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�e application of graphs in chemical and molecular structures has exponentially increased during the last few years. Topological
indices facilitate the collection of bene�cial information and provide an approach to understanding the properties of chemical
structure by providing information about algebraic graphs. Let G be a graph with u-vertices andΩ(u) be the degree of uth vertex.
In this manuscript, we compute Zagreb index (ZI), �rst, and second, Hyper F-indices and sum and product connectivity of
F-index of silicon carbides, namely, SiC4 – I[r, s] and SiC4 – II[r, s].

1. Introduction

Graph theory deals with the study of the mathematical
structures of chemical compounds. Chemical graph theory
has a wide range of applications, including mathematical
chemistry, quantization of structure-activity relationships
(QSARs), and research into closeness diversity in subatomic
libraries [1].

A graph is composed of vertices (nodes or points) that
are connected by edges (arcs or lines). A graph may be
directed (proper direction from one vertex to another vertex
within an edge) or undirected (no di�erence between ver-
tices and edges). Amolecular graph is considered simple and
connected, which deals with bonds and atoms by displaying
their edges and vertices. �e number of vertices that are
connected to the �xed vertex is known as the degree of a
vertex. In a simple graph, no multiple edges or loops exist.
For example, the idea of valence electrons in chemistry is

very close to the degree of vertices in graph theory. For more
information about graph theory, see [2].

Chemical graph theory has wide application in chemistry
and drug design. Graph theory is a very fascinating and unique
subject in discrete mathematics and has many applications in
real life [3–6]. In this paper, V denotes the set of vertices and E
belongs to the set of edges. Topological indices can also be
known as connectivity indices and are molecular descriptors
that are computed using molecular graphs of chemical com-
pounds in chemical graph theory and mathematical chemistry
[7–10]. �e topological indices play an important role in
theoretical chemistry. Many topological indices are based upon
the degree of a vertex in a chemical graph. Topological indices
are used to understand and develop the mathematical prop-
erties of real-world network models.

�e idea of topological indices was introduced by
Wiener [11] when he was approximating the boiling points
of alkanes in 1947. He introduced the �rst topological index,
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namely the Wiener index. )e most commonly used to-
pological indices are theWiener, Randic, and Zagreb indices
[12–14]. )e number of topological indices defined so far is
more than 140, but these are insufficient for understanding
the physicochemical properties of molecules. Chemical
structure and biological activity of molecules are correlated
when using topological indices to develop quantitative
structure-activity relationships (QSARs) [15–18].

In 1891, Edward Goodrich Acheson prepared silicon
carbide artificially from silica and carbon while he was
working on the production of artificial diamonds. As a
nontoxic and inexpensive compound with unlimited re-
sources, silicon has superior properties over other
semiconductors.

In computer and electronic devices, silicon is an extensively
used compound as a semiconductor and it was assumed to be
one of the hardest materials till 1929. SiC has a covalent bond
between silicon and carbon. Silicon carbide has a very short
bond length and a very high melting point. It has strong co-
valent bonds. It also has extremely high mechanical and
chemical stability [19, 20]. Due to these properties, it is the
backbone of almost all modern electronic gadgets. )e most
decent 2D structure of a silicon carbide monolayer with dif-
ferent stoichiometric parts was predicted in references [21, 22].
It is also used in optics because of its high mechanical quality
and matchless electronic conductivity.

A large number of articles have been published on the
importance of topological indices. Mahboob et al. have
proposed many papers on the topological indices of silicon
structure. In their article, they used many approaches to find
the physical and chemical properties of different isomers of
silicon carbide [23–25].

2. Preliminaries

Suppose G be a simple graph with V(G) and E(G) as sets of
nodes and links, respectively. If two nodes u and ] of a graph
G are connected by a line said to be an edge denoted by uυ or
(u, ]). )e number of first neighbors vertices of vertex uϵ V
(G) is its degree and denoted by Ω(u).

(1) A new index namely the generalization of the Zagreb
index [26] is defined as

Mα,β(G) � 􏽘
uυεE(G)

(Ω(u) ×Ω(υ))
α

(Ω(u) +Ω(υ))
β, (1)

where α and β are arbitrary real numbers.
(2) )e same index was determined under the name,

second Gourava index [27], obtained as a special case
of generalized Zagreb index Ma,b [28].

