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A B S T R A C T

In this paper, we provide a generic mathematical framework for scabies transmission mechanisms. The
infections involving susceptible, highly contagious people and juvenile scabiei mites are characterized by a
framework of ordinary differential equations (DEs). The objective of this study is to examine the evolution
of scabies disease employing a revolutionary configuration termed a fractal–fractional (FF) Atangana–Baleanu
(AB) operator. Generic dynamical estimates are used to simulate the underlying pace of growth of vulnerable
people, clinical outcomes, and also the eradication and propagation rates of contaminated people and immature
mites. We study and comprehend our system, focusing on a variety of restrictions on its basic functionalities.
The model’s outcomes are assessed for positivity and boundedness. The formula includes a fundamental
reproducing factor, 0, that ensures the presence and stability of all relevant states. Furthermore, the FF-
AB operator is employed in the scabies model, and its mathematical formulation is presented using a novel
process. We analyze the FF framework to construct various fractal and fractional levels and conclude that
the FF theory predicts the affected occurrences of scabies illness adequately. The relevance and usefulness of
the recently described operator has been demonstrated through simulations of various patterns of fractal and
fractional data.
Introduction

Scabiei is an extremely contagious virus engendered by the cryp-
tosporidium worm Schistosoma scabiei, which belongs to the group
of dermatitis. Seborrheic dermatitis is detected in roughly 300 mil-
lion people nationwide each year, making it a major environmental
disease issue [1–3]. In reality, disease is frequently disseminated in
impoverished settings with overcrowding. Pervasiveness in mainland
Australia [4,5], for example, can reach 49 percent, compared to 28 per-
cent and 43 percent in Vanuatu and the Solomon Islands, respectively.
According to the Saudi Department of Health, over 1700 contaminated
people were identified as having mites in Makkah, Saudi Arabia’s north-
west area, during the first half of 2018 [6]. Ahmed et al. [7] calculated
the prevalence of mite relapse amongst Saudi Arabian individuals in
2019. Intimate epidermis interaction is the most conventional approach
to mite dissemination in humans. Additional modes of infection are
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through the exchanging of objects or the use of contaminated domestic
possessions like bedding, apparel, and blankets. Furthermore, genital
interaction is a primary route for the overgrowth to propagate [8].
Fuller [9] stated that the downstream complications of scabies in-
festations, such as pyoderma, streptococcal glomerulonephritis, and
subsequent chronic renal impairment and rheumatic fever, affect the
epidemiological situation for scabies around the world. In 1977, Mel-
lanby [10,11] established a series of experiments with young male
volunteers who had agreed to be exposed to scabies infection. Very
recently, author [12] discussed the mechanistic and statistical models
of skin disease transmission. Izri and Chosidow [13] determined the
efficacy of machine laundering to eradicate head lice. Engelman and
Steer [14] contemplated innovative strategies, utilizing ivermectin-
based mass drug administration, that appear feasible and highly ef-
fective. In practice, there is indeed a ten-week delay between the
vailable online 23 May 2022
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Fig. 1. Reproductive process of scabies mite.
Fig. 2. Reproductive process of scabies mite.
time of its initial contamination and the onset of indications in the
affected population. Affected patients experiencing mites can transmit
the infection across the neighborhood, even within the undiagnosed
phase [4,14].

Scabies mites go through three developmental periods throughout
their lives: embryo, juvenile mite, and maturity [3,4]. The female sca-
biei var hominis mite lays 60–90 eggs in her 30-day lifespan, although
less than 10 percent of the eggs result in mature mites. The average
patient is infected with 10–15 live adult female mites at any given
time [4,15]. Life cycle stages are as follows:

1. Larvae migrate to the skin surface and burrow into the intact
stratum corneum to make short burrows, called molting pouches [16–
18].

2. Larvae molt into nymphs, which molt once into larger nymphs
before becoming adults [16,18].

3. Mating takes place once, and the female is fertile for the rest of
her life; the male dies soon after mating [16,17].

4. The female makes a serpentine burrow using proteolytic enzymes
to dissolve the stratum corneum of the epidermis, laying eggs in the
process; she continues to lengthen her burrow and lay eggs for the rest
of her life, surviving 1–2 months [19].

5. Transmission of impregnated females from person-to-person oc-
curs through direct or indirect skin contact. In around two days,
immature nymphs evolve into presumably male or female grownups,
see (Fig. 1).
2

Mature fleas devote approximately two fortnights to hunting for a
companion. The expectant infestations proceed to produce offspring
during genital interaction, extending the colonization phase. Male
mites, in particular, disappear eventually after coupling. Female mites
can live for months longer than adult mealybugs [3]. The subsequent
population of adulthood scabies arises roughly a month after the
original outbreak and resumes the invasive species process [4,12,19],
see (Fig. 2). In addition to grasping the intricacies of epidemiological
models, scholars have developed and constructed numerical simula-
tions for a variety of objectives [20–26]. Researchers have considered
significant studies on epidemics based on clarity purposes [27,28].
The researchers of [29], for example, investigated the periodicity of
vector-borne clinical studies. Linden et al. [30] take into account
infectious transmission and superdiffusion. On the other hand, the
estimates reported in [31] disregarded characteristics of the Sarcoptes
scabiei’s entire lifespan and effectively as an underlying true connection
involving larvae and susceptible people. Lydeamore et al. [4] developed
a numerical framework to depict the mechanisms of mite infestation,
taking into account the mite’s entire process and interactions with re-
cipients, and also several modalities of medication and vulnerability to
bacterial invasion. The understanding of impaired acquisition strategies
is not presented in these representations, which is a restriction.

Furthermore, when employing systems predicated on integer deriva-
tives, it is hard to analyze the interactions involving successive points.
Multiple sorts of fractional order derivative frameworks have been
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Table 1
Table of specified variables and their descriptions.
𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 Explanation Data estimated [30]

𝐒(𝐭) Amount of susceptible individuals in time 𝐭
𝐈1(𝐭) Infectious people that having living mites and eggs after infection
𝐈2(𝐭) Infectious people that having living mites and eggs after developing symptoms
𝐈3(𝐭) Infected individuals who have only young mites
𝐌(𝐭) Number of adults mites at time 𝐭
𝜎1 Infection rate for 𝐈1 0.002
𝜎2 Infection rate for 𝐈2 0.003
𝜎3 Infection rate for 𝐈3 0.005
𝜎4 Infection rate for 𝐌 0.007
𝜅 Birth rate of susceptible persons 200
𝜂 Transmission rate of developing symptoms 0.4
℘ Transmission rate of egg hatching 0.4
𝜖 Natural death rate 0.5
𝜍 Transmission rate for mites mature and become adults 0.4
𝜃 Natural death rate of the adult mites 0.3
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reported in the research to overcome such challenges, see [32–40] and
the sources included. Researchers demonstrate significant contempo-
rary scholarly literature on fractional operators in association with a
variety of challenges in the scientific domain [41,42]. For example,
Rashid et al. [43] examined the analytical solutions of Fisher’s equation
via the Caputo fractional derivative operator. Qudah et al. [44] ex-
pounded the fuzzy solutions of the Cauchy reaction diffusion equation
by employing the Atangana–Baleanu fractional derivative operator.
Gómez-Aguilar [45] proposes using FF operators to solve Shinriki’s
oscillator framework. Researcher [46] explores the fractional deriva-
tive evaluation of the Vallis system. Solís-Pérez [47] considers the
mechanics of vasculature recognition. The physical and mechanical
challenges in fractional DEs are adequately achieved in the infor-
mation supplied earlier. Aside from that, the FF calculus [48] is a
novel domain of investigation that has lately been established and has
successfully produced scientific and engineering knowledge. Several
contemporary fractional derivative numerical simulations were studied
in [49,50]. The following are the primary accomplishments of this
manuscript: (1) A mite epidemic approach is performed via the FF
operator having a Mittag-Leffler kernel. The framework illustrates the
connections involving vulnerable, highly contagious people and mature
mites in a population. With the aid of the FF approach, we developed a
scabies system and tested its characteristics using realistic transmission
occurrences. We evaluate FF pattering to factual information from
scabies-infected individuals and find many remarkable outcomes. Fur-
thermore, we discussed the research on scabies infection in general, as
well as fractional operator approaches. (2) The system’s wellposedness
is demonstrated by exhibiting the outcome’s positivity and bounded-
ness. (3) The presence and durability of disease-free and prevalent
equilibrium are determined by the fundamental reproduction rate. (4)
Numerical methods are used to highlight the simulated predictions in
the system in the FF sense. (5) The infected equilibria are conducted
for a robustness evaluation. Finally, the study is summarized, for more
information (see, Table 1).

