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A B S T R A C T

This article presents an innovative model called Additive Trinomial Fré chet (ATF) distribution using six
parameters. The indicated model is worthy of modeling survival data with a non-monotonic hazard rate.
The statistical characteristics of ATF model such as probability generating function, Renyi, Shannon, Tsallis
and Mathai–Houbold entropy, quantile function, order statistics, maximum likelihood estimation, factorial and
characteristic function, moment generating function, Stress-Strength analysis are thoroughly discussed. The
effectiveness of suggested model is demonstrated by the use of a data set from real life. The suggested model
has demonstrated better performance and fits the data used superior than other significant counterparts.
Introduction

A very well-known approach in the literature is the procedure of
extending models by adding flexibility or to form covariate models.
In several applied sciences such as engineering, medicine, and finance,
the modeling and interpretation of survival data is significant. Several
models of lifetime were utilized to model these types of data. The
accuracy of the methods for use of a statistical study is highly based on
the conjecture probability distributions. Due to this, significant effort
was put into developing broad classes of standard models of probability
along by means of appropriate statistical methods. Nevertheless, there
are some big complications where data does not fit either the classical
or normal probability distributions. In theory of extreme value, Fréchet
distribution is one of main models used for the data on rainfall, sea
wave dynamics, wind speed, earthquakes, queues, floods, horse racing
and track race records. More information about the Fréchet model and
its usages were discussed in [1].

Many modifications of the Fréchet model have recently been exam-
ined. The exponentiated Fréchet [2], beta Fréchet [3,4], transmuted
Fr échet [5], gamma extended Fréchet [6], Marshall–Olkin Fréchet
[7], Kumaraswamy Fréchet [8], transmuted Marshall–Olkin Fréchet
(TMOF) [9], Transmuted exponentiated generalized Fréchet [10],
Weibull Fr échet [11], transmuted exponentiated Fréchet [12], Bur X
Fréchet [13] and beta exponential Fréchet [14] models.

The amount of uncertainty corresponding to a random variable is
described by entropy. Theory of knowledge has mathematical roots
in entropy-related notion of statistical mechanics and thermodynamic.
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In [15], Hartley introduced concepts of information theory in engi-
neering and to this purpose the theory of information was taken as
a branch of theory of communication. Shannon [16] then introduced
entropy’s mathematical concept and succeeded in evaluating chan-
nel’s capacity to transmit numerical knowledge utilizing sources of
information. To strengthen his effort on theory of information, other
researchers reached at the entropy in Shannon by looking at different
characteristics. For example, one may study that in Refs. [16–22].

Various modifications of Shannon entropy, like Renyi [23], Harvda
Charvat [24], and Tsallis [25] entropy, involving special case (Shannon
entropy (SE)), were introduced after 1948. Campbell [26] and Koski
and Persson [27] introduced the other measures known as exponential
entropy and generalized exponential entropy (GEE). Renyi and Tsallis
entropies converge on Shannon entropy. GEE can be correlated with
a generalized variant of RE (Renyi entropy), GRE (generalized Renyi
entropy), and GEE converging into SE.

Motivated by the above literature, here we adding a new improve-
ment to the Fr échet model by describing the Fréchet model cumulative
distribution with three Fréchet model combination. The new proposed
Fréchet model is named as “Additive Trinomial Frechet (ATF) distri-
bution.” The suggested six parameters model is more flexible than
the Fréchet model. Here we calculate the uncertainty measures that
are entropies such as Shannon, Renyi, Tsallis and Mathai–Houbold
entropy according to our proposed model ATF. Furthermore, hazard
rate function (HRF) its characterization and cumulative hazard rate
function (CHRF) are calculated. Besides this conditional moments and
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mean deviations is also discussed. Residual life function with a certain
measure of reliability is also derived. Also we calculate some other
statistical attributes of the ATF model such as probability generating
function, quantile function, order statistics, factorial and characteris-
tics functions, moment generating function, Stress-Strength analysis,
Stochastic Ordering, Non-central moments, generating function (GF)
and maximum likelihood estimation,. The representation of pdf, cdf,
cumulative cdf, quantile, median, skewness and kurtosis are examined
graphically.