Ma,b � Ma,b(G) � 􏽘
uυεE(G)

Ω(u)
a

×Ω(υ)
b

+Ω(u)
a

×Ω(υ)
b

􏽨 􏽩.

(2)

(3) )e concept of the F-index was proposed byFurtula
and Gutman [29]. Ghebadi and Gborbani [30]
invented the notion of Hyper F-index/first Hyper
F-index as

HF1(G) � 􏽘
uυεE(G)

Ω(u)
2

+Ω(υ)
2

􏼐 􏼑
2
. (3)

(4) Kulli [31] discussed the Hyper F-indices. )e second
Hyper Forgotten index of the graph G is mathe-
matically stated as

HF2(G) � 􏽘
uυεE(G)

Ω(u)
2

×Ω(υ)
2

􏼐 􏼑
2
. (4)

(5) )e notion of sum and product connectivity F-index
of a graph G is computed as

SF(G) � 􏽘
uυεE(G)

1
�������������

Ω(u)
2

+Ω(υ)
2

􏽱 , (5)

PF(G) � 􏽘
uυεE(G)

1
�������������

Ω(u)
2

×Ω(υ)
2

􏽱 . (6)

Wang et al. [32] applied these indices to the silicon
structures to understand the characteristics of these
compounds.

2.1. Various Methods. By combinatorial and computing
rules (a method to count possible outcomes in a symmetrical
structure), edge partition (a division of edges according to
different degrees), vertex partition, graph-theoretical tools,
degree counting method, and the sum of the degree of
neighbors method. MATLAB and Maple are mathematical
software used for mathematical calculations and plotting
results (plotting).

3. Mathematical Modeling

)e topological index is a numerical function that tells us
about the different properties of chemical structures without
any laboratory experiment. )e term “topological index”
was introduced by Harry Wiener in 1947 when he was
estimating the boiling of paraffin [11]. )e W-index is a
distance-based topological index named “path number” by
Wiener. It is defined as

W � 􏽘
s

u�1
􏽘

s

υ�1
(Ω)uυ. (7)

Example 1. Linear Alkanes.
)e correlation coefficient between the Wiener index

and some alkanes is r� 0.87039, so we can investigate the
boiling points of these alkanes by using the Wiener index. If
the values of r are near zero, then there is no relation be-
tween physical property and a topological index.

Example 2. Octane Isomers.
In 1972, Gutman and Trinajstic studied that the total pi-

electron energy (E) depends upon the sum of squares of the
vertex degrees of the molecular graph (later named the first
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Zagreb index) and thus provides a measure of the branching
of the carbon-atom skeleton [12].

M1(G) � 􏽘
υεV(G)

(Ωυ)
2

� 􏽘
uυεE(G)

(Ωu +Ωυ). (8)

)e sum of cubes of the degree of vertices also has a
relation with pi-electron energy. However, at that time, it
was ignored. In 2015, Furtula and Gutman show its relation
with pi-electron energy and give a name to this index
“Forgotten index” [29]. )e forgotten index significantly
enhances the physiochemical applicability of the first
Zagreb index.

F(G) � 􏽘
υεV(G)

(Ωυ)
3

� 􏽘
uυεE(G)

Ωu
2

+Ωυ2􏼐 􏼑. (9)

A set of data relating to octane consists of the following
values: boiling point, melting point, heat capacities, entropy,
density, the heat of vaporization, enthalpy of formation,
motor octane number, molar refraction, acentric factor, total
surface area, octanol-water partition coefficient, and molar
volume. We correlated the F-index with each of these
properties and compared the results with those obtained
from using the first Zagreb index. )e F-index is found to be
quite similar to M1 in terms of its predictive ability. In the
case of entropy and acentric factor, both M1 and F yield
correlation coefficients greater than r� 0.95. On the other
hand, for other physicochemical properties, neither M1 nor
F is satisfactorily correlated.