Scabies model transmission

In this part, a five-dimensional framework constructed by AlSham-
rani et al. [51] to illustrate the behavior of a scabies infestation in
disease transmission:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

𝑑𝐒(𝐭)
𝑑𝐭 = 𝛷 − 𝜖𝐒(𝐭) −

(

𝜎1𝐈1(𝐭) + 𝜎2𝐈2(𝐭) + 𝜎3𝐈3(𝐭) + 𝜎4𝐌(𝐭)
)

𝐒𝑞(𝐭),
𝑑𝐈1(𝐭)
𝑑𝐭 =

(

𝜎1𝐈1(𝐭) + 𝜎2𝐈2(𝐭) + 𝜎3𝐈3(𝐭) + 𝜎4𝐌(𝐭)
)

𝐒𝑞(𝐭) − (𝜂 + 𝜖)𝐈1(𝐭),
𝑑𝐈2(𝐭)
𝑑𝐭 = 𝜂𝐈1(𝐭) − (℘ + 𝜖)𝐈2(𝐭),

𝑑𝐈3(𝐭)
𝑑𝐭 = ℘𝐈2(𝐭) − (𝜍 + 𝜖)𝐈3(𝐭),

𝑑𝐌(𝐭) = 𝜍𝐈 (𝐭) − 𝜃𝐌(𝐭).

(1)
3

⎩
𝑑𝐭 3 f
subject to ICs

𝐒(0) = 𝐒0 ≥ 0, 𝐈1(0) = 𝐈10 ≥ 0, 𝐈2(0) = 𝐈20 ≥ 0,

𝐈3(0) = 𝐈30 ≥ 0,𝐌(0) = 𝐌0 ≥ 0. (2)

At time 𝐭, the group can be classified into five groups: highly vulnerable
people 𝐒(𝐭), extremely contagious persons with staying ectoparasites
and larvae during the apparently healthy timeframe after virus 𝐈1(𝐭),
contagious persons with having to live ectoparasites and larvae after
getting an infection 𝐈2(𝐭), and contaminated people with only ado-
escent ectoparasites (i.e. larvae have been fertilized). The infectious
isease prevalence constant is referred to as the component 𝐈3(𝐭).
urthermore, 𝛷 indicates the birth rate constant of highly vulnerable
eople, 𝜂 signifies the transmission raye constantly producing indica-
ions and ℘ refers to the transmission rate constantly for egg hatching,
espectively. Additionally, regardless of poor prognosis, 𝜖 has a sponta-
eous mortality rate that remains stable. 𝐌(𝐭) represent the proportion
f mature mites present at time 𝐭. The dissemination speed constant
or mites that progress by becoming mature and the spontaneous
ate of death constant for mature fleas, respectively, are parameters
and 𝜃. Furthermore, we refer the researcher to the comprehensive

esearch review article [30] for further knowledge on scabies outbreak
imulation.

Framework (14) assumes a conventional bilinear transmission (inci-
ence) rate that is predicated on the idea of collective protest in terms
f the amount of vulnerable and pathogenic organisms persons [52,53].
herefore, this model does not well reflect the heterogeneity interaction
f people in a community. Additionally, as the amount of highly
ontagious persons grows, the dissemination speed may increase in re-
uttal than linearly [54,55]. Numerous researchers have subsequently
ncluded nonlinear parameterization in their modeling techniques [56],
here 𝑞 > 0 are constants.

echanisms of the scabies model

To demonstrate that (14) is outbreaks significant, we must explain
hat the scheme’s accompanying model parameters are non-negative for
very time 𝐭. This is more conveniently addressed by the observation
hat the scabies system of DEs (14) having non-negative ICs becomes
on-negative for all 𝐭 > 0. Here, we present the lemma as follows:

emma 1. Assume that there be initial data (0) ≥ 0, where

(𝐭) = (𝐒(𝐭), 𝐈1(𝐭), 𝐈2(𝐭), 𝐈3(𝐭),𝐌(𝐭)). (3)

hus the model (14) represents the non-negative solution for every time
> 0. Also, lim𝐭↦∞  (𝐭) ≤ 𝛷

𝜖 having  (𝐭) = 𝐒(𝐭)+𝐈1(𝐭)+𝐈2(𝐭)+𝐈3(𝐭)+𝐌(𝐭).

roof. Let 𝜈 = sup
{

𝐭 > 0 ∶ (𝐭) > 0 ∈ [0, 𝐭]
}

. Therefore, 𝜈 > 0. For the
irst component of the problem (14), we acquire the significant findings
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as follows
𝑑𝐒(𝐭)
𝑑𝐭

= 𝛷 − 𝜖𝐒(𝐭) −
(

𝜎1𝐈1(𝐭) + 𝜎2𝐈2(𝐭) + 𝜎3𝐈3(𝐭) + 𝜎4𝐌(𝐭)
)

𝐒𝑞(𝐭). (4)

Taking 𝜆 =
(

𝜎1𝐈1(𝐭) + 𝜎2𝐈2(𝐭) + 𝜎3𝐈3(𝐭) + 𝜎4𝐌(𝐭)
)

=
∑3

𝜄=1 𝜎𝜄𝐈𝜄, then (4)
reduces to
𝑑𝐒(𝐭)
𝑑𝐭

= 𝛷 − 𝜖𝐒(𝐭) − 𝜆𝐒𝑞(𝐭). (5)

17) can be demonstrated in more context as shown below

𝑑
𝑑𝐭

(

𝐒(𝐭) exp
(

𝜖𝐭 + ∫

𝜈

0
𝜆(𝜙)𝑑𝜙

))

= 𝛷 exp
(

𝜖𝐭 + ∫

𝜈

0
𝜆(𝜙)𝑑𝜙

)

. (6)

Therefore, we have

𝐒(𝐭) exp
(

𝜖𝜈 + ∫

𝜈

0
𝜆(𝜙)𝑑𝜙

)

− 𝐒(0) = 𝛷 exp
(

𝜖𝑦1 + ∫

𝜈

0
𝜆(℘)𝑑℘

)

𝑑𝑦1. (7)

It follows that

𝐒(𝐭) = 𝐒(0) exp
(

−
(

𝜖𝜈 + ∫

𝜈

0
𝜆(𝜙)𝑑𝜙

)

)

+ exp
(

−
(

𝜖𝜈 + ∫

𝜈

0
𝜆(𝜙)𝑑𝜙

)

)

×∫

𝜈

0
𝛷 exp

(

𝜖𝑦1 + ∫

𝜈

0
𝜆(℘)𝑑℘

)

𝑑𝑦1 > 0. (8)

Therefore, we can obtain (𝐭) > 0 for any 𝐭 > 0 by repeating the
previous methods for the leftover components of framework (14). Thus,
we conclude that 0 < 𝐒(0) ≤  (𝐭), 0 < 𝐈1(0) ≤  (𝐭), 0 < 𝐈2(0) ≤
 (𝐭), 0 < 𝐈3(0) ≤  (𝐭), 0 < 𝐌(0) ≤  (𝐭). After adding the all
formulations, lead to

𝑑
𝑑𝐭

= 𝛷 − 𝜖 . (9)

Consequently, we have

lim
𝐭↦∞

 (𝐭) ≤ 𝛷
𝜖
, (10)

which gives the immediate consequence. □

Further, we illustrate the invariant domains for the specified scabies
model (14). For this, we propose the feasible domain as follows:

𝛬 =
{

(𝐒, 𝐈1, 𝐈2, 𝐈3,𝐌) ∈ 𝐑5
+ ∶  (𝐭) ≤ 𝛷

𝜖

}

.

For the plausibility domain, the accompanying outcomes are reported.

Lemma 2. The region presented by 𝛬 is positively invariant for the scabies
model (14) incorporating the non-negative ICs.

Proof. By means of (9), then the scabies model (14) leads to

𝑑
𝑑𝐭

= 𝛷 − 𝜖 ,

which concludes that 𝑑
𝑑𝐭 ≤ 0, if  (0) ≥ 𝛷

𝜖 . Thus  (𝐭) ≤  (0) exp
(−𝜖𝐭)+𝛷

𝜖 (1−exp(−𝜖𝐭)). Therefore, the domain followed by 𝛬 is positively
nvariant. Moreover, if  (0) > 𝛷

𝜖 , then either the outcomes belongs to
in finite time, or we can say that  (𝐭) approaches to 𝛷

𝜖 asymptoti-
ally. As a result, all of the responses in R5

+ are drawn to the boundaries
defined by 𝛬. □

Basic concepts of fractal–fractional calculus

Here, the outcomes of FF calculus, structure analysis in the FF
operator of the AB derivative perspective, and system (14) robustness
are discussed in this part. Considering the findings in [30], we com-
mence with the fundamentals of FF calculus considering the generalized
Mittag-Leffler (GML) kernel.

