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ABSTRACT

Q-FRACTIONAL PROPORTIONAL DERIVATIVES
AND Q-LAPLACE TRANSFORMS

DEMIR, TAYLAN

M.Sc. in Mathematics

Supervisor: Assist. Prof. Dr. Dumitru Baleanu
Co-Supervisor: Prof. Dr. Fahd Jarad
August 2023, 66 pages

The main goal of this thesis is to develop a new type of g-fractional operators
generated from proportional g-differences. To achieve this goal, first the main aspects
and tools related to the q and g-fractional calculi are presented. After then, the
proportional g-derivative is discussed. The proportional g-fractional differences or
derivatives are proposed and the solutions of certain types of q-difference equations
embodied by the proportional fractional derivatives are shown in details utilizing the

g-Laplace transforms.

Keywords: g-proportional fractional derivative, g-fractional calculus,

g- Laplace transform.



OZET

Q-KESIRLI ORANTISAL TUREVLER VE Q-LAPLACE DONUSUMLERI

DEMIR, TAYLAN

Matematik Yuksek Lisans

Danisman: Dr. Ogr. Uyesi Dumitru Baleanu
Ortak Danigsman: Prof. Dr. Fahd Jarad
Agustos 2023, 66 sayfa

Bu c¢aligmanin temel hedefi qg-kesirli orantisal tiirevleri gelistirmektir. Bu
hedefe ulasmak i¢in q ve q-kesirli analizleriyle ilgili bakis agilar1 ve araglari
gosterilmistir. Ondan sonra (-orantisal tiirevler tartisilmistir. Q-kesirli orantisal
tiirevler gosterildikten sonra bu operatorleri iceren bazi belirli denklemlerin ¢oziimleri

g-Laplace doniistimii kullanilarak, detaylariyla gosterilmistir.

Anahtar Kelimeler: g-orantisal kesirli tlrev, g-kesirli kalkulis, g-Laplace doniistimii.
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CHAPTER |

INTRODUCTION

In the last few decades, there has been a great deal of concern in what so called
the fractional calculus which argues about the integrals and derivatives of non-integer
order and thus it generalizes the classical calculus [1, 2, 3, 4,5, 6, 7, 8, 9, 10, 11, 12].
This calculus turned out to be a good tool for modeling some real world problems. It
was applied in physics by Hilfer [4] and was used in biomedical engineering by Magin
[12]. In addition, many fractional mathematical models and their numerical techniques
were given by Baleanu et al. [11] and Li et al. [13].

One of the best peculiarity of the fractional calculus is the fact that there are
many types of the fractional operators. This enables a researcher to choose the most
appropriate operator for the model under consideration. In spite of the diversity of the
fractional operators, researchers have not stopped seeking for new fractional operators
[14, 15, 16, 17]. There are also types of local fractional derivatives. One of these
derivatives is the one called the conformable derivative proposed by Khalil et al. [18,
19, 20]. But the problem in this derivative is that it does not give the function itself
when the order is 0. To overpass this problem, Anderson [21] proposed a modified
version of the conformable derivative which give the function itself when the order is
zero and the classical derivative when the order is one, and called it a proportional
derivative. Jarad et al. [22, 23, 24, 25, 26, 27] launched out the nonlocal fractional
versions of the proportional derivative.

The quantum calculus is a field of the derivative of the function that can be
calculated without the asisstance of the limit process and many mathematicians
worked on g-calculus and their applications [28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
39, 40, 41]. Moreover, the quantum calculus was applied with impulsive difference
equations in [30], introduced with the operator theory in [33] and correlated with g-

hypergeometric function in [35].



The fractional versions of the g-derivatives and integrals were discussed in details by
[37, 42].

The aim of this master thesis is to introduce a new g-fractional operator called
g-fractional proportional operator and to solve related g-fractional proportional
differential equations with the help of g-Laplace transforms.

The overview of this thesis is as follows:

The proportional derivative is mentioned in Chapter 2. The concept of g-
calculus is reviewed in Chapter 3. The g-proportional derivative and g-Laplace
transform are provided in Chapter 4. The g-fractional proportional derivative and some
related g-Laplace transforms are defined in Chapter 5. Chapter 6 is devoted to our

conclusion.



CHAPTER I
PROPORTIONAL DERIVATIVE

The scope of this chapter is to provide the fundamentals and the main properties
of the powerful fractional proportional derivative.

2.1 DEFINITION OF THE PROPORTIONAL DERIVATIVE

The proportional derivative is related with many fields of science and
engineering and was used by many mathematicians [22, 27]. Anderson proposed the
proportional derivative as a modification of the conformable derivatives [21]. It can
also be defined with different time scales [43]. In fact, the proportional derivative is
defined as

DP (1) = 11 (B, () + Ko (B, )9’ (1), (2.1.1)

where g € [0,1] and kg, k;:[0,1] X R — [0, 0) are continuous such that for all

t € R,
ﬁll_)rgl_'_ Kl(IBJ t) = 1;
ﬁll)rgl_'_ Ko (IBJ t) = 0;
Bll_)nil_ K1 (IBJ t) = 0;
Bll_)nil_ KO(ﬁJ t) =1
and x;(B,t) # 0, B € [0,1), ko (B,t) # 0, B € (0,1]. For a special interest, the case
k,(B,t) =1—p and k,(B,t) = B will be considered. Therefore, (2.1.1) becomes
(see[22]):
DPo(t) = (1 = Bep(t) + Bo' (1) (2.1.2)



2.2 SOME PROPERTIES OF PROPORTIONAL DERIVATIVE

Assume that the function @: R — R is continuous and kg, k;:[0,1] X R -
[0,0) are continuous and satisfying the conditions in  (2.1.1) . Let ¢ and ¥ be
differentiable functions on R. Then,
Property 1.Df[co + dyp] = cDPp + dDBy forall ¢c,d € R;
Property 2. D¢ = ck,(B,.) forall c € R;
Property 3. DF (gp) = @DFy +yDF o — oprs (B,.);

Bp—@DPB
Property 4. DF (/1) = P22 4 L1y (B,.);

Property 5. For g € (0,1],m € R, we have
DPle,(t,m)] = n(t)e,(t,m) (2.2.1)
and

ftn(f)—Kl(ﬁ,T)
m

B

e,(t,m) =e

-5 (D

eo(t,m) =e Kko(B,T)

Property 6. For 8 € (0,1], we have

DA | [ LM gy | = o (r). (2.2.2)

a  ko(Bm)
For a better understanding of this concept , the proofs are given in below.
Proof of Property 1[21]:
By direct calculations, one may conclude that
DF[co + dip] = Kolco + dy]' + K09
= ko' + pr Y + dio)’ + dryp + K1Y — K1Y

= cDPop + dDFy
u
Proof of Property 2[21]:
By using the definition of the operator, it is obvious that
Dfc = cK,(B,.), ceER
m
Proof of Property 3[21]:

Operating D# on (1), one gets
DF (o) = Ko(pyp’ + @'1h) + K109
= (e’ + @) + Wro@' + Yr10) — YPiy
= @DPp +YDF o — piprc;. m

4



Proof of Property 4 [21]:
Applying the operator D# on the ratio ¢ /1 , one concludes that

Doyl = 2L, 8 )
_ ¢’Ko¢lp—2<pf<o¢ % ki (B,.)
l/)D%lpzquﬁw EKI(IB 3
Proof of Property 5 [21]: Starting with
Df e, (t,m) = n(t)e,(t,m), one gets
DEe,(t;m) = Ko(B, ) (”“2{0_( ;ff : ”) en(t,m) + 16y (B, Den (t,m)

= (n(®) — k1. (B, ©))en(t,m) + 15, (B, Ve, (t, m)
= n(Den(t,m) — 1, (B, e, (t,m) + 11 (B, )en (¢, m)
=n(t)e,(t,m).

S0, Df e, (t,m) = n(t)e, (t,m) is obtained.

Proof of Property 6 [21]: For 8 € (0,1], one obtains the following

DF —fcf%dm] = ¢(t). Therefore,

| 0 )

[t

f(p(m)e(’(t'm)d _
B —— m —_—

B
P Tk m

_ d p(m)e(t, m) p(m)ey(t, m)
=*o(f ﬂE(-f Ko (B, m) ) k(b t)f Ko (B, m) dm

_ k(8,6 [ @(m)ey(t,m) p(Deo(t, t)
B KO(B't) <_ KO(ﬁ't) KO(IBlm) dm+ Ko(ﬁ't) >

 p(m)eq(t, m)

+K1(,3,t)f o (B, m) dm



p(m)e o< [ p(m)eo(t,m)
= —x1(B, t)f Ko(B,m dm+90(t)€o(t, t) +x1(f, t)afm
= @p(t)ey(t,t)
= o(t)



CHAPTER 11l

Q-CALCULUS

In this chapter, a brief review of g-calculus is presented.

