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ABSTRACT Continuous monitoring of the symptoms is crucial to improve the quality of life for patients 

with Parkinson's Disease (PD). Thus, it is necessary to objectively assess the PD symptoms. Since manual 

assessment is subjective and prone to misinterpretation, computer-aided methods that use sensory 

measurements have recently been used to make objective PD assessment. Current methods follow an 

absolute assessment strategy, where the symptoms are classified into known categories or quantified with 

exact values. These methods are usually difficult to generalize and considered to be unreliable in practice. 

In this paper, we formulate the PD assessment problem as a relative assessment of one patient compared to 

another. For this assessment, we propose a new approach to the comparative analysis of gait signals 

obtained via foot-worn sensors. We introduce a novel pairwise deep-ranking model that is fed by data from 

a pair of patients, where the data is obtained from multiple ground reaction force sensors. The proposed 

model, called Ranking by Siamese Recurrent Network with Attention, takes two multivariate time-series as 

inputs and produces a probability of the first signal having a higher continuous attribute than the second 

one. Our detailed performance analysis shows that the accuracy of pairwise ranking predictions can reach 

up to 82% with an AUROC of 0.89 with ten-fold cross validation. The model outperforms the previous 

methods for PD monitoring when run in the same experimental setup. To the best of our knowledge, this is 

the first study that attempts to relatively assess PD patients using a pairwise ranking measure on sensory 

data. The model can serve as a complementary model to computer-aided prognosis tools by monitoring the 

progress of the patient during the applied treatment. 

INDEX TERMS Siamese Network, Long Short-Term Memory, Parkinson's Disease, Gait Analysis, 

Pairwise Ranking. 

I. INTRODUCTION 

Parkinson's disease (PD) is a neurodegenerative disorder of 

aging that affects dopamine-producing neurons in the 

substantia nigra area of the brain [1]. Although there is 

currently no known cure for the disease, patients are treated 

with medications to relieve symptoms such as tremor, 

bradykinesia, dyskinesia, and walking disorders to maintain 

and/or improve their quality of life [2-5]. To monitor PD 

patients, it is necessary to rate the degree of the severity of 

the disease. These measurements are based on the 

evaluation of motor manifestations, assessment of the 

difficulties experienced in daily living, and symptomatic 

response to medication [6]. Based on interviews by an 

examiner or a patient’s self-assessment, scales such as the 

Unified Parkinson Disease Rating Scale (UPDRS) [7] 

provide estimations of the symptoms. UPDRS consists of 

four subscales each of which covers measurements related 

to “Mentation, Behavior, and Mood”, “Activities of Daily 

Living”, “Motor Examination,” and “Complications of 

Therapy”. However, the ratings in both the UPDRS and its 

subscales are not interval scales; that is, there are no 

quantitative distances between score values.  

As an alternative to subjective assessments, measurements 

that are based on a set of sensors capturing the physical 

characteristics of human motion and/or physiological signals 

are also used to infer the state of the patient in terms of 

predefined criteria [8]. A common method for sensor-based 

evaluation is to automatically classify patients into one of the 
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categories using conventional machine learning algorithms 

fed by a set of extracted features from sensory signals [9]. 

Lee et al. [10] used gait characteristics to classify samples as 

PD or not. Wavelet features extracted using gait signals were 

then used to feed a neural network with weighted fuzzy 

membership functions so that they could distinguish PD 

patients from healthy control subjects. Daliri et al. [11] used 

support vector machines (SVM) applied to ground reaction 

force (GRF) signal features extracted by short-time Fourier 

transform (STFT) and reported 91.2% precision. Jane et al. 

[12] who used the Hoehn and Yahr (H&Y) scale to model a 

Q-backpropagated time-delay neural network for the data 

collected by GRF sensors achieved slightly better than the 

results obtained by Daliri et al. Ertugrul et al. [13] proposed a 

novel one-dimensional local binary pattern (LBP) approach, 

called shifted 1DLBP, to extract statistical features from 

histograms of gait signals. Joshi et al. [14] extracted wavelet-

based features to be used in SVM-based classification. This 

hybrid method which combines the wavelet transform and 

SVM achieves similar accuracy results with [11] and [12]. 

