

RandomForest 0.7612 3998.2174 63.638 0.7916 3655.784 58.1876 

Bagging 0.7711 3949.1671 62.8573 0.7738 3840.6234 61.1296 

MultilayerPerceptron 0.7641 4764.3788 75.8327 0.712 5175.8943 82.3826 

SMOreg 0.8191 3812.9653 60.6894 0.8361 3188.8894 50.7562 

IBk 0.463 5517.129 87.8139 0.7432 4848.2419 77.1675 

KStar 0.7336 4618.2302 73.5065 0.85 4040.6726 64.3137 

Random Tree 0.569 5686.9672 90.5171 0.613 5151.1169 81.9882 

M5p 0.8175 3718.2692 59.1822 0.834 3654.1942 58.1623 

 

The highest performance was obtained with SMOreg before feature selection, 

and performance measurements were recorded as 0.8191 Correlation Coefficient, 

3812.9653 MAE, 60.6894 RAE. By applying feature selection in Maxwell dataset, 

15.9% improvement was achieved in KStar algorithm and the best performance was 

revised as KStar. Performance measures were observed as 0.85 Correlation 

Coefficient, 4040.6726, MAE, 58.1623 RAE (%). 

The lowest performance was obtained with IBk before selection of feature, 

which saved performance measures as 0.463 Correlation Coefficient, 5517.129 MAE, 

87.8139 RAE (%). After feature selection, while IBk performance measures gained 

improvement as 0.7432 Correlation Coefficient, 4848.2419, MAE, 77.1675 RAE (%), 

and the lowest performing algorithm is updated as RandomTree with 0. 0.613 

Correlation Coefficient, 5151.1169 MAE, 81.9882 RAE (%). 

In addition, after applying this method, 8 out of 9 algorithms showed the 

improvement and the highest improvement of this method was recorded as 28% 

improvement in the correlation coefficient in the first and last results of the IBk 

algorithm. 

 

4.2.3.3 CfsSubset Evaluation and Genetic Algorithm (GA) Method Results 

Attribute selection was applied by selecting the evaluation criterion 

CfsSubsetEval and the search criterion RandomSearch from the SelectionAttributes 

function of WEKA. The number of attributes, which was 27 before the process, was 

reduced to 19 by applying the method, by selecting the attributes named Year, 

Application type, Hardware platform, Database, where developed, Customer 
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participation, Development Env, adequacy, Standards use, Tools use, Software logical 

complexity, Requirements volatility, Quality requirements, Efficiency requirements, 

Installation requirements, Staff application knowledge, Staff tool skills, Duration, 

Function points, Time. With the addition of the dependent variable, Effort provided by 

application Use, 20 attributes selected for the most effective subset of attributes were 

determined as the model input. 

The results of the algorithms obtained without feature selection and the 

performance outputs of the model created with feature subset after feature selection is 

given in Table 4.19. 

 

Table 4.19: Performance Measures of Models with Maxwell Original Feature and Selected 

Feature Set by CFS+ GA 

Machine Learning 

Algorithms 

Maxwell Original Dataset 

(27 Feature) 

Feature Selection with 

CFS+ GA 

(20 Feature) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

LinearRegression 0.8085 4157.5897 66.1746 0.8544 3395.0666 54.0379 

RandomForest 0.7612 3998.2174 63.638 0.7621 3827.5684 60.9218 

Bagging 0.7711 3949.1671 62.8573 0.7704 3898.5336 62.0514 

MultilayerPerceptron 0.7641 4764.3788 75.8327 0.816 4146.3094 65.9951 

SMOreg 0.8191 3812.9653 60.6894 0.818 3522.3771 56.0642 

IBk 0.463 5517.129 87.8139 0.7593 4494.6774 71.5399 

KStar 0.7336 4618.2302 73.5065 0.8596 4078.3244 64.913 

Random Tree 0.569 5686.9672 90.5171 0.4398 5223.2222 83.1359 

M5p 0.8175 3718.2692 59.1822 0.8092 3685.2814 58.6571 

 

The best performance was obtained by SMOReg before the feature selection. 

The performance measures, which were 0.8191 Correlation Coefficient, 3812.9653 

MAE, 60.6894 RAE (%). By application of feature selection-based GA, the best 

performing algorithm is updated as KStar with 0.8596 Correlation Coefficient, 

4078.3244 MAE, 64.913 RAE (%). KStar has shown 17% improvement by GA 

Feature selection. It has been observed that higher results have been achieved. Based 

on this improvement, it has succeeded in being the method that can achieve higher 

results compared to the original feature set. 

The lowest performance was obtained with IBk before selection of feature, 

which saved performance measures as 0.463 Correlation Coefficient, 5517.129 MAE, 

87.8139 RAE (%). After feature selection, while IBk performance measures gained 

improvement as 0.7593 Correlation Coefficient, 4494.6774 MAE, 71.5399 RAE (%), 
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and the lowest performing algorithm is updated as RandomTree with 0.4398 

Correlation Coefficient, 5223.2222 MAE, 64.913RAE (%). 

In addition, after applying this method, 5 out of 9 algorithms showed 

improvement, also application of this method has achieved best among all selection 

methods, and the highest improvement of this method was recorded as 29% 

improvement in the correlation coefficient on IBk algorithm. 

 

4.2.3.4 ClassifierAttEval Evaluation and Ranker Search Method Results 

Attribute selection was applied by selecting the evaluation criterion 

ClassifierAttEval and the search criterion Ranker from the SelectionAttributes 

function of WEKA. The number of attributes was 27 before the process. The ranker 

search method, sorts the attributes in order of impact on the model when implemented 

with ClassifierAttEval. The resulting sequence was obtained as: Time, Telon use, 

Customer participation, Development Env, adequacy, Staff availability, # of 

development languages, Where developed, Function points, User interface, 

Application type, Hardware platform, Database, Standards use, Methods use, Tools 

use, Software logical complexity, Staff tool skills, Staff team skills, Duration, staff 

application, staff analysis skills, Installation requirements, Requirements volatility, 

Quality requirements, Efficiency requirements, Year. In order not to insert the most 

ineffective features into the model as unnecessary inputs, the last 3 features Quality 

requirements, Efficiency requirements, Year were removed from the set. 

The results of the algorithms obtained without feature selection and the performance 

outputs of the model created with feature subset after feature selection is given in Table 4.20. 
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Table 4.20: Performance Measures of Models with Maxwell Original Feature and Selected 

Feature Set by ClassifierAttEvaluation + Ranker 

Machine Learning 

Algorithms 

Maxwell Original Dataset 

(27 Feature) 

Feature Selection with 

ClassifierAttEvaluation + 

Ranker 

(24 Feature) 

Correlation 

Coefficient 
MAE RAE (%) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

LinearRegression 0.8085 4157.5897 66.1746 0.8282 4164.5366 66.2852 

RandomForest 0.7612 3998.2174 63.638 0.8015 3654.0125 58.1594 

Bagging 0.7711 3949.1671 62.8573 0.7589 4041.8054 64.3317 

MultilayerPerceptron 0.7641 4764.3788 75.8327 0.6961 5487.8816 87.3483 

SMOreg 0.8191 3812.9653 60.6894 0.8281 3639.1298 57.9225 

IBk 0.463 5517.129 87.8139 0.4904 5397.3871 85.908 

KStar 0.7336 4618.2302 73.5065 0.7209 4539.8698 72.2592 

Random Tree 0.569 5686.9672 90.5171 0.6184 6120.3704 97.4154 

M5p 0.8175 3718.2692 59.1822 0.8515 3447.3519 54.8701 

 

The best performance was obtained by SMOReg before the feature selection. 

