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A B S T R A C T

In many of our real life problems, we often come across situations where there is no information about the
priority weights which make it difficult to analyze the objects under consideration. Instead of employing
simple fuzzy sets, ‘‘interval type-2 trapezoidal pythagorean fuzzy preference relations (IT2TrPFPRs)’’ can be
used which have better representational power and ability to cope with uncertain situations. The approach
discussed in this article is an effective tool for managing multiple criteria group decision-making situations with
completely unknown priority weights modeled as IT2TrPFPRs. To aggregate the opinion of multiple decision-
makers, a hybrid averaging operation based on weighted averaging and ordered weighted averaging (OWA)
operations is employed for a collective decision environment. To calculate the fuzzy priority weight vectors
in case of completely unknown environment, we construct a non-linear optimization model. An integrated
optimization model based on a new signed distance-based closeness coefficients approach is employed to
determine the priority ranking of alternatives. Feasibility of the proposed technique is discussed with an
implementation of patient centered medicine system for choosing the appropriate treatment method. Moreover,
a comparative investigation with previous approaches is conducted to demonstrate the effectiveness of the
given approach.
1. Introduction

Decision-making information presented by group decision-makers is
frequently vague, inaccurate and uncertain due to the deficiency of in-
formation, time hassle or insufficient concentration of decision-makers.
Consequently, solutions related to Group decision-making (GDM) prob-
lems becomes difficult and challenging. The fuzzy set (FS) theory
was initially proposed by Zadeh [1] in 1965 to signify the degree of
elements belonging to a particular set. They were formerly proposed
to cope up with the problems concerning with subjective uncertainties.
Later on, type-2 fuzzy sets (T2FSs) [2–4], an extension of type-1 fuzzy
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sets (T1FSs) were introduced since they are better in measuring impre-
cise information and provide us a more suitable representation which
is computationally feasible to cope with uncertain situations. But the
secondary memberships in T2FSs often makes them very difficult to
apply in certain practical situations. Therefore to handle this situation
interval type-2 (IT2FSs) are vastly employed where the secondary mem-
bership grade is fixed to 1. IT2FSs are very effective in dealing with
uncertain and ambiguous problems because of their representational
power and less computational cost as compared to T2FSs. Therefore, in
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our approach we will also employ the approach of IT2FSs by Mendel [5]
instead of T2FSs because of the complexity associated with them.

By considering both the membership and non-membership degree
of an element in a fuzzy set, Atanassov [6,7] generalized the fuzzy
sets to intuitionistic fuzzy sets (IFSs) which have widely been used
to deal effectively with diverse decision making problems as they
are more attuned to the philosophical aspect of considering positive
and negative aspects of objects under consideration. IFSs were further
extended by Yager [8] by presenting the idea of ‘‘Pythagorean fuzzy sets
(PFSs)’’. By considering the additional aspect of non-membership along
with the membership grades various authors [9–17] have effectively
made use of IFSs and PFSs to deal with numerous decision making
situations. Moreover, these fuzzy sets have also widely been employed
for Covid-19 diagnosis by different authors [18–23].

Classical ‘‘preference relations’’ (PRs) [24] is one of the most com-
monly used tool to assess relative preference of different objects by
expressing the degrees of preferences of one object on the other. In deci-
sion sciences a paradigmatic change has occurred with the fuzzification
of the classical concept of preference relations by the introduction of
‘‘Fuzzy preference relations’’ (FPRs) [1] and the ‘‘intuitionistic fuzzy
preference relations’’ (IFPRs) [25,26]. Here we introduce the concept
of ‘‘interval type-2 trapezoidal preference relation’’ as an extension of
IFPRs which will be combined with the idea of signed based distance
proposed by Chen ([27–30] to formulate a new idea of ranking. The
approach discussed in this article is an effective tool for managing
multiple criteria group decision-making situations with completely un-
known priority weights modeled as IT2TrPFPRs. To aggregate the
opinion of multiple decision-makers, a hybrid averaging operation
based on weighted averaging and ordered weighted averaging (OWA)
operations is employed for a collective decision environment. To cal-
culate the fuzzy priority weight vectors in case of completely unknown
environment, we construct a non-linear optimization model. An in-
tegrated optimization model based on a new signed distance-based
closeness coefficients approach is employed to determine the priority
ranking of alternatives. Feasibility of the proposed technique is dis-
cussed with an implementation of patient centered medicine system for
choosing the appropriate treatment method. Moreover, a comparative
investigation with previous approaches is conducted to demonstrate the
effectiveness of the given approach.

The article organizes as follows: Section 2 presents basic defi-
nitions and ideas of IT2TrFNs. Section 3 discusses the idea of the
signed distance-based technique. Section 4 involves the introduction of
IT2TrPFRs, the discussion of environment with completely unknown
fuzzy priority weight vectors and the construction of non-linear opti-
mization model using signed distance based closeness coefficient for
ranking the alternatives. Section 5 summarizes our technique and is
presented as an algorithm. Section 6 demonstrates the feasibility of
the proposed technique and comparisons with the existing methods.
Finally, we conclude our discussion in Section 7.

2. Preliminaries

In this section, we briefly discuss some definitions and ideas.

Definition 2.1 ([31]). A PFS P on universal set W is defined such as:

p = {⟨𝜎, 𝜇p(𝜎), 𝜈p(𝜎)⟩
|

|

|

𝜇2p(𝜎) + 𝜈
2
p (𝜎) ≤ 1, 𝜇p(𝜎), 𝜈p(𝜎) ∈ [0, 1], 𝜎 ∈ W} (1)

where 𝜇p(𝜎) and 𝜈p(𝜎) represent the Pythagorean membership degree
nd Pythagorean non-membership degree of p at 𝜎 respectively.

efinition 2.2 ([32,33]). The indeterminacy degree of 𝜎 to p is defined
uch as:

p(𝜎) =
√

1 − 𝜇2
p
(𝜎) − 𝜈2

p
(𝜎) (2)

here 𝜋 (𝜎) ∈ [0, 1].
2

p

Definition 2.3. Let p(𝜎) = [p𝐿(𝜎), p𝑈 (𝜎)] be IT2PFS on universal set
where 𝜎 ∈ W and p𝐿 ∶ W → [0, 1] and p𝑈 ∶ W → [0, 1] are

ype-1 Pythagorean fuzzy sets (T1PFSs) known as upper and lower
ythagorean fuzzy sets respectively with conditions 0 ≤ p𝐿(𝜎) ≤

p𝑈 (𝜎) ≤ 1. If p ∈ 𝜎 is convex and described on a enclosed interval
then p is called IT2PFN on W.

Definition 2.4. The indeterminacy degree of IT2PFN define as:

𝜋p(𝜎) =[𝜋𝐿p (𝜎), 𝜋
𝑈
p (𝜎)]

=[
√

1 −
(

𝜇𝐿
p

)2(𝜎) −
(

𝜈𝐿
p

)2(𝜎),
√

1 −
(

𝜇𝑈
p

)2(𝜎) −
(

𝜈𝑈
p

)2(𝜎)]
(3)

where 𝜋𝐿
p
(𝜎), 𝜋𝑈

p
(𝜎) ∈ [0, 1].

Definition 2.5 ([34]). Let p𝐿 = [p1
𝐿, p2

𝐿, p3
𝐿, p4

𝐿;𝜇𝐿
p
, 𝜈𝐿

p
] and p𝑈 =

[p1
𝑈 , p2

𝑈 , p3
𝑈 , p4

𝑈 ;𝜇𝑈
p
, 𝜈𝑈

p
] be the lower and upper trapezoidal

Pythagorean fuzzy number (TrPFN) on the universal set W where
0 ≤ p1

𝐿 ≤ p2
𝐿 ≤ p3

𝐿 ≤ p4
𝐿 ≤ 1, 0 ≤ 𝜇𝐿

p
≤ 𝜇𝑈

p
≤ 1, 0 ≤ 𝜈𝐿

p
≤ 𝜈𝑈

p
≤ 1 and

p𝐿 ⊂ p𝑈 . The Pythagorean membership and non-membership function
𝜇p and 𝜈p is defined respectively:

𝜇p(𝜎) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(𝜎−p11)𝜇p
p12−p11

p11 ≤ 𝜎 < p12
𝜇p p12 ≤ 𝜎 ≤ p13
(p14−𝜎)𝜇p
p14−p13

p13 < 𝜎 ≤ p14
0 otherwise

(4)

𝜈p(𝜎) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(𝜎−p11)𝜈p
p12−p11

p11 ≤ 𝜎 < p12
𝜈p p12 ≤ 𝜎 ≤ p13
(p14−𝜎)𝜈p
p14−p13

p13 < 𝜎 ≤ p14
0 otherwise

(5)

where 𝜇p = [𝜇p𝐿 (𝜎), 𝜇p𝑈 (𝜎)] and 𝜈p = [𝜈p𝐿 (𝜎), 𝜈p𝑈 (𝜎)] are IT2PFNs.

The number p represented as p = [p𝐿, p𝑈 ] = ([p1
𝐿, p2

𝐿, p3
𝐿, p4

𝐿;
𝜇𝐿
p
, 𝜈𝐿

p
], [p1

𝑈 , p2
𝑈 , p3

𝑈 , p4
𝑈 ;𝜇𝑈

p
, 𝜈𝑈

p
]) and is called IT2TrPFN.

Definition 2.6. Let two IT2TrPFNs p1 = ([p11
𝐿, p12

𝐿, p13
𝐿, p14

𝐿;𝜇𝐿
p
, 𝜈𝐿

p
],

[p11
𝑈 , p12

𝑈 , p13
𝑈 , p14

𝑈 ;𝜇𝑈
p
, 𝜈𝑈

p
]) and p2 = ([p21

𝐿, p22
𝐿, p23

𝐿, p24
𝐿;𝜇𝐿

p
, 𝜈𝐿

p
],

[p21
𝑈 , p22

𝑈 , p23
𝑈 , p24

𝑈 ;𝜇𝑈
p
, 𝜈𝑈

p
]), and 𝜉 ≥ 0. The primary operations

described on IT2TrPFNs are follows:

1. Addition:

p1 ⊕ p2 =
⟨[

p𝐿11 + p𝐿21, p
𝐿
12 + p𝐿22, p

𝐿
13 + p𝐿23, p

𝐿
14 + p𝐿24;

√

(𝜇𝐿1 )
2 + (𝜇𝐿2 )

2 − (𝜇𝐿1 )
2(𝜇𝐿2 )

2, 𝜈𝐿1 𝜈
𝐿
2
]

,
[

p𝑈11 + p𝑈21, p
𝑈
12 + p𝑈22, p

𝑈
13 + p𝑈23, p

𝑈
14 + p𝑈24;

√

(𝜇𝑈1 )
2 + (𝜇𝑈2 )

2 − (𝜇𝑈1 )
2(𝜇𝑈2 )

2, 𝜈𝑈1 𝜈
𝑈
2

]⟩

2. Multiplication:

p1 ⊗ p2 =
⟨[

p𝐿11p
𝐿
21, p

𝐿
12𝑝

𝐿
22, p

𝐿
13p

𝐿
23, p

𝐿
14p

𝐿
24;

𝜇𝐿1 𝜇
𝐿
2 ,

√

(𝜈𝐿1 )
2 + (𝜈𝐿2 )

2 − (𝜈𝐿1 )
2(𝜈𝐿2 )

2
]

,
[

p𝑈11p
𝑈
21, p

𝑈
12p

𝑈
22, p

𝑈
13p

𝑈
23, p

𝑈
14p

𝑈
24;

𝜇𝑈1 𝜇
𝑈
2 ,

√

(𝜈𝑈1 )2 + (𝜈𝑈2 )2 − (𝜈𝑈1 )2(𝜈𝑈2 )2
]⟩

3. Multiplication by an ordinary number:

𝜉p1 =
⟨[

𝜂p𝐿11, 𝜂p
𝐿
12, 𝜂p

𝐿
13, 𝜂p

𝐿
14;

√

1 − (1 − (𝜇𝐿1 )
2)𝜂 , (𝜈𝐿1 )

𝜂],
[

p𝑈 , 𝜂p𝑈 , 𝜂p𝑈 , 𝜂p𝑈 ;
𝜂 11 12 13 14
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[

√

1 − (1 − (𝜇𝑈1 )
2)𝜂 , (𝜈𝑈1 )𝜂

]⟩

4. Exponential:

p1
𝜂 =

⟨[

p11
𝐿𝜂, p12

𝐿𝜂, p13
𝐿𝜂, p14

𝐿𝜂; (𝜇𝐿1 )𝜂,
√

1 − (1 − (𝜈𝐿1 )
2)𝜂

]

,
[

p11
𝑈 𝜂, p12

𝑈 𝜂, p13𝑈 𝜂, p14
𝑈 𝜂;

(𝜇𝑈1 )𝜂,
√

1 − (1 − (𝜈𝑈1 )2)𝜂
]⟩

Definition 2.7 ([35]). Let a preference matrix 𝑃 = (𝑝𝑖𝑗 )𝑛×𝑛 where
𝑝𝑖𝑗 = (𝑝𝑖𝑗1, 𝑝𝑖𝑗2, 𝑝𝑖𝑗3, 𝑝𝑖𝑗4) is trapezoidal fuzzy numbers, and where 0 ≤
𝑝𝑖𝑗1 ≤ 𝑝𝑖𝑗2 ≤ 𝑝𝑖𝑗3 ≤ 𝑝𝑖𝑗4 ≤ 1 ∀ 𝑖, 𝑗 = 1, 2,… 𝑛, then 𝑃 is known as additive
rapezoidal fuzzy preference relation.