Example 3. Asthma Drugs.
)e forgotten index has a relation to both the 1st and

2nd Zagreb index. So, it is useful to find all those properties
that can be determined by Zagreb indices. )e correlation
coefficient for the Asthma drugs is given in Table 1.

Silicon carbide is a very useful compound for automobile
parts, electric systems, electronic circuits, astronomy, thin
filament pyrometer, heating elements, jewelry, and steel
production. So, the structure of silicon is very important.
Topological indices help to understand the deep study of the
structure of silicon.

We can find the boiling points, molar mass, enthalpy
of formation, enthalpy of combustion, density, log p,
melting point, flash point, and eccentric factor with the
help of the correlation coefficient between the index and
physical property as we have computed above for some
alkanes in Table 2.

4. Structural Information about SiC4 − I[r, s]

)e 2D structure of silicon carbide SiC4 − I[r, s] is displayed,
where carbon (C) atoms are brown and silicon (Si) atoms are
blue.

)e chemical graph (Figures 1(a) and 1(b), 2(a) and 2(b))
indicates how unit cells connect each other to get more
columns and rows which enhance physical development of
the structure SiC4–I[r, s] with different orders. )e simple
procedure of constructing chemical structures consists of
increasing row length by connecting the unit cells in the “r”
direction, while increasing row height by increasing the unit
cells in the “s” direction. In Figure 1(a), the unit provides a
basic building block of the structure while the complex
molecular graph where “r” cells connected through a row
and “s” rows in which every row consists of “r” cells has been
shown (Figure. 1(b)). In Figures. 2(a) and 2(b), a single row
or chain of unit cells with connection of two rows of the
SiC4–I[r, s] is shown.Consequently, cardinality of nodes and
links in SiC4−I[r, s] are |V (SiC4−I[r, s])|� 10rs and |E
(SiC4−I[r, s])|� 15rs− 5r− 2s + 5, respectively.

5. Fundamental Outcomes for Silicon
Carbide (SiC4 − I[r, s])

In this section, we calculate the fixed Tis, namely, the
generalization of Z-indices, 1st and 2nd Hyper F-indices, the
sum connectivity of F-indices, and the product connectivity
of F-indices graph of SiC4−I[r, s].

In order to compute our indices, we use different order
structures of SiC4−I[r, s].

Theorem 1. Suppose (SiC4 − I[r, s]) is an isomer of silicon
carbides, then,

Mα,β SiC4 − I[r, s]( 􏼁 � 9α ×
15rs–10r–8s + 5

6β
+ 6α

×
2r + 4s–2

5β
+ 3α ×

2r + 2
4β

+(r + 2s − 2) × 4α− β
+ 2 ×

2α

3β
,

(10a)

Ma,b SiC4 − I[r, s]( 􏼁 � (2r + 4s − 2) × 2a
× 3b

+ 2a
× 3b

􏼐 􏼑

+(30rs − 20r − 16s + 10) × 3a+b

+(2r + 4s − 4) × 2a+b
+(2r − 2)

× 3a
×1b

+3a
× 1b

􏼐 􏼑 + 2 × 2a
+ 2 × 1b

.

(10b)

Table 1: )e correlation coefficient between BP and W-index.

Name of alkane Boiling point
in celsius Wiener index

Methane −162 0
Ethane −89 1
Propane −42 4
n-Butane 0 10
n-Pentane 36 20
n-Hexane 69 35
n-Heptane 98 56

Table 2: )e correlation coefficient for the Asthma drugs.

Index Boiling Points Enthalpy
M1 (G) 0.97 0.963
M2 (G) 0.966 0.959
F (G) 0.944 0.936
SC (G) 0.971 0.964
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Proof. Since silicon carbide SiC4−I[r, s] has total number of
nodes 10rs and links 15rs − 5r − 32s + 5, from Figures 1 and
2, we see nodes are divided into the following three parti-
tions by degree partition of vertices.

V1 �
υεV SiC4 − I[r, s]( 􏼁

Ω(υ) � 1
􏼨 􏼩,

V2 �
υεV SiC4 − I[r, s]( 􏼁

Ω(υ) � 2
􏼨 􏼩,

V3 �
υεV SiC4 − I[r, s]( 􏼁

Ω(υ) � 3
􏼨 􏼩.