3.1 STANDARD EXPRESSIONS OF Q-DERIVATIVE AND Q-INTEGRAL

The g-differential form of a function ¢ is

dao(t) = p(qt) — (). (3.1.1)

This is similar to the Nabla-difference operator given by Vo (t) = (t + 1) —
@(t). Let 0 € R be fixed, and B be subset of C. B is defined to be o-geometric if
ot € B whenever t € B, [37]. Also, in case B of C is a o-geometric, it must absorb all
geometric sequences in the form {ta™};_, (see [37]), t € B. If real or complex valued
function ¢ is given on a g-geometric set B, |q| # 1[37], the g-derivative of the
function ¢(t) is shown as [28, 29, 34, 37, 39]

(qt) — o(t)
Dyp() ===
or
Dop(t) = %, 0<q<1. (3.1.2)

The same definition was presented in [40-41]. Particularly, (3.1.2) is called the
Jackson g-difference operator, the Euler-Jackson g-difference operator or the Euler-
Heine-Jackson g-difference operator. When 0 € B and for |g| < 1, the g-derivative at
zero is given as [37]

@(tq™) — ¢(0)
tqm ’
where the limit is said to exist and it does not depend on t [37]. When it is assumed

De(0) = lim t € B\{0}, (3.1.3)

that |g| > 1, the g-derivative at zero is introduced by (see [37]);
Dq(p(O) = Dq_l(p(o)-

The following are some properties of the g-derivative [28, 29].



1) (Linearity Property)

Dy (cop(t) + d(t)) = cDyp(t) + dDyp(t), ¢, d €R

Proof:

(cp(qt) + dp(q)) — (co(t) + dy(t))

Dy(ep(8) + (1)) = prien

_ cplqn) + dip(gn) — cp(t) — dp()

qt —t

. ((p(qt) - qo(t)) td <¢(qt) —¥(©
qt —t

qt—t
and (0<g<1)
= cDy(t) + dDy(t)

2) Q-Derivative of a Product

Da(@(¥(0)) = p(qt)Daip(t) + Y (£) Dy (L).

Proof: (3.1.5) is proved as

p(qt)(qt) — e()P(t)

Dy(p®)p(®)) = e

_ 2@)y(gt) — p(gt)p () + ¢(qt)p(t) — ()P (©)

qt —t

= <p(qt)<

gt —t

= @(qt)Dp(t) + Y(O)Dgp(8) , (0 < g <1).

3) Q-Derivative of a Quotient
D, (fp(t)> _Y(©)Dge(t) — <p(t)Dql/J(t)_

Y(t) Y (t)Y(qt)
Proof: (3.1.6) is demonstrated as;
©\_ i~ 50
@ _P(qt t
Dq (1/)(15)) - qt—t

_ 9@y — o(®)¥(qt)
(@) (gt —¢)

8

Y(qt) — lP(t)> ) <<p(qt) : @(t)

(3.1.4)

(3.1.5)

(3.1.6)



_ e(qt)yP(t) — e(®Y(t) + e(OY(t) — e(t)P(qt)

P(qOy () (gt — 1)

Y (£l =200) _ ) (L9 YD)

qt—t

qt—t

YOy (t)
_ Y(&)Dg(t) — p(t)Dgp(t)
Y(gO)P(t) ’

(0<qg<1).

The above proofs were handled keeping in mind that the function of ¢ and ¥

are continuous. Similar properties can be implemented to g-integral. In fact, the g-

integral is introduced (see [30]) as

@:A; > Rand A, = {tq™:n € NU{0}}U{0} and
t o

0 ® = [96)dgs = Y t1 - "™,

0 m=0
when ¢, d € A;. So that,
d

f @(s)dys = I,p(d) — I(c),

c
d

f p(s)dgs = (1—q) Z q"[de(dq™) — co(cq™)],
m=0

c
and (0 < g <1)in(3.1.8) and (3.1.9).
According to (3.1.8) and (3.1.9) (see [30]), the result is obtained.
4) (Linearity Property)

I (o) + (1)) = I;p(t) + I (¢).
Proof of Linearity Property: (3.1.10) is shown as;

LW + () = [ G + D),

t

= f(p(s)dqs+flp(s)dqs

= Z t(1—q)qme(tq™) + Z t(1—q)qmy(tq™)

m=0

= Io(8) + 1 (0).

(3.1.7)

(3.1.8)

(3.1.9)

(3.1.10)



5) (Linearity Property)
I(p(t) = () = I (t) — I, (¢). (3.1.11)
Proof of Linearity Property: From (3.1.11) it is evident that

L(® — ) = [ (@05 —PDdgs
0

t t

=f(p(s)dqs—f1/)(s)dqs
0

0

= Z t(1—q)q™e(tq™) — Z t(1 —q)q™yp(tq™)
m=0 m=0

= I, (t) — I;(t).
|
Definition 3.1.1: Let ¢ be a function defined on a g-geometric set B. ¢ is g-integrable

on B if and only if [ ¢ (t)d,t exists for every m € B, (see [37]).
Definition 3.1.2: If lim ¢ (tg™) = ¢(0) for every m € B then ¢ that is described on
m-—-oo

a g-geometric set B, 0 € B is g-regular at zero. In addition to this, when B is also g ~*-
geometric, ¢ is g-reqular at infinity when there exists a constant c, (see [37]) such that;
lim @(tg™™) = c forall t € B. Now, ¢(0") and ¢(0~) are shown as;
m-—oo
@(0%) = lim ¢(nq"), ®(07) = lim ¢ (nq").
n>o0 n<o

When B < R is g-geometric and ¢ is a g-regular at zero function (see [37]). As a result,
g-regularity at zero plays the role of continuity in the classical sense in some settings
(see [37]). But, continuity at zero implies g-regularity at zero. However, the converse

cannot be true.

3.2 MORE PROPERTIES OF THE Q-INTEGRALS
The g-integration by parts is given as, (see [37]),

b b
[ 9Dt = @B - lim 1 (ba™ - | DY OB (321)

where ¢ and y are g-regular at zero and limit could be changed by (@) (0).

10



Theorem 3.2.1: Let ¢ be a g-regular at zero defined on a g-geometric set B involving
zero. Then

zZ

00 = [o0dr, e

a

where, @ is g-regular at zero such that D, (z) = ¢(z) for all z € B. In addition, if

c and d are two different points in B, then (see [37]);
d

j Do (Ddyt = p(d) — 9 (). (3.2.2)

Cc

Theorem 3.2.2: [37] Let ¢ be a function defined on [c¢,d],0 < ¢ < d. Suppose that

there exists a number @, 0 < a < 1 such that t%¢(t) is continuous on [c, d]. Let,

VA

7(2) = j o(Od,t, z€lcd],

a
where a is a fixed point in [c,d], (see [37]). Then, @(z) is a continuous function in
[c,d].

Proof of Theorem 3.2.2: The proof is shown as [37],

Y(z) = z%p(2) for every z € [c,d]. z, is fix and z, € [c, d]. Consider that z, # 0.
Later,

?(z) —p(z0) = (1 —q) Z zq°p(zq°®) — (1 - q)z 20q°9(20q°)
s=0 s=0

= (1= @7 ) 240" [(2°) — Y(z06°)]

s=0

+2§ (2% — 27 (1

—0) ) ¥ P(za) (3:23)

Because, ¥ (x) is continuous on [c, d],¥(x) is uniformly continuous on [c, d], (see
[37]). Therefore, § > 0 exists for every e > 0 in fact for every z, w € [c, d] (see [37]),
lz—w|<6-|gl2) —gw)| <e.

So, when z € [c, d], (see [37]),
|z — zy| < & then|zq® — z,q°| < & for every s € N, and in [37],
W(zq®) — Y (z,q°)| < € for every s e N,. Therefore, Zlgg) Y(zq®) = Y(zyq°)

uniformly in s and lim  can be applied on the series. Together with limit as z — z,
Z—Zg

11



on the series could be introduced on (3.2.3) to satisfy lim @(z) = @(z,). Also,
Z—2Zg

consider that z, = 0. So,

Z z

7 =90 = [ o0yt = [ WO —p(O) +

0 0

z*=*(0).

As a result,

192) = p(O)] < (maxl20) ~ YOI+ $(0) )Tz 22

Since, v is continuousat 0 and 0 < a < 1, 1”‘% @(z) = @(0) is obtained. So, ¢(z) is
zZ—

continuous on [c, d].
|
Lemma 3.2.1: In [37], let u(t, s) be a function defined on [0, b] X [0, b] in fact for
every fixed t the functions (see [37]),
D) u(t,z) (=012, ..,5s—1)

are g-integrable on [0, b]. When for some z € (0,b] and s € N then

u(qu,qu) =0, (v=0,1,2, waj—=1;j =12, ) S) (3.2.4)
then
4 z
i [ut. gt = [ Dttt
0 0

Proof of Lemma 3.2.1: The m-th order g-derivative, D[™*, of a function ¢ could be

given as its values at the points {qu, j=01,.., m} through the identity,

m
DFg() = (~D™(1 - g) ™z gD/ (— 1) ] @@ ptzgm)
v=0
for all z in B{0}. Then,
z j=s ;(;+1)_J. zq/
Dglzfu(t,z)dqt Z( /(] 5(1—q)5f h(t, zq’)d,t, (3.2.5)
0 0
and the means of ¢ obtains (3.2.4) implies
zq/ z
f u(t,ij)dqt = fu(t,ij)dqt, j=12,..s.
0 0

Therefore,

12



z J(J+1) si Z

fu(tz)d t—Z( 1)) [] T q)sfu(tzq )d,t

0

j=s 1(1+1)

=f Z( 1)) [] s u(tzq) d,t
0

= f D u(t, z)d,t.