𝑝𝑖𝑖1 = 𝑝𝑖𝑖2 = 𝑝𝑖𝑖3 = 𝑝𝑖𝑖4 = 0.5, 𝑖, 𝑗 = 1, 2,… 𝑛

𝑝𝑖𝑗1 + 𝑝𝑖𝑖4 = 𝑝𝑖𝑗2 + 𝑝𝑖𝑗3 = 𝑝𝑖𝑗3 + 𝑝𝑖𝑖2 = 𝑝𝑖𝑗4 + 𝑝𝑖𝑖1 = 1, 𝑖, 𝑗 = 1, 2,… 𝑛

Definition 2.8 ([36]). Let 𝑃 = (𝑝𝑖𝑗 )𝑛×𝑛 be IT2TrPFPR where P𝑖𝑗 =
[(p1𝑖𝑗

𝐿, p2𝑖𝑗
𝐿, p3𝑖𝑗

𝐿, p4𝑖𝑗
𝐿;𝜇𝐿

p𝑖𝑗
, 𝜈𝐿

p𝑖𝑗
), (p1𝑖𝑗

𝑈 , p2𝑖𝑗
𝑈 , p3𝑖𝑗

𝑈 , p4𝑖𝑗
𝑈 ;𝜇𝑈

p𝑖𝑗
, 𝜈𝑈

p𝑖𝑗
)] be

IT2TrPFPR
𝑃 𝑖𝑗 = (𝑝𝑖𝑗1, 𝑝𝑖𝑗2, 𝑝𝑖𝑗3, 𝑝𝑖𝑗4) is IT2TrPFPNs, where 0 ≤ 𝑝𝑖𝑗1 ≤ 𝑝𝑖𝑗2 ≤

𝑝𝑖𝑗3 ≤ 𝑝𝑖𝑗4 ≤ 1 ∀ 𝑖, 𝑗 = 1, 2,… 𝑛, then 𝑃 is known as additive interval
ype 2 trapezoidal pythagorean fuzzy preference relation.

𝑝𝑖𝑖1 = 𝑝𝑖𝑖2 = 𝑝𝑖𝑖3 = 𝑝𝑖𝑖4 = 0.5, 𝑖, 𝑗 = 1, 2,… 𝑛

𝑝𝑖𝑗1 + 𝑝𝑖𝑖4 = 𝑝𝑖𝑗2 + 𝑝𝑖𝑗3 = 𝑝𝑖𝑗3 + 𝑝𝑖𝑖2 = 𝑝𝑖𝑗4 + 𝑝𝑖𝑖1 = 1, 𝑖, 𝑗 = 1, 2,… 𝑛

3. Signed distance based ranking approach with completely un-
known weight environment involving OWA aggregation operator

Here we have proposed a new approach based on signed distances
to find out the ranking of IT2TrPFPR using positive and negative values
equally to characterize the ordering of IT2TrPFPRs. But the basic idea
of TOPSIS is the same that the optimal choice should be at minimum
distance from positive ideal solution and at maximum distance from the
negative ideal solution. The respective reference values for the positive
and negative ideal solutions are set as [(1, 1, 1, 1; 1, 1, 1),(1, 1, 1,
1; 1, 1, 1, 1)] and [(0, 0, 0, 0; 1, 1, 1),(0, 0, 0, 0; 1, 1, 1)] since
the he attribute values modeled in the form of IT2TrNNs lie between
zero and one. That is, they are placed respectively at 𝑥 = 1 and

= 0 on the 𝑦-axis. The proposed scheme is different from typical
istance measures approaches as this study involves signed-distance
ased approach associated with IT2TrPFPR.

roposition 1. Consider p be an IT2TrPFPR on the universal set W and
p = [p𝐿, p𝑈 ] = ([p1

𝐿, p2
𝐿, p3

𝐿, p4
𝐿;𝜇𝐿

p
, 𝜈𝐿

p
], [p1

𝑈 , p2
𝑈 , p3

𝑈 , p4
𝑈 ;𝜇𝑈

p
, 𝜈𝑈

p
])

where 0 ≤ 𝜇𝐿
p
≤ 𝜇𝑈

p
≤ 1 and 0 ≤ 𝜈𝐿

p
≤ 𝜈𝑈

p
≤ 1.

The signed distances-based of p from 01 (at x = 0) or 11 (at x = 1) are
as follows:

𝑑(p, 01) =
1
8

[

2(p1
𝐿 + p2

𝐿 + p3
𝐿 + p4

𝐿) + 2(p1
𝑈 + p2

𝑈 + p3
𝑈 + p4

𝑈 )

+3(p2
𝑈 + p3

𝑈 − p1
𝑈 − p4

𝑈 )
( 𝜇𝐿

p

𝜇𝑈
p

−
𝜈𝐿
p

𝜈𝑈
p

) ]

(6)

(p, 11) =
1
8

[

2(p1
𝐿 + p2

𝐿 + p3
𝐿 + p4

𝐿) + 2(p1
𝑈 + p2

𝑈 + p3
𝑈 + p4

𝑈 )

+3(p2
𝑈 + p3

𝑈 − p1
𝑈 − p4

𝑈 )
( 𝜇𝐿

p

𝜇𝑈
−
𝜈𝐿
p

𝜈𝑈

)

− 16
]

(7)
3

p p
roof. The derivation is analogous to previously derived signed based
istance formulas by Chen [28,29] in Appendix D and B respectively.

xample 1. Let P be an IT2TrPFPR on the universal set W and
p = [p𝐿, p𝑈 ] = [(0.3, 0.5, 0.6, 0.8; 0.3, 0.2), (0.2, 0.4, 0.7, 0.9; 0.2, 0.1)] be
‘interval type-2 trapezoidal pythagorean fuzzy number’’(IT2TPFN) The
igned distance p from 01 (at x = 0) or 11 (at x = 1) are calculated as

(P, 01) =
1
8

[

2(p1
𝐿 + p2

𝐿 + p3
𝐿 + p4

𝐿) + 2(p1
𝑈 + p2

𝑈 + p3
𝑈 + p4

𝑈 )

+ 3(p2
𝑈 + p3

𝑈 − p1
𝑈 − p4

𝑈 )
𝜇𝐿
p

𝜇𝑈
p

−
𝜈𝐿
p

𝜈𝑈
p

) ]

= 1
8

[

2(0.3 + 0.5 + 0.6 + 0.8) + 2(0.2 + 0.4 + 0.7 + 0.9)

+ 3(0.4 + 0.7 − 0.2 − 0.9)( 0.3
0.2

− 0.2
0.1

)
]

= 1.1

And the signed distance 𝑑(P
1
12, 11) using Eq. (7) are calculated as:

𝑑(P, 11) =
1
8

[

2(p1
𝐿 + p2

𝐿 + p3
𝐿 + p4

𝐿) + 2(p1
𝑈 + p2

𝑈 + p3
𝑈 + p4

𝑈 )

+ 3(p2
𝑈 + p3

𝑈 − p1
𝑈 − p4

𝑈 )
𝜇𝐿
p

𝜇𝑈
p

−
𝜈𝐿
p

𝜈𝑈
p
− 16

) ]

= 1
8

[

2(0.3 + 0.5 + 0.6 + 0.8) + 2(0.2 + 0.4 + 0.7 + 0.9)

+ 3(0.4 + 0.7 − 0.2 − 0.9)( 0.3
0.2

− 0.2
0.1

) − 16
]

− 0.9000

roperty 1. Consider P be an IT2TrPFPR on the universal set W

p = [p𝐿, p𝑈 ] = ([p1
𝐿, p2

𝐿, p3
𝐿, p4

𝐿;𝜇𝐿p , 𝜈
𝐿
p ], [p1

𝑈 , p2
𝑈 , p3

𝑈 , p4
𝑈 ;𝜇𝑈p , 𝜈

𝑈
p ]).

(i) 𝑑(p, 01) − 𝑑(p, 11) = 2.

(ii) p is located at 11 (i.e. p1
𝐿 = p2

𝐿 = p3
𝐿 = p4

𝐿 = 1) ⟺ 𝑑(p, 11) =
p1
𝑈 = p2

𝑈 = p3
𝑈 = p4

𝑈 = 0 and 𝑑(p, 01) = 2.

iii) p is at 01 (i.e. p1
𝐿 = p2

𝐿 = p3
𝐿 = p4

𝐿 = p1
𝑈 = p2

𝑈 = p3
𝑈 = p4

𝑈 =
0) ⟺ 𝑑(p, 01) = 0 and 𝑑(p, 11) = −2.

Property 2. Let p, F, S and X be four IT2TrPFPR defined on universal set
where

p = [(p1
𝐿, p2

𝐿, p3
𝐿, p4

𝐿;𝜇𝐿p , 𝜈
𝐿
p ), (p1

𝑈 , p2
𝑈 , p3

𝑈 , p4
𝑈 ;𝜇𝑈p , 𝜈

𝑈
p )],

F = [(f1
𝐿
, f2

𝐿
, f3

𝐿
, f4

𝐿
;𝜇𝐿

f
, 𝜈𝐿

f
), (f1

𝑈
, f2

𝑈
, f3

𝑈
, f4

𝑈
;𝜇𝑈

f
, 𝜈𝑈

f
)],

S = [(1, 1, 1, 1; 1, 1), (1, 1, 1, 1; 1, 1)] and X = [(0, 0, 0, 0; 1, 1), (0, 0, 0, 0; 1, 1)].

(i) p is closer to S than F ⟺ 𝑑(p, 11) > 𝑑(F, 11).

(ii) p is farther from X than F ⟺ 𝑑(p, 01) > 𝑑(F, 01).

rom Property 1, it is follows that the signed distances -based 𝑑(p, 01) ∈
0, 2] and 𝑑(p, 11) ∈ [−2, 0]. Additionally regulation of trichotomy holds
for signed distances based because 𝑑(p, 01) and 𝑑(F, 01) are real numbers
that satisfying linear ordering i.e. The following conditions hold: 𝑑(p, 01) >
𝑑(F, 01), 𝑑(p, 01) = 𝑑(F, 01) or either 𝑑(p, 01) < 𝑑(F, 01). Similarly 𝑑(p, 11)
and 𝑑(F, 11) also satisfies. Therefore, signed base distance can be used to
rank IT2TrPFPR.
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4. Signed distance based group decision making approach with
IT2TrPFPR AND incomplete weights

Consider a GDM problem. Let 𝜆 = {𝜆1, 𝜆2,… , 𝜆𝑆} be set of DMs
and V =

{

V1,V2,… ,V𝑚
}

be the alternatives set. This segment analyzes
decision-making situation with IT2TrPFPR with incomplete informa-

ion. For aggregate the common ranking of DMs HA approach is offered
n the form of collective choice. Further optimization model based on
DBCC is investigating the alternative weights. Lastly, this approach
s summarized via offering an algorithm to solve the GDM problem
rimarily based on IT2TrPFPR.