The performance measures, which were 0.8191 Correlation Coefficient, 3812.9653 

MAE, 60.6894 RAE (%). By application of feature selection-based ClassifierAttEval 

Evaluation and Ranker Search, the best performing algorithm is updated as M5P with 

0.8515 Correlation Coefficient, 3447.3519 MAE, 54.8701 RAE (%). M5P has shown 

4% improvement by ClassifierAttEval Evaluation and Ranker Search Feature 

selection. 

The lowest performance was obtained with IBk before selection of feature, 

which saved performance measures as 0.463 Correlation Coefficient, 5517.129 MAE, 

87.8139 RAE (%). After feature selection, while IBk performance measures gained 

improvement as 0.4904 Correlation Coefficient, 5397.3871 MAE, 85.908 RAE (%), 

and the lowest performing algorithm is kept as IBk. 

In addition, after applying this method, 6 out of 9 algorithms showed 

improvement, also application of this method has achieved best among all selection 

methods, and the highest improvement of this method was recorded as 5% 

improvement in the correlation coefficient on RandomTree algorithm. 

 

4.2.3.5 Corr. Att. Evaluation and Ranker Search Method Results 

Attribute selection was applied by selecting the evaluation criterion Corr. 

Att.Evaluation and the search criterion Ranker from the SelectionAttributes function 

of WEKA. The number of attributes was 27 before the process. The ranker search 

method, sorts the attributes in order of impact and gives coefficient to the feature in 
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accordance with rank value to take with coefficient the impact of feature, when 

implemented with Corr. Att.Evaluation. 

The final sequence was obtained as: Function points, Duration – Süre, Software 

logical complexity, Installation requirements, # of development languages, Staff team 

skills, Efficiency requirements, Requirements volatility, Quality requirements, 

Customer participation, Staff application, Staff analysis skills, Staff availability, User 

interface, Telon use, Application type, Where developed, Methods use, Tools use, 

Standards use, Database, Hardware platform, Development Env, adequacy, Time, 

Year, Staff tool skills. In order not to insert the most ineffective features into the model 

as unnecessary inputs, the last 3 features Time, Year, Staff tool skills were removed 

from the set. 

The results of the algorithms obtained without feature selection and the 

performance outputs of the model created with feature subset after feature selection is 

given in Table 4.21. 

 

Table 4-21: Performance Measures of Models with Maxwell Original Feature and Selected 

Feature Set by Corr. Att.Evaluation + Ranker 

Machine Learning 

Algorithms 

Maxwell Original Dataset 

(27 Feature) 

Feature Selection with 

Corr. Att.Evaluation + Ranker 

(24 Feature) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

LinearRegression 0.8085 4157.5897 66.1746 0.8163 3937.4256 62.6704 

RandomForest 0.7612 3998.2174 63.638 0.7932 3718.2019 59.1811 

Bagging 0.7711 3949.1671 62.8573 0.791 3847.9297 61.2459 

MultilayerPerceptron 0.7641 4764.3788 75.8327 0.6801 6143.2445 97.7795 

SMOreg 0.8191 3812.9653 60.6894 0.8336 3728.4524 59.3442 

IBk 0.463 5517.129 87.8139 0.4487 5720.7419 91.0547 

KStar 0.7336 4618.2302 73.5065 0.7315 4558.8152 72.5608 

Random Tree 0.569 5686.9672 90.5171 0.6913 5393.8065 85.851 

M5p 0.8175 3718.2692 59.1822 0.8247 3643.2708 57.9884 

 

The best performance was obtained by SMOReg before the feature selection. 

The performance measures, which were 0.8191 Correlation Coefficient, 3812.9653 

MAE, 60.6894 RAE (%). With the application of feature selection with Corr. 

Att.Evaluation and Ranker, the algorithm with best result is kept as SMOreg. 

Performance measures are saved as 0.8336 Correlation Coefficient, 3728.4524 MAE, 

59.3442 RAE (%). It has been observed that higher results have been achieved even if 

it is with low rate. 
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The lowest performance was obtained with IBk before selection of feature, 

which saved performance measures as 0.463 Correlation Coefficient, 5517.129 MAE, 

87.8139 RAE (%). After feature selection, while IBk performance measures observed 

as 0.4487 Correlation Coefficient, 5720.7419 MAE, 91.0547 RAE (%), the decrease 

is observed and the lowest performing algorithm is kept as IBk. 

In addition, after applying this method, 6 out of 9 algorithms showed 

improvement, also application of this method has achieved best among all selection 

methods, and the highest improvement of this method was recorded as 13% 

improvement in the correlation coefficient on RandomTree algorithm. 

 

4.2.3.6 Relief Att. Evaluation and Ranker Search Method Results 

Attribute selection was applied by selecting the evaluation criterion Relief 

Att.Evaluation and the search criterion Ranker from the SelectionAttributes function 

of WEKA. The number of attributes was 27 before the process. The ranker search 

method, sorts the attributes in order of impact and gives coefficient to the feature in 

accordance with rank value to take with coefficient the impact of feature, when 

implemented with Relief Att.Evaluation.  

When Relief Att. Evaluation and Ranker Search Method applied On Maxwell 

dataset, it has been seen that the data of 13 of the dataset is marked with a negative 

coefficient. Since it is mentioned in section c that tagged features with negative 

coefficient affect the model badly in theory or are considered as unnecessary inputs, 

this feature selection method will be tried twice for this dataset. firstly, by removing 

the last 3 features as was until this part of the study, and then as second experiment, 

algorithms will be handled with same feature selection method by removing 13 

features to eliminate all the negative values. 

 

4.2.3.6.1  First Experiment-By Removing Last 3 Features 

The final sequence was obtained as: Function points, Duration, Staff tool skills, 

Development Env, adequacy, Telon use, Methods use, Staff team skills, Tools use, 

Software logical complexity, Staff availability, Time, Year, Installation requirements, 

Customer participation, Quality requirements, Where developed, Standards use, 

Database, User interface, Staff analysis skills, # of development languages, Efficiency 

requirements, Requirements volatility, Hardware platform, Application type, Staff 

application. In order not to insert the most ineffective features into the model as 
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unnecessary inputs, the last 3 features Hardware platform, Application type, Staff 

application were removed from the set. 