Acici et al. [15] used a random forest (RF) algorithm for PD 

classification tasks based on the extracted set of features in 

the time and frequency domains. The RF algorithm resulted 

in 98.04% classification accuracy. Patel et al. [5] proposed 

estimating PD symptom severity with accelerometers. The 

authors classified the severity of different symptoms with an 

SVM using data gathered from an accelerometer. Their study 

presents promising results for the severity classification of 

symptoms such as tremor, bradykinesia, or dyskinesia. 

Although, this approach provides a categorical prediction, it 

is not sufficient for a quantitative assessment of PD 

symptoms. In recent studies [14,15], several researchers 

applied deep learning techniques, such as convolutional 

neural networks (CNN) and recurrent neural network (RNN), 

instead of using hand-crafted features. Zhao et al. [16] used a 

two-channel model that combines long short-term memory 

(LSTM) and CNN to learn the spatio-temporal information 

behind the data. Xia et al. [17] proposed a dual-modal 

attention enhanced deep learning model for quantification of 

Parkinson’s disease features by modeling a CNN separately 

on the right and left gait, followed by an LSTM layer. 

Classification-based evaluations provide limited 

understanding of the progress of the patient, since the 

categories are often binary, that is, in the form of 

presence/absence of defined symptoms [18]. A potential 

increase or decrease in the severity of symptoms cannot be 

inferred. One solution to this is to employ similar machine 

learning algorithms in a regression setup to directly quantify 

the severity, which serves as an absolution assessment of the 

symptoms [8, 9, 14]. Asuroglu et al. [18] adapted their 

random forest model in a regression setup, instead of 

classification in [15], to predict the exact value of the severity 

of PD symptoms from gait signals. Although this can provide 

a more precise evaluation of the current state of the patient, 

the generalization ability of such methods is limited due to 

the unavailability of a sufficient number of training samples 

with respect to the high granularity of grading scales used 

[19]. In fact, continuous labels that represent the severity is 

sparse to predict the model parameters accurately. Another 

limitation of the studies that use UPDRS values in a 

regression setup is that UPDRS and its subscales are not 

interval scales [6]. Since the distances between scores are not 

quantitative, regression-based approaches are not descriptive 

enough. Furthermore, severity assessment is usually 

considered to be subjective since they are not directly 

associated with a clinical test but the result of an expert 

evaluations. Therefore, predicted value of the severity is not 

found to be clinically reliable [6]. 

To overcome these limitations, we propose a novel model 

for the relative assessment of PD patients using gait signals 

acquired by foot-worn GRF sensors. We opt to use the scores 

of PD patients to be a ranking measure rather than a precise 

range change. This assessment is considered less prone to 

changes in different expert evaluations as Perlmutter et al. [6] 

suggested. Pairwise ranking labels were obtained by 

comparing the overall severity of PD symptoms in term of 

UPDRS. Given two patients’ data as input, the model is 

asked to predict whether the first patient has more severe 

symptoms than the second.  

In general, pairwise models have been studied extensively 

in computer science literature. Some of these studies can be 

grouped into multi-stream learning models, such as Siamese 

or triplet networks, for ‘classification’ of objects [20]. These 

models attempt to learn a number of parameters to keep the 

pairs in the same class together and the pairs in the opposite 

classes further. Final model can assign the query sample into 

a class based on the pairwise scores with training samples. 

Another group of studies, which is called ‘learning to rank’ 

deals with ‘retrieval’ of similar objects from a repository 

[21]. Here, a pairwise model aims to learn how similar two 

inputs are based on a training set of similarity ranks. In our 

study, we address a completely different problem; we aim to 

predict if the first sample is greater than the second sample in 

terms of an independent continuous label, which measures 

any quantity of the input signal. This problem has been 

tackled very recently for pairwise ‘ranking’ of image data in 

terms of their quality [22]. We have also recently seen some 

applications of pairwise ranking in video data for action 

quality assessment in sport activities as well [23]. 

To the best of our knowledge, present study is the first 

attempt for pairwise ranking of multi-variate time-series 

signals. Because of their non-spatial temporal characteristics, 

the models in image data cannot be directly inherited for 

time-series signals. Here, we address this challenge using a 

novel pairwise deep learning model. The model is an 

adoption of Siamese recurrent neural networks [24] for the 

task of pairwise ranking instead of pairwise similarity 

inference. This requires redefinition of the decision layer 

with a modified loss function. We offer a probabilistic loss 

layer for this purpose. The recurrent layer is implemented as 
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an LSTM enhanced by an attention mechanism to capture 

remote dependencies in input signals relevant to gait skills. 