.1. Collective decision primarily based on HA technique

Multiple GDM may have their own opinions. There is one of a
ort of aggregation operator observed for aggregating the records. such
hat HA operation use signed distance-based OWA operation [26] to
ccumulate IT2TrPFPR statistics to form a collective decision making.
t represents the choice of DMs and committed common judgment
f OWA operation, reordering the arguments in ascending order and
eighting them.

efinition 4.1. Let 𝜆 =
{

𝜆1, 𝜆2,… , 𝜆𝑆
}

be the sets of DMs and weight
ectors are 𝛶 = (𝛶1, 𝛶2,… , 𝛶ℜ) where 𝛶r ≥ 0 for r = 1, 2,… ,ℜ and
ℜ
r=1 𝛶r = 1.

Let P𝑖𝑗
r

= [(pr𝐿1𝑖𝑗 , p
r𝐿
2𝑖𝑗 , p3𝑖𝑗

r𝐿, p4𝑖𝑗
r𝐿;𝜇r𝐿

P𝑖𝑗
, 𝜈r𝐿

P𝑖𝑗
), (p1𝑖𝑗

r𝑈 , p2𝑖𝑗
r𝑈 , p3𝑖𝑗

r𝑈 ,

p4𝑖𝑗
r𝑈 ;𝜇r𝑈

P𝑖𝑗
, 𝜈r𝑈

P𝑖𝑗
)] IT2TrPFPR expressed by DMs where 𝜆r ∈ 𝜆. Let r =

1, 2,… ,ℜ is defined as:

Ṗr𝑖𝑗 = WA(P
1
𝑖𝑗 ,P

2
𝑖𝑗 ,… ,P

ℜ
𝑖𝑗 ) = (𝛶1 ⋅ P

1
𝑖𝑗 )⊕ (𝛶2 ⋅ P

2
𝑖𝑗 )⊕⋯⊕ (𝛶ℜ ⋅ P

ℜ
𝑖𝑗 )

=
[( ℜ

∑

r=1
(𝛶r × pr𝑈1𝑖𝑗 ),

ℜ
∑

r=1
(𝛶r × pr𝑈2𝑖𝑗 ),

ℜ
∑

r=1
(𝛶r × pr𝑈3𝑖𝑗 ),

ℜ
∑

r=1
(𝛶r × pr𝑈4𝑖𝑗 ); min

r
(𝜇r𝑈

P𝑖𝑗
, 𝜈r𝑈

P𝑖𝑗
)
)

,

( ℜ
∑

r=1
(𝛶r × pr𝐿1𝑖𝑗 ),

𝑆
∑

𝑠=1
(𝛶r × pr𝐿2𝑖𝑗 ),

ℜ
∑

r=1
(𝛶r × pr𝐿3𝑖𝑗 ),

ℜ
∑

r=1
(𝛶r × pr𝐿4𝑖𝑗 ); min

r
(𝜇r𝐿

P𝑖𝑗
, 𝜈r𝐿

P𝑖𝑗
)
)]

(8)

pply WA of V𝑖 then we obtain: Ṗr𝑖𝑗 = [(Ṗ𝑠r𝐿1𝑖𝑗 , Ṗ
𝑠r𝐿
2𝑖𝑗 , Ṗ

r𝐿
3𝑖𝑗 , Ṗ

r𝐿
4𝑖𝑗 ;𝜇

r𝐿
Ṗ𝑖𝑗
, 𝜈r𝐿

Ṗ𝑖𝑗
),

Ṗr𝑈1𝑖𝑗 , Ṗ
r𝑈
2𝑖𝑗 , Ṗ

r𝑈
3𝑖𝑗 , Ṗ

r𝑈
4𝑖𝑗 ;𝜇

r𝑈
Ṗ𝑖𝑗
, 𝜈r𝑈

Ṗ𝑖𝑗
)] where 0 ≤ Ṗ𝐿1𝑖𝑗 ≤ Ṗ𝐿2𝑖𝑗 ≤ Ṗ𝐿3𝑖𝑗 ≤ Ṗ𝐿4𝑖𝑗 ≤ 1,

0 ≤ Ṗ𝑈1𝑖𝑗 ≤ Ṗ𝑈2𝑖𝑗 ≤ Ṗ𝑈3𝑖𝑗 ≤ Ṗ𝑈4𝑖𝑗 ≤ 1, 0 ≤ 𝜇𝑈
Ṗ𝑖𝑗

≤ 𝜇𝐿
Ṗ𝑖𝑗

≤ 1, 0 ≤ 𝜈𝑈
Ṗ𝑖𝑗

≤ 𝜈𝐿
Ṗ𝑖𝑗

≤ 1

and Ṗ𝑈𝑖𝑗 ⊂ Ṗ𝐿𝑖𝑗 .

4.1.1. Aggregation using OWA operation based on signed distances
OWA operation is the regularly used aggregation method. [26,29].

Signed-based distance OWA operation is used to accumulate weighted
ratings and build a collective decision matrix by using HA opera-
tion. The proposed OWA operation takes into reordering arguments
in ascending order and subsequently weighting them. At the begin
of Proposition 1, the signed distance of IT2TrPFPR. P = [P

𝐿
,P
𝑈
] =

(p1
𝐿, p2

𝐿, p3
𝐿, p4

𝐿;𝜇𝐿
p
, 𝜈𝐿

p
), (p1

𝑈 , p2
𝑈 , p3

𝑈 , p4
𝑈 ;𝜇𝑈

p
, 𝜈𝑈

p
)] from 01 is calcu-

lated in this way:

𝑑(P, 01) =
1
8

[

2(p1
𝐿 + p2

𝐿 + p3
𝐿 + p4

𝐿) + 2(p1
𝑈 + p2

𝑈 + p3
𝑈 + p4

𝑈 )

+3(p2
𝑈 + p3

𝑈 − p1
𝑈 − p4

𝑈 )
( 𝜇𝐿

p

𝜇𝑈
p

−
𝜈𝐿
p

𝜈𝑈
p

) ]

ne of the foremost be counted in OWA operation is to determine
he associated weights. Weighting vectors derived by using the normal
4

distribution method [26], due to the fact this technique can reduce
the effect of unfair arguments on the consequences of averaging by
way of assigning low weights to outliers, inclusive of unduly high or
unduly low arguments, and consequently makes the outcomes greater
affordable utilizing virtue of group consensus critiques. It is expressed
as follows:

𝜁r =
𝑒− (r−𝜙r)2

2⋅𝜓r2

∑𝑀
r=1𝑒−

(r−𝜙r)2

2⋅𝜙r2

, r = 1, 2,… ,𝑀. (9)

where 𝜙r represents the Mean and 𝜓r (𝜓r ≥ 0) be the standard deviation
of 1, 2,… ,𝑀 . such that:

𝜙r =
1
𝑀

⋅
𝑀(1 +𝑀)

2
= 1 +𝑀

2
(10)

𝜓r =
√

1
𝑀

∑

r=1

𝑀
(r − 𝜙r)2 (11)

efinition 4.2. Let 𝜆 =
{

𝜆1, 𝜆2,… , 𝜆r
}

be the set of DMs and an
T2TrPFPR, P𝑖𝑗

r
= [(p1𝑖𝑗

r𝐿, p2𝑖𝑗
r𝐿, p3𝑖𝑗

r𝐿, p4𝑖𝑗
r𝐿;𝜇r𝐿

p𝑖𝑗
, 𝜈r𝐿

p𝑖𝑗
), (p1𝑖𝑗

r𝑈 , p2𝑖𝑗
r𝑈 ,

p3𝑖𝑗
r𝑈 , p4𝑖𝑗

r𝑈 ;𝜇r𝑈
p𝑖𝑗
, 𝜈r𝑈

p𝑖𝑗
)] that represent the alternatives ratings corre-

ponding to 𝜆𝑗 by the DMs 𝜆r ∈ 𝜆. The signed-based distance OWA
operation with their corresponding weight vectors (𝜁 = 𝜁1, 𝜁2,… , 𝜁ℜ) is
defined such as:

Ṗ𝑖𝑗 = OWA(p1𝑖𝑗 , p
2
𝑖𝑗 ,… , pℜ𝑖𝑗 ) = (𝜁1 ⋅ p

𝜗(1)
𝑖𝑗 )⊕ (𝜁2 ⋅ p

𝜗(2)
𝑖𝑗 )⊕⋯⊕ (𝜁ℜ ⋅ p𝜗(ℜ)

𝑖𝑗 )

=
[( ℜ

∑

r=1
(𝜁r × p𝜗(r)𝐿1𝑖𝑗 ),

ℜ
∑

r=1
(𝜁r × p𝜗(r)𝐿2𝑖𝑗 ),

ℜ
∑

r=1
(𝜁r × p𝜗(r)𝐿3𝑖𝑗 ),

ℜ
∑

r=1
(𝜁r × p𝜗(r)𝐿4𝑖𝑗 );

min
r
(𝜇𝜗(r)𝐿

p𝑖𝑗
, 𝜈𝜗(r)𝐿

p𝑖𝑗
)
)

,

( ℜ
∑

r=1
(𝜁r × p𝜗(r)𝑈1𝑖𝑗 ),

ℜ
∑

r=1
(𝜁r × p𝜗(r)𝑈2𝑖𝑗 ),

ℜ
∑

r=1
(𝜁r × p𝜗(r)𝑈3𝑖𝑗 ),

ℜ
∑

r=1
(𝜁r × p𝜗(r)𝑈4𝑖𝑗 );

min
r
(𝜇𝜗(r)𝑈

p𝑖𝑗
, 𝜈𝜗(r)𝑈

p𝑖𝑗
)
)]

(12)

where (𝜗(1), 𝜗(2),… , 𝜗(𝑀)) be permutation of (1, 2,…𝑀).
OWA consideration of V𝑖 on 𝜆𝑗 are follows: Ṗ𝑖𝑗 = [Ṗ𝐿𝑖𝑗 , Ṗ

𝑈
𝑖𝑗 ] =

[(Ṗ𝐿1𝑖𝑗 , Ṗ
𝐿
2𝑖𝑗 , Ṗ

𝐿
3𝑖𝑗 , Ṗ

𝐿
4𝑖𝑗 ;𝜇

𝐿
Ṗ𝑖𝑗
, 𝜈𝐿

Ṗ𝑖𝑗
), (Ṗ𝑈1𝑖𝑗 , Ṗ

𝑈
2𝑖𝑗 , Ṗ

𝑈
3𝑖𝑗 , Ṗ

𝑈
4𝑖𝑗 ;𝜇

𝑈
Ṗ𝑖𝑗
, 𝜈𝑈

Ṗ𝑖𝑗
)] where 0 ≤

̇ 𝐿
1𝑖𝑗 ≤ Ṗ𝐿2𝑖𝑗 ≤ Ṗ𝐿3𝑖𝑗 ≤ Ṗ𝐿4𝑖𝑗 ≤ 1, 0 ≤ Ṗ𝑈1𝑖𝑗 ≤ Ṗ𝑈2𝑖𝑗 ≤ Ṗ𝑈3𝑖𝑗 ≤ Ṗ𝑈4𝑖𝑗 ≤ 1,

0 ≤ 𝜇𝐿
Ṗ𝑖𝑗

≤ 𝜇𝑈
Ṗ𝑖𝑗

≤ 1, 0 ≤ 𝜈𝐿
Ṗ𝑖𝑗

≤ 𝜈𝑈
Ṗ𝑖𝑗

≤ 1 and Ṗ𝐿𝑖𝑗 ⊂ Ṗ𝑈𝑖𝑗 .

xample 2. Let P be an IT2TrPFPR on the universal set W and 𝑃 1,
𝑃 2, 𝑃 3 be three judgment matrices. Find the sign distances 𝑑(P

1
12, 01),

(P
2
12, 01) and 𝑑(P

3
12, 01) respectively.