We implement one real-life data set for comparisons to demonstrate
that model being proposed offers a better fit than other models includ-
ing additive binomial Frechet distribution and Frechet distribution.

The additive trinomial Fréchet distribution

The Fréchet model is an unique type of extended extreme value
model, a family of continuous models which takes into account the
Weibull, Fré chet and Gumbel models often recognized as extreme
value models. The cumulative distribution (CDF) function is presented
by

 ( 𝑦| 𝜉, 𝜓) = exp {−𝜉𝑦−𝜓} 𝑦, 𝜉, 𝜓 > 0

xtrapolating distributions is an common method, which has often been
ound as important in statistical field. The current era of distribution
heory emphasizes the problem solving faced by practical investigators
o develop a variety of distributions so that data that are available in
arious areas of life can be properly analyzed and explored. In certain
ays, there is an evident need to create practical models to explore the

eal-life occurrences properly. Lai et al. [21] efficiently characterized
he modified Weibull distribution by three parameters by taking rea-
onable limits on the integrated beta models. It is therefore achieved
y expanding Weibull model by using added term exp (−𝜐𝑦) to reduce

the survival function more efficiently. In this study, we introduce a new
update to the Frechet distribution by describing the Frechet cumulative
distribution based on a combination of three Frechet distributions. We
research the ATF distribution by strengthening the CDF of Frechet
model to the format


(

𝑦| 𝜉1, 𝜉2, 𝜉3, 𝜓1, 𝜓2, 𝜓3
)

= exp
{

−
(

𝜉1𝑦
−𝜓1 + 𝜉2𝑦−𝜓2 + 𝜉3𝑦−𝜓3

)}

,

 ( 𝑦| 𝝃,𝝍) = exp

(

−
3
∑

𝑖=1
𝜉𝑖𝑦

−𝜓𝑖

)

, 𝜉𝑖, 𝜓𝑖 > 0,

𝑖 = 1, 2, 3. (1)

Where the 𝜓𝑖 and 𝜉𝑖, 𝑖 = 1, 2, 3, are parameters for shape and scale. It
is straightforward and obvious to see that  (𝑦) differentiable and rises
strictly in 0 to ∞ and lim𝑦→0  ( 𝑦| 𝝃,𝝍) = 0 and lim𝑦→∞  ( 𝑦| 𝝃,𝝍) = 1.
The respective ATF density is thus to the form

𝑓 ( 𝑦| 𝝃,𝝍) =
{

𝜉1𝜓1𝑦
−(𝜓1+1) + 𝜉2𝜓2𝑦

−(𝜓2+1) + 𝜉3𝜓3𝑦
−(𝜓3+1)

}

exp
{

−
(

𝜉1𝑦
−𝜓1 + 𝜉2𝑦−𝜓2 + 𝜉3𝑦−𝜓3

)}

,

𝑓 ( 𝑦| 𝝃,𝝍) =
3
∑

𝑖=1
𝜓𝑖𝜉𝑖𝑦

−(𝜓𝑖+1) exp

(

−
3
∑

𝑖=1
𝜉𝑖𝑦

−𝜓𝑖

)

, 𝜉𝑖, 𝜓𝑖, > 0,

𝑖 = 1, 2, 3. (2)

Notice that the model of ATF (𝑌 ∼ATF
(

𝜉𝑖, 𝜓𝑖
)

, 𝑖 = 1, 2, 3) is a particular
case of F (𝑌 ∼ATF

(

𝜉1, 𝜓1
)

) if 𝜉2, 𝜉3, 𝜓2, and 𝜓3 = 0.

