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A B S T R A C T

In this work, we consider the generalized nonlinear dispersive mK(m,n) equation with a recently defined
local derivative in the temporal direction. Different types of exact solutions are extracted by Nucci’s reduction
technique. Combinations of the exponential, trigonometric, hyperbolic, and logarithmic functions constitute
the exact solutions especially of the soliton and Kink-type soliton solutions. The influence of the derivative
order 𝛼, for the obtained results, is graphically investigated. In some cases, exact solutions are achieved for
arbitrary values of 𝑛 and 𝑚, which can be interesting from the mathematical point of view. We provided 2-D
and 3-D figures to illustrate the reported solutions. Computational results indicate that the reduction technique
is superior to some other methods used in the literature to solve the same equations. To the best of the author’s
knowledge, this method is not applied for differential equations with the recently hyperbolic local derivative.
Introduction

Nonlinear partial differential equations play significant role in al-
most all branches of science and technology. Solutions of these prob-
lems can describe many natural phenomena in engineering, chemistry,
and physics and so on. Therefore, exact solutions of Nonlinear partial
differential equations is interesting field of many researchers and there
are various types of methods to find exact solutions of these problems.
Soliton’s theory is one of the most desirable branches of researchers
in science and engineering. This useful theory appears in different
aspects of life. Soliton type solutions are well-known in some branches
of physics and engineering such as optics, surface wave propagation
and fluid dynamics. In the current work we try to extract some soliton
type solutions for considered equation.

Many studies have been done in recent years to find the new
solutions of these equations with various techniques. For example,
the Lie symmetry method [1–4], invariant subspace method [5,6], the

∗ Corresponding author.
∗∗ Corresponding author at: Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz,

Poland.
E-mail addresses: xiafangli@hncu.edu.cn (F.-L. Xia), fahd@cankaya.edu.tr (F. Jarad), hashemi_math396@yahoo.com (M.S. Hashemi),

Muhammad.riaz@p.lodz.pl (M.B. Riaz).

exponential rational function method [7,8], the modified simple equa-
tion method [9–12], the Exp function method [13,14], the modified
extended tanh-function method [15,16], the Kudryashov method [17,
18].

One of the interesting NPDEs which firstly devoted by Rosenau and
Hyman [19] is the K(m,n) equation:

𝑢𝑡 + (𝑢𝑚)𝑥 + (𝑢𝑛)𝑥𝑥𝑥 = 0, 𝑚 > 0, 1 < 𝑛 ≤ 3. (1)

Indeed, this equation is the Korteweg–de Vries-like equation with non-
linear dispersion. The role of nonlinear dispersion in the formation
of patterns in liquid drops (nuclear physics) is interpreted by the
mentioned K(m,n) equation. Very closed behave and stability of solitary
waves with compact support (compactons) to completely integrable
systems are founded.

A natural generalization of the K(m,n) equation is the generalized
nonlinear dispersive mK(m,n) equations: [20,21]:

𝑢𝑛−1𝑢𝑡 + 𝑎(𝑢𝑚)𝑥 + (𝑢𝑛)𝑥𝑥𝑥 = 0, (2)
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Fig. 1. Exact solution of (15) with 𝑅1 = 𝑅2 = 0, 𝑅3 = −1, 𝜒 = 1, and (a) 𝛼 = 0.9, (b) 𝛼 = 0.8, (c) 𝑥 = −5, and various 𝛼, (d) 𝛼 = 0.8, and various 𝑡.
where in which 𝑎, 𝑚, 𝑛 are constants and 𝑚, 𝑛 ≥ 1. In [22], the bifur-
cation behaviour of travelling wave solutions of Eq. (2) along with all
possible exact explicit parametric representations for periodic travel-
ling wave solutions, solitary wave solutions, kink and anti-kink wave
solutions and periodic cusp wave solutions are investigated. Moreover,
a new version of Eq. (2), that is the modified K(m,n,k), is discussed
in [23]. Some compacton solutions and solitary pattern solutions of
mK(m,n, k) equations are reported in this paper.

The concept of fractional differential operators in local and non-
local senses, has captured minds of many scientist in the recent years
due to the operators’ wider applicability to almost all fields of science,
engineering, and technology [24–28]. These operators play signifi-
cant role in the modelling of complex real-world problems. Fractional
derivatives and integrals is utilized by researchers for modelling of
physical problems more precises than the integer ones. In these physical
models, the results offered by fractional differential operators in both
local and non-local cases, were in good agreement of experimental data.
This issue, motivates us to consider the generalized nonlinear dispersive
mK(m,n) equation with fractional derivative.

In this work, we investigate analytical solutions of the generalized
nonlinear dispersive mK(m,n) equation with a recently defined local
derivative [29]:

𝑢𝑛−1N𝛼
ℎ𝑦𝑝,𝑡𝑢 + 𝑎(𝑢𝑚)𝑥 + (𝑢𝑛)𝑥𝑥𝑥 = 0. (3)
2

The plan of the paper is organized as follows.
In section ‘‘Preliminaries’’, we give some preliminaries and dis-

cussions about definitions and basic properties of the utilized local
derivative. The section ‘‘Nucci’s reduction method’’, which contains
the main body of this research, deals with the exact solutions of the
mK(m,n) equation with local derivative in temporal direction by a
novel reduction method. Finally in ‘‘Conclusion’’ we draw our conclu-
sions.

Preliminaries

Recently, the local fractional-order derivatives absorbed attention
of many researched in science and technology. The concept of local
fractional calculus which also is known as fractal calculus, firstly
proposed in [30,31]. Indeed, the proposed fractals defined based on
the Riemann–Liouville fractional derivative [32–34], was utilized to
deal with non-differentiable equations raised from science and engi-
neering [35–38].