0

|
Lemma 3.2.2: [37] Assume that u(t, z) is defined on [b, ©) X [b, ) such that for
every fixed t the functions,
D) u(tz), (G=01,.,s—1)
are g-integrable on [b, o). If for some x is defined on [b, ) and s € N

u(zq¥,2¢’) =0, (w=012,..,j—1;j=12,..,5),

then
i [ ut gt = [ Dg e it
4 z

Lemma 3.2.3: [37] Let I and ] be intervals including zero such that J < I. Assume
that ¢,,, @ are functions defined on I, m € N, such that for every t € I, ¢,, tends

uniformly to ¢ onJ; i.e.

lim ¢, () = (D), (3.2.6)
Then,
z
lim f(pm(t)dqt =f<p(t)dqt, vz €l, (3.2.7).
m-—-oo

0

3.3 IMPORTANT SPACES, FUNCTIONS AND NOTATIONS
3.3.1 Function Spaces
Let1<p<oo,b>0and ¢ €R. If LZ.E(O' b) is the space of all equivalence

classes of functions having the property ( [37]);
b

ftfkp(t)lpdqt < oo,

0

The norm defined on space LZ.E(O' b) [37]

13



b 1/p

lollpo = | [ Flo@lPdye

0
is a Banach space. In addition to this, when p = 2, the space Lfl'f(o,b) connected

to the inner product
b

(0.0 = [ oWt (0.1 € L 0,6)), (33.1.1)
0
is a seperable Hilbert space. In this case, an orthonormal basis of Lfm(o, b) is defined
as
1
o) =\ a0 N (33.1.2)
0, otherwise

Especially, the case of ¢ = 0 was shown in [44]. Also, forevery 0 < g < 1 and

0 < a < oo, the above mentioned Hilbert spaces are given by

©/a

LP(Rqq) =4 ¢: flq)(t)l”dqt<oo, (p=1)

—oo/a

The notation R, and R, should be used to demonstrate R , and R JT=q,q Inturn (see

[37]), the inner product of L?(R,, ) is

©/a

o) = | 0@IOdt, (0.9 € 12(Ray))

—»/a
is a Hilbert space.
Definition 3.3.1.1: Let ¢ be a real number and p be a positive number, then the space
855 [0, b] is the space of all functions ¢ identified on (0, b] obtaining

y 1/p

lollpe = supyecop) ftfkp(t)l”dqt < o, (3.3.1.3)
0

The symbols L; [0, b],£5[0,b] and |l¢ll, are used to denote LZ}O[O,b],ff;’O[O,b] and

llllp,o (see [37]).
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Proposition 3.3.1.1: (fZ‘E[O, b], |l IIM) is a Banach space.
Proof of Proposition 3.3.1.1: It is enough to show that ({’Z'f[o,b], l]. IIM) is a

normed space directly. Consider (¢,,),, is a Cauchy sequence in (f";’f[o,b], II. IIP_E).

Therefore, n, € N exists for every e > 0 such that for every n,m € N.

n,m> Ny = SUPye(o,b] Z(xqs)f“(l — Plen(xq®) — pm(xq®)IP <€ (3.3.14)
s=0

E+1

s0, x P @, (x) is a uniformly Cauchy sequence on (0,b], (see [37]). Hence, ¢ which
exists, identified on (0,b] such that, [37];

E+1 E+1

lim x » @,(x) = x ? @(x) is uniformly on (0, b]. Also, for the fix M > 0 and
n—->oo

n > n,, (3.3.1.4) is written as (see [37]);

m>ny - Z(xqs)f“(l — PP (xq°) — pm(xq*)|IP <€ vx € (0,b], (3.3.1.5)

s=0

Later limit is calculated as m — oo on (3.3.1.5) gives for every M > 0 and n > n, (See

[371);

M
(xq*) (1 — Pl (xq®) —p(xg9)IP <€, Vx € [0,b].

s=0

Therefore, when n — oo then [|@, — |l = 0. As aresult,
Prgrr = @ € (€0,:10,5] 1.z )

and because ¢, 4; € ({’Z,E[O, bl Il Ile ) then similarly ¢ € ({’g'g[o,b], 11, )
Definition 3.3.1.2: [37] Let H;, (B) be the space of all functions determined on B when
@ € Hy(B). Then there exists ¢ > 0 such that;

lo(x) — @(0)| < cl|x|®, Vvx € B.
Definition 3.3.1.3: [37] L2((0,b) x (0,b)) is defined to be the space for every

complex-valued functions ¢ (x, t) defined on [0, b] X [0, b] such that,

1/2

b b
oGOl = { [ [loceoldad,e | <o
00
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Lemma 3.3.1.1: [37] L2((0,b) x (0,b)) related with the inner product;

b b
00, = | | 009G Bdrdgt
00

is a seperable Hilbert space.

Proof of Lemma 3.3.1.1: It is similar to the proof of lemma 3.3.1.1. It was noted in
[44] that L2 ((0,b) x (0, b)) is a Banach space. It is enough now to show separability:
Q0 t) = 0, (j=12..)
and Q is an ortonormal basis of L2((0,b) x (0,b)) at anytime {Q;(.)}2, is an

orthonormal basis of L (0, b). Actually,

b b
o b = [ [ 0,000t
00

b b

= [ 0,009 ,x [ 008Dt
o 0

= WimWkn,

showing orthogonality. When ¢ € L2((0,b) x (0, b)) exists {Q;;} can be proven to
be a basis, such that (¢, Q;;), = 0 for every i,j € N, then ¢ is the zero element (see

[37]). Mainly,

0 = (¢, Q) @ (x, £)Q;(x) QY (t) dgx dgt

Il
o o
C— =

b

b
fﬂj(t) f(p(x, t)Q;(x)dgx |dgt
b

0

= f u(t)Q;(t) dyt.

Hence,
b

u(®) = f 000 DL d,x

0

is orthogonal to the Q;’s implying that @(bq™) = 0, for every n € N,, (see [37]).
Therefore, from the above proof, ¢(x, bq™) is orthogonal to each ;, (see [37]). As a

result, ¢(bq™, bq™) = 0, for every m,n € N, |
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Definition 3.3.1.4: [37] Cj'[b, a] is defined as the space of all continuous functions
that has continuous g-derivative up to order n — 1 on interval. Also, C7'[b, a] related

with the norm function

n—1

llpll = > max|Dse(t)|, (¢ € Cb,al)

b<x<a
s=0

is a Banach space.
Lemma 3.3.1.2: (C[b,al, |l.1I), n € N, is a Banach space.
Proof of Lemma 3.3.1.2: In [37], let (¢,,)., be a Cauchy sequence in C7[b, a] and

later, for every € > 0,n, € N exists such that for every k,m € N,

k,m>n, - Z rer%gx]|D @r(x) —D§ <pm(x)| <e€
a

Therefore,

k,m>n, - Jnax |D @r(x) —D§ <pm(x)| <e.

In here, (ng)m)m is a Cauchy sequence in C[a, b] for s = 0,1, ...,n — 1. Hence,
Y € C[b, a] exists for every s € {0,1, ...,n — 1}. Then,
lim max |Ds<p(x) Y ()| =0, s=01,..,n—1.

s—o x€[b,

then
Pr(x) = Do (x), (x € [b,a]\{0}, s=012,..,n—1) (3.3.1.6).
when 0 € (b, a) then,
lim 5 (x) = lim Dgipo (x) = lim Dgih,(tq"),
forevery t € (b,a) and t # 0. As a result,

D3 "1o(tq?) — Dy~ "po(tq¥*h)
tq"(1—q)
L [P0 — D) Dot — D)

= —— lim

- 1— q voo tqv tqv+1
= D51, (0) (3.3.1.7).
Therefore, the identity in (3.3.1.6) is valid for all x € [b,a] and so ¥, € C;'[b,a], (see
[37]).
Definitin 3.3.1.5: [37]
6y lba] = {($(): x" () € Clb,al, Ill,, = max |x (ol
sx=a

where y € R.

limyg(x) = lim
x—0 V0o
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3.3.2 Some g-functions
The g-shifted factorial function is presented for « € C by,
1, m=0

m-—1
(ZQm = 1_[(1 —2q'), meN
i=0

The limit of (z; q),, as m — oo exists and is given by (z; q) . The multiple g-shifted

factorial for complex numbers zj, ..., z, is described as

t
(ZlJ "'JZk; q)m = n(z'; q)m
j=1

Let @ be a complex number. The following notation is used for the g-binomial

coefficients,
1, n=0,
a — _
={(1-q¢9(1—-q*")..(1—q* "
[n]q 1-gD1-g*™..A-g"™) o
CHAS
If ag® # q™ for all m € N,, we define
(Z Do
(z:9)y =——
T = 2q% Qw

m(m-1)/2

(=2 Qo = zq(q O z™m (z€0),

and

1 o ™
Cr N ;m (Izl <1
were proposed by Euler. In [45, 46] these above expressions were mentioned. In [37],
the above two expressions connect infinite products to infinite sums. In [47], (—z; ) »
was pointed out as E,; (z) and 1/(z; q) ., was explained by e, (z). Also, (—z; q) and
1/(z; @)« were defined as E; (z) and e, (z) in [45, 48, 49]. Therefore, E,(z) is an
entire function with simple zeros at the points {—q™™, m € N}, and
eq(2)E,(-2z) =1, lz| <1 (3.3.2.1)
So, the domain of the function e, (z) are able to be expanded to C by defining e, (2),

z € C, to be (see [37]),

1
eq(2) = TN
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and it relates with (3.3.2.1) and it holds in C. Also, the function e, (z) has simple poles
at the points {g™™, m € Ny}, (see [47, 48]). In addition, to this, e, (z) was shown with

series expansions in [48]. In [48], e, (z) was introduced also, that

m

¢q(2) = (q)oo Z(q,z D

for z € C\{q~*, s € Ny}. Now, basic trigonometric functions sin,z, cos,z, Sin,z and
Cosg,z are defined by [37, 47].

eq(iz) — eq(—iz)

singz = 57 , lzl <1,
(3.3.2.2)
oS,z = ¢q(i2) +zeq(—iz), lz] < 1,
and
Singz = £qi2) _Zl_Eq(_iZ), z€C,
(3.3.2.3)
Cosgz = Eq (iz) +2Eq (—iz), z€eC(C,

The functions sin,z and cos,z could be analytically continued through the identities
(see [37]),

Sinq Cosqz
(—=2%q2) o’ A

for z € C\{xq™™i;m € N}.