Reliability function

In general, the reliability paradigm is concerned with assessing a
system’s probability of longevity or failure. The (𝑦) = 𝑃 (𝑌 > 𝑦)
indicates the survival function 𝑌 . The (𝑦) of the ATF is defined by

( 𝑦| 𝝃,𝝍) = 1 − exp
{

−
(

𝜉1𝑦
−𝜓1 + 𝜉2𝑦−𝜓2 + 𝜉3𝑦−𝜓3

)}

,

( 𝑦| 𝝃,𝝍) = 1 − exp

(

−
3
∑

𝜉𝑖𝑦
−𝜓𝑖

)

, 𝜉1, 𝜉2, 𝜉3, 𝜓1, 𝜓2, 𝜓3 > 0. (3)
2

𝑖=1
Hazard rate function

The hrf ℏ( 𝑦| 𝝃,𝝍) = 𝑓 ( 𝑦| 𝝃,𝝍) ∕[1 − ( 𝑦| 𝝃,𝝍)], in lifespan analysis,
it is a highly useful tool. The ℏ( 𝑦| 𝝃,𝝍) of ATF model is

ℏ( 𝑦| 𝝃,𝝍) =

{

𝜉1𝜓1𝑦−(𝜓1+1) + 𝜉2𝜓2𝑦−(𝜓2+1) + 𝜉3𝜓3𝑦−(𝜓3+1)
}

× exp
{

−
∑3
𝑖=1 𝜉𝑖𝑦

−𝜓𝑖
}

1 − exp
{

−
(

𝜉1𝑦−𝜓1 + 𝜉2𝑦−𝜓2 + 𝜉3𝑦−𝜓3
)} ,

𝜉𝑖, 𝜓𝑖 > 0, 𝑖 = 1, 2, 3.

fter little simplification it takes the form

( 𝑦| 𝝃,𝝍) =
∑3
𝑖=1 𝜓𝑖𝜉𝑖𝑦

−(𝜓𝑖+1)

exp
(

∑3
𝑖=1 𝜉𝑖𝑦

−𝜓𝑖
)

− 1
, 𝜉𝑖, 𝜓𝑖 > 0, 𝑖 = 1, 2, 3. (4)

Cumulative Hazard rate function

The CHRF is defined as

𝐻 (𝑦) = ∫

𝑦

0
ℏ( 𝑡| 𝝃,𝝍)𝑑𝑡, (5)

Therefore,

𝐻 (𝑦) = − log
{

1 − exp
{

−
(

𝜉1𝑦
−𝜓1 + 𝜉2𝑦−𝜓2 + 𝜉3𝑦−𝜓3

)}}

,

= log

{

1 − exp

(

−
3
∑

𝑖=1
𝜉𝑖𝑦

−𝜓𝑖

)}−1

. (6)

where ℏ𝑡 (𝑡) is defined in (3) and (4).
Eqs. (1)–(6) can be easily investigated numerically employing com-

puter software like MATLAB, Mathematica, Maple, Minitab, and R. For
selected values of parameter, the plots of (2) and (3) are given in Figs. 1
and 2. Fig. 1 presents how well the parameters 𝜓𝑖, 𝑖 = 1, 2, 3 influence
the density of ATF, as well as the flexibility of the pdf (2) structures,
which can be used to measure skewness, modality, high tails, and little
symmetry. These curves exhibit ATF model’s adaptability. Fig. 2 shows
the increasing-decreasing and inverted U pattern of hrfs. Survival and
cumulative hrf curves are shown in Figs. 3 and 4. We notice that for
modeling positive data, this model is quite flexible.

Characterization based on hazard function

We state the below definition, just for clarity.

Definition 1. Let 𝐹 ( 𝑦| 𝝃,𝝍) be an absolute continuous model with
related pdf 𝑓 ( 𝑦| 𝝃,𝝍) The hazard function referring to 𝐹 ( 𝑦| 𝝃,𝝍) is
efined by ℏ( 𝑦| 𝝃,𝝍)

( 𝑦| .) =
𝑓 ( 𝑦| .)

1 − 𝐹 ( 𝑦| .)
, 𝑆𝑢𝑝𝑝 ∈ 𝐹 . (7)

Here, this is noticeable that the hrf of a twice differentiable distribution
function follows given differential equation of first order

ℏ′ ( 𝑦| .)
ℏ ( 𝑦| .)