The results of the algorithms obtained without feature selection and the performance 

outputs of the model created with feature subset after feature selection is given in Table 4.22 

 

Table 4.22: Performance Measures of Models with Maxwell Original Feature and 24 

Selected Feature Set by Relief Att.Evaluation + Ranker 

Machine Learning 

Algorithms 

Maxwell Original Dataset 

(27 Feature) 

Feature Selection with 

Relief Att.Evaluation + Ranker 

(24 Feature) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

LinearRegression 0.8085 4157.5897 66.1746 0.8208 4278.3998 68.0975 

RandomForest 0.7612 3998.2174 63.638 0.7854 3700.0468 58.8921 

Bagging 0.7711 3949.1671 62.8573 0.787 3873.8563 61.6586 

MultilayerPerceptron 0.7641 4764.3788 75.8327 0.7762 4360.284 69.4008 

SMOreg 0.8191 3812.9653 60.6894 0.8206 3695.2361 58.8155 

IBk 0.463 5517.129 87.8139 0.5089 5206.0484 82.8625 

KStar 0.7336 4618.2302 73.5065 0.6642 4841.8553 77.0658 

Random Tree 0.569 5686.9672 90.5171 0.5882 4303.6581 68.4995 

M5p 0.8175 3718.2692 59.1822 0.8472 3443.7698 54.8131 

 

The best performance was obtained by SMOReg before the feature selection. 

The performance measures, which were 0.8191 Correlation Coefficient, 3812.9653 

MAE, 60.6894 RAE (%). With the application of feature selection with Relief 

Att.Evaluation and Ranker, the algorithm with best result is revised as M5P. 

Performance measures are saved as 0.8472 Correlation Coefficient, 3443.7698 MAE, 

54.8131 RAE (%). It has been observed that higher results have been achieved even if 

it is with low rate. 

The lowest performance was obtained with IBk before selection of feature, 

which saved performance measures as 0.463 Correlation Coefficient, 5517.129 MAE, 

87.8139 RAE (%). After feature selection, while IBk performance measures observed 

as 0.5089 Correlation Coefficient, 5206.0484 MAE, 82.8625 RAE (%), and the lowest 

performing algorithm is kept as IBk. 

In addition, application of Relief Att.Evaluation by selecting Ranker Search, 8 

out of 9 algorithms showed the improvement and the highest improvement of this 

method was recorded as 4% improvement in the correlation coefficient on IBk 

algorithm. 
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4.2.3.6.2  Second Experiment-By Removing All the Tagged Feature with 

Negative Coefficient 

The final sequence was obtained as: Function points, Duration – Süre, Staff 

tool skills, Development Env, adequacy, Telon use, Methods use, Staff team skills, 

Tools use, Software logical complexity, Staff availability, Time, Year, Installation 

requirements, Customer participation, Quality requirements, Where developed, 

Standards use, Database, User interface, Staff analysis skills, # of development 

languages, Efficiency requirements, Requirements volatility, Hardware platform, 

Application type, Staff application. In order not to insert the ineffective features into 

the model as unnecessary inputs, the last 13 features Customer participation, Quality 

requirements, where developed, Standards use, Database, User interface, Staff analysis 

skills, # of development languages, Efficiency requirements, Requirements volatility, 

Hardware platform, Application type, Staff application were removed from the set. 

The results of the algorithms obtained without feature selection and the 

performance outputs of the model created with feature subset after feature selection is 

given in Table 4.23. 

 

Table 4.23: Performance Measures of Models with Maxwell Original Feature and 14 

Selected Feature Set by Relief Att.Evaluation + Ranker 

Machine Learning 

Algorithms 

Maxwell Original Dataset 

(27 Feature) 

Feature Selection with 

Relief Att.Evaluation + Ranker 

(14 Feature) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

LinearRegression 0.8085 4157.5897 66.1746 0.8359 3515.087 55.9482 

RandomForest 0.7612 3998.2174 63.638 0.8102 3479.8312 55.387 

Bagging 0.7711 3949.1671 62.8573 0.795 3719.2772 59.1982 

MultilayerPerceptron 0.7641 4764.3788 75.8327 0.7346 5356.9926 85.265 

SMOreg 0.8191 3812.9653 60.6894 0.838 3702.8557 58.9368 

IBk 0.463 5517.129 87.8139 0.5988 5502.4032 87.5795 

KStar 0.7336 4618.2302 73.5065 0.7651 4005.7376 63.7577 

Random Tree 0.569 5686.9672 90.5171 0.7425 5064.0022 80.6016 

M5p 0.8175 3718.2692 59.1822 0.8322 3476.3101 55.331 

 

The best performance was obtained by SMOReg before the feature selection. 

The performance measures, which were 0.8191 Correlation Coefficient, 3812.9653 

MAE, 60.6894 RAE (%). With the application of feature selection with Corr. 

Att.Evaluation and Ranker, the algorithm with best result is kept as SMOreg. 

Performance measures are saved as 0.838 Correlation Coefficient, 3702.8557 MAE, 
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58.9368 RAE (%). It has been observed that higher results have been achieved even if 

it is with low rate. 

The lowest performance was obtained with IBk before selection of feature, 

which saved performance measures as 0.463 Correlation Coefficient, 5517.129 MAE, 

87.8139 RAE (%). After feature selection, while IBk performance measures observed 

as 0.5988 Correlation Coefficient, 5502.4032 MAE, 87.5795 RAE (%), and the lowest 

performing algorithm is kept as IBk. 

In addition, application of Relief Att.Evaluation by selecting Ranker Search, 8 

out of 9 algorithms showed the improvement and the highest improvement of this 

method was recorded as 18% improvement in the correlation coefficient on 

RandomTree algorithm. 

 

4.2.4 Kemerer Dataset Cost Estimation Results with Feature Selection Methods 

4.2.4.1 CfsSubset Evaluation and Random Search Method Results 

For the Kemerer dataset, attribute selection was applied by selecting the 

evaluation criterion CfsSubsetEval and the search criterion RandomSearch from the 

SelectionAttributes function of WEKA. The number of attributes, which was 8 before 

the process, was reduced to 4 by applying the method, by selecting the attributes named 

ID, hardware, KSLOC, Adjusted Function Points. With the addition of the dependent 

variable, Effort Man Months, 5 attributes were determined as the model input as the 

most effective attributes. 

The results of the algorithms obtained without feature selection and the 

performance outputs of the model created with feature subset after feature selection is 

given in Table 4.24. 
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Table 4.24: Performance Measures of Models with Kemerer Original Feature 

and 14 Selected Feature Set by RandomSearch 

Machine Learning 

Algorithms 

Kemerer Original Dataset 

(8 Feature) 

Feature Selection with 

CFS+ RandomSearch 

(5 Feature) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

LinearRegression 0.3692 173.2407 107.6474 0.3684 161.7829 100.5279 

RandomForest 0.3532 129.0567 80.1926 0.2857 149.997 93.2044 

Bagging 0.1277 185.4463 115.2317 0.1168 182.9247 113.6648 

MultilayerPerceptron 0.3511 129.4589 80.4425 0.3134 140.4294 87.2593 

SMOreg 0.5737 114.3301 71.0419 0.6795 98.1538 60.9903 

IBk 0.4665 142.054 88.2688 0.2849 193.1747 120.0339 

KStar 0.5589 134.6747 83.6835 0.6034 137.9592 85.7244 

Random Tree -0.0271 250.9131 155.9111 0.1189 194.6347 120.9411 

M5p 0.3291 176.3236 109.5631 0.348 180.1463 111.9384 

 

The best performance was obtained by SMOreg before and after the feature 

selection was applied. The performance measures, which were 0.5737 Correlation 

Coefficient, 114.3301 MAE, 71.0419 RAE (%) before the feature selection was 

applied, improved to 0.6795 Correlation Coefficient, 98.1538MAE, 60.9903 RAE (%) 

after the feature selection was applied. The improvement of correlation coefficient has 

been gained as 16% on Kemerer dataset for best performance measure. 