Singz =

In [37], singz and cos,z are meromorphic functions with poles at the points
{+q™i,m € N,}. At the same time, g-analogues of hyperbolic functions sinhz and

coshz are shown as;

sinhgz = —ising(iz), coshyz = cosy(iz), (3.3.2.4)
Sinhyz = —iSin,(iz), Coshyz = Cos,y(iz). (3.3.2.5)
When z € C\{0},0 < |q| < 1 then a-function is determined by,
a(zq) = Z gmiam. (3.3.2.6)
m=—coo
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In [37], the following formula was introduced by Jacobi in 1829. And this identity is
named by Jacobi’s triple product identity (see [48]);
Z g™ 2™ = (4% 4N (=02 1) o (—q27% Do (3.3.2.7)
m=—oo
where z € C\{0} and 0 < |q| < 1 (see [37, 48]). Therefore, a(z;q) has only real
simple zeros at the points {—q?5*1,s € Z}, (see [37]). A generalization of (3.3.2.7) is
Ramanujan’s identity;

' B D, _ (bz,/bz,9,0/b;9)e
(@) (z,a/bz,a,9/b; Qe ’

where |g| < 1 and |ab™| < |z| < 1, (see [37]).

(3.3.2.8)

3.3.3 The g-Gamma and g-Beta Functions
The g-Gamma is defined as by [50, 51]

Q&)zéﬁzifl—qyﬁ, 0<lgl<1) (33.3.1)

where z € C\{—m:m € Ny} and the principal values of g and (1 — g)*~# s used.

I';(z) is a meromorphic function with poles at z = —m, m € N,, [37]. Because, I};(2)
has no zeros, 1/T,(z) is an entire function with zeros at z = —m, m € N, [37]). It

can also be defined as,

(4 Pm-1
Fq(m) = (]_——q)m_lp (m € N)

I, () satisfies the following property when y > 0.

1—-¢q”

[(y+1) = ﬁrq(y); r,(1) =1.
Now, the g-beta function is proposed as [37]
1

B,(y,x) = f tY71(qt; @ x-1dgt, (Re(y) > 0; Re(x) > 0) (3.3.3.2)

0
The relation between g-beta of g-gamma functions was given in [52] as
_ LN ()
Lo+x)’
For more details on the properties of the g-gamma and the g-beta functions we refer
the reader to [53, 54, 55, 56, 57].

B,(y,x) (Re(y) >0, Re(x) > 0). (3.3.3.3)
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Lemma 3.3.3.1: Assume that « and 6 are two complex numbers. Then for all

m € N, then,
(q**%4q) z [ a*°(q% a)s(q%q),,_, (3.3.3.4)
Proof of Lemma 3.3.3.1: We have
m
[T:]q a*°(q% s(a%q),,_,

s=0

= (¢%4q),, 20 (7™ 9% %™ q,q)

(ql—H—a—m; q)
= (qH;q)mqma (ql—H—m;q)mm = (qa+0; q)m_

Corollary 3.3.3.1: Assume that a and 6 are complex numbers, and let m € N, (see
[37]). Then,

m
By(a,0)(@™"; Qarg-1 = Z 1 =@ PDa-1(@™ 15 0)g-1 (3.3.3.5)

s=0

and

qa ™ (@™ @) aro-1B4(a, 6)

= z a1 - @™ D105 ) o1 (3.3.3.6)

Proof of Corollary 3.3.3.1: This proof is done as (see [37]);

(4% q) Z[ 7*°(q% s(a%q),,_,

(4; Do _
Fq(Z)_ﬁ(l—Q)l Z, (0<lql<D)
are used and one can easily see that for any a € C,j € N;

(@ D w(q%q); (q% q);

(a*5q),_, :(q“;q)w(q;q)j:F"(a)(l_q)a_ (a:9); (3.3.3.7)
Therefore, (3.3.3.4) becomes
z (1= (@ PDa-1(@" 5 Qo
a+6— 11" 1" 2]
_4- )(q s (@I O [, @ 0s(a%9),, (33.3.8)

s=0
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(qa+9;q)
=(1—=9g)*°1T" (). () ———— ™
(1-¢q) (@), (6) @O

From (3.3.3.7), one can conclude that

(¢°*%q), (1-q) e
(@G PDm  Tla+06)

@™ Qaro-1 (3.3.3.9)

|
Lemma 3.3.3.2: [37] Let a and 8 be two complex numbers with positive real parts,

and let ¢ € L3 (0, a) for some a > 0. Then,

a t
a“‘lf(qt/a; q)a_1t9‘1f(qv/t;q)a-lw(u)dqudqt =
0 0

a
= B,(a, 0)qa+o-1 j(qt/a;q)aw_l(p(t)dqt (3.3.3.10)
0

Proof of Lemma 3.3.3.2: Assume that @, 6 > 0and ¢ € L}(0,a),a > 0. From the

definition of the g-integration, one has

a t
a“‘lf(qt/a;q)a_lte‘lf(qv/t:q)e_ﬂp(v)dquqt
0 0
=a*"?(1-¢q)? Z q™ (@™ D1 Z ™" (@™ @)e-19(ag™ ™)
m=0 n=0

= q*9(1 — ¢)? Z q™ (@™ Qg1 Z q°(@* ™5 @)e-10(aq®)
m=0 s=m

o) S

= a1 Y ag* (1= De(ag®) ) a1 = D™ aor (@ Dgos.
m=0

s=0

Using (3.3.3.5), one obtains

a t
a® ™t f(qt/a;q)a_lte_l f(qv/tiQ)9—1¢(v)dquqt
0 0
= a0 1B,@,6) ) ag* (1~ D@ Dars-10(aq")

s=0

a
= 4013, (q,6) f (qt/a Daro-10(Ddyt.
0
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3.3.4 The g-Mittag Leffler Functions

The classical Mittag-Leffler functions are useful functions in the fractional
calculus. In this chapter, the g-analogues of the Mittag-Leffler function are introduced.
We are interested in a pair of g-Mittag-Leffler function which might be conceived as
a generalization of the g-exponential functions e, (z) and E, (2).

First of all, the Mittag-Leffler functions are defined as

(o] Zm
EV(Z) = Z m, (]/ > 0), (3341)
m=0
and
oo Zm
Ey,e(z) = Zom (]/ >0;0€CzeC). (3.3.4.2)
m=

(3.3.4.1) is a one-parameter of Mittag-Leffler function, (3.3.4.2) is a two-parameter
of Mittag-Leffler function. Especially, the generalized version of Mittag-Leffler
function is introduced as

Z"™(Vm

y r
Eop(#) = 0m! F'(ma+0)’

m=
The g-analogues of the Mittag-Leffler functions have two main g-exponential

functions, namely e, (z) and E, (2).

eq0(zq) = ;()m, (IzA -l < 1),

am(m-1)/2
q m

—z™, €C, 3.3.4.3
[,(ma + 0) z z ( )
m=0

Eyo(z;q) =

where a > 0, 6 € C. For 8 = 1, the functions e, ; (z; q) and E, 1 (z; q) shows classes
of g-exponential functions of one parameter, (see [37]). Other one parameter class of

g-exponential functions is shown by [49, 58, 59],

had qasz/z
RIOEDY 2%, (a€q)
& (g5 9)s

In [60], other pair of g-Mittag-Leffler functions were defined ey, 4(z¢c) and

Eq.00(2; ¢) such that

c/Z -
o €)= LEDII a1, (1> e,
m=0 4 am+6-1
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am+9 1

qae(z C) _ z (q 2 (C/Z' q)am+9 1 ’ (Z € (C),

q)am+9 1( c; q)am+9 1

where {q,z,c,a} c C, Re(a),Re(8) >0 and |q| < 1. egq0(z;c) was called the
small g-Mittag-Leffler function and E. 4 (z; c) was called as the big g-Mittag-Leffler
function. Clearly, [37],

eqan(20) =1 —q) %2 1e,(z%(1 — )% q).
3.3.5 g-Analogues of the Laplace Transform

g-analogues of the Laplace transform was given in [61]. In fact, there are g-
versions of the Laplace transform

JLs {0(D} = O(s) = % j E, (~qs)e(D)d,t, (335.1)
0

and

1 (o]
s o) = 06) = 7 Oj ey (—s)p(Dd,t, (335.2)

where Re(s) > 0, (see [37]).

Properties of the L, Transform:

The most significant features of the L transform needed in the sequel are

summarized here. By using the definition of below the g-integration;
t

f p(t)dt=(1-q) Z tqmp(tq™), (t e A), (3.3.5.3)
m=0

0

the g-Laplace transform of (3.3.5.1) can be written as

(@D e ¢ 1
ols fp (D) === ;(q;q)j<ﬂ(s a’).