Definition 1 ([48]). Suppose there be a continuous mapping 𝑔1(𝐭)
hich is fractal differentiable in (𝑎 , 𝑎 ) having order 𝜔, then the FF
4

1 2
derivative of 𝑔1(𝐭) have order 𝛼 described in the Riemann–Liouville
erspective considering GML kernel is presented as follows:

𝐹𝐹𝑀𝐃𝛼,𝜔
0,𝐭 (𝑔1(𝐭)) =

𝐀𝐁𝐂(𝛼)
1 − 𝛼

𝑑
𝑑𝐭𝜔 ∫

𝐭

0
𝐸𝛼

(

− 𝛼
1 − 𝛼

(𝐭 − 𝜚)𝛼
)

𝑔1(𝜚)𝑑𝜚, (11)

here 𝛼 > 0, 𝜔 ≤ 1 ∈ N and 𝐀𝐁𝐂(𝛼) = 1 − 𝛼 + 𝛼
𝛤 (𝛼) .

Definition 2 ([48]). Suppose there be a continuous mapping 𝑔1(𝐭) on
(𝑎1, 𝑎2), then the FF integral of 𝑔1(𝐭) having order 𝛼 with the GML kernel
s presented as

𝐹𝐹𝑀𝐉𝛼,𝜔0,𝐭 (𝑔1(𝐭)) =
𝛼𝜔

𝐀𝐁𝐂(𝛼) ∫
𝐭

0
𝜚𝜔−1(𝐭 − 𝜚)𝛼−1𝑔1(𝜚)𝑑𝜚 +

𝜔(1 − 𝛼)
𝐀𝐁𝐂(𝛼)

𝐭𝜔−1𝑔1(𝐭).

(12)

Fractal–fractional scabies model

In this part, we implement the FF operator on the structure (14) in
the AB perspective as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝐹𝐹𝐃𝛼,𝜔
0,𝐭

(

𝐒(𝐭)
)

= 𝛷 − 𝜖𝐒(𝐭)−
(

𝜎1𝐈1(𝐭) + 𝜎2𝐈2(𝐭) + 𝜎3𝐈3(𝐭)

+ 𝜎4𝐌(𝐭)
)

𝐒𝑞(𝐭), 𝐒(0) = 𝐒0 ≥ 0,
𝐹𝐹𝐃𝛼,𝜔

0,𝐭
(

𝐈1(𝐭)
)

=
(

𝜎1𝐈1(𝐭) + 𝜎2𝐈2(𝐭) + 𝜎3𝐈3(𝐭)

+ 𝜎4𝐌(𝐭)
)

𝐒𝑞(𝐭) − (𝜂 + 𝜖)𝐈1(𝐭), 𝐈1(0) = 𝐈10 ≥ 0,
𝐹𝐹𝐃𝛼,𝜔

0,𝐭
(

𝐈2(𝐭)
)

= 𝜂𝐈1(𝐭) − (℘ + 𝜖)𝐈2(𝐭), 𝐈2(0) = 𝐈20 ≥ 0,

𝐹𝐹𝐃𝛼,𝜔
0,𝐭

(

𝐈3(𝐭)
)

= ℘𝐈2(𝐭) − (𝜍 + 𝜖)𝐈3(𝐭), 𝐈3(0) = 𝐈30 ≥ 0,

𝐹𝐹𝐃𝛼,𝜔
0,𝐭

(

𝐌(𝐭)
)

= 𝜍𝐈3(𝐭) − 𝜃𝐌(𝐭), 𝐌(0) = 𝐌0 ≥ 0,

(13)

where 𝛼 and 𝜔 denote the fractional and fractal order, respectively.

Existence and positivity

Next, we investigate the existence and positivity of the scabies
model (14). For further investigation, we refer the readers [21,48,49].

Theorem 1. Suppose there be a unique positive outcome for the model
(14) that remains in R5

+.

Proof. To reveal the preceding outcome to demonstrate that the
response of the framework (14) is positive:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝐹𝐹𝐃𝛼,𝜔
0,𝐭

(

𝐒(𝐭)
)

|

|

|𝐒=0
= 𝛷 ≥ 0,

𝐹𝐹𝐃𝛼,𝜔
0,𝐭

(

𝐈1(𝐭)
)

|

|

|𝐈1=0
= 0 ≥ 0,

𝐹𝐹𝐃𝛼,𝜔
0,𝐭

(

𝐈2(𝐭)
)

|

|

|𝐈2=0
= 𝜂𝐈1(𝐭) ≥ 0,

𝐹𝐹𝐃𝛼,𝜔
0,𝐭

(

𝐈3(𝐭)
)

|

|

|𝐈2=0
= ℘𝐈2(𝐭) ≥ 0,

𝐹𝐹𝐃𝛼,𝜔
0,𝐭

(

𝐌(𝐭)
)

|

|

|𝐌=0
= 𝜍𝐈3(𝐭) ≥ 0.

(14)

This demonstrates that the system result will persist in R5
+ for all time

𝐭 ≥ 0. Moreover, summing all the components in (14), we have
𝐹𝐹𝐃𝛼,𝜔

0,𝐭
(

 (𝐭)
)

= 𝛷 − 𝜖 . (15)

Observe that

lim
𝐭↦∞

sup (𝐭) ≤ 𝛷
𝜖
. (16)

Consequently, the biological viable domain for the system (14) can be
described as

𝛬1 =
{

(𝐒, 𝐈1, 𝐈2, 𝐈3,𝐌) ∈ 𝐑5
+ ∶  (𝐭) ≤ 𝛷

𝜖

}

.

The framework for the scabies system aforementioned (14) in the FF-
AB operator is implemented to derive the relevant findings in the
subsequent part. □
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Stability analysis disease free case

Furthermore, we now illustrate the stability criteria for disease-free
cases.

This section investigates the stability findings for the scabies models
proposed by the disease-free equilibrium (DFE) 0. We generate the
subsequent formulation by changing the right hand side of the scabies
model (14) equal to zero. Then, we have

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐹𝐹𝐃𝛼,𝜔
0,𝐭

(

𝐒(𝐭)
)

= 0,
𝐹𝐹𝐃𝛼,𝜔

0,𝐭
(

𝐈1(𝐭)
)

= 0,
𝐹𝐹𝐃𝛼,𝜔

0,𝐭
(

𝐈2(𝐭)
)

= 0,
𝐹𝐹𝐃𝛼,𝜔

0,𝐭
(

𝐈3(𝐭)
)

= 0,
𝐹𝐹𝐃𝛼,𝜔

0,𝐭
(

𝐌(𝐭)
)

= 0.

(17)

This yields that

0 = (𝐒0, 0, 0, 0, 0) =
(𝛷
𝜖
, 0, 0, 0, 0

)

. (18)

he fundamental reproducing value 0, which can be generated using
he next generation approach for the scheme (14), can be utilized to
xamine the robustness of DFE at 0. Assuming that the contaminated
omponents in the scabies system (14) are 𝐈1, 𝐈2, 𝐈3, 𝐌 and that you

implement the procedure in [57], the matrices  and  are as follows:

 =
⎡

⎢

⎢

⎣

0 0 𝜎1 + 𝜎2 + 𝜎3 + 𝜎4
0 0 0
0 0 0

⎤

⎥

⎥

⎦

(19)

and

 =
⎡

⎢

⎢

⎣

(𝜂 + 𝜖) 0 0
−𝜂 (℘ + 𝜖) 0
0 ℘ (𝜍 + 𝜖)

⎤

⎥

⎥

⎦

(20)

The model’s (14) requisite fundamental reproducing factor is derived
by the spectral radius of the matrix 0 = 𝜌(−1), provided by

0 =
(𝜎1(𝜍 + 𝜖)(𝜖 +℘) + 𝜎2𝜂(𝜖 + 𝜍) + 𝜎3𝜂℘ + 𝜎4𝜂𝜍℘)𝐒𝑞0

(𝜂 + 𝜖)(𝜍 + 𝜖)(𝜖 +℘)
. (21)

s shown in the accompanying result, the Scabies model presented in
14) is locally asymptotically stable at the disease free equilibrium 0.
ccording to [58], we address the relevant outcomes.

heorem 2. The scabies model presented in (14) at the disease free
quilibrium 0 is locally asymptotically stable whenever 0 < 1 having
ssumption |

|

|

𝐴𝑟𝑔(𝜆𝜄)
|

|

|

> 𝜎1𝜋
2 .

roof. To show the aforementioned hypothesis, we must first acquire
he Jacobian matrix by estimating the parameters (14) at the disease
ree equilibrium 0, and then

(0) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−𝜖 0 0 0 0
0 −𝜅1 0 0 0
0 𝜂 −𝜅2 0 0
0 0 ℘ −𝜅3 0
0 0 0 𝜍 −𝜃

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (22)

here 𝜅1 = (𝜂 + 𝜖), 𝜅2 = (℘ + 𝜖), 𝜅3 = (𝜍 + 𝜖). The eigenvalues
can be achieved by the following 𝜆3 + 𝜛1𝜆2 + 𝜛2𝜆 + 𝜛3 = 0, where

1 = 𝜅1 + 𝜅1 + 𝜖, 𝜛2 = 𝜅3𝜖 + 𝜅2(𝜅3 + 𝜖), 𝜛3 = 𝜅1𝜅2𝜖(1 −2
0).