(11)

)e division of edges is as follows:

E1 �
e � uυεE SiC4 − I[r, s]( 􏼁

Ω(u) � 2 an dΩ(υ) � 1
􏼨 􏼩,

E2 �
e � uυεE SiC4 − I[r, s]( 􏼁

Ω(u) � 3 an d Ω(υ) � 1
􏼨 􏼩,

E3 �
e � uυεE SiC4 − I[r, s]( 􏼁

Ω(u) � 2 an d Ω(υ) � 2
􏼨 􏼩,

E4 �
e � uυεE SiC4 − I[r, s]( 􏼁

Ω(u) � 2 an d Ω(υ) � 3
􏼨 􏼩,

E5 �
e � uυεE SiC4 − I[r, s]( 􏼁

Ω(u) � 3 an d Ω(υ) � 3
􏼨 􏼩.

(12)

(a) (b)

Figure 1: (a) contains unit cell of SiC3 − I[r, s] and (b) contains SiC3 − I[3, 3], for r � 3, s � 3.

(a) (b)

Figure 2: (a) contains a single row of silicon structure SiC4–I[3,1] with one row where r� 3and s� 1 and (b) contains two rows of silicon
structure SiC4 − I[3, 2] connected by red lines (edges).
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In the graph of SiC4 − I[r, s], we compute |E1|� 2, |E2|�
2r+2, |E3|� r+2s− 2, |E4|� 2r + 4s – 2, and |E5|� 15rs – 10r –
8s + 5. )e total numbers of edges with respect to their
degree are given in Table 3.

Generalized Zagreb index Mα,β (SiC4 – I[r, s]): the
generalized Z-index for the silicon structure is determined as

Mα,β SiC4 − I[r, s]( 􏼁 � 􏽘
uυεE(G)

(Ω(u) ×Ω(υ))
α

(Ω(u) +Ω(υ))
β

� 2 ×
(2 × 1)

α

(2 + 1)
β +(2r + 2) ×

(3 × 1)
α

(3 + 1)
β +(r + 2s − 2) ×

(2 × 2)
α

(2 + 2)
β

+(2r + 4s − 2) ×
(2 × 3)

α

(2 + 3)
β +(15rs − 10r − 8s + 5) ×

(3 × 3)
α

(3 + 3)
β

�
9α

6β
×(15rs − 10r − 8s + 5) +

6α

5β
×(2r + 4s − 2) +

3α

4β
×(2r+)

+(r + 2s − 2) × 4α− β
+ 2 ×

2α

3β
.

(13)

Generalized Zagreb index Mr,s(SiC4 − I[r, s]): by the
statement of generalized Z-index of SiC4 – I[r, s], we have

Ma,b � Ma, b SiC4 − I[r, s]( 􏼁 � 􏽘
uυεE(G)

Ω(u)
a

× Ω(υ)
b

+ Ω(u)
b

×Ω(υ)
a

􏽨 􏽩

Ma, b SiC4 − I[r, s]( 􏼁 � 2 × 2a
× 1b

+ 2b
× 1a

􏼐 􏼑 +(2r + 2) × 3a
× 1b

+ 3b
× 1a

􏼐 􏼑

+(r + 2s − 2) × 2a
× 2b

+ 2b
× 2a

􏼐 􏼑 +(2r + 4s − 2) × 2r
× 3s

+ 2s
× 3r

( 􏼁

+(15rs − 10r − 8s + 5) × 3a
× 3b

+ 3b
× 3a

􏼐 􏼑

Ma,b � (2r + 4s − 2) × 2r
× 3s

+ 2s
× 3r

( 􏼁 +(30rs − 20r − 16s + 10) × 3s+r
+(2r + 4s − 4)

× 2a+b
+(2r + 2) × 3a

× 1b
+ 3b

× 1a
􏼐 􏼑 + 2 × 2a

+ 2 × 1b
.

(14)

□
Theorem 2. Let SiC4 – I[r, s] be the silicon carbide, then, the
1st hyper F-index is as

HF1(SiC4 − I[r, s])� 4860rs – 2638r – 1788s + 1004,
HF2(SiC4 − I[r, s])� 98415rs – 62600r – 46792s + 29751.