For convenience, the model will be referred to as Ranking by 

Siamese Recurrent Network with Attention (RSRNA) in the 

rest of the paper.  

The contribution of the study is hence twofold. From an 

application perspective, the present study introduces the idea 

of relative assessment of PD patients by analyzing motion 

signals. This approach promotes two applications: (1) 

prognosis by monitoring the progress of the same patient 

during applied treatments, (2) personalized medicine by 

referring to the success/failure stories of other relevant 

patients. The second contribution of the study is that we 

propose a novel pairwise ranking model, called RSRNA, for 

multi-variate time-series signals and evaluate it using real 

world datasets. The experimental results show that, compared 

to existing methods, the proposed RSRNA model provides 

better results for PD patient monitoring in terms of pairwise 

ranking accuracy. 

 
II. APPROACH 

A.  RSRNA ARCHITECTURE FOR PAIRWISE RANKING 

Given two PD patients, labeled by m and n, with their gait 

data of xm and xn, which are multi-variate time-series of 

GRF signals measured during the experiment, the task is to 

determine which patient has more severe PD symptoms in 

terms of UPDRS scale. We denote this output by pmn where;  

 

 

 

(1) 

 

 

 

 

FIGURE 1. RSRNA model for pairwise ranking of PD patients from gait 
signals. 

We interpret this as the probability of the first patient 

having more severe symptoms than the second. Our 

purpose is to learn a model that minimizes the probabilistic 

loss in human-annotated samples for PD severity. As a 

consequence, we propose a novel framework called 

RSRNA, which is based on a Siamese network of attention-

enhanced LSTMs integrated with a probabilistic ranking 

layer in which the layer has the ability to consider the case 

of the equivalence of disease severity as well. The 

framework takes two gait signals, xm and xn, of patients as 

input and reports a pairwise rank between them (Figure 1). 

We feed an LSTM at one input of the Siamese network 

which is a powerful type of RNN used in deep learning [25] 

to model temporal data in the form of multi-variate time-

series. This prevents the vanishing gradient problem which 

is the main limitation of RNN [26]. Since our data involves 

long term dependencies, we prefer to use LSTM to model 

single gait behavior of each patient. Ignoring the 

superscript, m or n above, defining the stream, i.e. the 

patient, LSTM can be considered a recurrent relation by 

Equation 2. 

 

    (2) 

 

Here,  refers to the vector of GRF measurements at 

time t.  At every time step t, LSTM outputs a hidden vector 

 that reflects the disease representation by the gait signal 

at position t. The LSTM model is parameterized by output, 

input and forget gates, controlling the information flow 

within the recursive operation. It is implemented by 

following composite functions: 

 

  (3) 

  (4) 

   (5) 

                     (6) 

  (7) 

    (8) 

 

Here,  is the logistic sigmoid function, , ,  and  

refer to input gate, forget gate, output gate, and cell input 

activation records, respectively.  

B. LEARNING VIA ATTENTION 

An attention mechanism has been recently introduced to 

improve conventional encoder-decoder structures, to 

maximize the contribution of the relevant encoding context 

vectors and minimize those of irrelevant vectors while 

building the decoding context [27]. The gait signals 

acquired from PD patients usually involve long series of 

measurements. Local variables in different temporal 

positions are expected to have varying effects on the PD 

symptoms [18]. Therefore, an attention layer is used in the 

framework to assign weight (importance) to each position 

associated with the PD symptoms to be predicted at the end. 

We implement an attention layer that uses an attention 

function to assign weight to each hidden state produced by 

LSTM layer. The weighted distribution of hidden states is 
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used as a new representation of input signals. We calculate 

an attention function, denoted by ut, for each hidden state 

, t=1,…,T, as follows: 

 
  (9) 

 

where  is an attention hidden weight matrix and b is a 

bias parameter. This function allows to calculation of a 

number of weight parameters, denoted by , using the 

following equation; 

 

  (10) 

 

These weights are used to produce a context vector c, 

which will be forwarded to the next layer: 

 

   (11) 

 

Before pairwise ranking, a fully connected layer takes the 

vector of skill representation at the output of the LSTM, cm 

for any of the input m, and transforms it into a scalar, sm, 

which is directly comparable with the output, sm, at the other 

end of the Siamese network. 