𝑑(P
1
12, 01) =

1
8

[

2(p112
1𝐿 + p212

1𝐿 + p312
1𝐿 + p412

1𝐿)

+ 2(p112
1𝑈 + p212

1𝑈 + p312
1𝑈 + p412

1𝑈 )+

(p212
1𝑈 + p312

1𝑈 − p112
1𝑈 − p412

1𝑈 )
( 𝜇1

p
𝐿

𝜇1
p
𝑈

−
𝜈1
p
𝐿

𝜈1
p
𝑈

) ]

= 1
8

[

2(0.3 + 0.5 + 0.6 + 0.8) + 2(0.2 + 0.4 + 0.7 + 0.9)

+ 3(0.4 + 0.7 − 0.2 − 0.9)( 0.3
0.2

− 0.2
0.1

)
]

= 1.1

𝑑(P
2
12, 01) =

1
[

2(p112
2𝐿 + p212

2𝐿 + p312
2𝐿 + p412

2𝐿)

8
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(

𝑑

(

𝑑
P

P

P

E

4

b

i

P

+ 2(p112
2𝑈 + p212

2𝑈 + p312
2𝑈+

p412
2𝑈 ) + 3(p212

2𝑈 + p312
2𝑈 − p112

2𝑈 − p412
2𝑈 )

𝜇2
p
𝐿

𝜇2
p
𝑈

−
𝜈2
p
𝐿

𝜈2
p
𝑈

) ]

= 1
8

[

2(0.6 + 0.7 + 0.8 + 0.9) + 2(0.4 + 0.6 + 0.7 + 0.8)

+ 3(0.6 + 0.7 − 0.4 − 0.8)( 0.6
0.5

− 0.5
0.4

)
]

= 1.3481

(P
3
12, 01) =

1
8

[

2(p112
3𝐿 + p212

3𝐿 + p312
3𝐿 + p412

3𝐿)

+ 2(p112
3𝑈 + p212

3𝑈 + p312
3𝑈+

p412
3𝑈 ) + 3(p212

3𝑈 + p312
3𝑈 − p112

3𝑈 − p412
3𝑈 )

𝜇3
p
𝐿

𝜇3
p
𝑈

−
𝜈3
p
𝐿

𝜈3
p
𝑈

) ]

= 1
8

[

2(0.2 + 0.3 + 0.3 + 0.4) + 2(0.1 + 0.2 + 0.2 + 0.5)

+ 3(0.2 + 0.2 − 0.1 − 0.5)( 0.8
0.2

− 0.2
0.1

)
]

= 0.4

As 𝑑(P112, 0̄1) = 1.1, 𝑑(P212, 0̄1) = 1.3481 and 𝑑(P312, 0̄1) = 0.4 As
(P312, 0̄1) < 𝑑(P

1
12, 0̄1) < 𝑑(P

2
12, 0̄1) so 𝜗(1) = 3, 𝜗(2) = 1, 𝜗(3) = 2. Hence

𝜗(1)
12 = P312, P

𝜗(2)
12 = P112, P

𝜗(3)
12 = P212.

̇ 12 = OWA(p112, p
2
12,… , pℜ12) = (𝜁1 ⋅ p

𝜗(1)
12 )⊕ (𝜁2 ⋅ p

𝜗(2)
12 )⊕⋯⊕ (𝜁ℜ ⋅ p𝜗(ℜ)

12 )

=
[( ℜ

∑

r=1
(𝜁r × p𝜗(r)𝐿112 ),

ℜ
∑

r=1
(𝜁r × p𝜗(r)𝐿212 ),

ℜ
∑

r=1
(𝜁r × p𝜗(r)𝐿312 ),

ℜ
∑

r=1
(𝜁r × p𝜗(r)𝐿412 );

min
r
(𝜇𝜗(r)𝐿

p12
, 𝜈𝜗(r)𝐿

p12
)
)

,

( ℜ
∑

r=1
(𝜁r × p𝜗(r)𝑈112 ),

ℜ
∑

r=1
(𝜁r × p𝜗(r)𝑈212 ),

ℜ
∑

r=1
(𝜁r × p𝜗(r)𝑈312 ),

ℜ
∑

r=1
(𝜁r × p𝜗(r)𝑈412 );

min
r
(𝜇𝜗(r)𝑈

p12
, 𝜈𝜗(r)𝑈

p12
)
)]

= [(0.2429 × 0.2 + 0.5142 × 0.3 + 0.2429 × 0.6, 0.2429 × 0.3+

0.5142 × 0.5 + 0.2429×

0.7, 0.2429 × 0.3 + 0.5142 × 0.6 + 0.2429 × 0.8, 0.2429 × 0.4 + 0.5142×

0.8 + 0.2429×

0.8);min((0.8, 0.3, 0.6), (0.2, 0.2, 0.5))(0.2429 × 0.1 + 0.5142 × 0.2+

0.2429 × 0.4, 0.2429 × 0.2+

0.5142 × 0.4 + 0.2429 × 0.6, 0.2429 × 0.2 + 0.5142 × 0.7 + 0.2429×

0.7, 0.2429 × 0.5 + 0.5142×

0.9 + 0.2429 × 0.8);min((0.2, 0.2, 0.5), (0.1, 0.1, 0.4))]

̇ 12 = [(0.34858, 0.5, 0.57571, 0.70284; 0.3, 0.2)

(0.22429, 0.4, 0.57855, 0.77855; 0.2, 0.1)]

Collective decision matrix Ė as follows:

̇ =

⎡

⎢

⎢

⎢

⎢

⎢

[Ṗ𝐿11, Ṗ
𝑈
11] [Ṗ𝐿12, Ṗ

𝑈
12] ⋯ [Ṗ𝐿1𝑛, Ṗ

𝑈
1𝑛]

[Ṗ𝐿21, Ṗ
𝑈
21] [Ṗ𝐿22, Ṗ

𝑈
22] ⋯ [Ṗ𝐿2𝑛, Ṗ

𝑈
2𝑛]

⋮ ⋮ … ⋮

̇ 𝐿 ̇ 𝑈 ̇ 𝐿 ̇ 𝑈 ̇ 𝐿 ̇ 𝑈

⎤

⎥

⎥

⎥

⎥

⎥

(13)
5

⎣
[P𝑛1,P𝑛1] [P𝑛2,P𝑛2] ⋯ [P𝑛𝑚,P𝑛𝑚]⎦
.2. Normalization of collective matrix

Normalized the collective information to demisable and inadmissi-
le values. The normalized process are defined as:

Let Ṗ∗𝑗 = max𝑖 Ṗ𝑈1𝑖𝑗 (for x𝑗 ∈ X𝑏) and Ṗ−𝑗 = min𝑖 Ṗ𝐿4𝑖𝑗 (for x𝑗 ∈ X𝑐). P𝑖𝑗
s acquired as:

𝑖𝑗 = [P𝐿𝑖𝑗 ,P
𝑈
𝑖𝑗 ] = [(p𝐿1𝑖𝑗 , p

𝐿
2𝑖𝑗 , p

𝐿
3𝑖𝑗 , p

𝐿
4𝑖𝑗 ;𝜇

𝐿
P𝑖𝑗
, 𝜈𝐿P𝑖𝑗 ), (p

𝑈
1𝑖𝑗 , p

𝑈
2𝑖𝑗 , p

𝑈
3𝑖𝑗 , p

𝑈
4𝑖𝑗 ;𝜇

𝑈
P𝑖𝑗
, 𝜈𝑈P𝑖𝑗 )]

=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

[ (

Ṗ𝐿1𝑖𝑗
P∗𝑗
,
Ṗ𝐿2𝑖𝑗
Ṗ∗𝑗
,
Ṗ𝐿3𝑖𝑗
Ṗ∗𝑗
,
Ṗ𝐿4𝑖𝑗
Ṗ∗𝑗

;𝜇𝐿
Ṗ𝑖𝑗
, 𝜈𝐿

Ṗ𝑖𝑗

)

,
(

Ṗ𝑈1𝑖𝑗
Ṗ∗𝑗
,
Ṗ𝑈2𝑖𝑗
Ṗ∗𝑗
,
Ṗ𝑈3𝑖𝑗
Ṗ∗𝑗
,
Ṗ𝑈4𝑖𝑗
Ṗ∗𝑗

;𝜇𝑈
Ṗ𝑖𝑗
, 𝜈𝑈

Ṗ𝑖𝑗

) ]

if x𝑗 ∈ X𝑏

[ (

Ṗ−𝑗
Ṗ𝐿4𝑖𝑗

,
Ṗ−𝑗
Ṗ𝐿3𝑖𝑗

,
Ṗ−𝑗
Ṗ𝐿2𝑖𝑗

,
Ṗ−𝑗
Ṗ𝐿1𝑖𝑗

;𝜇𝐿
Ṗ𝑖𝑗
, 𝜈𝐿

Ṗ𝑖𝑗

)

,
(

Ṗ−𝑗
Ṗ𝑈4𝑖𝑗

,
Ṗ−𝑗
Ṗ𝑈3𝑖𝑗

,
Ṗ−𝑗
Ṗ𝑈2𝑖𝑗

,
Ṗ−𝑗
Ṗ𝑈1𝑖𝑗

;𝜇𝑈
Ṗ𝑖𝑗
, 𝜈𝑈

Ṗ𝑖𝑗

) ]

if x𝑗 ∈ X𝑐

(14)

Normalized collective matrix E is as follows:

E =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

[P𝐿11,P
𝑈
11] [P𝐿12,P

𝑈
12] ⋯ [P𝐿1𝑛,P

𝑈
1𝑛]

[P𝐿21,P
𝑈
21] [P𝐿22,P

𝑈
22] ⋯ [P𝐿2𝑛,P

𝑈
2𝑛]

⋮ ⋮ ⋱ ⋮

[P𝐿𝑚1,P
𝑈
𝑚1] [P𝐿𝑚2,P

𝑈
𝑚2] ⋯ [P𝐿𝑚𝑛,P

𝑈
𝑚𝑛]

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(15)

Example 3. By Table 1, it is obvious that Ṗ∗1 = 0.8757, Ṗ−2 = 0.2,
Ṗ+3 = 0.9 and Ṗ−4 = 0.82713. Then the normalized collective matrix 𝐷
can be constructed in Table 2. The transformed outcomes P21 and P12
as follows:

P21 =
[ ( Ṗ𝐿211

P∗1
,
Ṗ𝐿221
Ṗ∗1

,
Ṗ𝐿321
Ṗ∗1

,
Ṗ𝐿421
Ṗ∗1

;𝜇𝐿Ṗ21
, 𝜈𝐿Ṗ21

)

,

( Ṗ𝑈211
Ṗ∗1

,
Ṗ𝑈221
Ṗ∗1

,
Ṗ𝑈321
Ṗ∗1

,
Ṗ𝑈421
Ṗ∗1

;𝜇𝑈Ṗ21
, 𝜈𝑈Ṗ21

) ]

=
[ (

0.29716
0.87571

, 0.42429
0.87571

, 0.5
0.87571

, 0.65142
0.87571

; 0.2, 0.3
)

,
(

0.22145
0.87571

, 0.42145
0.87571

, 0.6
0.87571

, 0.77571
0.87571

; 0.5, 0.5
) ]

= [(0.3393, 0.4845, 0.5710, 0.7439; 0.2, 0.3)

× (0.2529, 0.4813, 0.6857, 0.7993; 0.1, 0.2)]

P12 =
[ ( Ṗ−2

Ṗ𝐿412
,
Ṗ−2
Ṗ𝐿312

,
Ṗ−2
Ṗ𝐿212

,
Ṗ−2
Ṗ𝐿112

;𝜇𝐿Ṗ12
, 𝜈𝐿Ṗ12

)

,

( Ṗ−2
Ṗ𝑈412

,
Ṗ−2
Ṗ𝑈312

,
Ṗ−2
Ṗ𝑈212

,
Ṗ−2
Ṗ𝑈112

;𝜇𝑈Ṗ12
, 𝜈𝑈Ṗ12

) ]

=
[ (

0.2
0.70284

, 0.2
0.57571

, 0.2
0.5

, 0.2
0.34858

; 0.3, 0.2
)

,
(

0.2
0.77855

, 0.2
0.57855

, 0.2
0.4

, 0.2
0.22429

; 0.2, 0.9
) ]

= [(0.2846, 0.3474, 0.400, 0.5738; 0.3, 0.2)

× (0.2569, 0.3457, 0.5000, 0.8917; 0.2, 0.9)]

4.3. Completely unknown preference structure involving interval type-2
trapezoidal pythagorean fuzzy preference relations

In many of the real life problems, it is often not possible to judge the
preference of criteria or factors responsible for a specific phenomena
due to some uncertainty or complexities associated with it. However, it
may be possible to provide the relative ordering of the factors partially
like weak, strict or difference ordering or interval or ratio bounds. In
GDM process, decision-makers may possibly put across few preference
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p

m

[

U
𝐸

Table 1
Aggregated values of alternatives in �̇�.