Proof. First hyper F-index HF1 (SiC4–I[r, s]): the cardi-
nality of links and nodes are 10rs and 15rs – 5r – 2s + 5,
respectively. By the definition of the first hyper F-index of
SiC4–I [r, s], we have

HF1 SiC4 − I[r, s]( 􏼁 � 􏽘
uυεE(G)

Ω(u)
2

+Ω(υ)
2

􏼐 􏼑
2

� 2 × 22 + 12􏼐 􏼑
2

+(2r − 2) × 32 + 12􏼐 􏼑
2

+(r + 2s − 2) × 22 + 22􏼐 􏼑
2

+(2r + 4s − 2) × 22 + 32􏼐 􏼑
2

+(15rs − 10r − 8s + 5) × 22 + 22􏼐 􏼑
2

� 4860rs − 2638r − 1788s + 1004.

(15)

Table 3: Edge division of SiC4 − I[r, s].

Edges (Ω(u), Ω(υ)) Frequency
E1 (1, 2) 2
E2 (3, 1) 2r+ 2
E3 (2, 2) r+ 2s – 2
E4 (3, 2) 2r+ 4s – 2
E5 (3, 3) 15rs− 10r− 8s + 5
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Second hyper F-index HF2 (SiC4–I[r, s]): from the
statement of the second hyper F-index of SiC4 – I[r, s] as
HF2 SiC4 − I[r, s]( 􏼁( 􏼁 � 􏽘

uυεE(G)

Ω(u)
2

×Ω(υ)
2

􏼐 􏼑
2

� 2 × 22 × 12􏼐 􏼑
2

+(2r − 2)

× 32 × 12􏼐 􏼑
2

+(r + 2s − 2)

× 22 × 2􏼐 􏼑
2

+(2rs + 4r − 2) × 22 × 32􏼐 􏼑
2

+(15rs − 10r − 8s + 5) × 32 × 12􏼐 􏼑
2

HF2 SiC4 − I[r, s]( 􏼁( 􏼁 � 8415rs − 62600r

− 46792s + 2957,

(16)

which is required result. □

Theorem 3. Suppose we have silicon carbide of type SiC4–I
[r, s], then S-connectivity and P-connectivity F-indices are
stated as

SF SiC4 − I[r, s]( 􏼁 �
�
2

√
×

5
2

rs −
5
3

r −
4
3

s +
5
6

􏼒 􏼓

+
��
13

√
×

(2r + 4s − 2)

13
+

�
2

√

×
r

4
+

s

2
−
1
2

􏼒 􏼓 +
��
10

√
×

r

5
−
1
5

􏼒 􏼓 +
�
5

√
×
2
5

PF SiC4 − I[r, s]( 􏼁 �
5
3

rs +
5
36

r +
5
18

s +
1
18

.

(17)
Proof. Sum connectivity F-Index (SiC4 − I[r, s]). We have
computed the graph of SiC4 − I[r, s] has 10rs vertices and
15rs – 5r – 2s + 5 edges. So, the sum connectivity F-Index of
SiC4 − I[r, s] is

SF(G) � 􏽘
uυεE(G)

1
�������������

Ω(u)
2

+Ω(υ)
2

􏽱

� 2 ×
1

������
22 + 12

􏽰 +(2r − 2) ×
1

������
32 + 12

􏽰 +(r + 2s − 2)

×
1

������
22 + 22

􏽰 +(2r + 4s − 2)

×
1

������
22 + 32

􏽰 +(15rs − 10r − 8s + 5)

SF �
�
2

√
×

5
2

rs −
5
3

r −
4
3

s +
5
6

􏼒 􏼓 +
��
13

√ (2r + 4s − 2)

13

+
�
2

√
×

r

4
+

s

2
−
1
2

􏼒 􏼓 +
��
10

√

SF �
�
2

√
×

5
2

rs −
5
3

r −
4
3

s +
5
6

􏼒 􏼓 +
��
13

√ (2r + 4s − 2)

13

+
�
2

√
×

r

4
+

s

2
−
1
2

􏼒 􏼓 +
��
10

√

×
r

5
−
1
5

􏼒 􏼓 +
�
5

√
×
2
5
.