The lowest performance was obtained with RandomTree before selection of 

feature, which saved performance measures as -0.0271 Correlation Coefficient, 

250.9131 MAE, 155.9111RAE (%). After feature selection, while RandomTree 

performance measures is gaining improvement, the lowest performing algorithm is 

updated as Bagging with 0.1168 Correlation Coefficient, 182.9247 MAE, 113.6648 

RAE (%). 

By evaluation of the results were evaluated in the Maxwell dataset in general, 

although feature selection increased the highest performance obtained before the 

application with a high percentage, 4 of the 9 algorithms were improved and 5 of them 

fell backwards. The highest improvement of this method was recorded as 10% 

improvement in the correlation coefficient on SMOreg algorithm. 

 

4.2.4.2 CfsSubset Evaluation and Particle Swarm Optimization (PSO) Method 

Results 

Attribute selection was applied by selecting the evaluation criterion 

CfsSubsetEval and the search criterion RandomSearch from the SelectionAttributes 

function of WEKA. The number of attributes, which was 8 before the process, was 
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reduced to 4 by applying the method, by selecting the attributes named ID, Language, 

KSLOC, Adjusted Function Points. With the addition of the dependent variable, Effort 

provided by application Use, 5 attributes were determined as the model input as the 

most effective attributes. 

The results of the algorithms obtained without feature selection and the 

performance outputs of the model created with feature subset after feature selection is 

given in Table 4.25. 

 

Table 4.25: Performance Measures of Models with Kemerer Original Feature and Selected 

Feature Set by CFS+ PSO 

Machine Learning 

Algorithms 

Kemerer Original Dataset 

(8 Feature) 

Feature Selection with 

CFS+ PSO 

(5 Feature) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

LinearRegression 0.3692 173.2407 107.6474 0.3425 190.2161 118.1955 

RandomForest 0.3532 129.0567 80.1926 0.2925 143.9352 89.4377 

Bagging 0.1277 185.4463 115.2317 0.117 180.8072 112.3491 

MultilayerPerceptron 0.3511 129.4589 80.4425 0.3277 150.4623 93.4935 

SMOreg 0.5737 114.3301 71.0419 0.6946 96.4073 59.9051 

IBk 0.4665 142.054 88.2688 0.336 160.028 99.4374 

KStar 0.5589 134.6747 83.6835 0.6219 124.3199 77.2492 

Random Tree -0.0271 250.9131 155.9111 0.329 163.9313 101.8628 

M5p 0.3291 176.3236 109.5631 0.3385 188.2263 116.9591 
 

The best performance was obtained by SMOreg before and after the feature 

selection was applied. The performance measures, which were 0.5737 Correlation 

Coefficient, 114.3301 MAE, 71.0419 RAE (%) before the feature selection was 

applied, improved to 0.6946 Correlation Coefficient, 96.4073 MAE, 59.9051 RAE (%) 

after the feature selection was applied. 

Similarly, the lowest performance was obtained with Bagging before and after 

feature selection 

Although there was no improvement in the best result compared to the original 

dataset by applying feature selection in the Kemerer dataset, by applying this method, 

4 out of 9 algorithms showed improvement, 5 of them fell backwards, and the highest 

improvement of this method was recorded as 34% improvement on the correlation 

coefficient of RandomTree algorithm. 
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4.2.4.3 CfsSubset Evaluation and Genetic Algorithm (GA) Method Results 

Attribute selection was applied by selecting the evaluation criterion 

CfsSubsetEval and the search criterion RandomSearch from the SelectionAttributes 

function of WEKA. The number of attributes, which was 8 before the process, was 

reduced to 4 by applying the method, by selecting the attributes named ID, 

Development Language, KSLOC, Adjusted Function Points. With the addition of the 

dependent variable, Effort provided by application Use, 5 attributes were determined 

as the model input as the most effective attributes. 

The results of the algorithms obtained without feature selection and the 

performance outputs of the model created with feature subset after feature selection is 

given in Table 4.26. 

 

Table 4.26: Performance Measures of Models with Kemerer Original Feature and Selected 

Feature Set by CFS+ GA 

Machine Learning 

Algorithms 

Kemerer Original Dataset 

(8 Feature) 

Feature Selection with 

CFS+ GA 

(5 Feature) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

LinearRegression 0.3692 173.2407 107.6474 0.3425 190.2161 118.1955 

RandomForest 0.3532 129.0567 80.1926 0.2925 143.9352 89.4377 

Bagging 0.1277 185.4463 115.2317 0.117 180.8072 112.3491 

MultilayerPerceptron 0.3511 129.4589 80.4425 0.3277 150.4623 93.4935 

SMOreg 0.5737 114.3301 71.0419 0.6946 96.4073 59.9051 

IBk 0.4665 142.054 88.2688 0.336 160.028 99.4374 

KStar 0.5589 134.6747 83.6835 0.6219 124.3199 77.2492 

Random Tree -0.0271 250.9131 155.9111 0.329 163.9313 101.8628 

M5p 0.3291 176.3236 109.5631 0.3385 188.2263 116.9591 

 

On Kemerer dataset, the best performance was obtained by SMOreg before and 

after the feature selection was applied. The performance measures, which were 0.5737 

Correlation Coefficient, 114.3301 MAE, 71.0419 RAE (%) before the feature 

selection was applied. The performance measures improved to 0.6946 Correlation 

Coefficient, 96.4073 MAE, 59.9051 RAE (%) after the feature selection was applied. 

Similarly, the lowest performance was obtained with Bagging before and after 

feature selection. 

Although there was no improvement in the best result compared to the original 

dataset by applying feature selection in the Kemerer dataset, by applying this method, 

4 out of 9 algorithms showed improvement, 5 of them fell backwards, and the highest 
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improvement of this method was recorded as 34% improvement on the correlation 

coefficient of RandomTree algorithm. 

 

4.2.4.4 ClassifierAtt. Evaluation and Ranker Search Method Results 

Attribute selection was applied by selecting the evaluation criterion 

ClassifierAttEval and the search criterion Ranker from the SelectionAttributes 

function of WEKA. The number of attributes was 8 before the process. The ranker 

search method, sorts the attributes in order of impact on the model when implemented 

with ClassifierAttEval. The resulting sequence was obtained as: RAWFP, Hardware, 

Language, Duration, AdjFP, KSLOC, ID. In order not to insert the most ineffective 

features into the model as unnecessary inputs, the last 3 features AdjFP, KSLOC, ID 

were removed from the set. 

The results of the algorithms obtained without feature selection and the 

performance outputs of the model created with feature subset after feature selection is 

given in Table 4.27. 