Ṗ𝐿𝑖𝑗 Ṗ𝑈𝑖𝑗
Ṗ𝐿1𝑖𝑗 Ṗ𝐿2𝑖𝑗 Ṗ𝐿3𝑖𝑗 Ṗ𝐿4𝑖𝑗 𝜇𝐿

Ṗ𝑖𝑗
𝜈𝐿
Ṗ𝑖𝑗

Ṗ𝑈1𝑖𝑗 Ṗ𝑈2𝑖𝑗 Ṗ𝑈3𝑖𝑗 Ṗ𝑈4𝑖𝑗 𝜇𝑈
Ṗ𝑖𝑗

𝜈𝑈
Ṗ𝑖𝑗

Ṗ11 0.500 0.500 0.500 0.500 0.5 0.5 0.500 0.500 0.500 0.500 0.5 0.5
Ṗ12 0.3486 0.500 0.5757 0.7028 0.3 0.2 0.2243 0.400 0.5786 0.7786 0.2 0.1
Ṗ13 0.1486 0.2729 0.4486 0.6514 0.4 0.3 0.1243 0.2486 0.500 0.700 0.3 0.2
Ṗ14 0.3757 0.500 0.600 0.7271 0.3 0.2 0.2514 0.400 0.5514 0.8028 0.2 0.1
Ṗ21 0.2972 0.4243 0.500 0.6514 0.2 0.3 0.2215 0.4215 0.600 0.7757 0.1 0.2
Ṗ22 0.500 0.500 0.500 0.500 0.5 0.5 0.500 0.500 0.500 0.500 0.5 0.5
Ṗ23 0.2786 0.4271 0.5514 0.700 0.5 0.3 0.1514 0.2757 0.4215 0.800 0.3 0.2
Ṗ24 0.2243 0.4514 0.5514 0.700 0.3 0.2 0.1243 0.3243 0.5757 0.7757 0.2 0.3
Ṗ31 0.3486 0.5514 0.7271 0.8514 0.3 0.4 0.300 0.500 0.7514 0.8757 0.2 0.3
Ṗ32 0.300 0.4486 0.600 0.7757 0.3 0.5 0.200 0.4700 0.7243 0.8757 0.2 0.3
Ṗ33 0.500 0.500 0.500 0.500 0.5 0.5 0.500 0.500 0.500 0.500 0.5 0.5
Ṗ34 0.200 0.300 0.4757 0.7028 0.2 0.3 0.100 0.2729 0.4243 0.8271 0.3 0.1
Ṗ41 0.2729 0.400 0.500 0.6243 0.2 0.3 0.1972 0.4486 0.600 0.7486 0.1 0.2
Ṗ42 0.2729 0.4757 0.5757 0.7486 0.2 0.6 0.2729 0.4972 0.6729 0.8486 0.3 0.4
Ṗ43 0.2972 0.5243 0.700 0.800 0.5 0.2 0.1972 0.5757 0.7757 0.900 0.3 0.2
Ṗ44 0.500 0.500 0.500 0.500 0.5 0.5 0.500 0.500 0.500 0.500 0.5 0.5
Table 2
Normalized collective decision matrix 𝐸 using HA operation.

P𝐿𝑖𝑗 P𝑈𝑖𝑗
p𝐿1𝑖𝑗 p𝐿2𝑖𝑗 p𝐿3𝑖𝑗 p𝐿4𝑖𝑗 𝜇𝐿P𝑖𝑗 𝜈𝐿P𝑖𝑗 p𝑈1𝑖𝑗 p𝑈2𝑖𝑗 p𝑈3𝑖𝑗 p𝑈4𝑖𝑗 𝜇𝑈P𝑖𝑗 𝜈𝑈P𝑖𝑗

P11 0.5710 0.5710 0.5710 0.5710 0.5 0.5 0.5710 0.5710 0.5710 0.5710 0.5 0.5
P12 0.2846 0.3474 0.4000 0.5738 0.3 0.2 0.2569 0.3457 0.5000 0.8917 0.2 0.9
P13 0.165 0.3032 0.4984 0.7238 0.4 0.3 0.1381 0.2762 0.5556 0.7778 0.3 0.2
P14 0.4680 0.6228 0.7473 0.9057 0.3 0.2 0.3132 0.4982 0.6868 1.0000 0.2 0.1
P21 0.3393 0.4845 0.5710 0.7439 0.2 0.3 0.2529 0.4813 0.6857 0.7994 0.1 0.2
P22 0.4000 0.4000 0.4000 0.4000 0.5 0.5 0.4000 0.4000 0.4000 0.4000 0.5 0.5
P23 0.3039 0.4746 0.6127 0.7778 0.5 0.3 0.1682 0.3063 0.4683 0.8889 0.3 0.2
P24 0.2712 0.5458 0.6667 0.8463 0.3 0.2 0.1503 0.3921 0.6960 0.9378 0.2 0.3
P31 0.3981 O.6297 0.8303 0.9723 0.3 0.4 0.3426 0.5710 0.8581 1.0000 0.2 0.3
P32 0.2578 0.3333 0.4459 0.6667 0.3 0.5 0.2284 0.2761 0.4255 1.0000 0.2 0.3
P33 0.5556 0.5556 0.5556 0.5556 0.5 0.5 0.5556 0.5556 0.5556 0.5556 0.5 0.5
P34 0.2481 0.3627 0.5751 0.8497 0.2 0.3 0.1209 0.3299 0.5130 1.0000 0.3 0.1
P41 0.3116 0.4568 0.5710 0.7129 0.2 0.3 0.2251 0.5122 0.6852 0.8548 0.1 0.2
P42 0.2672 0.3474 0.4204 0.7329 0.2 0.6 0.2357 0.2972 0.4023 0.7329 0.3 0.4
P43 0.3302 0.5825 0.7778 0.8889 0.5 0.2 0.2191 0.6397 0.8619 1.0000 0.3 0.2
P44 0.6045 0.6045 0.6045 0.6045 0.5 0.5 0.6045 0.6045 0.6045 0.6045 0.5 0.5
w

o

conditions on criterion weights with respect to their understanding,
past practice or subjective verdicts. Generally such information about
criterion weights is partial [37] or completely unknown. The incom-
plete information about criterion weights can be commonly constructed
by numerous fundamental ranking forms [37–39]. But here we are
considering the situation where the fuzzy priority weight vectors are
completely unknown. For this we present the following optimization
model to determine these weights based on given IT2FPRs.

4.4. Non-linear optimization model for determining the unknown fuzzy
priority vectors

In this subsection, at the perception of SDB, we accomplished a non-
linear model to find the values of fuzzy priority weights of 𝐸 under the
artial information. The constructed non-linear model as follows:

in
𝑛
∑

𝑖=1

𝑛
∑

𝑗=1

4
∑

𝑘=1
(𝑝𝑖𝑗𝑘 − 0.5 − 𝑙𝑜𝑔(81)𝑤𝑖𝑘 + 𝑙𝑜𝑔(81)𝑤𝑗(5−𝑘))2

M2] 𝑠.𝑡

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 ≤
∑𝑛
𝑖=1𝑤𝑖1 ≤ 1,

∑𝑛
𝑖=1𝑤𝑖4 ≥ 1,

0 ≤ 𝑤𝑖1 ≤ 𝑤𝑖2 ≤ 𝑤𝑖3 ≤ 𝑤𝑖4 ≤ 1,
𝑖 = 1, 2, 3,… 𝑛

(16)

sing model M1, we get the fuzzy priority weight vectors 𝜛 = 𝑤𝑖𝑗 of
.

6

For comparative significance value of alternatives the normalized
eighted value of ̄̄𝑃𝑖𝑗 is calculated.

𝑃 𝑖𝑗 = [(𝑤𝑖𝑗 .𝑝
𝐿
1𝑖𝑗 , 𝑤𝑖𝑗 .𝑃

𝐿

2𝑖𝑗 , 𝑤𝑖𝑗 .𝑃
𝐿

3𝑖𝑗 , 𝑤𝑖𝑗 .𝑃
𝐿

4𝑖𝑗 ;𝜇
𝐿

𝑃 𝑖𝑗
, 𝜈𝐿
𝑃 𝑖𝑗

),

(𝑤𝑖𝑗 .𝑃
𝑈

1𝑖𝑗 , 𝑤𝑖𝑗 .𝑃
𝑈

2𝑖𝑗 , 𝑃
𝑈

3𝑖𝑗 , 𝑤𝑖𝑗 .𝑃
𝑈

4𝑖𝑗 ;𝜇
𝑈

𝑃 𝑖𝑗
, 𝜈𝑈
𝑃 𝑖𝑗

)]

we can also denote as:

𝑃 𝑖𝑗 = [𝑃
𝐿

𝑖𝑗 , 𝑃
𝑈

𝑖𝑗 ] = [(𝑃
𝐿

1𝑖𝑗 , 𝑃
𝐿

2𝑖𝑗 , 𝑃
𝐿

3𝑖𝑗 , 𝑃
𝐿

4𝑖𝑗 ;𝜇
𝐿
P𝑖𝑗
, 𝜈𝐿

P𝑖𝑗
),

(𝑃
𝑈

1𝑖𝑗 , 𝑃
𝑈

2𝑖𝑗 , 𝑃
𝑈

3𝑖𝑗 , 𝑃
𝑈

4𝑖𝑗 ;𝜇
𝑈
P𝑖𝑗
, 𝜈𝑈

P𝑖𝑗
)]

(17)

further, the normalized weighted matrix can be followed as:

E𝜛 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

[𝑃
𝐿

11, 𝑃
𝑈

11] [𝑃
𝐿

12, 𝑃
𝑈

12] ⋯ [𝑃
𝐿

1𝑛, 𝑃
𝑈

1𝑛]

[𝑃
𝐿

21, 𝑃
𝑈

21] [𝑃
𝐿

22, 𝑃
𝑈

22] ⋯ [𝑃
𝐿

2𝑛, 𝑃
𝑈

2𝑛]

⋮ ⋮ ⋱ ⋮

[𝑃
𝐿

𝑚1, 𝑃
𝑈

𝑚1] [𝑃
𝐿

𝑚2, 𝑃
𝑈

𝑚2] ⋯ [𝑃
𝐿

𝑚𝑛, 𝑃
𝑈

𝑚𝑛]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(18)

Example 4. By Table 2 the weighted normalized value of 𝑃𝑖𝑗 can be
btained by using (16)

𝑃 𝑖𝑗 = 𝑤𝑖𝑗 .𝑃 𝑖𝑗 = [(𝑤𝑖𝑗𝐿.𝑝
𝐿
1𝑖𝑗 , 𝑤𝑖𝑗

𝐿.𝑃
𝐿

2𝑖𝑗 , 𝑤𝑖𝑗
𝐿.𝑃

𝐿

3𝑖𝑗 , 𝑤𝑖𝑗
𝐿.𝑃

𝐿

4𝑖𝑗 ;𝜇
𝐿 , 𝜈𝐿 ),

𝑃 𝑖𝑗 𝑃 𝑖𝑗
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I
w
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s

3

(𝑤𝑖𝑗𝑈 .𝑃
𝑈

1𝑖𝑗 , 𝑤𝑖𝑗
𝑈 .𝑃

𝑈

2𝑖𝑗 , 𝑃
𝑈

3𝑖𝑗 , 𝑤𝑖𝑗
𝑈 .𝑃

𝑈

4𝑖𝑗 ;𝜇
𝑈

𝑃 𝑖𝑗
, 𝜈𝑈
𝑃 𝑖𝑗

)]