The convolution of two functions @ and v is defined [61] as

(@* P)() = ﬁf ot P(t — tqr)d,T (3.3.5.4)

where Y[t — t;], for (see [37]);

oo

P(t) = z A t™,

m=0

is shown as,
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Ylt—t] = z am [t — t;1m

m=0
with
t:
[t —t;]p =t™ (—‘; q)
t /m
By using the definition of g-integration, then (@ = ) satisfies;

(@* P = ﬁf (@) P(t — qr)d,T, (3.3.5.5)
0

and thus Y (t — qt) = =% (¢t) is defined in this manner. In [49], the convolution of

two functions @, ¥ is shown as

_ 1 ‘ _
(p* )= mj @(0)e™"P(t)d,, (3.3.5.6).
0

In [37], it is remarked by Hahn (see [61]) that the convolution theorem
qu {QB * l/_)} = qu 7 qu lﬁ; (3.3.5.7)
valid only for ,L; transform and does not hold for the ,L transform, (see [37]).

Now, there are some basic properties of the ,L; transform are mentioned. Initially,

let
oLs{p(©)} = Q(s).
Property 1:
oLslpb)} = (1/b)Q(s/b), (b # 0).
Property 2:
Ls{Dro(t)} = (ﬁ)m as) - Z D&*""(p(o)%, (meN). (3358)
=1

When the case m = 1 then, (see [37]),

p(0) _ s0(s) — p(0)
1-q  1-q

Ls{Dgo(®)} = (ﬁ) Gs) -

Property 3:

o) 1 [
oLs {—}z— Q(r)d,T
q
and L, {‘p(t)} exists.

t
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Property 4:
qs

( 1
qu{f wir) dqr}zgf Q(0)d,r,

t 0

provided that [37]

1) the two integral exists,

i) Q(s) exists for all s,

i) ¢/ X21|0(q//s)| = o(|r)Y), for all fixed j and || < 1.
Property 5:

If
t tm-1tm—2 t
Ién(p(t) =f f j .[ (p(T)qudqtldth ---dqtm—lﬂ (3359)
0 0 0 0
then
1—q\™
L)} = (T) als).
Property 6:

If qu{(pk(t)} = Qk(S) then

Ls {Z qok(t)} = Z Q(s) (3.3.5.10)
k=0 k=0

holds if the following conditions hold

a) m is finite

b) m is infinite and

) X_o|ok (tq?)| is convergent for every t,q7, t, being fixed,

i) ¢/ X7o| 0k (tq))| = 0(R/), where j is greater than some fixed J and h is a fixed
quantity, |h| being less than unity.

Property 7:

Set

and consider that ltirrg@ = 0. Then,

[ee]

1
Lel0©) = ¢ [ 06X,

qs
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The inversion formula of the ,L; transform is given below and it was proposed in
[61].
Definition of Hahn’s inversion formula: If ;L. {o(t)} = Q(s) then,

o) = f (s)e, (st)ds, (335.11).

c

where the path of integration C encircles the origin and could be deformed into a loop,
parallel to the imaginary axis. Especially, if Q(s) is analytic then according to the

above, the inversion can be written as
1~ o oa(tig)
(t) — _Z(_l)L i(i-1)/2_ -\ 1 7 ]
v t L 1 (g q);
=0
Definition of the £, Transform: Now, even though there is no g-analogue of the
convolution theorem exiting for the ,L¢ transform, the ,L, transform has an

advantage over the ,Lg transform. This advantage is the recognition of g-analogue of

the Goldstein theorem. By using the definition of below g-integration,

t

[o@ar=a-0) wrotam,  cen
m=0

0

then the g-Laplace transform of (3.3.5.2) is,
Lip(t) = ! i I(=s;q)0(q%) 3.3.5.12
akso) =25 2, 1 msia);eld). (3.3.5.12)

j=—00

Now, there are many basic properties of the L transformare introduced. Particularly,
Abdi introduced the following properties of L, transform [62].
Property 8: If L {p(t)} = Q(s)and b € R, . then,
oLslp(bO)} = (1/b)Q(s/Db).
Property 9:

k-1

Ls{Dro(®)} = (ﬁ)m Q(s) - Z DIk ¢(0) m, (3.3.5.13)
k=1

and m € N in (3.3.5.13).
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Property 10: In [37],
1 (o]
Lslo@®)/t} = 1—¢ f Q(1)d,T,
qs

obtained that ,L.{¢(t)/t} exists.

Property 11:
qs

r 1
oLs {f ‘PS) qu} = ;f Q(1)d,t,

t 0

Provided that
i) the two integrals exist,
i) Q(s) exists for every s,
i) g/ ¥21|0(q7/s)| = 0(Inl), for all fixed j and || < 1.
Property 12:
Lelro©) = () ae)

S
where 15" is defined in (3.3.5.7).

Property 13: If ;L {g,(t)} = Qi (s), then

ks [i sok(t)} = i (),
k=0 k=0

once at least one of the following conditions hold,
a) m is finite
b) m is infinite and

) Xo_o|ox(tq?)| is convergent for every to toq’, t, being fixed,

(3.3.5.14)

(3.3.5.15)

(3.3.5.16)

(3.3.5.17)

i) ¢/ 20| 0k (tq?)| = 0(R), where j is gretaer than some fixed J and h is a fixed

quantity, |h| being less than unity.

Property 14: If ltir%@ = 0 then,

t 1 [’}
oLs {f@dqt} =;f Q(r)d,.

0 qs
Property 15: If L {p(t)} = Q(s), then
Ls{tTe(0)} = (¢ — D™DF(s),
Ls{t™ DI o)} = (=g (g — V™ DF(s"(s/q™)) forn < m,
and
28
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Sn

(at-@)"

s*1Dj ¢ (0)

g | (3:3.5.21)

Ls{t™ Do)} = (¢ — )™ D Q(s/q™) — XLik=1

for every n > m.
3.4 THE Q-FRACTIONAL CALCULUS
3.4.1 Classical Fractional Calculus

In this part, we present the continuous case of the fractional calculus version.
¢ € AC™[a,b] if ¢ has continous derivatives up to order m — 1 on [a, b] with
™Y € AC|a, b].
Lemma 3.4.1.1: Let AC™]aq, b] exists the functions ¢ giving in the form,

m-1 1 t
(D) = ; et = @) + j (¢ - D™ 10(D)dr,

where Q € L,(a, b) and the ¢, ’s are arbitrary constants (see [37]). In addition to this,

®
() = e (@), and ¢, == t =0,1,...,m - 1.

The first fractional Riemann-Liouville integral operator is related to Abel’s integral

equation,

1
r'(y)

Theorem 3.4.1.1 (3.4.1.1) with 0 < y < 1 has a unique solution in L, (a, b) if and

f(t ) 0@dr=¢(t), t>a, y>0, ¢€L(ab) (3.4.1.1)

only if ¢, _,, is written as
1 t
= — v
P1-y (1) el _y)af(t )V p(r)dr

and ¢, _,, is absolutely continuous on [a, b] such that ¢;_, (a) = 0. Therefore, Q can

be shown directly as,

1 d

: d
Q1) = 1“(1——)/)Ef(t —1)Vp(r)dr = a%_y(t), (3.4.1.2)

a

when ¢ € AC[a, b], then ¢,_, € AC[a, b] and also (3.4.1.2) becomes

ds

a0 = o, [ £

Q- |Et-a)y ) (-5

Similarly, n-th primitive of a function ¢ € L,(a, b) can be used with Cauchy formulae
(see [37]),
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t tm-1

f f f p(0)drdty ...d, = 1)|f(t—r)m lo(t)dr (3.4.1.3)
f [ - j POty . dyy | = f (r - O p(R)dr (34.14)

and m € N. The right hand sides of (3.4.1.3) and (3.4.1.4) hold for non integer values
of m, the Riemann-Liouville fractional integral operator can be given when

y € R*and ¢ € L,(a, b);

1 t
I,o(t) = Ty)af(t — )" tp(r)dr

(3.4.1.5)

b
90 = 5 [ = 0 Ho@dr

and t € (a,b).
When ¢ € L,(a,b), then not only I}, ¢ but also I)_¢ exist and they are L,(a, b)
functions. In addition, if ¢ € L;(a, b), the below expression is obtained

yllr& I o= ylm o) =), (3.4.1.6)

For ¢ € L,(a, b), the left and right sided Riemann-Liouville fractional derivatives of

order y, y € R™, are defined formally by

DY o) =DPIY. Vo(t) = f(t—r)p Y1o(r)dr. (3.4.1.7)

—y)dt?