(18)

Product connectivity F-Index (SiC4 − I[r, s]): P-con-
nectivity F-Index for (SiC4 − I[r, s]) is as follows:

PF(G) � 􏽘
uυεE(G)

1
�������������

Ω(u)
2

×Ω(υ)
2

􏽱

� 2 ×
1

������
22 × 12

􏽰 +(2r − 2) ×
1

������
32 × 12

􏽰 +(r + 2s − 2)

×
1

������
22 × 22

􏽰 +(2r + 4s − 2)

×
1

������
22 × 32

􏽰 +(15rs − 10r − 8s + 5)

PF �
5
3

rs +
5
36

r +
5
18

s +
1
18

.

(19)

(a) Graphical analysis for SiC4–I[r, s]
We compare the topological indices graphically and

check out their relations and properties. )e graphical
representation of SiC4–I[r, s] for r� 1,2,3,. . ., 10 and
s� 1,2,3,. . ., 10 is given in Figures 3(a), 3(b), 3(c), and
3(d). □

6. Structural Information about SiC4-II[r, s]

)e 2D molecular structures of SiC4−II[r, s] are given in
Figures 4 and 5, respectively.Chemical building blocks are built
from unit cells, which are the basis of all chemical structures. If
we attach the unit cells in “r” direction, then it increases the
length of row, while if it increases unit cell in “s” style, then it
enhances the number of rows. )e quantity of nodes and links
in SiC4−II[r, s] are represented as |V(SiC4 − II[r, s])| � 10rs,
|E(SiC4 − II[r, s])| � 15rs− 4r − 2s.

7. Result for Silicon Carbon (SiC4–II[r, s])

In this section, we compute the six TIs: the generalization of
the Z-index, the first hyper F-index, the second hyper
F-index, the S-connectivity, and the P-connectivity F-in-
dices. TIs help to find the different properties of chemical
products, such as melting and boiling points, the bond
length of structure, bond strength, and nature of bonds.
Chemical graph theory is the branch of graph theory in
which the structures and shapes of chemicals are examined
by graphs. )ese methods can save time and money on
laboratory experiments. We can also predict the large silicon
carbides.

Theorem 4. Consider SiC4–II[r, s] be the silicon carbide.
Ben, the generalization of the Z-index are given as follows:
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(a) (b)

Figure 4: Two-dimensional structure of SiC4−II[r, s]. (a) a unit cell of SiC4−II[r, s]. (b) SiC4−II[r, s] for r� 3, s� 3.

(a) (b)

Figure 5: Two-dimensional structure of SiC4−II[r, s]. (a) SiC4–II[r, s], one row with r� 4 and s� 1. (b) SiC4−II[r, s] for r� 4, s� 2.
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Figure 3: (a) First hyper F-index (HF1) SiC4–I[r, s]. (b) Second hyper F-index (HF2) SiC4–I[r, s]. (c) S-connectivity F-index SiC4 – I[r, s].
(d) P-connectivity F-index SiC4–I[r, s].
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Mα,β SiC4 − II[r, s]( 􏼁 � 9α ×
15rs–18r–10s + 10

6β

+ 6α ×
12r + 8s–14

5β

+(2r + 2) × 4α− β
+ 2 ×

2α

3β

Mr,s SiC4 − II[r, s]( 􏼁 � (12r + 8s − 14) × 2a
× 3b

+ 2b
× 3a

􏼐 􏼑

+(30rs − 36r − 20s + 20)

× 3a+b
+(4r + 4) × 2a+b

+ 2 × 1a
+ 2 × 2b

.

(20)

Proof. Suppose SiC4–II[r, s] be the silicon carbide and by the
2D graph, it contains total nodes 10rs and links 15rs – 4r – 2s.
)en, by partitioning of SiC4–II[r, s] with respect to the
degree vertices by using degree computing method, these
partitions are

V1 �
υεV SiC4 − II[r, s]( 􏼁

Ω(υ) � 1
􏼨 􏼩,

V2 �
υεV SiC4 − II[r, s]( 􏼁

Ω(υ) � 2
􏼨 􏼩,

V3 �
υεV SiC4 − II[r, s]( 􏼁

Ω(υ) � 3
􏼨 􏼩.