C. PAIRWISE RANKING FOR RELATIVE ASSESSMENT 

A typical Siamese network models the loss function to infer 

the similarity between input signals [19]. Instead of 

similarity inference, we aim to rank these inputs. Hence, the 

framework allows the Siamese model to handle relative 

comparison of inputs instead of their direct evaluation for 

similarity. This is achieved by a rank layer adapted from a 

recent probabilistic loss function introduced in the RankNet 

approach [28]. In RankNet, the authors employ a 

probabilistic cost function that uses a pair of sample items 

to learn how to rank them. Their approach implements this 

cost function through a neural network optimized by 

gradient descent. In our case, we represent the pairwise 

rank between two patients having a PD disease by in 

which the probability of patient m having more severe 

symptoms than the patient n. We denote the posterior 

probability distribution = P(i›j), where › refers to the 

higher severity of  to , and is assumed to be desired 

target values for those posteriors, such that  {1,0.5,0}. 

Then, our aim is to minimize the distance between these 

two entities. We use a cross entropy cost function,  to 

measure the closeness between two probability 

distributions, given by; 

 
 (12) 

 

Letting  be the difference between rank orders of m 

and n, the probabilities are modelled by: 

 

 

                             (13) 

 

Then, following the above definitions, the final cost 

function becomes: 

 

  (14) 

 

III. EXPERIMENTS & RESULTS 

A. DATASET 

A public PhysioNet dataset 

(https://physionet.org/content/gaitpdb/1.0.0/) was used in 

this study [29]. The dataset contains the measurements of 

the gait signals of 93 PD patients and 73 healthy controls. 

Both groups have an average age of 66.3 years. Subjects 

wore eight sensors in each of their feet that measure force 

while performing their usual walking for approximately 2 

minutes on level ground. The position of the sensors was as 

follows: assuming a person stands up with two legs parallel 

to each other, the point of origin is exactly in the middle of 

the legs and the person faces toward the positive side of the 

Y axis. X and Y coordinates of each sensor are displayed in 

Table 1. The sensors measured the force on the feet in 

Newtons as a function of time. The dataset includes 

demographics information, measures of disease severity in 

terms of different metrics such as Hoehn & Yahr staging, 

the UPDRS, and other related measures. As Daliri [9] 

stated, since the reaction force on the feet varies in time 

throughout a walking activity based on personal gait 

patterns, it could be leveraged as a convenient resource for 

individual gait analysis. In our study, we use the digitized 

outputs of these 16 sensors to analyze the dynamics and 

characteristics of these multivariate time series.  

 
TABLE I 

PLACEMENT OF INDIVIDUAL GRF SENSORS IN X AND Y COORDINATES 

UNDER THE FEET 

Sensor X Y Sensor X Y 

Left 1 -500 -800 Right 1 500 -800 

Left 2 -700 -400 Right 2 700 -400 

Left 3 -300 -400 Right 3 300 -400 

Left 4 -700 0 Right 4 700 0 

Left 5 -300 0 Right 5 300 0 

Left 6 -700 400 Right 6 700 400 

Left 7 -300 400 Right 7 300 400 

Left 8 -500 -800 Right 8 500 800 

B. IMPLEMENTATION 

We used an LSTM network to capture temporal 

representations in PD symptoms. For the attention layer, we 

followed the previous implementation by Yang et al. (30) 

with the suggested parameter set. A sigmoid activation 

layer was used to model the probabilistic rank layer, which 

is followed by a binary cross-entropy loss function in the 
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training model. We used the following hyper-parameters 

for learning by a stochastic gradient descent algorithm: a 

learning rate of 0.001, a unit size of 64 with a single hidden 

layer, and a batch size of 2. The framework was 

implemented in Keras using TensorFlow backend. 