Now, in this part, some properties of Riemann-Liouville fractional calculus are
indicated which their g-analogues are derived. Especially, consider the case of the left-
sided Riemann-Liouville fractional operator because, its basic analogue will be
studied. Let y, 6 € R* and if ¢ € L,(a, b) then the semigroup property

B8 p® = 1807,00) = 1170 (), (3.4.1.8)
holds for almost every t € [a, b]. When ¢(t) satisfies the conditions
@ € Ly(a,b) and I*" ¢ € ACP[a, b],p = [y] then,

{ D' 7pelLi(ab), j=01,..,p,

(3.4.1.9)
DY peACD[a,b], j=12,..,p— 1.
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In addition,

DY .1V, o(t) = p(t) (3.4.1.10)
DY 18,0(t) =127 o(t) ,0=>y=0, (3.4.1.11)
DY, 18, 0(t) = D! 2 () ¥ >6=0, (3.4.1.12)
Also,
(t—a)y’

I'.Dr o) =) - ZD To(a +)F(1+—y—j)' (3.4.1.13)

When ¢ € L,(a, b) and D‘;Em_g)qo € AC™[a, b],m = [6], then the expression

14 i

_ o (t —_ a)y_]
1r.n¢ =p? —ZDG Tp(at) ——— 4.1.14
a+ a+§0(t) a+ (p(t) j=1 a+ (p(a )F(l + y _]) ) (3 )

holds almost everywhere in (a, b) for any y > 0. Also, when0 <p —1 <y <p,
y+6 <pand D, g € ACT™]a, b] then,

(t—a) v—Jj

DY . DE.p(t) =D Po(t) - ZD T, 5 (3.4.1.15)

holds almost everywhere in (a, b). Finally,
I'.DY o(t) = o(t) and I, D8, o(t) = DI Y o(t), where ¢ € I, (L,) and
@ €18, (L,). Many fractional operators were defined in [1]. Especially, the Caputo-

fractional operator is introduced as,

DL9(©) = rm—s f (t = D)™ 1 (1) dr

and m—1 <y <m,m € N. From [37], the Riemann-Liouville integral and the

Caputo fractional derivative can be related by,
S0/ p(t) = Iy "™ (0).
If the function ¢(t) has m + 1 continuous derivatives in [a, b], then [63],

lim $D) o(t) = o™ (¢) for t € [a, b].
y-m

While constant c is put instead of the function ¢ when the Caputo-fractional

derivative is taken then,
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Y — npmym-y
DY.c=DmI"¢
c

eI RN

c
= Ti=7) (t—a)77,
where m = [y].
3.4.2 g-fractional Riemann-Liouville Operator
The g-fractional Riemann-Liouville integral is introduced [37] as

o = 55 f @1/t Do 0,7

And the g-fractional Riemann-Liouville derivative is given below
DEp(t) = DI (0), 6 =0). (3.4.2.1)
Properties of the g-fractional operators
Lemma3.4.2.1 [37] If ¢ € L;[0,b] then (3.4.2.1) holds
Proof: Initially, the proof is done by [37]

IDo() =tY(1 - )qu ((qq qq)):<p(tqm). (3.4.2.2)
Therefore,
S @ - (@%a),
Y(r6 — +Y+0(1 _ +6 k(1+6) m+n
1Y(18e@®) = 91 — q)Y ;q (q;q)k;q @D p(tq™™).

If the substitution m = k + n is used, then the following expression is obtained.

1Y(18e(t))

q¥; y (4% q)
— +y+0 _ +0 k(1+0) >3t 17K m—-k >~ " "‘m-k m
t7t9(1 — @)Y kzoq @D E (q Do p(tq™). (3.4.2.3)

Because ¢ € L} [0, b], the sums in (3.4.2.3) is absolutely convergent. Thus, the order

of summations can be interchanged to satisfy, namely

Y; q%q)
i (Uge(0) = 101 =g Z a <"“qm>z ¥ ((qq'qq)): ((q'q))m_kk'

It is easy to see that, [37];

9. —_
(CI »Q)m_k _ (@7 Qx q(1-0k
(@ Dm-rc (@™ q)y
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So it is concluded that,

IM0I3)

= > (@D @™k
— 0] — g)r+o z mp(tg™ z k6 (1-9)k
1-a mzoq v(tq )kzoq G (ql‘m“‘);q)kq

As a result,
IY(1e®)
— +y+0 y+9 m (q q) -m ,Y.,1-m—6.
Hence,
(ql—m—H—y; q) (qy+9; C[)

MmqY;qt ™ Y% q,q) = mam =M 3.4.2.5
91 (474734 2.4) @)y | % Dm ( )
Lemma 3.4.2.2: When ¢ € L[0, b] then
Do) = ¢(0), (y > 0;t € (0,b]). (3.4.2.6)

Proof: If y = m, m € N, then DI*I7*@(t) = @(t). [37] If y is a nonpositive integer
suchthat, m — 1 <y <m, m € N, the semigroup property can be applied to satisfy
D1 p(t) = DM, VI () = DI*IIM () = (t), for every t € (0, b].

|

Lemma 3.4.2.3: If y € R* and m := [y]. Also when ¢ € L{[0,b], such that I "¢ €
ACI™[0,b], then,

Y-p

m, t e (O,b] (3427)

Do) = p(®) = ) DY (0%
p=1

Proof: We start with,
h(t,t) = t¥(qr/tq),Dip(r), te(0,b], (0O<T<0).
So, it is said that h(t, gt) = 0 for all t € (0, b] (see [37]). Besides,

IyDytp(t) —

. f (@t/t; @)y-1D} 9 (D,

= f (4t/6:0), D} p(D)dyt

tY
— - . mym=-y
Dqy¢ LG+ D f (qt/t; @), D'y " p(v)d,gT (3.4.2.8)
0
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and the g-integration is used n times on the last g-integral of (3.4.2.8), then,
t t

[ w@De@d, = (w)© - lim ()™ ~ [ D@D,

0 0
Later,

tY y
m f (QT/t,‘ Q)qu QO(T)qu
0

is shown in details in the next page. This calculation are introduced as,

tY ¥
oD Of (qt/t: ), DY p(2)dyt

m

y-p ty—p+1
==Y DI Pp(0") s
; ot T, G-p+2)
7 g

t
. m-=y
+ LG—mTD j(qr/t, Dy-mly o(M)dgT

y p+1

z Dthgo(o+) Ry + 17T (o). (3.4.2.9)

After (3.4.2.1) and (3.4.2.2) are used, then it is satisfied that

e 1)f(fzf/t Q) Dl p(D)d,T

ty—p+1

m. (3.4.2.10)

= l,9(®) - Z DY (0%
p=1

According to (3.4.2.7), I Dy ¢(t) = ¢(t), (t € (0,b]) holds if and only if
DI"Pp(0") =0, (p=1.2,..,m).

Lemma 3.4.2.4: If ¢ € L}[0,b], then

DYIgp(t) =177 o(0), 6=y =0;te (0,b]), (3.4.2.11)

In addition to this, if D;’_ego(t) exists in (0, b] then,

Dlip(t) =Dl %o, (y > 6= 0). (3.4.2.12)

Proof: First of all, we consider that 8 > y. Later, 6 =y + (8 — y) and from (3.3.1)
the proof is introduced by (see [37])

D{1§p(t) = D11 p(©) =17 (),

34



andif 0 <y,n=[ylandm = [y — 0]
The following is obtained.
DYIp(t) = DPL V180 (8) = DMHF ™I " p(t)
=D "0 (6) = DI (o). n
Lemma 3.4.2.5: When ¢ € £2[0, b], such that I;"“g(p € c/lcém)[o,b], where 8 > 0
and m = [8], (see [37]). Later, for every, y = 0 then
Y-p

m, t € (0,b]. (3.4.2.13)

m
D39 = 07" p(®) = ) DI P p(0%)
p=1

Proof: It is known that
1
Iq(2)
has zeros at the negative integers and (3.4.2.13) exists for every 8 > 0, when y = 0,

[37]. So, we consider that y > 0. Especially, we assume below two different cases.
First Case: If y = 6, then this condition is satisfied,
-6
1Dde() = 1 (18D8)p(®)
0-p

m
_ 7y—-°0 _ 6-p +
p:

y—6 N 0-p + trr
=1; o) —Z Dy “(0 )m
p=1
for all t € (0, b], (see [37]).
Second case: If 8 > y, then this condition is obtained,
1/DEp(t) = DYV (1EDEp(t))
to-»

m
N 4 _ 6-p +
p=

Y-p

m
0-y 6-p +
=D t) — D 0)————
a 90 pzzl « PO D

for every t € (0, b] (see [37]).
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3.4.3 g-fractional Caputo Operator

Definition 3.4.3.1: For y > 0, the g-fractional Caputo operator is given by (see [37]);

“Dyp(®) = 1" "D o(t), m = [y],
when y is nonnegative integer then the operator is introduced by

‘D p(t) = 1D p(t) = D (O).

(3.4.3.1)

Theorem 3.4.3.2: Let y>0 and m = [y]. When goecflcém)[o,b], then

“Dyp(t) € L3[0,b].

Proof: when ¢ € AC™[0,b], then it is clear that D{™ ¢ € £3[0,b]. Thus, we

conclude

“Dyo(®) =1, "D p(t) € L;[0,b].

Theorem 3.4.3.3: Let y and 6 be positive numbers and if m = [y] and n = [8] (see

[37]), then
1. When ¢ € AC™[0, b], then [37];

( n-1 D +
177 () — )’ 4 toYe, >y,
a T, (0—y+p+1) .
p:
Iy “DE@(t) = T
O-v q 0-y+
D t) — trP, <y,
a ¢ LT, (0—y+p+1) Y

\ P
for every t € (0, b].

2. When ¢ € £[0,b] such that IJ ¢ € cAC&’”[O, b], then [37];
|f 121'_6<p(t), y=>n=0,
4 - D @(07)
o-y q —9-
DI p(t) — Z (0, 9 >y,
tq 40, 2, T,n=0-p+1) 14

for every t € (0,b].
Proof: Initially we show (3.4.2) by (see [37]);

‘Dl () =

1V D8o(t) = IN17°D () = I Do (t).
Then (3.4.2) follows for y = n > 6 by using,
Dfp(t) = Iﬁ"’(p(t) and ¢ € £1[0,a] and 6 > y. Later, if we use

DIISp(®) = D§_9<p(t). (y>6=0),

where y and 6 are interchanged by n + y — 8 and n. Taking into account that
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‘D1 p(t) = 137° D1 o (1),
We reach at,
IV n y>n=>6,

D;7, y <n.