− ℏ ( 𝑦| .) = 𝑘1 ( 𝑦| .) , (8)

Where 𝑘1 is a suitable integrable function. Though this differential
equation has a specific form because

𝑓 ′ ( 𝑦| .)
𝑓 ( 𝑦| .)

=
ℏ′ ( 𝑦| .)
ℏ ( 𝑦| .)

− ℎ ( 𝑦| .) . (9)

For several continuous, univariate distributions (7) appears to be
only differential equation in view of the hazard function . The purpose
here is to create a differential equation that has the simplest possible
form and not of the trivial form (8). However that may not be feasible
for certain general distribution families. Here is the consequence of our
characterization for the distribution of ATF distribution.
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Fig. 1. Plots of density curves of ATF at different parameter values.
Proposition 1. Let 𝑌 ∶ 𝜒 → (0,∞) be a continuous r.v. The pdf of 𝑌 is
(2) iff its hazard function ℏ( 𝑦| 𝝃,𝝍) satisfies the differential equation

𝑑ℏ ( 𝑦| 𝝃,𝝍)
𝑑𝑦

−
[

𝜉1𝜓1𝑦−𝜓1−1 + 𝜉2𝜓2𝑦−𝜓2−1 + 𝜉3𝜓3𝑦−𝜓3−1

1 − 𝑒−(𝜉1𝑦−𝜓1+𝜉2𝑦−𝜓2+𝜉3𝑦−𝜓3 )

]

ℎ

= −
𝜉1𝜓1

(

𝜓1 + 1
)

𝑦−𝜓1−2 + 𝜉2𝜓2
(

𝜓2 + 1
)

𝑦−𝜓2−2 + 𝜉3𝜓3
(

𝜓3 + 1
)

𝑦−𝜓3−2

𝑒(𝜉1𝑦−𝜓1+𝜉2𝑦−𝜓2+𝜉3𝑦−𝜓3 ) − 1
. (10)

Proof. ∶ If 𝑌 follows (2), then obviously (8) holds. If ℎ ( 𝑦| 𝝃,𝝍) satisfies
above mention equation, then, after some algebraic calculation, we can
show that

𝑑
𝑑𝑦

[

ℏ
(

1 − 𝑒−(𝜉1𝑦
−𝜓1+𝜉2𝑦−𝜓2+𝜉3𝑦−𝜓3 )

)]

= −
(

𝜉1𝜓1
(

𝜓1 + 1
)

𝑦−𝜓1−2 + 𝜉2𝜓2
(

𝜓2 + 1
)

𝑦−𝜓2−2

+𝜉3𝜓3
(

𝜓3 + 1
)

𝑦−𝜓3−2
)

,

𝑑
𝑑𝑦

[

ℏ
(

1 − 𝑒−(𝜉1𝑦
−𝜓1+𝜉2𝑦−𝜓2+𝜉3𝑦−𝜓3 )

)]

= 𝑑
𝑑𝑦

(

𝜉1𝜓1𝑦
−𝜓1−1 + 𝜉2𝜓2𝑦

−𝜓2−1 + 𝜉3𝜓3𝑦
−𝜓3−1

)

.

Integrating both sides we get

ℏ
(

1 − 𝑒−(𝜉1𝑦
−𝜓1+𝜉2𝑦−𝜓2+𝜉3𝑦−𝜓3 )

)

= 𝜉1𝜓1𝑦
−𝜓1−1 + 𝜉2𝜓2𝑦

−𝜓2−1 + 𝜉3𝜓3𝑦
−𝜓3−1,

ℏ =
𝑓 ( 𝑦| 𝝃,𝝍)

1 − 𝐹 ( 𝑦| 𝝃,𝝍)
=
𝜉1𝜓1𝑦−𝜓1−1 + 𝜉2𝜓2𝑦−𝜓2−1 + 𝜉3𝜓3𝑦−𝜓3−1

(

1 − 𝑒−(𝜉1𝑦−𝜓1+𝜉2𝑦−𝜓2+𝜉3𝑦
−𝜓3 )

) . (11)
3

Integrating both sides of (11) with respect to 𝑦 from 0 to 𝑦 we obtain

− ln (1 − 𝐹 ( 𝑦| 𝝃,𝝍)) = − ln

[

1 − exp

(

−
3
∑

𝑖=1
𝜉𝑖𝑦

−𝜓𝑖

)]

.