The indices produced by 𝜛𝜄 for 𝜄 = 1, 2, 3 are favorable for clearly
for 𝜛𝜄 for 𝜄 = 1, 2 whereas 𝜛3 can be positive or negative depending on
the number of 0; in the disease free equilibrium, e.g., the quantity of
the fundamental reproduction factor must be smaller than 1, hence the
penultimate factor is positive when 0 < 1. Thus, all the factors involv-
ing 𝜛𝜄, 𝜄 = 1, 2, 3 positive, so that, they must fulfill the Routh–Hurtwiz
condition [58], this is simple to satisfy, provided the prerequisites are
met 𝜛1𝜛2 > 𝜛2

3 , where 𝜛𝜄 > 0, ∀𝜄 = 1, 2, 3. As a result, the Routh–
Hurtwiz requirements guarantee the local asymptotic consistency of the
5

Scabies system (14) at disease free equilibrium 0. □
Impact of the parameter q

The effect of the quantity 𝑞 on the fundamental reproductive quan-
tity as well as the persistence of the equilibrium is analyzed in this part.
Let us calculate the number of 𝑞𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 in such a way that

0 =
(𝜎1(𝜍 + 𝜖)(𝜖 +℘) + 𝜎2𝜂(𝜖 + 𝜍) + 𝜎3𝜂℘ + 𝜎4𝜂𝜍℘)𝐒𝑞

𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

0
(𝜂 + 𝜖)(𝜍 + 𝜖)(𝜖 +℘)

= 1. (23)

Therefore, we have

𝑞𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = ln
(

(𝜂 + 𝜖)(𝜍 + 𝜖)(𝜖 +℘)
(𝜎1(𝜍 + 𝜖)(𝜖 +℘) + 𝜎2𝜂(𝜖 + 𝜍) + 𝜎3𝜂℘ + 𝜎4𝜂𝜍℘)

)

∕ ln(𝐒0), 𝐒0 ≠ 1. (24)

Thus, 0 ≤ 1 whenever 0 < 𝑞 ≤ 𝑞𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 and 0 > 1 whenever
> 𝑞𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙.

ensitivity evaluation of the endemic equilibrium

This approach can help anticipate which of the factors in system
14) is more effective at influencing the stable equilibrium outcomes
ver time 𝐭. Determine the endemic equilibrium ̄ = (𝐒̄, 𝐈1, 𝐈2, 𝐈3, 𝐌̄),
here factor 𝑞 = 1 is specified in framework (14), then we get 𝐒̄, 𝐈1,

2̄, 𝐈3, 𝐌̄ (see Box I). From the aforementioned result, we construct the
ubsequent outcome:

heorem 3. The scabies framework presented by (14) has:
(i) If 0 ≤ 1, then the disease free equilibrium ̄ is globally asymptoti-

ally stable.
(ii) If 0 > 1, then the endemic equilibrium ̄ is globally asymptotically

table.

xistence and uniqueness of the proposed model

The existence and uniqueness of the scabies framework structure
eveloped by the FF operator are succinctly summarized in (14). So to
rovide it, we will employ the accompanying procedure to generate the
eneric Cauchy equation having a FF derivative:
{

𝐹𝐹𝐃𝛼,𝜔
0,𝐭 𝛺(𝐭) = 𝜒(𝐭, 𝛺(𝐭)),

𝛺(0) = 𝛺0.
(25)

rom (25), giving the foregoing and pertaining to Definition 1:

𝐀𝐁𝐂(𝛼)
1 − 𝛼

𝑑
𝑑𝐭 ∫

𝐭

0
𝜒(𝐬, 𝛺(𝐬))𝐸̄𝛼

(

− 𝛼
1 − 𝛼

(𝐭 − 𝐬)𝛼
)

𝑑𝐬 = 𝜔𝐭𝜔−1𝜒(𝐭, 𝛺(𝐭)). (26)

Considering the implementation of the appropriate integral, the afore-
mentioned outcomes are obtained:

𝛺(𝐭) = 1 − 𝛼
𝐀𝐁𝐂(𝛼)

𝜔𝐭𝜔−1𝜒(𝐭, 𝛺(𝐭))

+ 𝜔𝛼
𝐀𝐁𝐂(𝛼)𝛤 (𝛼) ∫

𝐭

0
(𝐭 − 𝐮)𝛼−1𝜒(𝐮, 𝛺(𝐮))𝐮𝜔−1𝑑𝐮 +𝛺(0).

n view of the Picard–Lindelof formulation, yields
𝛿2

𝛿1

= 𝐫 (𝐭𝐫 ) × 𝐀0(𝛺0),

where 𝐈𝐬(𝐭𝐬) =
[

𝐭𝐬−𝜁1 , 𝐭𝐬+𝜁1
]

, 𝐀0(𝛺0) =
[

𝐭0 − 𝜁2, 𝐭0 + 𝜁2
]

.
Surmise that

J = sup
𝐭∈

∏𝛿2
𝛿1

‖

‖

‖

𝜒‖‖
‖

.

Furthermore, the norm is applied as follows:
‖

‖

‖

𝜒‖‖
‖∞

= sup
𝐭∈

∏𝛿2
𝛿1

‖

‖

‖

𝜒‖‖
‖

,

and surmise the operator

𝛶
[

C
[

 (𝐭 ),𝐀 (𝐭 )
]

]

⟶ C
(

 (𝐜),𝐀 (𝐭 )
)

,
𝐬 𝐬 𝐜 𝐬 𝐬 𝐜 𝐬
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d

𝛶

T

‖

‖

‖

𝐒̄ =
𝜃(𝜂 + 𝜖)(𝜍 + 𝜖)(𝜖 +℘)

𝜃[𝜎2𝜂(𝜖 + 𝜍) + 𝜎3𝜂℘ + 𝜎1(𝜖 + 𝜍)(𝜖 +℘)] + 𝜎4𝜂𝜍℘
,

𝐈1 =
𝜃[−𝜖(𝜂 + 𝜖)(𝜍 + 𝜖)(𝜖 +℘) + 𝜅{𝜎2𝜂(𝜖 + 𝜍) + 𝜎3𝜂℘ + 𝜎1(𝜖 + 𝜍)(𝜖 +℘)}] + 𝜅𝜂𝜍℘𝜎4

(𝜖 + 𝜂){𝜃[𝜎2𝜂(𝜖 + 𝜍) + 𝜎3𝜂℘ + 𝜎1(𝜖 + 𝜍)(𝜖 +℘)] + 𝜎4𝜂𝜍℘}
,

𝐈2 =
−𝜃𝜂𝜖(𝜖 + 𝜍)

𝜃(𝜖 + 𝜍) + 𝜂𝜍℘𝜎4 + 𝜃℘𝜎3𝜂 + 𝜎1(𝜖 + 𝜍)
+

𝜅𝜂
(𝜖 + 𝜂)(𝜖 +℘)

,

𝐈3 =
𝜂℘[𝜅𝜎4𝜂𝜍℘ + 𝜃{𝜅{𝜂𝜎2(𝜖 + 𝜍) + 𝜎3𝜂℘ + 𝜎1(𝜖 + 𝜍)(𝜖 +℘)} − {𝜖(𝜖 + 𝜂)(𝜖 + 𝜍)(𝜖 +℘)}}]

(𝜖 + 𝜂)(𝜖 + 𝜍)(𝜖 +℘)𝜂𝜍℘𝜎4 + 𝜃[𝜂𝜎2(𝜖 + 𝜍) + 𝜎3𝜂℘ + 𝜎1(𝜖 + 𝜍)(𝜖 +℘)]
,

𝐌̄ = −
𝜂℘𝜍[−𝜅𝜎4𝜂𝜍℘ + 𝜃{−𝜅{𝜂𝜎2(𝜖 + 𝜍) + 𝜎3𝜂℘ + 𝜎1(𝜖 + 𝜍)(𝜖 +℘)} + {𝜖(𝜖 + 𝜂)(𝜖 + 𝜍)(𝜖 +℘)}}]

𝜃(𝜖 + 𝜂)(𝜖 + 𝜍)(𝜖 +℘)𝜂𝜍℘𝜎4 + 𝜃[𝜂𝜎2(𝜖 + 𝜍) + 𝜎3𝜂℘ + 𝜎1(𝜖 + 𝜍)(𝜖 +℘)]
.