 
Table 4.27: Performance Measures of Models with Kemerer Original Feature and Selected 

Feature Set by ClassifierAttEvaluation + Ranker 

Machine Learning 

Algorithms 

Kemerer Original Dataset 

(8 Feature) 

Feature Selection with 

ClassifierAttEvaluation + 

Ranker 

(5 Feature) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

LinearRegression 0.3692 173.2407 107.6474 0.4009 158.8259 98.6904 

RandomForest 0.3532 129.0567 80.1926 0.4872 120.4307 74.8326 

Bagging 0.1277 185.4463 115.2317 0.1766 140.8899 87.5454 

MultilayerPerceptron 0.3511 129.4589 80.4425 0.3519 134.8493 83.792 

SMOreg 0.5737 114.3301 71.0419 0.5405 112.9512 70.1851 

IBk 0.4665 142.054 88.2688 0.4626 145.174 90.2075 

KStar 0.5589 134.6747 83.6835 0.418 136.8207 85.017 

Random Tree -0.0271 250.9131 155.9111 0.3455 0.7869 85.9987 

M5p 0.3291 176.3236 109.5631 0.4084 149.358 92.8073 

 

Before feature selection, the best performance was obtained with SMOreg in 

the Kemerer dataset, similarly, with the application of feature selection with 

ClassifierAttEval and Ranker, the best result among the algorithms again SMOreg with 

0.5405 Correlation Coefficient, 112.9512 MAE, 70.1851 RAE (%) performance 

measurements. However, it was observed that the correlation coefficient obtained in 

the original dataset could not be reached. 
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The lowest performance was obtained with RandomTree in the Kemerer 

dataset, however, with the application of feature selection with ClassifierAttEval and 

Ranker, the worst result among the algorithms is revised as Bagging.  

In addition, with application of ClassifierAttEval evaluation and Ranker 

Search, 6 out of 9 algorithms showed the improvement and high improvements are 

obtained for RandomTree, RandomForest and Bagging, as 36%, 13%, 5% 

respectively. 

 

4.2.4.5 Corr. Att. Evaluation and Ranker Search Method Results 

Attribute selection was applied by selecting the evaluation criterion 

Corr.Att.Evaluation and the search criterion Ranker from the SelectionAttributes 

function of WEKA. The number of attributes was 8 before the process. The ranker 

search method, sorts the attributes in order of impact and gives coefficient to the 

feature in accordance with rank value to take with coefficient the impact of feature, 

when implemented with Corr.Att.Evaluation.  

The final sequence was obtained as: AdjFP, RAWFP, KSLOC, Duration, 

Hardware, Language, ID. In order not to insert the most ineffective features into the 

model as unnecessary inputs, the last 3 features Hardware, Language, ID were 

removed from the set. 

The results of the algorithms obtained without feature selection and the 

performance outputs of the model created with feature subset after feature selection is 

given in Table 4.28. 

 

Table 4.28: Performance Measures of Models with Kemerer Original Feature and Selected 

Feature Set by Corr.Att.Evaluation + Ranker 

Machine 

Learning 

Algorithms 

Kemerer Original Dataset 

(8 Feature) 

Feature Selection with 

Corr.Att.Evaluation + Ranker 

(5 Feature) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

LinearRegression 0.3692 173.2407 107.6474 0.354 172.4716 107.1695 

RandomForest 0.3532 129.0567 80.1926 0.4692 112.564 69.9445 

Bagging 0.1277 185.4463 115.2317 0.1611 138.01 85.756 

MultilayerPerceptron 0.3511 129.4589 80.4425 0.2937 155.0315 96.3327 

SMOreg 0.5737 114.3301 71.0419 0.7171 103.4371 64.2732 

IBk 0.4665 142.054 88.2688 0.5812 134.974 83.8695 

KStar 0.5589 134.6747 83.6835 0.2984 128.1335 79.6189 

Random Tree -0.0271 250.9131 155.9111 0.6658 126.7154 78.7378 

M5p 0.3291 176.3236 109.5631 0.3397 173.3476 107.7139 
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On Kemerer dataset, the best performance was obtained by SMOreg before and 

after the feature selection was applied. The performance measures, which were 0.5737 

Correlation Coefficient, 114.3301 MAE, 71.0419 RAE (%) before the feature 

selection and the best result among the algorithms again SMOreg with 0.7171 

Correlation Coefficient, 103.4371 MAE, 64.2732 RAE (%) performance 

measurements. It has been observed that higher results have been achieved. Based on 

this improvement, it has succeeded in being the method that can achieve higher results 

compared to the original feature set. 

The lowest performance was obtained with RandomTree before feature 

selection with -0.0271 Correlation Coefficient, 250.9131 MAE, 155.911 RAE (%), by 

application of feature selection, performance measures gained high improvement and 

noted as 0. 6658 Correlation Coefficient, 126.7154 MAE, 78.7378 RAE (%). So new 

lowest measurement is saved as Bagging.  

In addition, application of Corr.Att.Evaluation by selecting Ranker Search, 6 

out of 9 algorithms showed the improvement and the highest improvement of this 

method was recorded as 68% for RandomTree. 

 

4.2.4.6 Relief Att. Evaluation and Ranker Search Method Results 

Attribute selection was applied by selecting the evaluation criterion Relief 

Att.Evaluation and the search criterion Ranker from the SelectionAttributes function 

of WEKA. The number of attributes was 8 before the process. The ranker search 

method, sorts the attributes in order of impact and gives coefficient to the feature in 

accordance with rank value to take with coefficient the impact of feature, when 

implemented with Relief Att.Evaluation.  

The final sequence was obtained as: KSLOC, AdjFP, RAWFP, Hardware, ID, 

Duration, Language. In order not to insert the most ineffective features into the model 

as unnecessary inputs, the last 3 features ID, Duration, Language were removed from 

the set. 

The results of the algorithms obtained without feature selection and the 

performance outputs of the model created with feature subset after feature selection is 

given in Table 4.29. 
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Table 4.29: Performance Measures of Models with Kemerer Original Feature and Selected 

Feature Set by Relief Att.Evaluation + Ranker 

Machine Learning 

Algorithms 

Kemerer Original Dataset 

(8 Feature) 

Feature Selection with 

Relief Att.Evaluation + Ranker 

(5 Feature) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

Correlation 

Coefficient 
MAE 

RAE 

(%) 

LinearRegression 0.3692 173.2407 107.6474 0.3803 173.5323 107.8286 

RandomForest 0.3532 129.0567 80.1926 0.302 139.0277 86.3884 

Bagging 0.1277 185.4463 115.2317 0.1408 178.4307 110.8724 

MultilayerPerceptron 0.3511 129.4589 80.4425 0.6295 119.1639 74.0455 

SMOreg 0.5737 114.3301 71.0419 0.627 126.2262 78.4338 

IBk 0.4665 142.054 88.2688 0.4654 146.6073 91.0981 

KStar 0.5589 134.6747 83.6835 0.6295 119.1639 74.0455 

Random Tree -0.0271 250.9131 155.9111 0.2338 179.156 111.323 

M5p 0.3291 176.3236 109.5631 0.4148 148.5519 92.3064 

 

Before feature selection, the best performance was obtained with SMOreg in 

the Kemerer dataset which the performance measures were 0.5737 Correlation 

Coefficient, 114.3301 MAE, 71.0419 RAE (%). However, with the application of 

feature selection with Relief Att.Evaluation and Ranker, the best result among the 

algorithms is MultilayerPerceptron and KStar at the same time with 0.6295 Correlation 

Coefficient, 119.1639 MAE, 74.0455 RAE (%) performance measurements 

The lowest performance was obtained with RandomTree before feature 

selection with -0.0271 Correlation Coefficient, 250.9131 MAE, 155.911 RAE (%), by 

application of feature selection, performance measures gained high improvement and 

new lowest algorithm result is noted as Bagging with 0.1408 Correlation Coefficient, 

178.4307 MAAE, 110.8724 RAE (%). 

In addition, application of Relief Att.Evaluation by selecting Ranker Search, 7 

out of 9 algorithms showed the improvement and high improvements are obtained for 

MultilayerPerceptron, RandomTree as 27%, 25% respectively. 