Recently, a new type of local fractional derivatives is defined as
follows:

Definition 1 ([29]). Let 𝛼 ∈ (0, 1) and 𝑡 > 0. Then

N𝛼𝜛(𝑡) = lim
𝜛

(

𝑡 + 𝜀 𝑡
1−𝛼
2 sech((1 − 𝛼)𝑡

1+𝛼
2 )

)

−𝜛(𝑡)
.
ℎ 𝜀→0 𝜀



Results in Physics 38 (2022) 105512F.-L. Xia et al.
Fig. 2. Exact solution of (16) with 𝑅1 = 𝑅2 = 0, 𝑅3 = −1, 𝜒 = 1, and (a) 𝛼 = 0.9, (b) 𝛼 = 0.8, (c) 𝑥 = −5, and various 𝛼, (d) 𝛼 = 0.8, and various 𝑡.
Indeed, this derivative is not fractional, but it is a natural extension
of the classical derivative. It is clear that physical interpretation of the
above derivative is a modification of classical velocity in direction and
magnitude. That is, it depends on not only the time direction but also
the real value order 𝛼. It is easily seen from the above definition that
for every 𝜛 ∈ 𝐶1, we have

lim
𝛼→1

N𝛼
ℎ𝜛(𝑡) = lim

𝛼→1
lim
𝜀→0

𝜛
(

𝑡 + 𝜀 𝑡
1−𝛼
2 sech((1 − 𝛼)𝑡

1+𝛼
2 )

)

−𝜛(𝑡)

𝜀

= lim
𝜀→0

lim𝛼→1 𝜛
(

𝑡 + 𝜀 𝑡
1−𝛼
2 sech((1 − 𝛼)𝑡

1+𝛼
2 )

)

−𝜛(𝑡)

𝜀

= lim
𝜀→0

𝜛
(

lim𝛼→1

[

𝑡 + 𝜀 𝑡
1−𝛼
2 sech((1 − 𝛼)𝑡

1+𝛼
2 )

])

−𝜛(𝑡)

𝜀

= lim
𝜀→0

𝜛 (𝑡 + 𝜀) −𝜛(𝑡)
𝜀

= 𝜛′(𝑡). (4)

Hence, the considered local derivative degenerate to the usual first-
order derivative when fractional order equals one. It is notable that
a real function 𝑓 defined on [𝑥0, 𝑥𝑓 ] is said 𝛼-differentiable if

lim
𝑡→𝑥+0

N𝛼
ℎ𝜛(𝑡) = N𝛼

ℎ𝜛(𝑥+0 ),

provided that lim𝑡→𝑥+0
N𝛼

ℎ𝜛(𝑡) exists.
From

N𝛼
[

2 sinh
(

(1 − 𝛼)𝑡
1+𝛼
2
)

]

= 1,
3

ℎ 1 − 𝛼2
one can find that

N𝛼
ℎ𝜛(𝑡) = 𝑡

1−𝛼
2 sech

(

(1 − 𝛼)𝑡
1+𝛼
2
)

𝜛′(𝑡).

Moreover, this property is consistent with (4), whenever 𝛼 → 1. One
important result for the new fractional local derivative is

N𝛼
ℎ𝜛(𝜁 ) = 𝜒𝜛′(𝑡), 𝜁 = 2

1 − 𝛼2
sinh((1 − 𝛼)𝜒𝑡

1+𝛼
2 ), (5)

for the constant 𝜒 .
Moreover, some other properties of this derivative is gathered in the

following theorem.

Theorem 1 ([29]). Let 𝑓1 and 𝑓2 be 𝛼-differentiable at 𝑡 and 0 < 𝛼 ≤ 1.
Then

• N𝛼
ℎ(𝑎1𝑓1 + 𝑎2𝑓2)(𝑡) = 𝑎1N𝛼

ℎ(𝑓1)(𝑡) + 𝑎2N𝛼
ℎ(𝑓2)(𝑡), 𝑎1, 𝑎2 ∈ R,

• N𝛼
ℎ(𝑡

𝜇) = 𝜇𝑡
2𝜇−𝛼−1

2 sech
(

(1 − 𝛼)𝑡
1+𝛼
2
)

, 𝜇 ∈ R,

• N𝛼
ℎ(𝐶) = 0, 𝐶 ∈ R,

• N𝛼
ℎ(𝑓1𝑓2)(𝑡) = 𝑓1N𝛼

ℎ(𝑓2)(𝑡) + 𝑓2N𝛼
ℎ(𝑓1)(𝑡),

• N𝛼
ℎ

(

𝑓1
𝑓2

)

(𝑡) =
𝑓2(𝑡)N𝛼

ℎ(𝑓1)(𝑡)−𝑓1(𝑡)N
𝛼
ℎ(𝑓2)(𝑡)

𝑓2
2 (𝑡)

.

In this work, we investigate analytical solutions of the mK(m,n)
equation with the local derivative

𝑢𝑛−1N𝛼 𝑢 + 𝑎(𝑢𝑚) + (𝑢𝑛) = 0, (6)
ℎ,𝑡 𝑥 𝑥𝑥𝑥
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Fig. 3. Exact solution of (17) with 𝑅1 = 𝑅2 = 0, 𝑅3 = −1, 𝜒 = 1, and (a) 𝛼 = 0.9, (b) 𝛼 = 0.8, (c) 𝑥 = −2, and various 𝛼, (d) 𝛼 = 0.8, and various 𝑡.
where

N𝛼
ℎ,𝑡𝑢(𝑡, 𝑥) = lim

𝜀→0

𝑢
(

𝑡 + 𝜀 𝑡
1−𝛼
2 sech((1 − 𝛼)𝑡

1+𝛼
2 ), 𝑥

)

− 𝑢(𝑡, 𝑥)

𝜀
.

Nucci’s reduction method

In this section, we consider the nonlinear mK(m,n) equation with
mentioned temporal local derivative. The transformation (5) can con-
vert this equation into a nonlinear ordinary differential equation. Then
by the Nucci’s reduction technique, different types of exact solution
can be extracted. All computations are accomplished by the Maple
software. To the best of authors knowledge, this is first development
of reduction technique to a differential equation with recently defined
local derivative.