Box I.
C



T
‖

‖

‖

U

N
d

f
o
t
𝐴

escribed by

𝜒(𝐭) = 𝜒0 +
1 − 𝛼

𝐀𝐁𝐂(𝛼)
𝜔𝐭𝜔−1𝜒(𝐭, 𝛺(𝐭))

+ 𝛼𝜔
𝐀𝐁𝐂(𝛼)𝛤 (𝛼) ∫

𝐭

0
(𝐭 − 𝐮)𝛼−1𝜒(𝐮, 𝛺(𝐮))𝐮𝜔−1𝑑𝐮.

The main intention is to illustrate that the aforesaid operator can
transform a completely empty metric space over onto itself. We also
aim to demonstrate that it has the potential to identify contractions.
First and foremost, we show that
‖

‖

‖

𝛶𝛺(𝐭) −𝛺0
‖

‖

‖

≤ 𝐜,
‖

‖

‖

𝛶𝛺(𝐭) −𝛺0
‖

‖

‖

≤ 1 − 𝛼
𝐀𝐁𝐂(𝛼)

𝜔𝐭𝜔−1‖‖
‖

𝜒(𝐭, 𝛺(𝐭))‖‖
‖∞

+ 𝛼𝜔
𝐀𝐁𝐂(𝛼)𝛤 (𝛼) ∫

𝐭

0
(𝐭 − 𝐮)𝛼−1‖‖

‖

𝜒(𝐮, 𝛺(𝐮))‖‖
‖

𝐮𝜔−1𝑑𝐮

≤ 1 − 𝛼
𝐀𝐁𝐂(𝛼)

𝜔𝐭𝜔−1𝜒 + 𝛼𝜔
𝐀𝐁𝐂(𝛼)𝛤 (𝛼)

𝜒 ∫

𝐭

0
(𝐭 − 𝐮)𝛼−1𝐮𝜔−1𝑑𝐮.

plugging 𝐮 = 𝐭𝐱, then gives the subsequent
‖

‖

‖

𝛶𝛺(𝐭) −𝛺0
‖

‖

‖

≤ 1 − 𝛼
𝐀𝐁𝐂(𝛼)

𝜔𝐭𝜔−1𝜒 + 𝛼𝜔
𝐀𝐁𝐂(𝛼)𝛤 (𝛼)

𝜒𝐭𝛼+𝜔−1𝐵1(𝜔, 𝛼).

herefore, we have

𝛶𝛺(𝐭) −𝛺0
‖

‖

‖

≤ 𝐜 ↦ 𝜒 <
𝐜𝐵1(𝜔, 𝛼)

1−𝛼
𝐀𝐁𝐂(𝛼)𝜔𝐭

𝜔−1 + 𝛼𝜔
𝐀𝐁𝐂(𝛼)𝛤 (𝛼) 𝐭

𝛼+𝜔−1
.

Surmising that 𝛺1, 𝛺2 ∈ C[𝐬(𝐭𝐬),𝐀𝐜(𝐭𝐬)]. To obtain the following result,
employ the Banach fixed point theorem:
‖

‖

‖

𝛶𝛺1 − 𝛶𝛺2
‖

‖

‖

≤ 𝛺
‖

‖

‖

𝛺1 −𝛺2
‖

‖

‖∞
,

where 𝛺 < 1.
‖

‖

‖

𝛶𝛺1 − 𝛶𝛺2
‖

‖

‖

≤ 1 − 𝛼
𝐀𝐁𝐂(𝛼)

𝜔𝐭𝜔−1‖‖
‖

𝜒(𝐭, 𝛺1) − 𝜒(𝐭, 𝛺2)
‖

‖

‖

+ 𝛼𝜔
𝐀𝐁𝐂(𝛼)𝛤 (𝛼) ∫

𝐭

0
(𝐭 − 𝐮)𝛼−1𝐮𝜔−1‖‖

‖

𝜒(𝐭,𝐮1) − 𝜒(𝐭, 𝑠2)
‖

‖

‖

𝑑𝐮.

Using the fact of contraction mapping 𝜒 , gives
‖

‖

‖

𝛶𝛺1 − 𝛶𝛺2
‖

‖

‖

≤ 1 − 𝛼
𝐀𝐁𝐂(𝛼)

𝜔𝐭𝜔−1𝛺
‖

‖

‖

𝛺1 −𝛺2
‖

‖

‖∞

+ 𝛼𝜔
𝐀𝐁𝐂(𝛼)𝛤 (𝛼)

𝛺
‖

‖

‖

𝛺1 −𝛺2
‖

‖

‖∞ ∫

𝐭

0
(𝐭 − 𝐮)𝛼−1𝐮𝜔−1𝑑𝐮

≤ 1 − 𝛼
𝐀𝐁𝐂(𝛼)

𝜔𝐭𝜔−1𝛺
‖

‖

‖

𝛺1 −𝛺2
‖

‖

‖∞

+ 𝛼𝜔
𝐀𝐁𝐂(𝛼)𝛤 (𝛼)

𝛺
‖

‖

‖

𝛺1 −𝛺2
‖

‖

‖∞
𝐭𝛼+𝜔−3𝐵1(𝜔, 𝛼).

As a result, we have

‖

‖

‖

𝛶𝛺1 − 𝛶𝛺2
‖

‖

‖

≤
(

1 − 𝛼
𝐀𝐁𝐂(𝛼)

𝜔𝐭𝜔−1𝛺 + 𝛼𝜔
𝐀𝐁𝐂(𝛼)𝛤 (𝛼)

𝛺𝐭𝛼+𝜔−3𝐵1(𝜔, 𝛼)
)

× ‖𝛺 −𝛺 ‖
6

‖

‖

1 2‖
‖∞
<
(

1 − 𝛼
𝐀𝐁𝐂(𝛼)

𝜔𝐚𝜔−1𝛺 + 𝛼𝜔
𝐀𝐁𝐂(𝛼)𝛤 (𝛼)

𝛺𝐚𝛼+𝜔−3𝐵1(𝜔, 𝛼)
)

× ‖

‖

‖

𝛺1 −𝛺2
‖

‖

‖∞
.

onsequently, assuming the essential supposition is valid

𝛺 < 1 − 𝛼
𝐀𝐁𝐂(𝛼)

𝜔𝐚𝜔−1𝛺 + 𝛼𝜔
𝐀𝐁𝐂(𝛼)𝛤 (𝛼)

𝛺𝐚𝛼+𝜔−3𝐵1(𝜔, 𝛼).

he contraction criterion is then satisfied, i.e.

𝛶𝛺1 − 𝛶𝛺2
‖

‖

‖

≤ ‖

‖

‖

𝛺1 −𝛺2
‖

‖

‖∞
.

ltimately, this shows that the system (14) has a unique solution.

umerical approach for nonlinear scabies fractal–fractional AB
erivative model

The aim of this assignment is to offer a staged process methodology
or addressing the scabies infection framework (14), employing the FF
perator in the AB perspective. Transforming the framework (14) into
he FF-AB derivative pattern:
𝐵𝑅𝐃𝛼

0,𝐭 (𝐒(𝐭)) = 𝜔𝐭𝜔−1𝑓1(𝐒, 𝐈1, 𝐈2, 𝐈3,𝐌, 𝐭),
𝐴𝐵𝑅𝐃𝛼

0,𝐭 (𝐈1(𝐭)) = 𝜔𝐭𝜔−1𝑓2(𝐒, 𝐈1, 𝐈2, 𝐈3,𝐌, 𝐭),
𝐴𝐵𝑅𝐃𝛼

0,𝐭 (𝐈2(𝐭)) = 𝜔𝐭𝜔−1𝑓3(𝐒, 𝐈1, 𝐈2, 𝐈3,𝐌, 𝐭),
𝐴𝐵𝑅𝐃𝛼

0,𝐭 (𝐈3(𝐭)) = 𝜔𝐭𝜔−1𝑓4(𝐒, 𝐈1, 𝐈2, 𝐈3,𝐌, 𝐭),
𝐴𝐵𝑅𝐃𝛼

0,𝐭 (𝐌(𝐭)) = 𝜔𝐭𝜔−1𝑓5(𝐒, 𝐈1, 𝐈2, 𝐈3,𝐌, 𝐭). (27)