(21)

)e edges division is defined as

E1 �
e � E SiC4 − II[r, s]( 􏼁

Ω(u) � 1 an dΩ(υ) � 2
􏼨 􏼩,

E1 �
e � E SiC4 − II[r, s]( 􏼁

Ω(u) � 1 andΩ(υ) � 2
􏼨 􏼩,

E1 �
e � E SiC4 − II[r, s]( 􏼁

Ω(u) � 1 andΩ(υ) � 2
􏼨 􏼩,

E1 �
e � E SiC4 − II[r, s]( 􏼁

Ω(u) � 1 andΩ(υ) � 2
􏼨 􏼩.

(22)

)e total numbers of edges with respect to their degree
are given in Table 4.

)e 2D molecular structure of SiC4–II[r, s] contains 4
types of degree base divisions denoted by E1, E2, E3, and E4,
and the quantity of these edges is given in Table 4.

Generalized Zagreb index Mα,β(SiC4–II[r, s]) is as
follows:

Mα,β SiC4 − II[r, s]( 􏼁 � 􏽘
uυεE(G)

(Ω(u) ×Ω(υ))
α

(Ω(u) +Ω(υ))
β

Mα,β SiC4 − II[r, s]( 􏼁 � 2 ×
(1 × 2)

α

(1 + 2)
β +(2r + 2) ×

(2 × 2)
α

(2 + 2)
β

+(12r + 8s − 2) ×
(2 × 3)

α

(2 + 3)
β

+(15rs − 10s − 18r + 10) ×
(3 × 3)

α

(3 + 3)
β

� 9α ×
15rs − 18r − 10s + 10

6β
+ 6α

×
12r + 8s − 14

5β
+(2r + 2)

× 4α− β
+ 2 ×

2α

3β
.

(23)

Generalization of Zagreb index Ma,b(SiC4 − II[r, s]) is
as follows:

Ma, b SiC4 − II[r, s]( 􏼁 � 􏽘
uυεE(G)

Ω(u)
a

×Ω(υ)
b

+Ω(u)
b

×Ω(υ)
a

􏽨 􏽩

� 2 ×(1a × 2b + 1b × 2a) +(2r + 2)

×(2a × 2b + 2b × 2a)

+(21r + 8s − 14) ×(2a × 3b + 2b × 3a)

+(15rs − 10s − 18r + 10)

×(3a × 3b + 3b × 3a)

� (12r + 8s − 14) ×(2a × 3b + 2b × 3a)

+(30rs − 20s − 36r + 20)

× 3a + b +(4r + 4)

× 2a + b + 2 × 1a + 2 × 2b.

(24)

□

Theorem 5. Suppose SiC4–II[r, s] be the silicon carbide; then,
HF1(SiC4−II[r, s])� 4860rs – 3676r− 1888s + 1052,

HF2(SiC4 − II[r, s])� 98415rs – 10203r – 55242s + 48010.

Table 4: Edge partition of SiC4 − II[r, s].

Edges (Ω(u), Ω(υ)) Frequency
E1 (1, 2) 2
E2 (2, 2) 2r+ 2
E3 (2, 3) 12r+ 8s – 14
E4 (3, 3) 15rs – 10s – 18r + 10
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Proof. �e graph of SiC4–II[r, s] contains 10rs nodes and
15rs – 4r – 2s links.