𝑃 12

𝑤12.𝑃 12 = [(𝑤12
𝐿.𝑝

𝐿
112, 𝑤12

𝐿.𝑃
𝐿

212, 𝑤12
𝐿.𝑃

𝐿

312, 𝑤12
𝐿.𝑃

𝐿

412;𝜇
𝐿

𝑃 12

, 𝜈𝐿
𝑃 12

),

𝑤12
𝑈 .𝑃

𝑈

121, 𝑤12
𝑈 .𝑃

𝑈

212, 𝑃
𝑈

312, 𝑤12
𝑈 .𝑃

𝑈

412;𝜇
𝑈

𝑃 12

, 𝜈𝑈
𝑃 12

)]

𝑃 12 = [(0.1438397 × 0.2846, 0.1438397 × 0.3474, 0.1438397

× 0.4000, 0.1438397 × 0.5738; 0.3, 0.2)

(0.2733753 × 0.2569, 0.2733753 × 0.3457, 0.2733753

× 0.5000, 0.2733753 × 0.8917; 0.2, 0.9)]

𝑃 12 = [(0.0409, 0.0500, 0.0575, 0.0825; 0.3, 0.5)

× (0.0702, 0.0945, 0.1367, 0.2438; 0.5, 0.5)]

n IT2TrPFPR, we utilized the concept of signed distances that cal-
ulates the distance of alternatives from ‘‘positive-ideal solution’’(PIS)
nd ‘‘negative-ideal solution’’(NIS). At the end, correspondent to each
lternative V𝑖 ∈ V we calculate the SDBCC 𝑖. Values of normalized
eighted rating are between 0 and 1, P∗ used to represent the PIS and
− for NIS are defined as:
∗ = {⟨x𝑗 , [(1, 1, 1, 1 ∶ 1, 1), (1, 1, 1, 1; 1, 1)]⟩||

|

x𝑗 ∈ X} (19)

P− = {⟨x𝑗 , [(0, 0, 0, 0 ∶ 1, 1), (0, 0, 0, 0; 1, 1)]⟩||
|

x𝑗 ∈ X} (20)

et P∗𝑗 = [(1, 1, 1, 1; 1, 1), (1, 1, 1, 1; 1, 1)] and P−𝑗 = [(0, 0, 0, 0; 1, 1),
(0, 0, 0, 0; 1, 1)] ∀x𝑗 ∈ X. According to Property 1, we know that
(𝑃 ∗
𝑗 , 11) = 0, 𝑑(𝑃 ∗

𝑗 , 01) = 2, 𝑑(𝑃−
𝑗 , 11) = −2, 𝑑(𝑃−

𝑗 , 01) = 0. For every
lternative V𝑖, it is noticeable that the signed distances from P𝑖𝑗 to P∗𝑗
nd P𝑖𝑗 to P−𝑗 can be calculated with respect to 𝑑(P𝑖𝑗 , 11) and 𝑑(P𝑖𝑗 , 01).
t follows such that:

(P𝑖𝑗 ,P∗𝑗 ) = 𝑑(P̃𝑖𝑗 , 11) (21)

𝑑(P𝑖𝑗 ,P−𝑗 ) = 𝑑( ̃̃P𝑖𝑗 , 01) (22)

𝑊 (P̂𝑖𝑗 ,P∗𝑗 ) = 𝑑(P𝑖𝑗 ,P∗𝑗 )

= 1
8

[

2(p1𝑖𝑗
𝐿 + p2𝑖𝑗

𝐿 + p3𝑖𝑗
𝐿 + p4𝑖𝑗

𝐿)

+ 2(p1𝑖𝑗
𝑈 + p2𝑖𝑗

𝑈 + p3𝑖𝑗
𝑈 + p4𝑖𝑗

𝑈 )

+ 3(p2𝑖𝑗
𝑈 + p3𝑖𝑗

𝑈 − p1𝑖𝑗
𝑈 − p4𝑖𝑗

𝑈 )
( 𝜇𝐿

p

𝜇𝑈
p

−
𝜈𝐿
p

𝜈𝑈
p

)

− 16
]

(23)

𝑊 (P̂𝑖𝑗 ,P−𝑗 ) = 𝑑(P𝑖𝑗 ,P−𝑗 )

= 1
8

[

2(p1𝑖𝑗
𝐿 + p2𝑖𝑗

𝐿 + p3𝑖𝑗
𝐿 + p4𝑖𝑗

𝐿)

+ 2(p1𝑖𝑗
𝑈 + p2𝑖𝑗

𝑈 + p3𝑖𝑗
𝑈 + p4𝑖𝑗

𝑈 )

+ 3(p2𝑖𝑗
𝑈 + p3𝑖𝑗

𝑈 − p1𝑖𝑗
𝑈 − p4𝑖𝑗

𝑈 )
( 𝜇𝐿

p

𝜇𝑈
p

−
𝜈𝐿
p

𝜈𝑈
p

) ]

(24)

here 𝑊 (P̂𝑖𝑗 ,P∗𝑗 ) and 𝑊 (P̂𝑖𝑗 ,P−𝑗 ) is the weighted signed distances.
The ideal solutions and the closeness of alternatives 𝐿𝑖 can be

educed by using weighted signed- distances. Afterward, the average
igned-based distances ( 1𝑛 ) ⋅

∑𝑛
𝑗=1(𝑊 P̂𝑖𝑗 ,P∗𝑗 ) and ( 1𝑛 ) ⋅

∑𝑛
𝑗=1𝑊 (P̄𝑖𝑗 ,P−𝑗 ) are

alculated to order the SBDCC of every alternative V𝑖.
Let 𝑚𝑖 for 𝑖 = 1, 2,… , r are use to represent the SBDCC of each V𝑖

xpressed as:

𝑚𝑖 =
1
𝑛
∑𝑛
𝑗=1𝑊 (P̂𝑖𝑗 ,P−𝑗 )

1 ∑𝑛 ̂ − 1 ∑𝑛 ̂ ∗
(25)
7

𝑛 𝑗=1𝑊 (P𝑖𝑗 ,P𝑗 ) − 𝑛 𝑗=1𝑊 (P𝑖𝑗 ,P𝑗 )
t is necessary, that 0 ≤ r
𝑖 ≤ 1. The DMs approved one alternative

ith the shortest SDBCC. Ranking of SDBCC r
𝑖 alternatives expressed

in ascending order.

5. Proposed signed distance based ranking approach with un-
known fuzzy priority vectors

Suppose a GDM problem, (𝜆 = {𝜆1, 𝜆2,… , 𝜆ℜ}) sets of DMs and
V𝑖 ∈ V be the set of alternatives. The decision makers compare every
alternative with every other alternative.

IT2TrPFPR framework under partial data is summarized as follows:

Step 1: Appeal the DMs to utilize the IT2TrPFPR 𝑃 = (𝑃𝑖𝑗 )𝑛×𝑛 for the
evaluation of one alternatives with every other alternative.

tep 2: According to normal distribution method the OWA operation
can be derived by using (9)–(11), to find the weighting vector
(𝜁 = (𝜁1, 𝜁2,… , 𝜁ℜ)) in the OWA operation can be derived.

tep3: By using (6) the signed distance 𝑑(Pr𝑖𝑗 , 01) from Pr𝑖𝑗 to 01 can be
calculated and weighted ratings can be reordered in ascending
order of signed distances.

.1: Using HA operation in (12), HA Ṗr𝑖𝑗 for group consensus opinions
can be calculated for each V𝑖 ∈ V and x𝑗 ∈ X.

3.2: Build a collective decision matrix Ė as in (13).

Step 4: Construct normalized collective matrix E as in (15) using (14).

Step 5: Construct an integrated optimization model [M1] to obtain the
fuzzy priority weight vector 𝜛.

Step 5.1: Using (4.4) to find the weighted normalized matrix, after-
ward find the sign distance from 𝑃 𝑖𝑗 to 𝑃 ∗

𝑗 and 𝑃 𝑖𝑗 to 𝑃−
𝑗 can be

calculated using (23) and (24) respectively.

Step 5.2: Further calculate the SDBCC 𝑚𝑖 .

Step 6: Rank r alternatives in ascending order of SDBCC ℜ
𝑖 to

conclude best choice.

The approach based on the above algorithm is an effective tool for
managing multiple criteria group decision-making situations with com-
pletely unknown priority weights modeled as IT2TrPFPRs. To aggregate
the opinion of multiple decision-makers, a hybrid averaging opera-
tion based on weighted averaging and ordered weighted averaging
(OWA) operations is employed for a collective decision environment.
To calculate the fuzzy priority weight vectors in case of completely
unknown environment, we construct a non-linear optimization model.
An integrated optimization model based on a new signed distance-
based closeness coefficients approach is employed to determine the
priority ranking of alternatives.

The obtained results will be notably unusual from those earlier
used techniques such as aggregation method based on WA opera-
tion and classical additive weighting approach in number of aspects.
The aggregation technique based on WA operation weights only com-
parative significance of the decision-makers whereas the projected
aggregation technique with HA approach weights both the IT2TrPFN
ratings and its ordered position. Specifically, the presented approach
not only considers the significance of decision-makers but also the con-
formity of individual judgments. Consequently the outcomes obtained
by presented technique should be more exact than the previously used
techniques. On the contrary, the classical weighting approach is only
valid to those GDM problems where information about the criterion
weights is completely known. However, the proposed model can be
applied to the GDM problems with completely unknown information.
Therefore, the comparative study shows the potential of the proposed
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technique in practical applications. The only disadvantage of the pro-
posed technique seems to be the added computational cost resulting by
considering both aspects of IT2TrPFNN ratings and its ordered position.

6. Patient centered medicine based medical diagnosis involving
signed distance based ranking approach with interval type-2
trapezoidal pythagorean fuzzy preference relations

In this part, we show an instance of scientific decision-making to
demonstrate the possibility of a preference scheme that practically
performs our proposed method. The proposed method is established
through a comparative investigation with different techniques.

In such situations, the attending medical doctor is not capable
of autonomously bringing out critical fitness-care judgments for the
affected patients. For this cause, the affected person-focused health-
care organism implements a group decision-making scheme that deems
the proficient judgments of the complete scientific panel and defines
the alternatives available for the restoration or remedy of ailment and
attempts to maximize the probably health-care blessings with possi-
ble results. The next practical illustration engages a patient-targeted
clinical problem to illustrate the feasibility of the predicted effec-
tive signed-based distance closeness coefficient technique inside the
framework of IT2TrPFPR. There are severe diseases that are regularly
misdiagnosed owing to the resemblance in their symptoms so it is
important to perceive the symptoms as quickly as viable. If you sense
you is probably in for a prognosis of typhoid, keep in mind you
could have some other condition. There are numerous illnesses that
proportion similar symptoms to typhoid. Assume that a patient is
admitted in the health center for the analysis of his unknown ailment
having the symptoms of weakness, stomach pain, headache, diarrhea
and constipation, cough, thirst and hunger. The feasible chances are
the patient is suffering from this sort of 3 illnesses inclusive of typhoid,
multiple sclerosis or glaucoma. For the attending doctor it is difficult to
pin down the precise cure for the disease and he cannot independently
make selections about the fitness of the patient so for that purpose
a committee of three professional decision makers 𝜆 = {𝜆1, 𝜆2, 𝜆3}
and V = {V1,V2,V3,V4} be the set of alternatives. The DMs compare
each alternative and give their judgment matrixes with IT2TrPFPR
P1,P2,P3, respectively, Where 𝑃 = (𝑃𝑖𝑗 )4×4, shown as follows: These
three decision-makers considered several alternative comprising possi-
bilities of therapy V = {V1,V2,V3,V4} and chose the best alternative.
Following steps shows the numerical example of proposed algorithm
for solving GDM problem of a medical decision-making.

Step 1:
Construct three IT2TrPFPR matrices 𝑃 = (𝑃 𝑘𝑖𝑗 )𝑛×𝑛.