The following findings were achieved by using the AB fractional inte-
gral operator:

𝐒(𝐭) = 𝐒(0) + 𝜔𝐭𝜔−1(1 − 𝛼)
𝐀𝐁𝐂(𝛼)

𝑓1(𝐒, 𝐈1, 𝐈2, 𝐈3,𝐌, 𝐭)

+ 𝛼𝜔
𝐀𝐁𝐂(𝛼)𝛤 (𝛼) ∫

𝐭

0
𝜉𝜔−1(𝐭 − 𝜉)𝛼−1𝑓1(𝐒, 𝐈1, 𝐈2, 𝐈3,𝐌, 𝜉)𝑑𝜉,

𝐈1(𝐭) = 𝐈1(0) +
𝜔𝐭𝜔−1(1 − 𝛼)

𝐀𝐁𝐂(𝛼)
𝑓2(𝐒, 𝐈1, 𝐈2, 𝐈3,𝐌, 𝐭)

+ 𝛼𝜔
𝐀𝐁𝐂(𝛼)𝛤 (𝛼) ∫

𝐭

0
𝜉𝜔−1(𝐭 − 𝜉)𝛼−1𝑓2(𝐒, 𝐈1, 𝐈2, 𝐈3,𝐌, 𝜉)𝑑𝜉,

𝐈2(𝐭) = 𝐈2(0) +
𝜔𝐭𝜔−1(1 − 𝛼)

𝐀𝐁𝐂(𝛼)
𝑓3(𝐒, 𝐈1, 𝐈2, 𝐈3,𝐌, 𝐭)

+ 𝛼𝜔
𝐀𝐁𝐂(𝛼)𝛤 (𝛼) ∫

𝐭

0
𝜉𝜔−1(𝐭 − 𝜉)𝛼−1𝑓3(𝐒, 𝐈1, 𝐈2, 𝐈3,𝐌, 𝜉)𝑑𝜉,

𝐈3(𝐭) = 𝐈3(0) +
𝜔𝐭𝜔−1(1 − 𝛼)

𝐀𝐁𝐂(𝛼)
𝑓4(𝐒, 𝐈1, 𝐈2, 𝐈3,𝐌, 𝐭)

+ 𝛼𝜔 𝐭
𝜉𝜔−1(𝐭 − 𝜉)𝛼−1𝑓4(𝐒, 𝐈1, 𝐈2, 𝐈3,𝐌, 𝜉)𝑑𝜉,
𝐀𝐁𝐂(𝛼)𝛤 (𝛼) ∫0
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𝐌(𝐭) = 𝐌(0) +
𝜔𝐭𝜔−1(1 − 𝛼)

𝐀𝐁𝐂(𝛼)
𝑓5(𝐒, 𝐈1, 𝐈2, 𝐈3,𝐌, 𝐭)

+ 𝛼𝜔
𝐀𝐁𝐂(𝛼)𝛤 (𝛼) ∫

𝐭

0
𝜉𝜔−1(𝐭 − 𝜉)𝛼−1𝑓5(𝐒, 𝐈1, 𝐈2, 𝐈3,𝐌, 𝜉)𝑑𝜉. (28)

At 𝐭𝑛1+1, we acquire the accompanying.

𝐒𝑛1+1(𝐭) = 𝐒(0) + 𝜔𝐭𝜔−1(1 − 𝛼)
𝐀𝐁𝐂(𝛼)

𝑓1(𝐒𝑛1 , 𝐈
𝑛1
1 , 𝐈𝑛12 , 𝐈𝑛13 ,𝐌𝑛1 , 𝐭𝑛1 )

+ 𝛼𝜔
𝐀𝐁𝐂(𝛼)𝛤 (𝛼) ∫

𝐭𝑛1+1

0
𝜉𝜔−1(𝐭𝑛1+1 − 𝜉)𝛼−1𝑓1(𝐒, 𝐈1, 𝐈2, 𝐈3,𝐌, 𝜉)𝑑𝜉,

𝐈𝑛1+11 (𝐭) = 𝐈1(0) +
𝜔𝐭𝜔−1(1 − 𝛼)
𝐀𝐁𝐂(𝛼)

𝑓2(𝐒𝑛1 , 𝐈
𝑛1
1 , 𝐈𝑛12 , 𝐈𝑛13 ,𝐌𝑛1 , 𝐭𝑛1 )

+ 𝛼𝜔
𝐀𝐁𝐂(𝛼)𝛤 (𝛼) ∫

𝐭𝑛1+1

0
𝜉𝜔−1(𝐭𝑛1+1 − 𝜉)𝛼−1𝑓2(𝐒, 𝐈1, 𝐈2, 𝐈3,𝐌, 𝜉)𝑑𝜉,

𝐈𝑛1+12 (𝐭) = 𝐈2(0) +
𝜔𝐭𝜔−1(1 − 𝛼)
𝐀𝐁𝐂(𝛼)

𝑓3(𝐒𝑛1 , 𝐈
𝑛1
1 , 𝐈𝑛12 , 𝐈𝑛13 ,𝐌𝑛1 , 𝐭𝑛1 )

+ 𝛼𝜔
𝐀𝐁𝐂(𝛼)𝛤 (𝛼) ∫

𝐭𝑛1+1

0
𝜉𝜔−1(𝐭𝑛1+1 − 𝜉)𝛼−1𝑓3(𝐒, 𝐈1, 𝐈2, 𝐈3,𝐌, 𝜉)𝑑𝜉,

𝐈𝑛1+13 (𝐭) = 𝐈3(0) +
𝜔𝐭𝜔−1(1 − 𝛼)
𝐀𝐁𝐂(𝛼)

𝑓4(𝐒𝑛1 , 𝐈
𝑛1
1 , 𝐈𝑛12 , 𝐈𝑛13 ,𝐌𝑛1 , 𝐭𝑛1 )

+ 𝛼𝜔
𝐀𝐁𝐂(𝛼)𝛤 (𝛼) ∫

𝐭𝑛1+1

0
𝜉𝜔−1(𝐭𝑛1+1 − 𝜉)𝛼−1𝑓4(𝐒, 𝐈1, 𝐈2, 𝐈3,𝐌, 𝜉)𝑑𝜉,

𝐌𝑛1+1(𝐭) = 𝐌(0) +
𝜔𝐭𝜔−1(1 − 𝛼)
𝐀𝐁𝐂(𝛼)

𝑓5(𝐒𝑛1 , 𝐈
𝑛1
1 , 𝐈𝑛12 , 𝐈𝑛13 ,𝐌𝑛1 , 𝐭𝑛1 )

+ 𝛼𝜔
𝐀𝐁𝐂(𝛼)𝛤 (𝛼) ∫

𝐭𝑛1+1

0
𝜉𝜔−1(𝐭𝑛1+1 − 𝜉)𝛼−1𝑓5(𝐒, 𝐈1, 𝐈2, 𝐈3,𝐌, 𝜉)𝑑𝜉. (29)

(29) is restructured considerably, with the corresponding findings:

𝐒𝑛1+1(𝐭) = 𝐒(0) + 𝜔𝐭𝜔−1(1 − 𝛼)
𝐀𝐁𝐂(𝛼)

𝑓1(𝐒𝑛1 , 𝐈
𝑛1
1 , 𝐈𝑛12 , 𝐈𝑛13 ,𝐌𝑛1 , 𝐭𝑛1 )

+ 𝛼𝜔
𝐀𝐁𝐂(𝛼)𝛤 (𝛼)

𝑛1
∑

𝚥=0
∈ 𝐭𝐭𝚥+1𝐭𝚥

𝜉𝜔−1(𝐭𝑛1+1 − 𝜉)𝛼−1𝑓1(𝐒, 𝐈1, 𝐈2, 𝐈3,𝐌, 𝜉)𝑑𝜉,

𝐈𝑛1+11 (𝐭) = 𝐈1(0) +
𝜔𝐭𝜔−1(1 − 𝛼)
𝐀𝐁𝐂(𝛼)

𝑓2(𝐒𝑛1 , 𝐈
𝑛1
1 , 𝐈𝑛12 , 𝐈𝑛13 ,𝐌𝑛1 , 𝐭𝑛1 )

+ 𝛼𝜔
𝐀𝐁𝐂(𝛼)𝛤 (𝛼)

𝑛1
∑

𝚥=0
∈ 𝐭𝐭𝚥+1𝐭𝚥

𝜉𝜔−1(𝐭𝑛1+1 − 𝜉)𝛼−1𝑓2(𝐒, 𝐈1, 𝐈2, 𝐈3,𝐌, 𝜉)𝑑𝜉,

𝐈𝑛1+12 (𝐭) = 𝐈2(0) +
𝜔𝐭𝜔−1(1 − 𝛼)
𝐀𝐁𝐂(𝛼)