 

4.3 ANALYSIS OF FINDINGS 

In this section, an extensive examination is provided of developed models via 

machine learning algorithms by handling original and selected feature sets for 

Software Cost Estimations. The detailed analyses of the investigated studies are 

presented in tables, showcasing the results obtained. The comparison of existing 

studies is conducted based on several factors, including the software cost estimation 

method employed, the datasets utilized, feature selection technique, selected feature 

number, and the evaluation criteria employed.  
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Until this section, different feature selection techniques have been applied 

separately for each dataset, and it has been tried to converge better results than the 

original dataset. In this section, the results obtained are evaluated together: 

⮚ The highest achievable success rates for the dataset, 

⮚ Algorithms and techniques that converge to the highest performance 

rate, 

⮚ Techniques that tend to show higher performance compared to the 

original dataset, 

⮚ The lowest success rates for the dataset, 

By emphasizing it, it is aimed to add a study to the literature that will provide 

input on which machine learning methods can provide high-performance accuracy 

estimation in software cost estimation. The performance evaluation criteria employed 

in these analyses and comparisons are the Correlation Coefficient, Mean Absolute 

Error (MAE), and Relative Absolute Error (RAE). 

The outcomes of the models constructed using the Finnish dataset are 

showcased in Table 4.30. By considering the model outputs, it is seen that the highest 

performance measurement is obtained with KStar, and the result that is very close to 

the highest is obtained with RandomForest by using ClassifierAttEval + Ranker and 

PSO, GA method, respectively. In addition, the best result is achieved with 

ClassifierAttEval + Ranker feature selection method thanks to model development 

with 6 feature selection (differently hardware attribute is included) instead of 5. For 

that reason, PSO and GA models, which are so close to the best result with 5 features, 

should not be ignored as more robust against overfitting.  On the other hand, IBk has 

the lowest performance compared to other algorithms. 

Examining the model outputs, it is seen that the model outputs developed by 

feature selection in 8 out of 9 algorithms achieve better results than the model output 

created using the original dataset. In addition, it has been observed that PSO and GA 

feature selection techniques outperform other methods in capturing the highest value 

of the algorithm. The best results which could be achieved with 6 of 9 algorithms were 

obtained with PSO and GA.  
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Table 4.30: The Outcomes of The Models Constructed Using the Finnish Dataset 

 

 

The outcomes of the models constructed using the China dataset are showcased 

in Table 4.31. By considering the model outputs, it is seen that the highest performance 

measurement is obtained with Multiexciton, and the very close result obtained with 

SMOReg by using Relief Att.Evaluation+Ranker and Corr.Att.Evaluation+Ranker 

attribute selection method, respectively, thanks to model development with 16 feature 

selection instead of 7/9/10 for both. However, considering that overfitting may occur 

in training with too many attributes, it is recommended to consider that the 

RandomSearch technique with 7 attributes also yields a very high result of 0.9866 

Correlation Coefficient with SMOreg. On the other hand, RandomTree has the lowest 

performance and IBk has a very low result compared to other algorithms. 

Examining the model outputs, it is seen that the model outputs developed by 

Relief Att.Evaluation+Ranker feature selection in 6 out of 9 algorithms achieve better 

results than the model output created using the original dataset. In addition, the 

RandomSearch applied model also obtained better results in 5 of the 9 algorithms 

compared to the model output with the original dataset. Also, the best results which 
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could be achieved with algorithms are captured 3 times by Relief Att.Evaluation + 

Ranker. 

 

Table 4.31: The Outcomes of The Models Constructed Using the China Dataset 

 

 

The outcomes of the models constructed using the Maxwell dataset are 

showcased in Table 4.32. By considering the model outputs, it is seen that the highest 

performance measurement is obtained with KStar, and the very close result obtained 

with LinearRegression by using GA for both thanks to model development with 20 

feature selection. On the other hand, However, considering that overfitting may occur 

in training with too many attributes, it is recommended to consider that the PSO 

technique with 9 attributes also yields a very high result of 0.85 Correlation Coefficient 

with KStar. RandomTree has the lowest performance and IBk has a very low result 

compared to other algorithms. 

Examining the model outputs, it is seen that the model outputs developed by 

PSO and Relief Att.Evaluation+Ranker feature selection in 8 out of 9 algorithms 

achieve better results than the model output created using the original dataset. In 

addition to this, the best results which could be achieved with algorithms are captured 

4 times by Relief Att.Evaluation+Ranker. 
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Table 4.32: The Outcomes of The Models Constructed Using the Maxwell Dataset 

 

 

The outcomes of the models constructed using the Kemerer dataset are 

showcased in Table 4.33. By considering the model outputs, it is seen that the highest 

performance measurement and the very close result observed are obtained with 

SMOreg by using Corr.Att.Evaluation+Ranker and PSO, GA, respectively. On the 

other hand, RandomTree has the lowest performance and Bagging has a very low result 

compared to other algorithms. 

Examining the model outputs, it is seen that the model outputs developed by Relief 

Att.Evaluation+Ranker feature selection in 7 out of 9 algorithms achieve better results 

than the model output created using the original dataset. Despite this, the best results 

which could be achieved with algorithms are captured 3 times by 

Corr.AttEvaluation+Ranker. 

 

  