𝑃 (1) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

[(0.5, 0.5, 0.5, 0.5; 0.5, 0.5), (0.5, 0.5, 0.5, 0.5; 0.5, 0.5)]
[(0.3, 0.5, 0.6, 0.8; 0.3, 0.2), (0.2, 0.4, 0.7, 0.9; 0.2, 0.1)]
[(0.1, 0.2, 0.4, 0.7; 0.6, 0.5), (0.1, 0.2, 0.5, 0.7; 0.5, 0.4)]
[(0.4, 0.6, 0.7, 0.8; 0.8, 0.3), (0.3, 0.6, 0.7, 0.8; 0.3, 0.1)]

[(0.2, 0.4, 0.5, 0.7; 0.2, 0.3), (0.1, 0.3, 0.6, 0.8; 0.1, 0.2)]
[(0.5, 0.5, 0.5, 0.5; 0.5, 0.5), (0.5, 0.5, 0.5, 0.5; 0.5, 0.5)]
[(0.2, 0.4, 0.6, 0.7; 0.6, 0.5), (0.1, 0.3, 0.7, 0.8; 0.7, 0.4)]
[(0.3, 0.4, 0.5, 0.8; 0.8, 0.2), (0.2, 0.4, 0.6, 0.8; 0.6, 0.4)]

[(0.3, 0.6, 0.8, 0.9; 0.5, 0.6), (0.3, 0.5, 0.8, 0.9; 0.4, 0.5)]
[(0.3, 0.4, 0.6, 0.8; 0.5, 0.6), (0.2, 0.3, 0.7, 0.9; 0.4, 0.7)]
[(0.5, 0.5, 0.5, 0.5; 0.5, 0.5), (0.5, 0.5, 0.5, 0.5; 0.5, 0.5)]
[(0.1, 0.2, 0.3, 0.4; 0.2, 0.6), (0.1, 0.2, 0.3, 0.6; 0.7, 0.4)]

[(0.2, 0.3, 0.4, 0.6; 0.3, 0.8), (0.2, 0.3, 0.4, 0.7; 0.1, 0.3)]
[(0.2, 0.5, 0.6, 0.7; 0.2, 0.8), (0.2, 0.4, 0.6, 0.8; 0.4, 0.6)]
[(0.6, 0.7, 0.8, 0.9; 0.6, 0.2), (0.4, 0.7, 0.8, 0.9; 0.4, 0.7)]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

8

⎣[(0.5, 0.5, 0.5, 0.5; 0.5, 0.5), (0.5, 0.5, 0.5, 0.5; 0.5, 0.5)]⎦ 𝜛
(2) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

[(0.5, 0.5, 0.5, 0.5; 0.5, 0.5), (0.5, 0.5, 0.5, 0.5; 0.5, 0.5)]
[(0.6, 0.7, 0.8, 0.8; 0.6, 0.5), (0.4, 0.6, 0.7, 0.8; 0.5, 0.4)]
[(0.3, 0.5, 0.6, 0.7; 0.4, 0.3), (0.2, 0.3, 0.5, 0.8; 0.3, 0.2)]
[(0.4, 0.5, 0.6, 0.8; 0.3, 0.2), (0.3, 0.4, 0.6, 0.9; 0.2, 0.1)]

[(0.2, 0.2, 0.3, 0.4; 0.5, 0.6), (0.2, 0.3, 0.4, 0.6; 0.4, 0.3)]
[(0.5, 0.5, 0.5, 0.5; 0.5, 0.5), (0.5, 0.5, 0.5, 0.5; 0.5, 0.5)]
[(0.1, 0.3, 0.4, 0.7; 0.5, 0.4), (0.1, 0.2, 0.4, 0.8; 0.4, 0.3)]
[(0.2, 0.4, 0.5, 0.6; 0.8, 0.5), (0.1, 0.3, 0.5, 0.7; 0.5, 0.4)]

[(0.3, 0.4, 0.5, 0.7; 0.3, 0.4), (0.2, 0.5, 0.7, 0.8; 0.2, 0.3)]
[(0.3, 0.6, 0.7, 0.9; 0.4, 0.5), (0.2, 0.6, 0.8, 0.9; 0.3, 0.4)]
[(0.5, 0.5, 0.5, 0.5; 0.5, 0.5), (0.5, 0.5, 0.5, 0.5; 0.5, 0.5)]
[(0.2, 0.3, 0.5, 0.8; 0.8, 0.5), (0.1, 0.2, 0.4, 0.9; 0.5, 0.4)]

[(0.2, 0.4, 0.5, 0.6; 0.2, 0.3), (0.1, 0.4, 0.6, 0.7; 0.1, 0.2)]
[(0.4, 0.5, 0.6, 0.8; 0.5, 0.8), (0.3, 0.5, 0.7, 0.9; 0.4, 0.5)]
[(0.2, 0.5, 0.7, 0.8; 0.5, 0.8), (0.1, 0.6, 0.8, 0.9; 0.4, 0.5)]
[(0.5, 0.5, 0.5, 0.5; 0.5, 0.5), (0.5, 0.5, 0.5, 0.5; 0.5, 0.5)]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

[(0.5, 0.5, 0.5, 0.5; 0.5, 0.5), (0.5, 0.5, 0.5, 0.5; 0.5, 0.5)]
[(0.2, 0.3, 0.3, 0.4; 0.8, 0.2), (0.1, 0.2, 0.2, 0.5; 0.2, 0.1)]
[(0.1, 0.2, 0.4, 0.5; 0.7, 0.3), (0.1, 0.3, 0.5, 0.6; 0.3, 0.2)]
[(0.3, 0.4, 0.5, 0.5; 0.6, 0.4), (0.1, 0.2, 0.3, 0.6; 0.4, 0.3)]

[(0.6, 0.7, 0.7, 0.8; 0.2, 0.8), (0.5, 0.8, 0.8, 0.9; 0.1, 0.2)]
[(0.5, 0.5, 0.5, 0.5; 0.5, 0.5), (0.5, 0.5, 0.5, 0.5; 0.5, 0.5)]
[(0.4, 0.5, 0.6, 0.7; 0.6, 0.3), (0.2, 0.3, 0.3, 0.8; 0.3, 0.2)]
[(0.2, 0.5, 0.6, 0.7; 0.3, 0.7), (0.1, 0.3, 0.6, 0.8; 0.2, 0.3)]

[(0.5, 0.6, 0.8, 0.9; 0.3, 0.7), (0.4, 0.5, 0.7, 0.9; 0.2, 0.3)]
[(0.3, 0.4, 0.5, 0.6; 0.3, 0.6), (0.2, 0.7, 0.7, 0.8; 0.2, 0.3)]
[(0.5, 0.5, 0.5, 0.5; 0.5, 0.5), (0.5, 0.5, 0.5, 0.5; 0.5, 0.5)]
[(0.3, 0.4, 0.6, 0.8; 0.4, 0.3), (0.1, 0.5, 0.6, 0.9; 0.3, 0.1)]

[(0.5, 0.5, 0.6, 0.7; 0.4, 0.6), (0.4, 0.7, 0.8, 0.9; 0.3, 0.4)]
[(0.3, 0.4, 0.5, 0.8; 0.7, 0.3), (0.2, 0.4, 0.7, 0.9; 0.3, 0.2)]
[(0.2, 0.4, 0.6, 0.7; 0.3, 0.4), (0.1, 0.4, 0.5, 0.9; 0.1, 0.3)]
[(0.5, 0.5, 0.5, 0.5; 0.5, 0.5), (0.5, 0.5, 0.5, 0.5; 0.5, 0.5)]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

tep 2:
Now we derive OWA weighting vector 𝜁 = (𝜁1, 𝜁2, 𝜁3) = (0.2429,

.5142, 0.2429).

tep 3:
Further we find the signed distance. For this, we use 𝑑(P112, 0̄1) =

.1, 𝑑(P212, 0̄1) = 1.3481 and 𝑑(P312, 0̄1) = 0.4. As 𝑑(P312, 0̄1) < 𝑑(P
1
12, 0̄1) <

(P212, 0̄1) so 𝜗(1) = 3, 𝜗(2) = 1, 𝜗(3) = 2. Hence P𝜗(1)12 = P112, P
𝜗(1)
12 = P112,

𝜗(1)
12 = P112.

tep 3.1:
By utilizing HA operation Table 1 shows the sum up of ratings Ṗr𝑖𝑗

f V𝑖 ∈ V.

tep 3.2:
Collective matrix �̇� can be created.
Step 4:
By Table 1, it is obvious that Ṗ∗1 = 0.8757, Ṗ−2 = 0.2, Ṗ+3 = 0.9

nd Ṗ−4 = 0.82713. Then the normalized collective matrix 𝐷 can be
onstructed in Table 2.

tep 5:
By using (M1) find the fuzzy priority vector of E. Where

𝐿 𝑈 𝐿 𝐿 𝐿 𝐿 𝑈 𝑈 𝑈 𝑈

𝑖𝑗 = [w𝑖𝑗 ,w𝑖𝑗 ] = (w1𝑖𝑗 ,w2𝑖𝑗 ,w3𝑖𝑗 ,w4𝑖𝑗 ), (w1𝑖𝑗 ,w2𝑖𝑗 ,w3𝑖𝑗 ,w4𝑖𝑗 )
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Table 3
Weighted normalized collective decision matrix 𝐸𝜛 using (4.4)

P
𝐿

𝑖𝑗 P
𝑈

𝑖𝑗

P
𝐿

1𝑖𝑗 P
𝐿

2𝑖𝑗 P
𝐿

3𝑖𝑗 P
𝐿

4𝑖𝑗 𝜇𝐿
P𝑖𝑗

𝜈𝐿
P𝑖𝑗

P
𝑈

1𝑖𝑗 P
𝑈

2𝑖𝑗 P
𝑈

3𝑖𝑗 P
𝑈

4𝑖𝑗 𝜇𝑈
P𝑖𝑗

𝜈𝑈
P𝑖𝑗

P11 0.0821 0.0821 0.0821 0.0821 0.5 0.5 0.1561 0.1561 0.1561 0.1561 0.5 0.5
P12 0.0409 0.0500 0.0575 0.0825 0.3 0.2 0.0702 0.0945 0.1367 0.2438 0.2 0.1
P13 0.0526 0.0967 0.1590 0.2309 0.4 0.3 0.0602 0.1204 0.2422 0.3391 0.3 0.2
P14 0.3315 0.4412 0.5294 0.6416 0.3 0.2 0.2083 0.3314 0.4568 0.6651 0.2 0.1
P21 0.1249 0.1783 0.2101 0.2738 0.2 0.3 0.0632 0.1203 0.1714 0.1998 0.1 0.2
P22 0.2414 0.2414 0.2414 0.2414 0.5 0.5 0.2027 0.2027 0.2027 0.2027 0.5 0.5
P23 0.2094 0.3270 0.4222 0.5359 0.5 0.3 0.1044 0.1902 0.2908 0.5519 0.3 0.2
P24 0.2541 0.5114 0.6246 0.7929 0.3 0.2 0.1061 0.2767 0.4912 0.6618 0.2 0.3
P31 0.0647 0.1023 0.1349 0.1580 0.3 0.4 0.0921 0.1534 0.2306 0.2687 0.2 0.3
P32 0.0562 0.0726 0.0972 0.1453 0.3 0.5 0.0851 0.1029 0.1585 0.0373 0.2 0.3
P33 0.2943 0.2943 0.2943 0.2943 0.5 0.5 0.2976 0.2976 0.2976 0.2976 0.5 0.5
P34 0.2481 0.3627 0.5751 0.8497 0.2 0.3 0.1018 0.2777 0.4319 0.8419 0.3 0.1
P41 0.0237 0.0348 0.0435 0.0543 0.2 0.3 0.0468 0.1065 0.1425 0.1778 0.1 0.2
P42 0.0560 0.0728 0.0881 0.1536 0.2 0.6 0.1037 0.1308 0.1770 0.3225 0.3 0.4
P43 0.1376 0.2428 0.3242 0.3705 0.5 0.2 0.1262 0.3685 0.4965 0.5761 0.3 0.2
P44 0.5090 0.5090 0.5090 0.5090 0.5 0.5 0.4421 0.4421 0.4421 0.4421 0.5 0.5
𝜛𝑖𝑗 = [𝑤𝐿𝑖𝑗 , 𝑤
𝑈
𝑖𝑗 ] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

[(0.1438376), (0.2733753)]
[(0.1438397), (0.2733753)]
[(0.3190571), (0.4359204)]
[(0.7298309), (0.6852155)]

[(0.3680370), (0.2499342)]
[(0.6033931), (0.5066862)]
[(0.6890366), (0.6208660)]
[(0.9369136), (0.7056906)]

[(0.1624929), (0.2686871)]
[(0.2178836), (0.3725696)]
[(0.5297458), (0.5355691)]
[(0.9999953), (0.8419122)]

[(0.07614026), (0.2080033)]
[(0.2095657), (0.4400704)]
[(0.4168528), (0.5760887)]
[(0.8420989), (0.7313801)]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

tep 5.1:
Table 3 shows the Weighted Normalize collective decision matrix

𝐸𝜛 can be constructed by Using (4.4).