First Hyper F-index HF1(SiC4–II[r, s]): by the statement
of 1st hyper F-index,

HF1 SiC4 − II[r, s]( ) � ∑
uυεE(G)
Ω(u)2 +Ω(υ)2( )

2

2 ×(12 + 22)2 +(2r + 2)

×(22 + 22) +(12r + 8s − 14)

×(22 + 32)2

+(15rs − 10s − 18r + 10)

×(32 + 32)2

� 460rs − 3676r − 1888s + 1052.
(25)

Second Hyper F-index HF2(SiC4 – II[r, s]): by the
statement of 2nd hyper F-index,

HF2 SiC4 − II[r, s]( )( ) � ∑
uυεE(G)
Ω(u)2 ×Ω(υ)2( )

2

2 ×(12 × 22)2 +(2r + 2)
×(22 × 22) +(12r + 8s − 14)
×(22 × 32)2 +(15rs − 10s

− 18r + 10) ×(32 × 32)2414
+(15rs − 10s − 18r + 10)
×(32 × 32)2

HF2 SiC4 − II[r, s]( ) � 98415rs − 102034r

− 55242s + 48010,
(26)

which is required result. □

Theorem 6. SiC4–II[r, s] is the silicon carbide that we are
going to discuss. �e sum connectivity and product connec-
tivity indices are
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Figure 6: (a)HF1 (SiC4–II[r, s]), (b) HF2 (SiC4 – II[r, s]), (c) Sum connectivity F-index SiC4–II[r, s], and (d) Product Connectivity F-index
SiC4 – II[r, s].
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SF SiC4 − II[r, s]( 􏼁 �
�
2

√
×

5
2

rs −
5
3

r − 3s +
5
3

􏼒 􏼓

+
��
13

√
×

(12r + 8s − 14)

13

+
�
2

√
×

r

2
+
1
2

􏼒 􏼓 +
�
5

√
×
2
5

PF SiC4 − II[r, s]( 􏼁 �
5
3

rs +
5
2

r +
2
9

s +
5
18

.

(27)

Proof. By construction of the 2Dmolecular graph for silicon
carbide. )e graph of SiC4–II[r, s] contains 10rs vertices and
15rs – 4r – 2s edges.

Sum connectivity F-index SF(SiC4 – II[r, s]) is as follows:

SF(G) � 􏽘
uυεE(G)

1
�������������

Ω(u)
2

+Ω(υ)
2

􏽱

SF(�G) � 2 ×
1

������
12 + 22

􏽰 +(2r + 2) ×
1

������
22 + 22

􏽰

+(12r + 8s − 14) ×
1

������
22 + 32

􏽰

+(15rs − 10s − 18r + 10) ×
1

������
32 + 32

􏽰

SF(�G) �
�
2

√
×

5
2

rs −
5
3

r − 3s +
5
3

􏼒 􏼓 +
��
13

√

×
(12r + 8s − 14)

13
+

�
2

√
×

r

2
+
1
2

􏼒 􏼓 +
�
5

√
×
2
5
.

(28)

Product connectivity F-index PF(SiC4–II[r, s]): using
product connectivity F-Index for SiC4 − II[r, s], we have

PF(G) � 􏽘
uυεE(G)

1
�������������

Ω(u)
2

×Ω(υ)
2

􏽱

� 2 ×
1

������
12 × 22

􏽰 +(2r + 2) ×
1

������
22 × 22

􏽰

+(12r + 8s − 14) ×
1

������
22 × 32

􏽰

+(15rs − 10s − 18r + 10) ×
1

������
32 × 32

􏽰

PF(�G) �
5
3

rs +
5
2

r +
2
9

s +
5
18

.

(29)

Graphical analysis for (SiC4–II[r, s]): for a particular
estimate in parameters “r” and “s” (see Figure 6(a), 6(b),
6(c), and 6(d)) yields the graphical representations of reg-
istered results about the generalization of first and second
hyper F-indices and the sum and product connectivity
F-indices of the silicon carbide SiC4–II[r, s]. □

8. Conclusion

When some graph parameters are introduced in establishing
appropriate bounds among some indices, it reveals a
common challenge in the study of topological indices. )e
topological indices used in this article give us information
about the different important properties of silicon carbide.
Due to the great demand and usefulness of silicon carbide in
the field of electronics, we try to explore different properties
of this semiconductor with the help of mathematical for-
mulae. We get a very good correlation of indices with the
properties of silicon carbide. We estimated the behavior of
silicon without performing any lab experiments. As a
consequence effect of these topological indices, we compute,
the generalization of Zagreb index, the first and second
hyper F-index, and the sum and product connectivity
F-index graphs of the silicon carbides SiC4–I[r, s] and SiC4-II
[r, s].
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