C. EVALUATION 

The original dataset was reorganized to create new samples 

according to our relative assessment strategy. Each sample 

in the new dataset was composed of a pair of patients with 

their raw gait signals and a pairwise ranking label between 

them, which can be 1, 0.5 or 0. These ranking labels were 

obtained by comparing the overall severity of PD 

symptoms in term of UPDRS. The samples without UPDRS 

annotations were removed from the dataset. We assessed 

the accuracy of predictions using a ten-fold cross-validation 

setup. In this setup, the pairs between 1/10 of the patients 

were used for testing, and the remaining pairs were used for 

training. It should be noted that test samples included both 

pairs in which neither video has been used in a pair for 

training and the pairs in which the other video was used for 

training in a different pairing. To evaluate the performance, 

the following metrics were used. 

Pairwise ranking accuracy (Acc): This is the percentage 

of correctly ordered pairs generated by each testing fold. 

Depending on whether the rank layer models the 

equivalence of PD severities of two patients, two different 

accuracy results may be reported. When the equivalence is 

considered, the accuracy gives the evaluation of ternary 

ranking performance. Otherwise, it evaluates binary 

ranking. Table 2 lists the conditions for the correct ordering 

of a pair (m, n) in binary and ternary cases. We used Ԑ = 

0.01 in our evaluations. 
TABLE II 

EVALUATIONS OF CORRECT PREDICTIONS AND ASSOCIATED GROUND 

TRUTH FOR DIFFERENT PAIRWISE RANKING SCHEMES 

Ranking scheme pmn Ground truth 

Ternary 

≥ 0.5+ Ԑ m›n 

≥ 0.5- Ԑ and < 0.5+ Ԑ m≡n 

< 0.5- Ԑ m‹n 

Binary 
≥ 0.5 m›n 

< 0.5 m‹n 

 

Area under receiver operating characteristic (ROC) 

curve (AUC): An ROC curve plots true positive (TP) rate 

versus false positive (FP) rate at different classification 

thresholds. In our binary ranking case, a positive sample is 

a pair for which first patient have more severe symptoms 

than the second patient. This sample is referred as TP if it is 

correctly predicted, and as FP otherwise. AUC measures 

the entire two-dimensional area underneath the entire ROC 

curve from (0,0) to (1,1). For perfect classification 

performance, the ROC curve is expected to be a full 

rectangle, and the AUC is expected to be 1. AUC is usually 

considered as an objective evaluation criterion for 

imbalanced datasets since it provides an aggregate measure 

of performance across all possible classification thresholds. 

Since the threshold change in classification phase may 

affect the performance of the model, we additionally use 

ROC curves to assess the robustness of our final model 

with some intermediate models using different sub-modules 

and model parameters. This enables us to choose the best 

model before comparing against other algorithms. 

Boxplots: A boxplot is a graph that provides an indication 

of how the values in the data are spread out. It displays the 

distribution of data on a vertical bar with indicators for 

minimum, first quartile, median, third quartile and 

maximum. We used the boxplot to display the spread of 

predicted probabilities for higher severity of the first patient 

in different ranking labels. We expected that the 

probabilities would approach 1 when the first sample in the 

pair had a higher severity, and they would approach 0 when 

the first sample had lower severity. When equivalence is 

considered, the probabilities should accumulate around 0.5 

for the pair samples with same severity. For each case, we 

expected small fluctuations around expected probabilities. 

D. FINDINGS 

In ten-fold cross-validation experiments, the RSRNA model 

achieved a binary pairwise ranking accuracy of 81% with 

an AUC of 0.878 and a ternary pairwise ranking accuracy 

of 78% with an average AUC of 0.862. Figure 2 shows the 

ROC curve for the proposed model when applied to binary 

pairwise ranking. Note that the ROC curve is not directly 

applicable for the ternary ranking scheme, but an AUC can 

be reported from the average of individual curves for all 

class labels. The boxplots of the predicted probabilities 

against pairwise ranking labels are shown in Figure 3.  

In Figure 2, the performance of the model is also 

discerned when the attention layer was removed. The figure 

shows that attention enhancement has a significant 

contribution in the prediction performance. Reported 

ranking accuracy and AUC decreased to 74% and 0.817 

when the attention mechanism was eliminated. 

 
FIGURE 2. ROC curves for binary pairwise ranking by RSRNA model 
using alternative sub-models; (1) with attention, (2) without attention 
and (3) using RNN instead of LSTM.  