Let us assume the mK(m,n) Eq. (6) with new local derivative and
corresponding transformation

 (𝜁 ) = 𝑢(𝑡, 𝑥), 𝜁 = 2
1 − 𝛼2

sinh
(

(1 − 𝛼)
(

𝑥
1+𝛼
2 + 𝜒𝑡

1+𝛼
2
))

. (7)

Applying transformation (5), we get the following nonlinear third-order
ODE w.r.t. 𝑛 and 𝑚:

𝜒𝑈𝑛−1(𝜁 )𝑈 ′(𝜁 ) + 𝑎(𝑈𝑚(𝜁 ))′ + (𝑈𝑛(𝜁 ))′′′ = 0. (8)
4

Let us assume the change of variables [32,39–41]:

𝜑1(𝜁 ) =  (𝜁 ), 𝜑2(𝜁 ) =  ′(𝜁 ), 𝜑3(𝜁 ) =  ′′(𝜁 ).

So, the Eq. (8) reduces into the following autonomous system of equa-
tions:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑑𝜑1

𝑑𝜁
= 𝜑2,

𝑑𝜑2

𝑑𝜁
= 𝜑3,

𝑑𝜑3

𝑑𝜁
= −

𝜒𝜑𝑛−1
1 𝜑2 + 𝑚𝜑𝑚−1

1 𝜑2 + 3𝑛(𝑛 − 1)𝜑𝑛−2
1 𝜑2𝜑3 + 𝑛(𝑛 − 1)(𝑛 − 2)𝜑3

2𝜑
𝑛−3
1

𝑛𝜑𝑛−1
1

.

(9)

Selecting 𝜑1 as a new independent variable, converts the system (9)
into

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝜑2
𝑑𝜑1

=
𝜑3
𝜑2

,

𝑑𝜑3
𝑑𝜑1

= −
𝜒𝜑𝑛−1

1 + 𝑚𝜑𝑚−1
1 + 3𝑛(𝑛 − 1)𝜑𝑛−2

1 𝜑3 + 𝑛(𝑛 − 1)(𝑛 − 2)𝜑2
2𝜑

𝑛−3
1

𝑛𝜑𝑛−1
1

.

(10)
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Fig. 4. Exact solution of (18) with 𝑅1 = 𝑅2 = 0, 𝑅3 = 1, 𝜒 = 5, and (a) 𝛼 = 0.9, (b) 𝛼 = 0.8, (c) 𝑥 = −2, and various 𝛼, (d) 𝛼 = 0.8, and various 𝑡.
From the first equation in (10) we have

𝜑3 = 𝜑2
𝑑𝜑2
𝑑𝜑1

. (11)

Therefore, second equation of (10) can be written as:
(

𝑑𝜑2
𝑑𝜑1

)2
+ 𝜑2

𝑑2𝜑2

𝑑𝜑2
1

= −
𝜒𝜑𝑛−1

1 + 𝑚𝜑𝑚−1
1 + 3𝑛(𝑛 − 1)𝜑𝑛−2

1 𝜑2
𝑑𝜑2
𝑑𝜑1

+ 𝑛(𝑛 − 1)(𝑛 − 2)𝜑2
2𝜑

𝑛−3
1

𝑛𝜑𝑛−1
1

.

(12)

General solution of Eq. (12) for arbitrary values of 𝑚 and 𝑛 is inacces-
sible. So, we try to find exact solutions of some special cases:

∙ Case 1: 𝑛 = 1
In this case, solving Eq. (12) concludes

𝜑2(𝜑1) = ±

√

− (𝑚 + 1)
(

𝜒 𝜑1
2(𝑚 + 1) + 2𝑅1(𝑚 + 1)𝜑1 − 2𝑅2(𝑚 + 1) + 2𝜑1

𝑚+1
)

𝑚 + 1
,

(13)

with 𝑅1 and 𝑅2 arbitrary constants. Now after assuming that 𝜑1 is a
dependent variable w.r.t. 𝜁 , we substitute (13) into the first equation of
5

(9) which yields the following first order ODE:

𝜑′
1(𝜁 ) = ±

√

− (𝑚 + 1)
(

𝜒 𝜑1
2(𝑚 + 1) + 2𝑅1(𝑚 + 1)𝜑1 − 2𝑅2(𝑚 + 1) + 2𝜑1

𝑚+1
)

𝑚 + 1
.

This equation is a separable ODE, and corresponding implicit solution
is

𝜁 ∓ ∫
(𝑚 + 1)𝑑𝜑1

√

− (𝑚 + 1)
(

𝜒 𝜑1
2(𝑚 + 1) + 2𝑅1(𝑚 + 1)𝜑1 − 2𝑅2(𝑚 + 1) + 2𝜑1

𝑚+1
)

+ 𝑅3 = 0, (14)

where 𝑅3 is an arbitrary constant. Explicit solutions can be extracted
by assuming some special values of 𝑚.

∙ Case 1.1. 𝑚 = 1
By using this assumption, from Eq. (14) we obtain

𝜁 ∓ 1
√

𝜒 + 1
arctan

×

(
√

𝜒 + 1
√

(−𝜒 − 1)𝜑1
2 − 2𝑅1𝜑1 + 2𝑅2

(

𝜑1 +
𝑅1

𝜒 + 1

)

)

+ 𝑅3 = 0.

Hence, solving the obtained equation w.r.t. the variable 𝜑1 concludes

 (𝜁 ) = 𝜑1(𝜁 ) = ± 1

𝜒 + 1
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Fig. 5. Exact solution of (19) with 𝑅1 = 0, 𝑅2 = 0, 𝑅3 = 𝜒 = 1, and (a) 𝛼 = 0.9, (b) 𝛼 = 0.8, (c) 𝑡 = 1, and various 𝛼, (d) 𝛼 = 0.8, and various 𝑡.
×
(

√

√

√

√

√

√

√
−

(

(

cos
(

𝑅3
√

𝜒 + 1 + 𝜁
√

𝜒 + 1
))2

− 1
)

(

𝑅2
1 + 2𝑅2𝜒 + 2𝑅2

)

cos4
(

𝑅3
√

𝜒 + 1 + 𝜁
√

𝜒 + 1
)

× cos2
(

𝑅3
√

𝜒 + 1 + 𝜁
√

𝜒 + 1
)

− 𝑅1

)

.