Step 5.2:
Further we calculate the sign distance from 𝑃 𝑖𝑗 to P∗𝑗 and P𝑖𝑗 to 𝑃−

𝑗
sing (23) and (24) respectively and afterward SDBCC 𝑚𝑖 correspond-

ing to each alternative V𝑖 ∈ V. The computing of sign distance from 𝑃 𝑖𝑗
o 𝑃 ∗

𝑗 and 𝑃 𝑖𝑗 to 𝑃−
𝑗 is expressed in Tables 4 and 5

Step 6:
We obtain the SDBCC r

𝑖 corresponding to every alternative 𝑉𝑖. The
SDBCC r

1 = 0.2044, r
2 = 0.2950, r

3 = 0.2596 and r
4 = 0.2665.

Then we have the ranking of alternative is as follows: 𝑉1 > 𝑉3 > 𝑉4 < 𝑉2.
Which means that 𝑉1 is the best alternative.

6.1. Comparison and discussion

Comparative analysis was conducted to test the proposed method
with some other existing approaches. Two comparisons have done with
the distinct procedure, WA aggregation, and non-linear optimization
model. In first comparative analysis, we have compared our proposed
9

Table 4
Signed distances corresponding to each alternative.

Alternatives 𝑑( ̃̄P𝑖𝑗 , 1̄1)
̃̄P11 −1.7618
̃̄P12 −1.8456
̃̄P13 −1.6747
̃̄P14 −1.0827
̃̄P21 −1.6592
̃̄P22 −1.5559
̃̄P23 −1.3530
̃̄P24 −1.0703
̃̄P31 −1.6974
̃̄P32 −1.9449
̃̄P33 −1.4081
̃̄P34 −0.8729
̃̄P41 −1.8334
̃̄P42 −1.6869
̃̄P43 −1.2987
̃̄P44 −0.0489

Table 5
‘‘Signed distances’’ corresponding to every alternative.

Alternatives 𝑑( ̄̃P𝑖𝑗 , 0̄1)
̄̃P11 0.2382
̄̃P12 0.1544
̄̃P13 0.3253
̄̃P14 0.9173
̄̃P21 0.3409
̄̃P22 0.441
̄̃P23 0.6470
̄̃P24 0.9297
̄̃P31 0.3026
̄̃P32 0.0551
̄̃P33 0.5919
̄̃P34 1.1271
̄̃P41 0.1666
̄̃P42 0.3131
̄̃P43 0.7013
̄̃P44 0.9511

method with a well-known TOPSIS method. The fundamental percep-
tion of TOPSIS is that the chosen alternative should have shortest
distance from PIS and farthest distance from NIS. Consider weighted
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Table 6
Collective weighted normalized matrix 𝐸𝜛 using (4.4)

P
𝐿

𝑖𝑗 P
𝑈

𝑖𝑗

P
𝐿

1𝑖𝑗 P
𝐿

2𝑖𝑗 P
𝐿

3𝑖𝑗 P
𝐿

4𝑖𝑗 𝜇𝐿
P𝑖𝑗

𝜈𝐿
P𝑖𝑗

P
𝑈

1𝑖𝑗 P
𝑈

2𝑖𝑗 P
𝑈

3𝑖𝑗 P
𝑈

4𝑖𝑗 𝜇𝑈
P𝑖𝑗

𝜈𝑈
P𝑖𝑗

P11 0.5721 0.5721 0.5721 0.5721 0.5 0.5 0.5721 0.5721 0.5721 0.5721 0.5 0.5
P12 0.3185 0.3824 0.4292 0.5970 0.3 0.2 0.2849 0.4124 0.5464 0.9857 0.2 0.1
P13 0.1689 0.3089 0.5022 0.6822 0.4 0.3 0.1400 0.2989 0.5556 0.7589 0.3 0.2
P14 0.4424 0.6047 0.7286 0.8315 0.3 0.2 0.2652 0.4659 0.6221 0.9170 0.2 0.1
P21 0.4610 0.5911 0.6617 0.8240 0.2 0.3 0.3693 0.6382 0.7856 0.9802 0.1 0.2
P22 0.4000 0.4000 0.4000 0.4000 0.5 0.5 0.4000 0.4000 0.4000 0.4000 0.5 0.5
P23 0.2889 0.4633 0.6089 0.7778 0.5 0.3 0.1589 0.3044 0.5000 0.8889 0.3 0.2
P24 0.2862 0.5489 0.6729 0.8736 0.3 0.2 0.1623 0.4102 0.7113 0.9591 0.2 0.3
P31 0.4416 0.6270 0.8261 0.9703 0.3 0.4 0.3627 0.5721 0.8364 1.0000 0.2 0.3
P32 0.2703 0.3431 0.4425 0.6667 0.3 0.5 0.2334 0.2755 0.3636 1.0000 0.2 0.3
P33 0.5556 0.5556 0.5556 0.5556 0.5 0.5 0.5556 0.5556 0.5556 0.5556 0.5 0.5
P34 0.2627 0.3866 0.5960 0.8377 0.2 0.3 0.1239 0.4077 0.5638 1.0000 0.3 0.1
P41 0.3764 0.4714 0.5858 0.7357 0.2 0.3 0.2975 0.5998 0.7140 0.8993 0.1 0.2
P42 0.2601 0.3591 0.4376 0.8780 0.2 0.3 0.2301 0.2990 0.4695 0.8850 0.3 0.2
P43 0.3600 0.5767 0.7644 0.8756 0.3 0.2 0.2144 0.6056 0.7456 1.0000 0.1 0.3
P44 0.6196 0.6196 0.6196 0.6196 0.5 0.5 0.6196 0.6196 0.6196 0.6196 0.5 0.5
0

D
R
i

normalized matrix IT2TrPFPR 𝑃𝜔𝑖 of 𝑉𝑖 are as follows:

P𝜔𝑖 =
{⟨

x𝑗 ,
[ (

𝜔𝑗g𝑈1𝑖𝑗 , 𝜔𝑗g
𝑈
2𝑖𝑗 , 𝜔𝑗g

𝑈
3𝑖𝑗 , 𝜔𝑗g

𝑈
4𝑖𝑗 ;𝜇

𝑈
G𝑖𝑗
, 𝜈𝑈G𝑖𝑗

)

,
(

𝜔𝑗g𝐿1𝑖𝑗 , 𝜔𝑗g
𝐿
2𝑖𝑗 , 𝜔𝑗g

𝐿
3𝑖𝑗 , 𝜔𝑗g

𝐿
4𝑖𝑗 ;𝜇

𝐿
G𝑖𝑗
, 𝜈𝐿G𝑖𝑗

) ]⟩

|

|

|

x𝑗 ∈ X
}

(26)

PIS and NIS are as follows:

P𝜔∗ = {⟨x𝑗 , [(𝜔𝑗 , 𝜔𝑗 , 𝜔𝑗 , 𝜔𝑗 ∶ 1, 1), (𝜔𝑗 , 𝜔𝑗 , 𝜔𝑗 , 𝜔𝑗 ; 1, 1)]⟩
|

|

|

x𝑗 ∈ X} (27)

P𝜔 = {⟨x𝑗 , [(0, 0, 0, 0 ∶ 1, 1), (0, 0, 0, 0; 1, 1)]⟩||
|

x𝑗 ∈ X} (28)

𝐆(P𝜔𝑖 ,P
𝜔∗) and ℎ𝐆(P𝜔𝑖 ,P

𝜔) distance of each normalized weighted
T2TrPFPR.

𝐆(P𝜔𝑖 ,P
𝜔∗) =

[

1
8

𝑛
∑

𝑗=1
𝜔2
𝑗

(

(1 − p𝑈1𝑖𝑗 )
2 + (1 − p𝑈2𝑖𝑗 )

2 + (1 − p𝑈3𝑖𝑗 )
2 + (1 − p𝑈4𝑖𝑗 )

2

+ (1 − p𝐿1𝑖𝑗 )
2 + (1 − p𝐿2𝑖𝑗 )

2 + (1 − p𝐿3𝑖𝑗 )
2 + (1 − p𝐿4𝑖𝑗 )

2 )
] 1

2

(29)

𝐆(P𝜔𝑖 ,P
𝜔) =

[

1
8

𝑛
∑

𝑗=1
𝜔2
𝑗
(

(p𝑈1𝑖𝑗 )
2 + (p𝑈2𝑖𝑗 )

2 + (p𝑈3𝑖𝑗 )
2 + (p𝑈4𝑖𝑗 )

2

(p𝐿1𝑖𝑗 )
2 + (p𝐿2𝑖𝑗 )

2 + (p𝐿3𝑖𝑗 )
2 + (p𝐿4𝑖𝑗 )

2 )
] 1

2

(30)

Further closeness coefficient 𝐆
𝑖 (0 ≤ 𝐆

𝑖 ≤ 1) of alternative V𝑖 are as
follows:

𝐆
𝑖 =

ℎ𝐆(P𝜔𝑖 ,P
𝜔−)

ℎ𝐆(P𝜔𝑖 ,P𝜔∗) + ℎ𝐆(P
𝜔
𝑖 ,P𝜔−)

(31)

y using (31) we cumulate the 𝐆
𝑖 are follows 𝐆

1 = 0.2201, 𝐆
2 =

.3074, 𝐆
3 = 0.2686 and 𝐆

4 = 0.2565. Then the alternative ranking
s: V1 > V4 > V3 > V2. Which means V1 is the beast alternative.
lthough the calculation of (29) and (31) is much heavy then our
roposed method. Moreover our technique give realistic results than
OPSIS although it give same ranking alternative.

In the second comparative evaluation, we have taken into account
he comparative significance of multiple decision-makers to establish
collective decision matrix using WA operation for aggregation pro-

ess. The normalized decision matrix using WA operation is shown in
able 6.
10

o

The computed SDBCC are 1 = 0.5357, 2 = 0.5351, 3 =
.5624 and 4 = 0.6045. Which meansV2 > V1 > V3 > V4 so accord-

ing to this method V2 is the best choice. In comparative studies, weights
vectors produced by using the WA method and those introduced by this
study are the same but the decision rules and procedure in the paper are
remarkably different from previous methods. Moreover, the proposed
method with HA operation weights presents the PRs and their ordered
position. So that the outcomes of the proposed technique should be
realistic and authentic.

7. Conclusions

We have proposed a method which will work as an effective ap-
proach for managing uncertain situations where the fuzzy priority
weight vectors are completely unknown and the preference informa-
tion is in the form of interval type-2 trapezoidal pythagorean fuzzy
preference relations. A hybrid averaging operation based on weighted
averaging and ordered weighted averaging (OWA) operations has been
employed for a collective decision environment to aggregate the mul-
tiple opinions. The completely unknown fuzzy priority weight vectors
were determined using an optimization model. The main idea of the
proposed GDM method is to choose the alternative with the smallest
SDBCC. Finally, an application of medical decision-making has been
illustrated to demonstrate the practicability of proposed approach. The
proposed technique is constructive because of its flexibility regarding
to the completely unknown information and can be extended in future
research.

The proposed technique with HA approach weights both the
IT2TrPFN ratings and its ordered position. Specifically, the presented
approach not only considers the significance of decision-makers but
also the conformity of individual judgments. Consequently the out-
comes obtained by presented technique are more feasible than the
previously used techniques.
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