Linear 

Regression

Random   

Forest
Bagging

Multilayer 

Perceptron
SMOreg Ibk Kstar

Random    

Tree
M5p

Correlation 

Coefficient 0.8085 0.7612 0.7711 0.7641 0.8191 0.463 0.7336 0.569 0.8175

MAE 4157.5897 3998.2174 3949.1671 4764.3788 3812.9653 5517.129 4618.2302 5686.9672 3718.2692

RAE (%) 66.1746 63.638 62.8573 75.8327 60.6894 87.8139 73.5065 90.5171 59.1822

Correlation 

Coefficient 0.8354 0.7624 0.7753 0.7215 0.8091 0.7427 0.8174 0.6147 0.8173

MAE 3610.4878 3768.4553 3835.1733 5389.5218 3520.7457 4725.7419 4154.1848 5068.6745 3677.0131

RAE (%) 57.4666 59.9809 61.0429 85.7828 56.0383 75.2177 66.1204 80.676 58.5255

Correlation 

Coefficient 0.835 0.7916 0.7738 0.712 0.8361 0.7432 0.85 0.613 0.834

MAE 3550.9565 3655.784 3840.6234 5175.8943 3188.8894 4848.2419 4040.6726 5151.1169 3654.1942

RAE (%) 56.5191 58.1876 61.1296 82.3826 50.7562 77.1675 64.3137 81.9882 58.1623

Correlation 

Coefficient 0.8544 0.7621 0.7704 0.816 0.818 0.7593 0.8596 0.4398 0.8092

MAE 3395.0666 3827.5684 3898.5336 4146.3094 3522.3771 4494.6774 4078.3244 5223.2222 3685.2814

RAE (%) 54.0379 60.9218 62.0514 65.9951 56.0642 71.5399 64.913 83.1359 58.6571

Correlation 

Coefficient 0.8282 0.8015 0.7589 0.6961 0.8281 0.4904 0.7209 0.6184 0.8515

MAE 4164.5366 3654.0125 4041.8054 5487.8816 3639.1298 5397.3871 4539.8698 6120.3704 3447.3519

RAE (%) 66.2852 58.1594 64.3317 87.3483 57.9225 85.908 72.2592 97.4154 54.8701

Correlation 

Coefficient 0.8163 0.7932 0.791 0.6801 0.8336 0.4487 0.7315 0.6913 0.8247

MAE 3937.4256 3718.2019 3847.9297 6143.2445 3728.4524 5720.7419 4558.8152 5393.8065 3643.2708

RAE (%) 62.6704 59.1811 61.2459 97.7795 59.3442 91.0547 72.5608 85.851 57.9884

Correlation 

Coefficient 0.8359 0.8102 0.795 0.7346 0.838 0.5988 0.7651 0.7425 0.8322

MAE 3515.087 3479.8312 3719.2772 5356.9926 3702.8557 5502.4032 4005.7376 5064.0022 3476.3101

RAE (%) 55.9482 55.387 59.1982 85.265 58.9368 87.5795 63.7577 80.6016 55.331

Maxwell Dataset

 Corr. Att.Evaluation              

+Ranker

(24 4Feature)

Relief. 

Att.Evaluation +                   

Ranker

(14 Feature)

ALGORITHMS

Original Feature Set

(27 Feature)

CFS +               

RandomSearch

(16 Feature)

 CFS+ PSO

(9 Feature)

 CFS +GA

(20 Feature)

 ClassifierAttEval              

+ Ranker

(24 Feature)
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Table 4.33: The Outcomes of The Models Constructed Using the Kemerer Dataset 
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CHAPTER V 

5. CONCLUSION 

 

The main goal of a successful software project is to produce software that will 

meet the expectations of the customer with a predetermined budget at a predetermined 

time. The failure of many software projects is due to the fact that the estimates made 

at the initial planning stage were not correct. For this reason, it can be said that the 

most basic and first project management activity in the success of a software project 

is the appropriate and effective allocation of necessary resources. In other words, it is 

critical to determine the resources that will be needed in the realization of the relevant 

project by making the planning on the right basis. Cost is the crux of these resources 

and is highly dependent on the effort within the project. In this case, estimating the 

effort needed is important in determining the cost. 

For the software cost estimation process, which is a very important step in 

software project management, traditionally and predominantly manual input and 

expert opinion are still used today. However, these techniques cannot handle to 

estimate the cost of large and complex software. Therefore, to improve the software 

cost estimation process has aimed in this thesis. For this purpose, a machine learning-

based approach has been adopted to make the software cost estimation process faster, 

more consistent and repeatable accurately. By leveraging machine learning techniques, 

the goal is to automate and optimize the software cost estimation process, reducing the 

reliance on manual and subjective judgments. 

During the development of a machine learning-driven approach, the Finnish, 

Kemerer, China, and Maxwell datasets provided in Title 3.1 were utilized for software 

cost estimation. Models were constructed using the algorithms outlined in Title 3.3, 

and the validation technique employed was 10-fold cross-validation. 

In the first part of the study, titled 4.1, the models were constructed with 

original datasets and the performance of the models were showcased. Subsequently, 

in Title 4.2, the performances of the models constructed using optimized and efficient 

feature subsets obtained by hybrid feature selection approaches from the same datasets 
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were analyzed. These techniques were described in detail in Title 3.4, with their steps, 

areas of application, strengths, and weaknesses. In the development of the models with 

feature subsets, feature selection techniques such as CFS + RandomSearch, CFS + 

PSO, CFS + GA, ClassifierAttEval + Ranker, Corr.Att.Evaluation + Ranker, Relief 

Att.Evaluation + Ranker were utilized. As discussed in Title 3.5, the performance 

evaluation of the models was carried out by considering the Correlation Coefficient as 

well as several error metrics, including MAE, RMSE, RAE, and RRSE. 

The most successful and unsuccessful results of the model outputs established 

with the original datasets obtained in the first and second stages of the study and the 

feature subsets obtained by the feature selection methods are presented in the tables. 

In order not to be affected by small deviations while examining the results, the values 

close to the best and the worst results with a small percentage difference were added 

to the table. In addition, due to its higher resistance to overfitting, models with less 

number of feature subsets and close to the best results are also included. 

Finnish model performance measurements are presented in Table 5.1, China 

model performance measurements are presented in Table 5.2, Maxwell model 

performance measurements are presented in Table 5.3, Kemerer model performance 

measurements are presented in Table 5.4. 

 

Table 5.1: Finnish Dataset 's Highest and Lowest Performance Measures Before and After 

Feature Selection 
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Table 5.2: China Dataset 's Highest and Lowest Performance Measures Before and After 

Feature Selection 

 

 

Table 5.3: Maxwell Dataset 's Highest and Lowest Performance Measures Before and After 

Feature Selection 

 

 

Table 5.4: Kemerer Dataset 's Highest and Lowest Performance Measures Before and After 

Feature Selection 

 

 

In the Finnish dataset, the KStar algorithm was found to be the most successful 

to achieve best estimation. The ClassifierAttEval and Ranker methods were utilized 

during the analysis. The efforts comparison for the actual and predicted by the model 

are depicted in Figure 5.1. 

Machine Learning 

Algortihm

Number Of 

Selected 

Features

Feature Selection 

Technique

Correlation 

Coefficient
MAE RAE (%)

The Highest Result Without 

Feature Selection SMOreg 8 Original Feature Set 0.5737 114.3301 71.0419

The Lowest Result Without 

Feature Selection Random Tree 8 Original Feature Set -0.0271 250.9131 155.9111

SMOreg 5 Corr. Att.Evaluation + Ranker 0.7171 103.4371 64.2732

SMOreg 5 CFS + PSO 0.6946 96.4073 59.9051

SMOreg 5 CFS+ GA 0.6946 96.4073 59.9051

Bagging 5 CFS+ RandomSearch 0.1168 182.9247 113.6648

Random Tree 5 CFS+ RandomSearch 0.1189 194.63 120.94

The Hightest Results

Kemerer Dataset

The Lowest Results
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Figure 5.1: Comparison Graph for Actual and Predicted Effort of Finnish Dataset 

 

In the China dataset, the Multilayer Perceptron algorithm was found to be the 

most successful to achieve best estimation. The Relief Att.  Evaluation and Ranker 

methods were utilized during the analysis. The efforts comparison for the actual and 

predicted by the model are depicted in Figure 5.2. 

 

 

Figure 5.2: Comparison Graph for Actual and Predicted Effort of China Dataset 

 

In the Kemerer dataset, the SMOreg algorithm was found to be the most 

successful to achieve best estimation. The Corr. Att. Evaluation and Ranker methods 

were utilized during the analysis. The efforts comparison for the actual and predicted 

by the model are depicted in Figure 5.3. 

 

 

Figure 5.3: Comparison Graph for Actual and Predicted Effort of Kemerer Dataset 
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In the Maxwell dataset, the KStar algorithm was found to be the most 

successful to achieve best estimation. The CFS and Genetic Algorithm methods were 

utilized during the analysis. The efforts comparison for the actual and predicted by the 

model are depicted in Figure 5.4. 