Finally, from the obtained solution and transformation (7) we get:

𝑢(𝑡, 𝑥) = ± 1
𝜒 + 1

×
(

√

√

√

√

√

√

√
−

(

(

cos
(

𝑅3
√

𝜒 + 1 + ( 2
1−𝛼2

sinh
(

(1 − 𝛼)
(

𝑥
1+𝛼
2 + 𝜒𝑡

1+𝛼
2

))

)
√

𝜒 + 1
))2

− 1
)

𝜗

cos4
(

𝑅3
√

𝜒 + 1 + ( 2
1−𝛼2

sinh
(

(1 − 𝛼)
(

𝑥
1+𝛼
2 + 𝜒𝑡

1+𝛼
2

))

)
√

𝜒 + 1
)

× cos2
(

𝑅3

√

𝜒 + 1 + ( 2
1 − 𝛼2

sinh
(

(1 − 𝛼)
(

𝑥
1+𝛼
2 + 𝜒𝑡

1+𝛼
2

))

)
√

𝜒 + 1
)

− 𝑅1

)

, (15)

where 𝜗 = 𝑅2
1 + 2𝑅2𝜒 + 2𝑅2. Some plots corresponding to the (15) is

represented in Fig. 1 with various selected parameters and order values.
3-D and 2-D periodic W-shaped soliton solutions shown in this figure,
demonstrate the effects of fractional order into the final results.

∙ Case 1.2. 𝑚 = 3
2

By using this assumption and 𝑅1 = 𝑅2 = 0, from Eq. (14) we obtain

𝜁 ∓ 4
𝜑1

√

−20
√

𝜑1 − 25𝜒
√

−25𝜒 𝜑 2 − 20𝜑5∕2√𝜒
arctan

⎛

⎜

⎜

⎜

√

−20
√

𝜑1 − 25𝜒

5
√

𝜒

⎞

⎟

⎟

⎟

+ 𝑅3 = 0,
6

1 1 ⎝ ⎠
which yields its explicit solution

 (𝜁 ) = 𝜑1(𝜁 ) =
25𝜒2

(

tan2
(

±
√

2
4

(

𝑅3 + 𝜁
)

)

+ 1
)2

16
.

Therefore, transformation (7) concludes the following final solution:

𝑢(𝑡, 𝑥) =
25𝜒2

(

tan2
(

±
√

2
4

(

𝑅3 +
2

1−𝛼2
sinh

(

(1 − 𝛼)
(

𝑥
1+𝛼
2 + 𝜒𝑡

1+𝛼
2

))))

+ 1
)2

16
.

(16)

Fig. 2. shows some periodic bright soliton solutions with different
values of derivative order and temporal 𝑡.

∙ Case 1.3. 𝑚 = 2
Assuming 𝑚 = 2 and 𝑅1 = 𝑅2 = 0, from Eq. (14) we get the following

implicit solution

𝜁 ∓ 2
𝜑1

√

−6𝜑1 − 9𝜒
√

−6𝜑1
3 − 9𝜒 𝜑1

2√𝜒
arctan

(
√

−6𝜑1 − 9𝜒

3
√

𝜒

)

+ 𝑅3 = 0,

where 𝑅3 is an arbitrary constant and solving the obtained implicit
solution with respect to 𝜑1 concludes

 (𝜁 ) = 𝜑1(𝜁 ) = −
3𝜒

2 cos2
(

± 1√𝜒
(

𝑅 + 𝜁
)

) .
2 3
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Fig. 6. Exact solution of (22) with 𝑅1 = 0, 𝑅2 = −1, 𝑅3 = 𝜒 = 1, and (a) 𝛼 = 0.9, (b) 𝛼 = 0.8, (c) 𝑡 = 1, and various 𝛼, (d) 𝛼 = 0.8, and various 𝑡.
Hence

𝑢(𝑡, 𝑥) = −
3𝜒

2 cos2
(

± 1
2
√

𝜒
(

𝑅3 +
2

1−𝛼2 sinh
(

(1 − 𝛼)
(

𝑥
1+𝛼
2 + 𝜒𝑡

1+𝛼
2
))))

.

(17)

Periodic bright soliton solutions are plotted in Fig. 3. Effects of
differential order are plotted in this figure.

∙ Case 1.4. 𝑚 = 3
Eq. (14) with supposing 𝑅1 = 𝑅2 = 0 and 𝑚 = 3 yields the following

implicit solution:

𝜁 +
𝜑1

√

−2𝜑1
2 − 4𝜒

√

−2𝜑1
4 − 4𝜒 𝜑1

2√−𝜒
ln

(

4

√

−𝜒
√

−2𝜑1
2 − 4𝜒 − 2𝜒

𝜑1

)

+ 𝑅3 = 0,

or, equivalently

 (𝜁 ) = 𝜑1(𝜁 ) =
−16𝑒±𝑖(𝑅3+𝜁)

𝑒±2 𝑖(𝑅3+𝜁) − 32
,

and

 (𝜁 ) = 𝜑1(𝜁 ) =
−32𝑒±𝑖

√

2(𝑅3+𝜁)

𝑒±2 𝑖
√

2(𝑅3+𝜁) − 64
,

for 𝜒 = 1 and 𝜒 = 2, respectively. Therefore, transformation (7)
concludes the following final solutions:

𝑢(𝑡, 𝑥) = −16𝑒
±𝑖
(

𝑅3+
2

1−𝛼2
sinh

(

(1−𝛼)
(

𝑥
1+𝛼
2 +𝜒𝑡

1+𝛼
2

)))