D31y (t) = {
Therefore, when y > n > 6 from the semigroup property (see [37]);
DY) = 137017 "p(0) = 1} (0.
if y < n, then
“DE1yp(t) = 177Dy " p(0).

3.4.4 g-Laplace transform of fractional g-Integrals and g-Derivatives
In this part, g-Laplace transform are shown for the Riemann-Liouville

fractional g-integral and g-derivatives.
Theorem 3.4.4.1: In [37], if @ € €3[0,b] and Q(s) = ,L{@(t)} then,

r (%]
L8} = ﬂ Q(s), vo >0, (3.4.4.1)

whenm —1 <6 <mand IJ* 9%(¢) € c/lC("‘)[O, b] then,

6 k—1

JLs{D¢p(O)} = Q(s) ZDG k5 (0%) —— G (3.4.4.2)

Proof:
6-1

=(1- Q)(Qe—l(t) x ,0(D)),
(3.4.4.1) is satisfied from,
0

Qg(t) = m, 6@ >-1)
then,
1— 0
qu{QB(t)} = %: Re(s) >0,
_ 1 ‘ _
@+ D) = 1= | #@eF@dr
and

qu{(p * ll_)} = qu(ﬁ qulﬁ
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Now, (3.4.4.2) was proven from,
Dip() = Q) = DiIE o), (k=1[6D),

k—l

10300} = (1) ) - Zum DO G meEN),

and

_ 0
L105 (t)}_( q)

Q(s), (6>0).
We obtain,

oLs{DI (O} = (L {D{I;~°p(1)}

k k-1

S —U 5 m-— m-uo 5 + S
=gy ohelli W”}‘ZDQ PO g

9 k—1

1-q*

ﬂ(s) ZDG kp(0%) (3.4.4.3)

|

Theorem 3.4.4.2: [37] If ,L.{p(t)} = Q(s) then the g-Laplace transform of the

Caputo fractional g-derivative is introduced by,

6
L{ Do)} = 759 <n<s> ZDk o kff))

Proof: Because, “Df¢(t) = (1 — q)DI'¢(t) * Qm—g—4(t) then by,
6

Qg(t) = m, 6>-1)
then,
1-— 6
qLs{Qg(6)} = %, Re(s) >0
S k—l
L{pge®)} = (1= ) als) - Z Do) Ty (MEN)
then

1— m—0
Ll D00} = T2 L ppe)

() e oo )
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§0 g—k+0-1
<(1 5 Q(s) — ZDZICQO(O )(_qm >

u
Lemma 3.4.4.1: [37] If ,L{e(t)} = Q(s) then g-Laplace transform of the Riemann-

Liouville sequential g-derivative of order k6,0 < 6 < 1, is defined by,
m-—1

1
LS{QZB(p(t)} = rk0Q(s) — T4 Z rg(m‘l‘k)l(}‘aDgpgo(OJ’).
k=0

and r = ——. When QK¢ is given in;
1-q q

Qly =Dfy, Qky= Dngk_l)ey, (k € N).
Lemma 3.4.4.2: [37] If ,L{p(t)} = Q(s), then the g-Laplace transform of the

Caputo sequential g-derivative of order k6,0 < 6 < 1, is introduced as,
m-—1

1
Ls{ CQ0 00} = r¥oa(s) - E Z 6(m=1-k) CQ?”(p(O*).

Lemma 3.4.4.3: In[37], let 6,y,a € R* and n € N. So the expression is

6—)/ n!
—q (re F a)n+1‘

is valid in the disc {t € C:alt(1 — ¢)|? < 1}.
Proof: From (3.3.4.3) then we satisfy,

. k(k=1..(k=n+D
eg” (v;q) = ; Tk +7) v, vl <(1-@)7°,

So, for |at?| < (1 — q)~? we satisfy,

aLs {t707 el (+at?; q)} Ir® >a  (3.4.4.4)

S k(k—1)..(k—n+1)
tn9+y—1e(n) (iate; CI) — (ia)k_nt9k+y_1,
0y Zk:o I, (6k +7v)

Hence,

- b (1 _ q)6k+y—1
Lot el (+at% q)} = Z k(k = 1) ... (k —n + D (FQ) " g —

k=0

—n9 -y

Z k(k = 1) ... (k = n+ D (+ar—0)""

—neydn had
= k -|-
1—gq dfnzf §=dar
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By using a~t|r|® > 1 then we satisfy, |§| = |ar~?| < 1. Because,
T.—n@—y dn T.—n@—y dan 1

_z fk =

1-q ds" & 1—q dé"1-¢

r—n@—y n!

C1-q -9HmH
r-ne-y n!
1—q (1 Far-9)n+t

ré-v n!
= — . ]
1—q@?F )it

Lemma 3.4.4.4: Now, consider Qg , (¢, i;) is the function introduced for l = 1,2, ..., g;,
i=1,..,kand u; € C by,

N (ﬂite)k

N — $16+6-1 _

Q1 (6 ) = t ;(k+l)(k+l D+ Doy

i=1,...,K 1=1,..,0; and |y|t(1 — q)|° < 1. Then,

l! .
qu{-QG,l(t: .ui)} ~ 1-g (re - .ui) l 1'

holds for |r|® > |u;| when r = :—q [42].
Proof: By using the properties of the g-Laplace transform (see [37]), the following is

obtained
(Mi)ktk6+la+9_1

Ls{Qo1(t )} = gLs {;(k tDk+I-1)..(k+1) I, (k6 +16 + 6)

r-lo-6 d ;
= D U+ D0+ 1= 1) G+ D),

1-¢q

k=0
So, for |u;| < r?, then
rolo-6 gl d

abs{Q0,(t, )} = 1—gq WZ PR
k=0

T.—l9—9 dl 1

1—qdzll—z o=,
Al

I G
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CHAPTER IV

Q-PROPORTIONAL DERIVATIVE AND APPLICATION OF
Q-LAPLACE TRANSFORM

In this chapter, we focus on the definition of the g-proportional derivative.

4.1 DEFINITION OF THE Q-PROPORTIONAL DERIVATIVE

In this part, g-proportional derivative will be introduced. The discrete version
of proportional derivative was applied with coronavirus model by [64]. Also, it was
applied to other fields of engineering models in [65]. Similarly, the g-proportional
derivative can be related with control systems, dynamical systems and mathematical
biology. Also, g-Laplace transforms were showed to solve both g-proportional
derivative and g-fractional proportional derivative in this thesis.

Initially, g-proportional derivative is defined as;

Dap(6) = 11 (B, ) p(t) + Ko (B, ) Dy p(t) (4.1.1)
and B € [0,1]. With this information, it is concluded that x,, x;:[0,1] X R — [0, o)
be continuous such that for every t € R, [21, 22].
ﬁ}i_)r(r)1+ ki (B,t) =1,

BIHEL Ko (IBJ t) = 0:
Bll_)nil_ K1 (IBJ t) = 0:
Bh—>n;l1_ Ko (IBJ t) = 1:
and k;(B,t) # 0,8 € [0,1),k,(B,t) # 0,8 € (0,1]. Specifically, the case is assumed
when i, (B,t) =1 — B and k,(B,t) = B. Then, (4.1.1) becomes
Dao(t) = (1 — B)e(t) + BDgp(D). (4.1.2)
Notably, BILIEL D,p(t) = ¢(t)and [}1_)1{1_ D,p(t) = Dyop(t).
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Also, (0 <g<1land0<p<1in(4.1.2). Now, DZ¢p(t),Dje(t),..,DJ'p(t) can
be modified in (4.1.2) but m is higher order of g-derivative. The second, third and
higher order terms are given as;
Dy (D¢ (8)) = (1= BIDy(t) + BDZ (L)

then

Dip(t) = (1 - R = Bt + B9 (D] + B[(1 = BIDy (1) + DG (D)],
SO we say,

Dip(t) = (1= B)?e(t) + B(1 — B)Dgp(t) + B(1 — B)Dge(t) + B*DZ (1),

Dip(t) = (1= B)?(t) + 28(1 — B)Dyep(t) + B*Dip(1). (4.1.3)

Specifically, the second order g-derivative in (4.1.3) is identified with summation
formula. (4.1.3) and (4.1.4) are similar. Therefore, (4.1.3) can be written as;

2

Do = Y (1) A~ P45 DPg(t) (414)

k=0
and (0 < q,B <1).
The form of D7 (t) is given as;

Dio(t) = (1= B)?Dae(t) + 28(1 = B)Dg () + f2Dg o (t), or

D3 (t) = (1 = B)2Deep(t) + 28(1 = F)D, (Dy(8)) + 2Dy (D300 (1))
then
Dip(t) = (1—B)2[(1— Be(t) + BD,p(D)] +
+2B(1 — B)[(1 — PDap(t) + BD2p(D)] + B2[(1 — BPIDZ (1) + BD3p(1)]
and later,
D7) = (1= B)Pe) + B(1 — B)*Dye(t) + 26(1 — B)?Dye(t) +
+2B%(1 = BIDZ(t) + B2(1 — B)DZp(t) + B3DZ p(t).

Finally, the new form of D3¢ (t) is found in (4.1.5).