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3136724, IEEE Access

 

VOLUME XX, 2017 9 

The boxplots shown in Figure 3 justify the argument that 

the attention mechanism is useful in detecting similarities 

between gait signals. As shown, using attention lowered 

fluctuations in the predictions in both binary (Figure 3.a-b) 

and ternary (Figure 3.c-d) ranking schemes. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
FIGURE 3. Boxplots of predicted probabilities against pairwise ranking 
labels for (a) binary ranking without attention, (b) binary ranking with 
attention, (c) ternary ranking without attention, and (4) ternary ranking 
with attention. 

Selection of LSTM was evaluated by replacing the sub-

model in this layer with a simpler RNN and evaluating the 

performance of the overall model in the same experimental 

setup. RNN was compiled with the following 

hyperparameters: hyperbolic tangent for activation, 

"orthogonal" initializer for recurrent initialization, 

"glorot_uniform" initializer for kernel initialization, and a 

unit size of 64. The model with RNN achieved a ranking 

accuracy of 63% with an AUC of 70.6 in the ternary 

scheme and a ranking accuracy of % with an AUC of 66 in 

binary scheme. In either of the cases, the performance of 

the model with RNN was lower than those with LSTM. 

This result justifies the fact that LSTM is a better choice in 

modeling temporal behavior of gait signals. The results 

with different configurations are summarized in Table 3. 

 
TABLE III 

JUSTIFICATION OF THE PROPOSED MODEL BY COMPARISON OF RELATIVE 

ASSESSMENT (PAIRWISE RANKING) PERFORMANCES OF DIFFERENT 

ARCHITECTURES WITH ALTERNATIVE SUB-MODELS. 

 

Methods 

Binary ranking Ternary ranking 

Acc AUC Acc 
AUC 

(avg) 

 

RSRNA 

 

81% 0.878 78% 0.862 

 

RSRNA – without 

attention  

74% 0.817 71% 0.796 

 

RSRNA – with RNN 

instead of LSTM 

66% 0,722 63% 0.706 

 

Since relative (pairwise) assessment of PD patients is 

proposed for the first time in this study, there is no existing 

work with which we can perform a direct comparison. 

However, we can refer to previous studies to create a 

number of baselines to benchmark our method. 
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Previous Method 1: Daliri [11] classified patients as PD 

or not using an SVM with frequency domain features. 

Similarly, we reconfigured Daliri’s [11] model such that an 

SVM was fed by the fusion of frequency-domain features 

of two patients to be ranked. These features were extracted 

using fast Fourier transforms of gait signals. 

Previous Method 2: Asuroglu et al. [18] attempted to 

quantify the exact value of symptoms in UPDRS scale. We 

reconfigured the model represented in this study so that it 

can report the pairwise rank when a pair of patients’ data is 

presented in the input. To do this, we concatenated 

individual time-domain feature sets extracted from each 

patient sample to construct a new sample and feed a 

random forest model in the classification setup.  

Previous Method 3: Xia et al. [17] used a model that 

combines a CNN followed by an LSTM layer. In this 

baseline, we used only the CNN section of the study to 

model the spatial features of the data. To adopt the spatial 

section of this model to our problem, we concatenated two 

input signals vertically and fed a CNN architecture, which 

included two convolutional layers, two max pooling layers, 

and a fully connected layer to classify if the first sample has 

a higher severity than the second. The convolution kernel in 

the two convolutional layers were both 3 × 3 and outputs 32 

feature maps.  

Previous Method 4: Using the same study as the third 

baseline, we modeled both spatial and temporal features of 

the dataset. We used the concatenation of two input signals 

to feed a CNN that had two convolution layers with the 

same parameters as Baseline 3, followed by an LSTM that 

had a length of 256 for hidden state vector to classify which 

of the two signals had a higher severity than the other. 

The evaluation results of ten-fold cross-validation 

experiments with different baseline models are applied for 

the binary ranking prediction at the UPDRS scale are 

displayed in Table 4. As shown in Table 4., RSNA 

outperforms all benchmarked methods in both ranking 

schemes. 

Table 4 also shows the results when the ternary ranking 

was applied. RSRNA model still outperformed 

benchmarked studies in terms of Acc and AUC when the 

case of severity equivalence was considered.  