±2 𝑖
(

𝑅3+
2 sinh

(

(1−𝛼)
(

𝑥
1+𝛼
2 +𝜒𝑡

1+𝛼
2

)))
,

7

𝑒 1−𝛼2 − 32
and

𝑢(𝑡, 𝑥) = −32𝑒
±𝑖
√

2
(

𝑅3+
2

1−𝛼2
sinh

(

(1−𝛼)
(

𝑥
1+𝛼
2 +𝜒𝑡

1+𝛼
2

)))

𝑒
±2 𝑖

√

2
(

𝑅3+
2

1−𝛼2
sinh

(

(1−𝛼)
(

𝑥
1+𝛼
2 +𝜒𝑡

1+𝛼
2

)))

− 64

, (18)

where 𝑖2 = −1.
Profile of exact solution (18) in 2 and 3 dimensions with different

𝛼 and 𝑡 are plotted in Fig. 4.
∙ Case 1.5. 𝑚 = 4
Similarly, in this case for 𝜒 = 1, we get

 (𝜁 ) = 𝜑1(𝜁 ) =
3
√

20
2

3

√

−cos−2
( 3
2
(𝑅3 + 𝜁 )

)

,

Therefore, transformation (7) concludes the following final solu-
tions:

𝑢(𝑡, 𝑥) =
3
√

20
2

3

√

−cos−2
(

3
2
(𝑅3 +

2
1 − 𝛼2

sinh
(

(1 − 𝛼)
(

𝑥
1+𝛼
2 + 𝑡

1+𝛼
2
))

)
)

.

(19)

Smooth–cuspon bright soliton of (19), is demonstrated in Fig. 5.
Different behave of solution in negative and positive values of space
direction can be seen from the plotted figures.

Now, let us consider the second case of non-linearity power 𝑛.
∙ Case 2: 𝑛 = 2
In this case, solving Eq. (12) concludes

𝜑 (𝜑 )
2 1
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Fig. 7. Exact solution of (23) with 𝑅1 = 0, 𝑅2 = −1, 𝑅3 = 𝜒 = 1, and (a) 𝛼 = 0.9, (b) 𝛼 = 0.8, (c) 𝑡 = 1, and various 𝛼, (d) 𝛼 = 0.8, and various 𝑡.
= ±

√

− (2𝑚 + 4)
(

𝜒 𝜑1
4𝑚 + 2𝜒 𝜑1

4 + 8𝑅2 𝜑1
2𝑚 + 16𝑅2 𝜑1

2 − 8𝑅1 𝑚 + 8𝜑1
𝑚+2 − 16𝑅1

)

4 (𝑚 + 2)𝜑1
,

(20)

with 𝑅1 and 𝑅2 arbitrary constants. Lastly, we substitute (20) into the
first equation of (9) which concludes the following single ODE:

𝜑′
1(𝜁) =

±

√

− (2𝑚 + 4)
(

𝜒 𝜑1
4𝑚 + 2𝜒 𝜑1

4 + 8𝑅2 𝜑1
2𝑚 + 16𝑅2 𝜑1

2 − 8𝑅1 𝑚 + 8𝜑1
𝑚+2 − 16𝑅1

)

4 (𝑚 + 2)𝜑1
.

Corresponding implicit solution is

𝜁 ∓ ∫
4(𝑚 + 2)𝜑1𝑑𝜑1

√

− (𝑚 + 2)
(

𝜒𝜑4
1𝑚 + 2𝜒𝜑4

1 + 8𝑅1 𝑚𝜑2
1 + 16𝑅1𝜑2

1 − 8𝑅2 𝑚 + 8𝜑𝑚+2
1 − 16𝑅2

)

+ 𝑅3 = 0, (21)

where 𝑅3 is an arbitrary constant. In order to extract explicit solutions
from the obtained implicit one, we consider the following cases for
values of 𝑚.

∙ Case 2.1. 𝑚 = 1
In order to solve the Eq. (21), assuming 𝑅1 = 0 and 𝑚 = 1 yields

𝜁 ∓ 2

√

2
√

arctan

(
√

2
(

3𝜑1𝜒 + 4
)

√
√

2

)

+ 𝑅3 = 0,
8

𝜒 𝜒 −18𝜒 𝜑1 − 144𝑅2 − 48𝜑1
or equivalently

 (𝜁 ) = 𝜑1(𝜁 ) =
2
3𝜒

(

√

2

√

√

√

√

√

√

√

√

√

(

cos2
(

√

2𝜒
4

(

𝑅3 + 𝜁
)

)

− 1
)

(

9𝜒𝑅2 − 2
)

cos4
(

√

2𝜒
4

(

𝑅3 + 𝜁
)

)

× cos2
(
√

2𝜒
4

(

𝑅3 + 𝜁
)

)

− 2
)

.

Therefore, substituting transformation (7) concludes the following final
solution:

𝑢(𝑡, 𝑥) = 2
3𝜒

(

√

2

×

√

√

√

√

√

√

√

(

cos2
(√

2𝜒
4

(

𝑅3 +
2

1−𝛼2
sinh

(

(1 − 𝛼)
(

𝑥
1+𝛼
2 + 𝜒𝑡

1+𝛼
2

))))

− 1
)

(

9𝜒𝑅2 − 2
)

cos4
(√

2𝜒
4

(

𝑅3 +
2

1−𝛼2
sinh

(

(1 − 𝛼)
(

𝑥
1+𝛼
2 + 𝜒𝑡

1+𝛼
2

))))

× cos2
(
√

2𝜒
4

(

𝑅3 +
2

1 − 𝛼2
sinh

(

(1 − 𝛼)
(

𝑥
1+𝛼
2 + 𝜒𝑡

1+𝛼
2

)))

)

− 2
)

. (22)

By choosing 𝑅2 = −1 and 𝑅3 = 𝜒 = 1, corresponding W-shaped
soliton solutions with different values of 𝛼 and 𝑡 are plotted in Fig. 6.
However, different behaviour of solution can be seen in the negative
part of space direction.