Dip(t) = (1—B)3e(t) +38(1 — B)*Dye(t)

+3B%(1 = BIDFe(t) + B>Dip(t). (4.15)

Also, as mentioned above, (4.1.5) could be denoted as;

3

Dao(0) = Z(D (1= BY* "B Dy (0). (4.1.6)

k=0

Similarly, fourth-order g-derivative can be defined with summation formula as below;
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Dip(D) = Y (1) @~ B DEp(D (4.1.7)

k=0
and higher order g-derivative is written as below;

m

D7e® = ) () A= B p (), (4.18)

k=0

4.2 SOLUTION OF Q-PROPORTIONAL DIFFERENTIAL EQUATIONS
WITH Q-LAPLACE TRANSFORM

This section is about solution of g-proportional derivative and g-Laplace
transform. Previously, g-Laplace transformation is introduced by [66]. Generally, by
using the Laplace transformation, we can solve easily many differential equations.
Similarly, by using the g-Laplace transformation we can solve g-proportional
differential equations. Besides, g-Laplace transform is shown for the considered

function and higher order derivatives of the function as;

qﬁs{w(bt)} = (1/b)Q(s/b), (b #0)

o)
Lslo®} = Qls) (4.2.1)
and
S
2000} = (22000
m gk—1
Z D p(0) =3 (m € N). 4.2.2)
k=1
By using (4.2.2) for m = 1 we satisfy;
Ls{Dq(P(t)} (1 > ) (s )_% (CI * 1). (4.2.3)

Similarly, we get g-Laplace transformation of g-derivative and it says (0 < g < 1) in
(4.2.3).

Now, we define the g-proportional derivative in order to apply g-Laplace transform
and solve it easily. By using (4.1.2), we investigate the following g-differential

equation

Da(t) = (1 = £)p(t) + BDep(t) = (t). (4.24)
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Proof of (4.2.4): When g-Laplace transformation is used with (4.2.4) then, the proof
is shown as,
L)} = (L{(1 = Bp() + BDep(1)},
or
LY} = 1= B) (Lo} + B (L{Dgp(D)}.
W(s) is obtained as,

¥(s) = (1= A + [ a6) - L2

After some standard calculations this new expressions are done
0

¥(s) = (1= POGs) + £-0(s) - 252

As a result, it is reported that

W(s) = [(1 - ﬁ)il_—qq) + ﬁSl [390((;)

W(s) + ﬁlfp_(:;) — [(1—5)(1—Q)+ﬁs

- ]Q(s), respectively.

Finally, the following is obtained, namely

(1-¥(s) +p(0)  [A—pA—q)+ ﬁsl g
= (s),
1-¢q 1-g¢q
for(0<g<1).
Then, it is concluded
_(1—¥(s) + Be(0)
=G pa-g+ps
__G-o¥e) . O
A1-pA-g)+ps A-p)A—q)+ps
_ (Q-q¥©e) + By (0)
- B(S+(1_6)ﬁ(1_q)) B(H(l—ﬁ)ﬁ(l—q))'

Now the inverse g-Laplace transform is applied to find the expression of ¢(t), namely

L5 HQ(s)} = @(t). After some calculations it is the followings is reported

_ _ (1—-q)¥(s)
qu 1{9(5)} = qL 1 (1 — ,3)(1 —
q)
p (s g )
_ B (0)
+ L5t :
1-pA-9
p(s+—Fp—2)
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Later, a = (1_[3)‘# ,(3B>1),(0<qg<1)and (a < 0) are assumed to show step

by step easily. So, ¢ IS reported as,
1—g¢q P @0
Qo(t)—( )qu_l{ (S)} | qu_l{ ( )}

B s—a s—a

and
o(t) = “;T‘” ((6) * eq(at)) + (0)eg (at), respectively.

We recall that the convolution was introduced and inverse g-Laplace transformation

were mentioned in [37]-[67]. So, the following is obtained

o(t) = 1% f W(T— a)dyt + p(0)e, (ab). (4.2.5)
0
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CHAPTER V
Q-FRACTIONAL PROPORTIONAL DERIVATIVE
The original contributions of this thesis are reported below.

5.1 DEFINITION OF Q-FRACTIONAL PROPORTIONAL DERIVATIVE
In this section, we mention g-fractional proportional derivative where the
Caputo g-fractional operator will be used, namely
PPlo(t) = (1 — ) + B DEp(t), (0<6<1).
Similarly, the g-Laplace transform was identified for Caputo version in [66] and g-

Laplace transform of g-fractional Caputo derivative is given as

9 (p( ) 0-1
L{DEp()} = LA ey 0<8<1)

and

qu{(p(t)} = Q(s).
Then, from the above expression, (5.1.1) was obtained as,

0 6-1
L DSp(®)} = ﬂiwn(s) (’zio)s s (0<6<D, (511

In the next part, we investigate the solution of the following differential equation, as

an example

PDip(t) = (1 - R +BDEo®) =), (O<6<1). (512)

The detailed steps of finding the solution of (5.1.2) is given below:
We start with

L)) = LA =P + B DL o(t)},

Thus, we conclude that

Y(s) = (1—B) o Lslo®} + B (L{ “DE@(1)}.

After some sample derivations we report that
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<p(0)59‘1]
(1-q)°

%]
Y(is) =0 -pals)+p [(1 i ° Q(s) —

or

Bs® 1 Be(0)s®!
(1-q)° 1-q)° °

¥(s) = Q(s) [(1 -p)+

As a result, we conclude that

Bo()s®t _ _ ps®
W(s) + 220 —Q(s)[(l ﬁ)+(1_q)9].

Thus, we report

()1 - q)? + Bp(0)s°! a(s) (1-B)(1-q)° +ps°
1 —q)? Y - q)° |

From the above expression we get

(s = YO =0 + Bp(0)s*! (1-q)°

E (1-—q)f (1-p)1—q)? + Bs®
or
— )% 6-1
o) = YU =) + fo(Os

(1-p)(1-q)°+ Bs®
respectively. Rearranging the terms we conclude that

Y(s)(1—q)° N Bp(0)s®?
1-pA-g)f+ps® (1-pA—q)?+ ps?

Q(s) =

or

YA -9 Be(0)s°

as) = 5 (o0 + AP0 " (s0 + E=DI =0y

— —\0
Now, we consider that & = %

and (0<6<1 0<gqg<1)thena > 0.So,

we conclude
Y(s)(1-q)°  @(0)s%?
Q(s) = .
B(s? + a) (s? + a)
The inverse g-Laplace transform was used for (5.1.3), namely

Y(s)1—q)?  @(0)s?
B(s? +a) (s? + )

1-° (%) L[5
= L g T OO oL {m}

(5.1.3)

qu_l{Q(s)} = qu_l {
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Convolution is used in here in order to introduce the inverse g-Laplace transform.
Particularly, convolution was reported in [37]. By using the g-Laplace transformation,

we obtained g-convolution

o0 = EL] e { @)+ (L1 - et e -ar®; | +

0(0)es) (—at®; q)(1 - q).
Therefore we conclude

o(t) = < _q)e[ Ls (qﬁs{w(t)*(l—q)t"‘leé?g(—“te?q)})]

+9(0)es (—at®; )1 - q).
The g-convolution formula was obtained from above steps of solutions

(1-q)° 1
(1) = ﬁq (w(@®) * (1 = Dt ef) (—at® )
+@(0)es? (—at?q)1—q). (5.1.4)

Finally, g-convolution formula of (5.1.4) is written as;

e :
p(t) = <(1 'BQ) ><1 i q)flp(r)s“”(l - q)re‘leé?g(—are;q)dqr
0

+@(0)es (—at? q)(1 - q),

or

t
N6
() = (%)flp(f)f_qrfe_leé?g(_afeiQ)qu
0

+ <p(0)e(°) —at?;q)(1 - q). (5.1.5)
Hence, the solution of a g-fractional proportional differential equation in Caputo sense

given by equation (5.1.2) is derived, as an illustrative example.
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CHAPTER VI
CONCLUSION

In this thesis, the definitions and some properties of g-derivative and g-integral
were reviewed. After that, the g-analogue of the proportional derivative is mentioned.
Next, the fractional counterpart of the g-proportional derivatives are discussed.
Thereafter, for the first time, the g-analogue of the proportional derivative was

introduced. More precisely, we defined the following operator:

“"Dio(t) = (1 - Be) +BDip®), (0<6<1).

The solutions of some g-differential equations in the frame of g-proportional
fractional derivatives were found with the assistance of the g-Laplace transforms.

It is worth mentioning that since the operators discussed in this thesis, any
qualitative results such as Gronwall inequality and Lyapunov inequality may be
obtained for related g-difference operators. On the top of this, optimal control and

biological problems can be reformulated in the framework of such operators.
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APPENDICES

APPENDIX 1: Our used formulas of g-Laplace transforms and inverse g-Laplace
transforms are given below:

1L Ly{p(©} = Qls)
2.L{Dgp(®)} = () 06) —£2, (q#1,0<q < 1)
3. Le{pbt)} = (1/b)Q(s/b), (b #0)

4., Dpo) = ()" 0©) - S Dp e 2, (men)

5.L; {(p(O)} @ (0)e, (at)

6. L, {\p(s)} P(t) * eg(at) —f Y(t — a)d,t
6 (p(o)SG—l
7. L DEp(t)} = Wﬂ(s) ~a—o (0<f8<1, 0<g<1)

8. L {59_1} 0(0)es) (—at®q)(1—q), (0<6<1)

sO+a

0. L7 {2 — y(0) » (1 - g)t?1ef)(~at? q)

Ot

t
1
= qu Y(1)e (1 — q)te‘leéfg(—are; q)d,T
0

t
= ft/)(r)s‘qfre Lesh (—at®; q)d,t.
0
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