𝑓3(𝐒𝑛1 , 𝐈
𝑛1
1 , 𝐈𝑛12 , 𝐈𝑛13 ,𝐌𝑛1 , 𝐭𝑛1 )

+ 𝛼𝜔
𝐀𝐁𝐂(𝛼)𝛤 (𝛼)

𝑛1
∑

𝚥=0
∈ 𝐭𝐭𝚥+1𝐭𝚥

𝜉𝜔−1(𝐭𝑛1+1 − 𝜉)𝛼−1𝑓3(𝐒, 𝐈1, 𝐈2, 𝐈3,𝐌, 𝜉)𝑑𝜉,

𝐈𝑛1+13 (𝐭) = 𝐈3(0) +
𝜔𝐭𝜔−1(1 − 𝛼)
𝐀𝐁𝐂(𝛼)

𝑓4(𝐒𝑛1 , 𝐈
𝑛1
1 , 𝐈𝑛12 , 𝐈𝑛13 ,𝐌𝑛1 , 𝐭𝑛1 )

+ 𝛼𝜔
𝐀𝐁𝐂(𝛼)𝛤 (𝛼)

𝑛1
∑

𝚥=0
∈ 𝐭𝐭𝚥+1𝐭𝚥

𝜉𝜔−1(𝐭𝑛1+1 − 𝜉)𝛼−1𝑓4(𝐒, 𝐈1, 𝐈2, 𝐈3,𝐌, 𝜉)𝑑𝜉,

𝐌𝑛1+1(𝐭) = 𝐌(0) +
𝜔𝐭𝜔−1(1 − 𝛼)
𝐀𝐁𝐂(𝛼)

𝑓5(𝐒𝑛1 , 𝐈
𝑛1
1 , 𝐈𝑛12 , 𝐈𝑛13 ,𝐌𝑛1 , 𝐭𝑛1 )

+ 𝛼𝜔
𝐀𝐁𝐂(𝛼)𝛤 (𝛼)

𝑛1
∑

𝚥=0
∈ 𝐭𝐭𝚥+1𝐭𝚥

𝜉𝜔−1(𝐭𝑛1+1 − 𝜉)𝛼−1𝑓5(𝐒, 𝐈1, 𝐈2, 𝐈3,𝐌, 𝜉)𝑑𝜉.

(30)

Furthermore, employing 𝜉𝛼−1𝑓𝜄(𝐒, 𝐈1, 𝐈2, 𝐈3,𝐌, 𝜉) 𝑓𝑜𝑟 𝜄 = 1, 2,… , 5 to
represent the formulations in (30), in the specified interval [𝐭𝚥, 𝐭𝚥+1], the
appropriate numerical technique is developed as

𝐒𝑛1+1(𝐭) = 𝐒(0) + 𝜔𝐭𝜔−1(1 − 𝛼)
𝑓1(𝐒𝑛1 , 𝐈

𝑛1 , 𝐈𝑛1 , 𝐈𝑛1 ,𝐌𝑛1 , 𝐭𝑛 )
7
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+
(𝛥𝐭)𝛼𝜔

𝐀𝐁𝐂(𝛼)𝛤 (𝛼 + 2)

𝑛1
∑

𝚥=0

{

{

𝐭𝛼−1𝚥 𝑓1(𝐒𝚥, 𝐈
𝚥
1, 𝐈

𝚥
2, 𝐈

𝚥
3,𝐌

𝚥, 𝐭𝚥)
}

×
(

(𝑛1 + 1 − 𝚥)𝛼(𝑛1 − 𝚥 + 2𝛼) − (𝑛1 − 𝚥)𝛼(𝑛1 − 𝚥 + 2 + 2𝛼)
)

−
{

𝐭𝜔−1𝚥−1 𝑓1(𝐒𝚥−1, 𝐈
𝚥−1
1 , 𝐈𝚥−12 , 𝐈𝚥−13 ,𝐌𝚥−1, 𝐭𝚥−1)

}

×
(

(𝑛1 − 𝚥 + 1)𝛼+1 − (𝑛1 − 𝚥)𝛼(𝑛1 − 𝚥 + 1 + 𝛼)
)

}

,

𝐈𝑛1+11 (𝐭) = 𝐈1(0) +
𝜔𝐭𝜔−1(1 − 𝛼)

𝐀𝐁𝐂(𝛼)
𝑓2(𝐒𝑛1 , 𝐈

𝑛1
1 , 𝐈𝑛12 , 𝐈𝑛13 ,𝐌𝑛1 , 𝐭𝑛1 )

+
(𝛥𝐭)𝛼𝜔

𝐀𝐁𝐂(𝛼)𝛤 (𝛼 + 2)

𝑛1
∑

𝚥=0

{

{

𝐭𝛼−1𝚥 𝑓2(𝐒𝚥, 𝐈
𝚥
1, 𝐈

𝚥
2, 𝐈

𝚥
3,𝐌

𝚥, 𝐭𝚥)
}

×
(

(𝑛1 + 1 − 𝚥)𝛼(𝑛1 − 𝚥 + 2𝛼) − (𝑛1 − 𝚥)𝛼(𝑛1 − 𝚥 + 2 + 2𝛼)
)

−
{

𝐭𝜔−1𝚥−1 𝑓2(𝐒𝚥−1, 𝐈
𝚥−1
1 , 𝐈𝚥−12 , 𝐈𝚥−13 ,𝐌𝚥−1, 𝐭𝚥−1)

}

×
(

(𝑛1 − 𝚥 + 1)𝛼+1 − (𝑛1 − 𝚥)𝛼(𝑛1 − 𝚥 + 1 + 𝛼)
)

}

,

𝐈𝑛1+12 (𝐭) = 𝐈2(0) +
𝜔𝐭𝜔−1(1 − 𝛼)

𝐀𝐁𝐂(𝛼)
𝑓3(𝐒𝑛1 , 𝐈

𝑛1
1 , 𝐈𝑛12 , 𝐈𝑛13 ,𝐌𝑛1 , 𝐭𝑛1 )

+
(𝛥𝐭)𝛼𝜔

𝐀𝐁𝐂(𝛼)𝛤 (𝛼 + 2)

𝑛1
∑

𝚥=0

{

{

𝐭𝛼−1𝚥 𝑓3(𝐒𝚥, 𝐈
𝚥
1, 𝐈

𝚥
2, 𝐈

𝚥
3,𝐌

𝚥, 𝐭𝚥)
}

×
(

(𝑛1 + 1 − 𝚥)𝛼(𝑛1 − 𝚥 + 2𝛼) − (𝑛1 − 𝚥)𝛼(𝑛1 − 𝚥 + 2 + 2𝛼)
)

−
{

𝐭𝜔−1𝚥−1 𝑓3(𝐒𝚥−1, 𝐈
𝚥−1
1 , 𝐈𝚥−12 , 𝐈𝚥−13 ,𝐌𝚥−1, 𝐭𝚥−1)

}

×
(

(𝑛1 − 𝚥 + 1)𝛼+1 − (𝑛1 − 𝚥)𝛼(𝑛1 − 𝚥 + 1 + 𝛼)
)

}

,

𝐈𝑛1+13 (𝐭) = 𝐈3(0) +
𝜔𝐭𝜔−1(1 − 𝛼)

𝐀𝐁𝐂(𝛼)
𝑓4(𝐒𝑛1 , 𝐈

𝑛1
1 , 𝐈𝑛12 , 𝐈𝑛13 ,𝐌𝑛1 , 𝐭𝑛1 )

+
(𝛥𝐭)𝛼𝜔

𝐀𝐁𝐂(𝛼)𝛤 (𝛼 + 2)

𝑛1
∑

𝚥=0

{

{

𝐭𝛼−1𝚥 𝑓4(𝐒𝚥, 𝐈
𝚥
1, 𝐈

𝚥
2, 𝐈

𝚥
3,𝐌

𝚥, 𝐭𝚥)
}

×
(

(𝑛1 + 1 − 𝚥)𝛼(𝑛1 − 𝚥 + 2𝛼) − (𝑛1 − 𝚥)𝛼(𝑛1 − 𝚥 + 2 + 2𝛼)
)

−
{

𝐭𝜔−1𝚥−1 𝑓4(𝐒𝚥−1, 𝐈
𝚥−1
1 , 𝐈𝚥−12 , 𝐈𝚥−13 ,𝐌𝚥−1, 𝐭𝚥−1)

}

×
(

(𝑛1 − 𝚥 + 1)𝛼+1 − (𝑛1 − 𝚥)𝛼(𝑛1 − 𝚥 + 1 + 𝛼)
)