∙ Case 2.2. 𝑚 = 2
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Fig. 8. Exact solution of (24) with 𝑅1 = 𝑅2 = 0, 𝑅3 = 𝜒 = 1, and (a) 𝛼 = 0.9, (b) 𝑡 = 1 and various 𝛼, (c) 𝛼 = 0.8, and various 𝑡, (d) 𝛼 = 0.9, and various 𝑡.
By using this assumption and 𝑅1 = 0, from Eq. (21) we obtain

𝜁 ∓ 4
√

2𝜒 + 4
arctan

(
√

2𝜒 + 4𝜑1
√

−2𝜒 𝜑1
2 − 4𝜑1

2 − 16𝑅2

)

+ 𝑅3 = 0.

Hence,

 (𝜁 ) = 𝜑1(𝜁 ) =
2
√

2 sin
(

√

2𝜒+4
2 (𝑅3 + 𝜁 )

)

𝜒 + 2

√

√

√

√

√

√

−
(𝜒 + 2)𝑅2

cos2
(

√

2𝜒+4
4 (𝑅3 + 𝜁 )

) ,

which concludes

𝑢(𝑡, 𝑥) =
2
√

2 sin
(

√

2𝜒+4
2 (𝑅3 +

2
1−𝛼2 sinh

(

(1 − 𝛼)
(

𝑥
1+𝛼
2 + 𝜒𝑡

1+𝛼
2
))

)
)

𝜒 + 2

×

√

√

√

√

√

√

−
(𝜒 + 2)𝑅2

cos2
(

√

2𝜒+4
4 (𝑅3 +

2
1−𝛼2 sinh

(

(1 − 𝛼)
(

𝑥
1+𝛼
2 + 𝜒𝑡

1+𝛼
2
))

)
) . (23)

In Fig. 7, the periodic wave solutions of (23) with different values of
differential order 𝛼 and temporal values 𝑡, are plotted. From Fig. 7(b)–
(c) we find that the order of differential operator causes different
behave of solution whenever 𝛼 goes far away from the integer one.
9

∙ Case 2.3. 𝑚 = 3
By using this assumption and 𝑅1 = 𝑅2 = 0, from Eq. (21) we get

𝜁 ∓ 4
√

2
𝜒

arctan

(
√

−2(80𝜑1 + 50𝜒)

10
√

𝜒

)

+ 𝑅3 = 0,

in other words

 (𝜁 ) = 𝜑1(𝜁 ) = −5
8
tan2

(
√

2
8

(

𝑅3 + 𝜁
)

)

− 5
8
,

and

 (𝜁 ) = 𝜑1(𝜁 ) = −5
4
tan2

( 1
4
(

𝑅3 + 𝜁
)

)

− 5
4
,

with respect to 𝜒 = 1 and 𝜒 = 2, respectively. Therefore, transformation
(7) concludes the following final solutions:

𝑢(𝑡, 𝑥) = −5
8
tan2

(
√

2
8

(

𝑅3 +
2

1 − 𝛼2
sinh

(

(1 − 𝛼)
(

𝑥
1+𝛼
2 + 𝑡

1+𝛼
2
))

)

)

− 5
8
,

and

𝑢(𝑡, 𝑥) = −5
4
tan2

(

1
4

(

𝑅3 +
2

1 − 𝛼2
sinh

(

(1 − 𝛼)
(

𝑥
1+𝛼
2 + 2𝑡

1+𝛼
2
))

))

− 5
4
.

(24)
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Fig. 9. Exact solution of (28) with 𝑅1 = 𝑅2 = 0, 𝑅3 = 𝜒 = 1, and (a) 𝑛 = 0.5, 𝛼 = 0.8, (b) 𝑛 = 0.5, 𝑡 = 1 and various 𝛼, (c) 𝑡 = 1, 𝛼 = 0.9, and various 𝑛, (d) 𝑡 = 1, 𝛼 = 0.8, and
various 𝑛.
Smooth-smooth bright soliton of (24) is plotted in Fig. 8.
∙ Case 3: 𝑚 = 𝑛 In this case that Eq. (6) coincide with the mK(n,n)

equation, we find exact solution for an arbitrary value of 𝑛. By solving
Eq. (12) we get

𝜑2(𝜑1) = ±
𝜑1

−𝑛+2

𝑛2

√

√

√

√−
𝑛
(

−2𝑅1 𝑛2 + 2𝜑𝑛
1𝑅2𝑛2 + 𝜒𝜑2 𝑛

1 + 𝜑2 𝑛
1 𝑛

)

𝜑2
1

, (25)

with 𝑅1 and 𝑅2 arbitrary constants. Lastly, we substitute (25) into the
first equation of (9) which concludes the following single ODE:

𝜑′
1(𝜁 ) = ±

𝜑1
−𝑛+2

𝑛2

√

√

√

√−
𝑛
(

−2𝑅1 𝑛2 + 2𝜑𝑛
1𝑅2𝑛2 + 𝜒𝜑2 𝑛

1 + 𝜑2 𝑛
1 𝑛

)

𝜑2
1

. (26)

Corresponding implicit solution by assuming 𝑅1 = 𝑅2 = 0, is

𝜁 ∓
𝑛2𝜑1

𝑛−1 ln
(

𝜑1
)

√

−𝑛 (𝜒 + 𝑛)𝜑1
2 𝑛−2

+ 𝑅3 = 0, (27)

where 𝑅3 is an arbitrary constant. Solving this equation concludes

 (𝜁 ) = 𝜑 (𝜁 ) = e±
√

−𝑛(𝜒+𝑛)(𝑅3+𝜁)
𝑛2 ,
10

1

or

𝑢(𝑡, 𝑥) = e±
√

−𝑛(𝜒+𝑛)

(

𝑅3+
2

1−𝛼2
sinh

(

(1−𝛼)

(

𝑥
1+𝛼
2 +𝜒𝑡

1+𝛼
2

)))

𝑛2 . (28)

King shape wave solution of (28) is presented in Fig. 9 with different
values of the non-linearity power 𝑛 and order of fractional derivative
𝛼.