 

 

Figure 5.4: Comparison Graph for Actual and Predicted Effort of Maxwell Dataset 

 

When the results are examined in detail, it is observed that the most successful 

and unsuccessful results of the models created with both the original data and a subset 

of the dataset are achieved with different algorithms and feature selection techniques. 

From this point of view, it should not be ignored that algorithms and techniques may 

lead to different results depending on the dataset characteristics. 

It has been clearly seen that the models obtained by creating the most effective 

feature subsets in the models created with both the original dataset and different feature 

selection techniques of the most effective features achieve much more successful 

results than the models created with the original dataset. As a result, it can be said that 

advancing with feature selection in machine learning-based approaches in software 

cost estimation will be an effective method. 

When the model results obtained by feature selection are examined, it is 

observed that Ranker-based, PSO and GA search methods generally achieve 

successful results in all four datasets. It has also been observed that in general, PSO 

and GA search methods yield good results, even if the feature subset is small. It is 

clearly seen in Table 5.5 that even if the best results were not achieved with the lowest 

feature set, close to the best results can also be obtained with a less numbered feature 

set. Figure 5.5, Figure 5.6, Figure 5.7, Figure 5.8  shows the noticeable effect of feature 
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selection methods on model accuracy and illustrates the increase in success of the 

model in accurately predicting values with the efficient selection of features. 

 

Table 5.5: Model Performance Results with Feature Selection 

 

 

 

Figure 5.5: Relation of Accuracy to Number of Features for Finnish 

 

Dataset
Orginal 

Feature Set
Model FeatureSelection

Selected 

Feature Set

Correlation 

Coefficient

Finnish 9 KStar CFS+ RandomSearch 5 0.9916

Finnish 9 RandomForest CFS+ PSO 5 0.9942

Finnish 9 RandomForest CFS+ GA 5 0.9942

Finnish 9 KStar ClassifierAttEval+ Ranker 6 0.9948

Finnish 9 KStar Corr. Att.Evaluation + Ranker 6 0.9912

Finnish 9 KStar Relief. Att.Evaluation + Ranker 6 0.9916

China 19 SMOreg CFS+ RandomSearch 7 0.9866

China 19 SMOreg CFS+ PSO 9 0.9853

China 19 LinearRegression CFS+ GA 10 0.9859

China 19 SMOreg ClassifierAttEval+ Ranker 16 0.9887

China 19 MultilayerPerceptron Corr. Att.Evaluation + Ranker 16 0.9912

China 19 MultilayerPerceptron Relief. Att.Evaluation + Ranker 16 0.9914

Maxwell 27 LinearRegression CFS+ RandomSearch 16 0.8354

Maxwell 27 K Star CFS+ PSO 9 0.85

Maxwell 27 K Star CFS+ GA 20 0.8596

Maxwell 27 M5p ClassifierAttEval+ Ranker 24 0.8515

Maxwell 27 SMOreg Corr. Att.Evaluation + Ranker 24 0.8336

Maxwell 27 M5p Relief. Att.Evaluation + Ranker 24 0.8472

Maxwell 27 SMOreg Relief. Att.Evaluation + Ranker 14 0.838

Kemerer 8 SMOreg CFS+ RandomSearch 5 0.6795

Kemerer 8 SMOreg CFS+ PSO 5 0.6946

Kemerer 8 SMOreg CFS+ GA 5 0.6946

Kemerer 8 SMOreg ClassifierAttEval+ Ranker 5 0.5405

Kemerer 8 SMOreg Corr. Att.Evaluation + Ranker 5 0.7171

Kemerer 8 KStar Relief. Att.Evaluation + Ranker 5 0.6295
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Figure 5.6 Relation of Accuracy to Number of Features for China 

 

 

Figure 5.7 Relation of Accuracy to Number of Features for Maxwell 

 

 

Figure 5.8 Relation of Accuracy to Number of Features for Kemerer 
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Table 5.6 Comparative Analysis of Gained Results with Literature 

 

 

In Table 5.6, the best results obtained and the literature studies found with 

Artificial Neural Network methods applied to the same datasets and Machine Learning 

methods without feature selection are given. It is clear that high performance can be 

achieved with machine learning models by applying the low-cost and sustainable 

model feature selection targeted in the study. In the model outputs created with the 

relevant datasets, it was determined that the highest performance measurements as 

algorithms were obtained when KStar, SMOreg, MultilayerPerceptron and 

LinearRegression were used. It has been noted that  models created using IBk, 

RandomTree and Bagging algorithms tend to give low results. 

As a result, it seems that Machine Learning Based Approaches can be used as 

a high-performance method for software cost estimation and it is an open area for 

Dataset Author(s) Intelligent method MMRE PRED
Correlation 

Coefficient
MAE RAE

(Rehal & Sharma, 2021) SMOReg 0.9897 270.4561 7.3095

Spiking Neural Network 0.23

fuzzy c-means

clustering-Functional Link Artificial 

Neural Networks

0.45

intuitionistic fuzzy c-means 

clustering-Functional Link Artificial 

Neural Networks

0.33

Long short-term memory 0.41

Output layer

self-connection recurrent

neural networks

0.32

Proposed Model MLP & Relief Att.Eval. + Ranker 0.2655 0.0847 0.9914 370.1846 10.005

AnalogyBased Estimation - Least 

Squares

Support Vector Machin

1.7974 0.52

 AnalogyBased Estimation - 

Extreme Learning Machines
2.3929 0.15

 AnalogyBased Estimation - 

Artificial Neural Networks
2.124 0.32

Proposed Model Kstar & ClassifierAttEval + Ranker 0.2521 0.0104 0.9948 0.0873 8.5274

AnalogyBased Estimation - Least 

Squares

Support Vector Machin

1.1529 0.42

 AnalogyBased Estimation - 

Extreme Learning Machines
4.2891 0.16

 AnalogyBased Estimation - 

Artificial Neural Networks
4.4466 0.12

Artificial Neural Network 1.32

Functional Link Artificial Neural 

Networks
0.42

Elman neural network 1.3748

Long short-term memory 0.37

Output layer

self-connection recurrent

neural networks

0.31

Proposed Model Kstar & CFS + GA 0.7644 0.1274 0.8596 4078.324 64.913

AnalogyBased Estimation - Least 

Squares

Support Vector Machin

0.66412 0.4

 AnalogyBased Estimation - 

Extreme Learning Machines
1.8071 0.13

 AnalogyBased Estimation - 

Artificial Neural Networks
2.0333 0.08

Proposed Model
SMOReg & Corr. Att.Evaluation + 

Ranker
0.5940 0.1289 0.7171 103.4371 64.273

China

Finnish

Maxwell

Kemerer

(Kumar, Behera, Kumari, Nayak & Nail, 

2020)

(Benala & Bandarupalli, 2016)

(Benala & Bandarupalli, 2016)

(Kumar, Behera, Kumari, Nayak & Nail, 

2020)

(Benala & Bandarupalli, 2016)
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improvement. In future studies, similar methods can be studied with more and different 

datasets in order to generalize the obtained inferences and improve performance with 

different parameter values.
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