 
TABLE IV 

COMPARISON OF THE PROPOSED MODEL WITH PREVIOUS STUDIES IN TERMS 

OF THEIR RELATIVE ASSESSMENT (PAIRWISE RANKING) PERFORMANCES. 

  

Method 

Binary ranking Ternary ranking 

Acc AUC Acc 
AUC 

(avg) 

RSRNA (proposed 

model) 
81% 0.878 78% 0.862 

Previous Method 1* [11] 64% 0.623 58% 0.617 

Previous Method 2* [18] 63% 0.744 59% 0.737 

Previous Method 3* [17] 64% 0.698 61% 0.685 

Previous Method 4* [17] 57% 0.579 55% 0.567 

*These methods was reconfigured for pairwise ranking and re-

implemented by the authors. 

Figure 4 shows the superiority of the current pairwise 

ranking over other methods. Bars on the left-hand side were 

generated through the current method, RSRNA, while the 

bars on the right show the outputs of the best baseline in 

terms of AUC (Previous Method 2 [18]) provided in Table 

4. The dark lower parts of the bars represent the number of 

correctly classified pairs. This result indicates that even if 

the absolute differences between pairs are as low as below 

5, RSRNA is quite successful in modeling the differences.  

 
FIGURE 4. Bars of correctly classified pairs versus incorrectly classified 
ones based on patients’ UPDRS scores. The left and right bars show the 
results of the present method and the best baseline, respectively. 

IV. CONCLUSION 

We introduced a novel approach for the relative assessment 

of the severity level of PD patients using gait sensors. To 

the best of our knowledge, this is the first attempt in the 

literature to assess PD patients by a pairwise comparison of 

gait signals. To this end, we proposed a novel deep learning 

architecture for pairwise ranking of multivariate time-series 

signals collected via GRF sensors worn under foot. 

According to the experimental results, the predictions were 

correlated with the clinical annotations. The accuracy of 

pairwise ranking predictions reached up to 81% with an 

AUC of 0.878 in ten-fold cross validation. The model 

outperformed the previous methods for PD monitoring 

when run in the same experimental setup. 

The proposed RSRNA method can be considered as a 

generic model for several pairwise ranking tasks, as the 

inputs are multivariate time-series signals. While LSTM 

layer makes the model applicable for all sequential signals, 

attention enhancement extends its ability to adopt novel 

signals obtained from different measurement modalities. 

Proposed rank layer with probabilistic loss function allows 

the Siamese model to handle relative comparison of inputs 

instead of their direct evaluation for similarity. We expect 

that this model feasible for a wide range of applications, 

especially in the health domain, to compare patients based 

on their physiological recordings. 

The relative assessment approach provides a more 

interpretable and reliable view of disease progress while 

overcoming the limitations caused by inconsistencies in 

subjective grading scales. This approach will promote two 
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applications. First, monitoring the progress of patients 

during applied treatments may support their prognosis and 

guide the organization of both preventive medicine and 

ongoing care practices [31]. As the present model allows 

comparison of patients' current data with their previous 

recordings, it can serve as a complementary model to new 

computer-aided prognosis tools. Second, this may support 

the personalized medicine effort by referring to the 

success/failure stories of the treatments of other relevant 

patients which can be obtained by retrieving similar cases 

using our RSRNA model. As the model is applicable to 

many other biomedical time-series signals, it may find 

applications in other health domains such as prognosing 

cardiovascular diseases using electrocardiograms [32] or 

monitoring patients in intensive care units via physiological 

vital signs [33]. 

Since PD patients usually suffer from the loss of basic 

motor abilities, remote monitoring is a recent challenge to 

provide satisfactory home care and clinical support. Our 

experiments showed that present model enables the relative 

assessment of current patient against others using wearable 

sensors, which can be easily used in home settings. Lack of 

multiple samples from individual patients prevented us to 

measure the performance of the system for assessing the 

progress of same person over time. This can be considered 

as a future clinical study. Providing multi-sensory data or 

video recordings used in remote monitoring of patients as 

inputs to the system may be another future aspect of the 

current study. Combining different modalities can be 

considered for developing an enhanced quality assessment 

system for PD patients.  
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