In addition, for the nonzero values of 𝑅1 and 𝑅2, the implicit
solution of Eq. (26) by choosing 𝜒 = −𝑛, can be written as

𝜁 ∓
𝑛
√

2
(

𝜑1
𝑛𝑅2 − 𝑅1

)

𝜑1𝑅2

√

−
𝑛3
(

𝜑𝑛
1𝑅2−𝑅1

)

𝜑2
1

+ 𝑅3 = 0,

or

 (𝜁 ) = 𝜑 (𝜁 ) = e
1
𝑛 ln

(

2𝑅1−𝑛𝑅
2
2(𝑅3+𝜁 )

2

2𝑅2

)

,
1
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Fig. 10. Exact solution of (29) with 𝑅1 = 𝑅2 = 𝑅3 = 1, 𝜒 = −𝑛 and (a) 𝑛 = 3, 𝛼 = 0.9, (b) 𝑛 = 3, 𝑡 = 1 and various 𝛼, (c) 𝑡 = 1, 𝛼 = 0.9, and various 𝑛.
and therefore

𝑢(𝑡, 𝑥) = e

1
𝑛 ln

⎛

⎜

⎜

⎜

⎜

⎝

2𝑅1−𝑛𝑅
2
2(𝑅3+

2
1−𝛼2

sinh

(

(1−𝛼)

(

𝑥
1+𝛼
2 −𝑛𝑡

1+𝛼
2

))

)2

2𝑅2

⎞

⎟

⎟

⎟

⎟

⎠. (29)

Fig. 10, shows the W-shaped solution of (29) with respect to differ-
ent values of 𝑛 and 𝛼. As a summary of the results and discussing about
the novelties of current work, we can list the following items:

• This is the first work to consider the generalized nonlinear dis-
persive mK(m,n) equation with fractional local derivative.

• The Nucci’s reduction method is novel for the differential equa-
tions with local derivatives.

• Considered Eq. (6) and reduction method are novel. So the re-
ported exact solutions in this section are novel.

Conclusion

Consideration of differential equations with new local or nonlo-
cal derivative operators and finding corresponding exact solutions is
a major study field of many researchers. In this paper, an impor-
tant differential equation, namely, the generalized nonlinear dispersive
11
mK(m,n) equation is considered with different values of 𝑚 and 𝑛.
The supposed derivative in temporal direction is a recently defined
local derivative. Different types of soliton, wave and W-shape solutions
are extracted by a reduction method. The super deformed nuclei,
preformation of cluster in hydrodynamic models, the fission of liquid
drops (nuclear physics), inertial fusion and others are some scientific
applications of compactons (compact support solitons). Therefore, com-
pactons of an important kind of applicable KdV equation in physics,
is investigated. To the best of authors knowledge, this paper is the
only work which is developed to the differential equations with this
type of local derivative and therefore, the obtained exact solutions and
methodology are novel. It is notable that our obtained results for the
generalized mK(m,n) with integer order, are not reachable. However,
when our developed model by fractional operator cover the integer
order model when 𝛼 = 1. It is easily deducible from the Eq. (4).

CRediT authorship contribution statement

Fang-Li Xia: Investigation, Software, Formulation, Review and
checking results, Conceptualization. Fahd Jarad: Software, Visualiza-
tion, Supervision, Formal analysis, Writing – review & editing, Concep-
tualization. Mir Sajjad Hashemi: Data curation, Data anaysis, Project



Results in Physics 38 (2022) 105512F.-L. Xia et al.
administration, Final checking, Validation, Writing. Muhammad Bilal
Riaz: Investigation, Methodology, Initial writing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgement

All authors have read and agreed to the published version of the
manuscript. This work has been supported by the Polish National
Science Centre under the grant OPUS 18 No. 2019/35/B/ST8/00980.

References

[1] Akbulut A, Hashemi MS, Rezazadeh H. New conservation laws and ex-
act solutions of coupled Burgers’ equation. Waves Random Complex Media
2021;1–20.

[2] Hashemi MS, Baleanu D. Lie symmetry analysis and exact solutions of
the time fractional Gas dynamics equation. J Optoelectron Adv Mater
2016;18(3–4):383–8.

[3] Osman MS, Baleanu D, Adem AR, Hosseini K, Mirzazadeh M, Eslami M. Double-
wave solutions and Lie symmetry analysis to the (2+ 1)-dimensional coupled
Burgers equations. Chinese J Phys 2020;63:122–9.

[4] Hashemi MS, İnç M, Bayram M. Symmetry properties and exact solutions
of the time fractional Kolmogorov-Petrovskii-Piskunov equation. Rev Mex Fis
2019;65(5):529–35.

[5] Hashemi MS. Invariant subspaces admitted by fractional differential equations
with conformable derivatives. Chaos Solitons Fractals 2018;107:161–9.

[6] Qu C, Zhu C. Classification of coupled systems with two-component non-
linear diffusion equations by the invariant subspace method. J Phys A
2009;42(47):475201.

[7] Bekir A, Kaplan M. Exponential rational function method for solving nonlinear
equations arising in various physical models. Chinese J Phys 2016;54(3):365–70.

[8] Akbulut A, Kaplan M, Kaabar MKA. New conservation laws and exact solutions
of the special case of the fifth-order KdV equation. J Ocean Eng Sci 2021.

[9] Arnous AH, Mirzazadeh M, Zhou Q, Moshokoa SP, Biswas A, Belic M. Soliton
solutions to resonant nonlinear schrodinger’s equation with time-dependent
coefficients by modified simple equation method. Optik 2016;127(23):11450–9.

[10] Savaissou N, Gambo B, Rezazadeh H, Bekir A, Doka SY. Exact optical soli-
tons to the perturbed nonlinear Schrödinger equation with dual-power law of
nonlinearity. Opt Quantum Electron 2020;52:1–16.