}

, (31)

𝐌𝑛1+1(𝐭) = 𝐌(0) +
𝜔𝐭𝜔−1(1 − 𝛼)

𝐀𝐁𝐂(𝛼)
𝑓5(𝐒𝑛1 , 𝐈

𝑛1
1 , 𝐈𝑛12 , 𝐈𝑛13 ,𝐌𝑛1 , 𝐭𝑛1 )

+
(𝛥𝐭)𝛼𝜔

𝐀𝐁𝐂(𝛼)𝛤 (𝛼 + 2)

𝑛1
∑

𝚥=0

{

{

𝐭𝛼−1𝚥 𝑓5(𝐒𝚥, 𝐈
𝚥
1, 𝐈

𝚥
2, 𝐈

𝚥
3,𝐌

𝚥, 𝐭𝚥)
}

×
(

(𝑛1 + 1 − 𝚥)𝛼(𝑛1 − 𝚥 + 2𝛼) − (𝑛1 − 𝚥)𝛼(𝑛1 − 𝚥 + 2 + 2𝛼)
)

−
{

𝐭𝜔−1𝚥−1 𝑓5(𝐒𝚥−1, 𝐈
𝚥−1
1 , 𝐈𝚥−12 , 𝐈𝚥−13 ,𝐌𝚥−1, 𝐭𝚥−1)

}

×
(

(𝑛1 − 𝚥 + 1)𝛼+1 − (𝑛1 − 𝚥)𝛼(𝑛1 − 𝚥 + 1 + 𝛼)
)

}

.

umerical results and discussion

Here, we shall simulate the results in this article to make sure
he mathematical argument is correct. Moreover, we investigate a
cabies model (14) and associated approximate formulations. While Al-
hamrani et al. [51] integer-order simulation results show similarities
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Fig. 3. (a) Susceptible individuals 𝐒(𝐭) (b) During the asymptomatic phase after infestation, the growth of infected patients with surviving mites and larvae 𝐈1(𝐭) for system (14)
for various fractional-order when ICs (350, 10, 10, 5, 5).
Fig. 4. (a) After getting an infection for system (14), the development of infected persons with active mites and larvae 𝐈2(𝐭) (b) Modeling the growth of contaminated people
using only young mites 𝐈3(𝐭) for system (14) for various fractional-order when ICs (350, 10, 10, 5, 5).
and discrepancies between the two modeling techniques, we furnish a
comprehensive study of the complexities, including the configurations
of the FF-AB operator, demonstrating structures whereby mites relate
to scabies perseverance and revealing impressive discrepancies for the
model.

In the case of susceptibility treated with a non-ovicidal medication,
Figs. 3(a)–(b) show that the treatment period must be around thirty
days, a figure that is directly connected to the mite’s entire lifespan
with the ICs (350, 10, 10, 5, 5). A potentially feasible regimen during the
asymptotic phase after infestation, covered by a thin dosage provided
periodically, has also been studied. This concludes that switching from
a two-dose to a three-dose regimen results in a significant boost in
elimination potential in a surprisingly limited period of time. Figures
Fig. 4(a)–(b) discovered a monotonous relationship between require-
ments and relatively brief effectiveness when we evaluated the relevant
factors with larvicidal medication. If the problem regarding larvicidal
medications is one of conformity, then the fact that Fig. 5 complying
and non-compliant individuals are not divided is an apparent flaw in
this concept. As a consequence, the efficacy of antifertility medication
is often exaggerated, as, on the whole, patients are inclined to accept
successive proposals of medication.
8

Fig. 5. Adult mites have evolved a mechanism of transmission for system (14) for
various fractional-order when ICs (350, 10, 10, 5, 5).
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Fig. 6. (a) Susceptible individuals 𝐒(𝐭) (b) During the asymptomatic phase after infestation, the growth of infected patients with surviving mites and larvae 𝐈1(𝐭) for system (14)
for various fractional-order when ICs (300, 30, 20, 10, 10).
Fig. 7. (a) After getting an infection for system (14), the development of infected persons with active mites and larvae 𝐈2(𝐭) (b) Modeling the growth of contaminated people
using only young mites 𝐈3(𝐭) for system (14) for various fractional-order when ICs (300, 30, 20, 10, 10)..
Figs. 6(a)–(b) shows that the vulnerable persons 𝐒(𝐭) achieve their
regular range, whereas 𝐈1(𝐭), 𝐈2(𝐭), 𝐈3(𝐭) and 𝐌(𝐭) drop significantly as
time passes when ICs is (300, 30, 30, 10, 10). However, Fig. 7 a two-
dose regimen might be properly supported for ten years, the chance of
dropping dead is even less than 90 percent. On the other hand, Fig. 8
significantly increases the possibility of elimination, with 90 percent
of simulated indicating elimination after four years. This indicates that
the infection is no longer present.

Figs. 9–10 represents the variability in infection penetration effects
the outcome when ICs are (250, 60, 30, 15, 15), as seen in Fig. 11. In
our approach, accessibility and compatibility are integrated simultane-
ously. Unexpectedly, the smallest fraction of affected patients is now
monotonically falling between the extremities.

Figs. 12–13 state that when the community of contaminated humans
and mature mites accumulates, the spontaneous mortality rates of
infected patients and mature mites grow asymptotic. The competence
of extremely contagious juveniles and mature mites is dealt with by
ICs (300, 100, 50, 20, 30)which is the proportion of overall pathogenic to
eventual eradication. Thus, Fig. 14 denotes that the extremely con-
tagious persons’ and grownup mites’ efficiency is nonincreasing in
relation to their respective density.
9

Fig. 8. Adult mites have evolved a mechanism of transmission for system (14) for
various fractional-order when ICs (300, 30, 20, 10, 10).
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Fig. 9. (a) Susceptible individuals 𝐒(𝐭) (b) During the asymptomatic phase after infestation, the growth of infected patients with surviving mites and larvae 𝐈1(𝐭) for system (14)
for various fractional-order when ICs (250, 60, 30, 15, 15).
Fig. 10. (a) After getting an infection for system (14), the development of infected persons with active mites and larvae 𝐈2(𝐭) (b) Modeling the growth of contaminated people
using only young mites 𝐈3(𝐭) for system (14) for various fractional-order when ICs (250, 60, 30, 15, 15).
Finally, the numerical simulation performed by FF operator con-
sidering multiple fractional orders and fractal dimensions leads to a
revolutionary reduction in the susceptible population and has a rise in
infestation, including mature mites.

Conclusion

In the context of a revolutionary technique described as FF-AB, we
developed an analytical simulation of a scabies model with treatment.
We generated the structure in the FF version using different concepts.
Moreover, we proceeded by describing the system and demonstrating
the underlying analytical findings. Using the fundamental reproductive
factor, we determined the system’s durability and discovered that
whenever 0 < 1, the system is locally asymptotically stable in the
illness equilibria. Then, leveraging the novel designed FF-AB operator,
we developed the scabies framework and proposed an innovative mod-
eling method for its implementation. We approximated the component
values and outfitted the system based on the scabies description in the
scenario where 𝛼 = 𝜔. The fractal–fractional simulation is performed
against evidence containing various fractal and fractional order pa-
rameters, and it was discovered that altering simultaneous fractal and
10
Fig. 11. Adult mites have evolved a mechanism of transmission for system (14) for
various fractional-order when ICs (250, 60, 30, 15, 15).
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Fig. 12. (a) Susceptible individuals 𝐒(𝐭) (b) During the asymptomatic phase after infestation, the growth of infected patients with surviving mites and larvae 𝐈1(𝐭) for system (14)
for various fractional-order when ICs (300, 100, 50, 20, 30).
Fig. 13. (a) After getting an infection for system (14), the development of infected persons with active mites and larvae 𝐈2(𝐭) (b) Modeling the growth of contaminated people
using only young mites 𝐈3(𝐭) for system (14) for various fractional-order when ICs (300, 100, 50, 20, 30).
Fig. 14. Adult mites have evolved a mechanism of transmission for system (14) for
arious fractional-order when ICs (300, 100, 50, 20, 30).
11
fractional phases produces satisfactory adaptation to the actual figures.
The system computation is then performed utilizing the anticipated
and adjusted attributes, yielding varied illustrated results from multiple
eventualities. We established that manipulating both 𝛼 and 𝜔 and
modifying them correspondingly generates significant reductions in
the infectious sectors of viruses and individuals, whereas a massive
rise arises for the susceptible person, using varied configurations of
the levels of FF ordering characteristics. This approach can also be
expanded in the future by focusing on various FF formulations using
various mathematical approaches.
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