[11] Pinar Z, Rezazadeh H, Eslami M. Generalized logistic equation method for
Kerr law and dual power law Schrödinger equations. Opt Quantum Electron
2020;52(12):1–16.

[12] Iqbal MA, Wang Y, Miah MM, Osman MS. Study on Date–Jimbo–Kashiwara–
Miwa equation with conformable derivative dependent on time parameter to
find the exact dynamic wave solutions. Fractal Fract 2022;6(1):4.

[13] Inc M, Hosseini K, Samavat M, Mirzazadeh M, Eslami M, Moradi M, et al. N-
wave and other solutions to the B-type Kadomtsev-Petviashvili equation. Therm
Sci 2019;23(Suppl. 6):2027–35.

[14] Rezazadeh H, Inc M, Baleanu D. New solitary wave solutions for variants
of (3+ 1)-dimensional Wazwaz-Benjamin-Bona-Mahony equations. Front Phys
2020;8:332.

[15] Zahran EHM, Khater MM. Modified extended tanh-function method and its
applications to the bogoyavlenskii equation. Appl Math Model 2016;40(3):1769–
75.

[16] Akbulut A, Taşcan F. Application of conservation theorem and modified
extended tanh-function method to (1+ 1)-dimensional nonlinear coupled
Klein–Gordon–Zakharov equation. Chaos Solitons Fractals 2017;104:33–40.
12
[17] Zafar A, Raheel M, Asif M, Hosseini K, Mirzazadeh M, Akinyemi L.
Some novel integration techniques to explore the conformable M-fractional
Schrödinger-Hirota equation. J Ocean Eng Sci 2021.

[18] Akinyemi L, Ullah N, Akbar Y, Hashemi MS, Akbulut A, Rezazadeh H.
Explicit solutions to nonlinear Chen–Lee–Liu equation. Modern Phys Lett B
2021;35(25):2150438.

[19] Rosenau P, Hyman JM. Compactons: solitons with finite wavelength. Phys Rev
Lett 1993;70(5):564.

[20] Niu Z, Wang Z. Bifurcation and exact traveling wave solutions for the
generalized nonlinear dispersive mk (m, n) equation. J Appl Anal Comput
2021;11(6):2866–75.

[21] Wazwaz AM. General compactons solutions and solitary patterns solutions for
modified nonlinear dispersive equations mK (n, n) in higher dimensional spaces.
Math Comput Simulation 2002;59(6):519–31.

[22] He B, Meng Q, Rui W, Long Y. Bifurcations of travelling wave solutions for the
mK (n, n) equation. Commun Nonlinear Sci Numer Simul 2008;13(10):2114–23.

[23] Yan Z. Modified nonlinearly dispersive mK (m, n, k) equations: I. New compacton
solutions and solitary pattern solutions. Comput Phys Comm 2003;152(1):25–33.

[24] Wang F, Khan MN, Ahmad I, Ahmad H, Abu-Zinadah H, Chu Y-M. Numerical so-
lution of traveling waves in chemical kinetics: Time fractional Fishers equations.
Fractals 2021.

[25] Rashid S, Sultana S, Karaca Y, Khalid A, Chu Y-M. Some further extensions
considering discrete proportional fractional operators. Fractals 2021;2240026.

[26] Jin F, Qian Z-S, Chu Y-M, ur Rahman M. On nonlinear evolution model for
drinking behavior under caputo-fabrizio derivative. J Appl Anal Comput 2022.

[27] He Z-Y, Abbes A, Jahanshahi H, Alotaibi ND, Wang Y. Fractional-order discrete-
time SIR epidemic model with vaccination: Chaos and complexity. Mathematics
2022;10(2):165.

[28] Hajiseyedazizi SN, Samei ME, Alzabut J, Chu Y-M. On multi-step meth-
ods for singular fractional q-integro-differential equations. Open Math
2021;19(1):1378–405.

[29] Yépez-Martínez H, Rezazadeh H, Inc M, Akinlar MA. New solutions to the frac-
tional perturbed Chen–Lee–Liu equation with a new local fractional derivative.
Waves Random Complex Media 2021;1–36.

[30] Yang X-J. Advanced local fractional calculus and its applications. World Science
Publisher; 2012.

[31] Kolwankar KM, Gangal AD. Fractional differentiability of nowhere differentiable
functions and dimensions. Chaos 1996;6(4):505–13.

[32] Hashemi MS, Baleanu D. Lie symmetry analysis of fractional differential
equations. CRC Press; 2020.

[33] Kilbas AA, Srivastava HM, Trujillo JJ. Theory and applications of fractional
differential equations. vol. 204, elsevier; 2006.

[34] Podlubny I. Fractional differential equations: an introduction to fractional deriva-
tives, fractional differential equations, to methods of their solution and some of
their applications. Elsevier; 1998.

[35] Yang X-J, Baleanu D, Srivastava HM. Local fractional integral transforms and
their applications. Academic Press; 2015.

[36] Adda FB, Cresson J. About non-differentiable functions. J Math Anal Appl
2001;263(2):721–37.

[37] Kolwankar KM, Gangal AD. Hölder exponents of irregular signals and local
fractional derivatives. Pramana 1997;48(1):49–68.

[38] Carpinteri A, Cornetti P. A fractional calculus approach to the description
of stress and strain localization in fractal media. Chaos Solitons Fractals
2002;13(1):85–94.

[39] Nucci MC, Leach PL. The determination of nonlocal symmetries by the technique
of reduction of order. J Math Anal Appl 2000;251(2):871–84.

[40] Hashemi MS, Nucci MC, Abbasbandy S. Group analysis of the modi-
fied generalized Vakhnenko equation. Commun Nonlinear Sci Numer Simul
2013;18(4):867–77.

[41] Hashemi MS. A novel approach to find exact solutions of fractional evo-
lution equations with non-singular kernel derivative. Chaos Solitons Fractals
2021;152:111367.