Taking antilog on both sides

1 − 𝐹 ( 𝑦| 𝝃,𝝍) = 1 − exp

(

−
3
∑

𝑖=1
𝜉𝑖𝑦

−𝜓𝑖

)

,

and hence

𝐹 ( 𝑦| 𝝃,𝝍) = exp

(

−
3
∑

𝑖=1
𝜉𝑖𝑦

−𝜓𝑖

)

,

from which we arrive at ℏ ( 𝑦| 𝝃,𝝍)

ℏ ( 𝑦| 𝝃,𝝍) =
𝑓 ( 𝑦| 𝝃,𝝍)

1 − 𝐹 ( 𝑦| 𝝃,𝝍)
=

∑3
𝑖=1 𝜉𝑖𝜓𝑖𝑦

−(𝜓𝑖+1)

exp
(

∑3
𝑖=1 𝜉𝑖𝑦

−𝜓𝑖
)

− 1
. □

Order statistics

Let 𝑌(1) ≤ 𝑌(1)... ≤ 𝑌(𝑛) be the order statistics of size 𝑛 from model
(1). Then, for 𝑖 = 1, 2, 3, and 𝑚 = 1, 2,… , 𝑛,the pdf of the 𝑌(𝑚) (𝑚th order
statistic) is

𝑓 𝑦 𝝃,𝝍 = 𝛹 𝑦 𝝃,𝝍 𝑚−1 1 −  𝑦 𝝃,𝝍 𝑛−𝑚 𝑓 𝑦 𝝃,𝝍 , (12)
(𝑚) ( | ) ( | ) { ( | )} ( | )
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Fig. 2. Plots of hrf curves of ATF at different qualities of parameter.
where 𝛹 = 𝑛!
(𝑚−1)!(𝑛−𝑚)! . From (2), (1) and (12) the pdf of 𝑌(𝑚).

𝑓(𝑚) ( 𝑦| 𝝃,𝝍) = 𝛹̂
3
∑

𝑖=1
𝜉𝑖𝜓𝑖𝑦

−(𝜓𝑖+1) exp

{

− (𝑚 + 𝑓 − 1)
3
∑

𝑖=1
𝜉𝑖𝑦

−𝜓𝑖

}

. (13)

where 𝛹̂ = 𝛹
∑𝑛−𝑚
𝑓=0

∑3
𝑖=0

(𝑛−𝑚
𝑓

)

(−1)𝑓 . The cdf of 𝑌(𝑚) results as

(𝑚) ( 𝑦| 𝝃,𝝍) =
𝑛
∑

𝑗=𝑚

(

𝑛
𝑗

)


(

𝑦| 𝜉𝑖, 𝜓𝑖
)𝑗 {1 − 

(

𝑦| 𝜉𝑖, 𝜓𝑖
)}𝑛−𝑗 , (14)

then the cdf of 𝑌(𝑚) is

(𝑚) ( 𝑦| 𝝃,𝝍) =
𝑛
∑

𝑗=𝑚

𝑛−𝑗
∑

𝑔=1

(

𝑛
𝑗

)(

𝑛 − 𝑗
𝑔

)

(−1)𝑔 
(

𝑦| 𝜉𝑖, 𝜓𝑖
)𝑗+𝑔

× exp

{

− (𝑗 + 𝑔)
3
∑

𝑖=1
𝜉𝑖𝑦

−𝜓𝑖

}

.

(15)

Generally, cdfs of 𝑌(𝑛) and 𝑌(1) are obtained as

(𝑛) (𝑦) = 𝐹 𝑛 (𝑦) , (1) (𝑦) = 1 − [1 − 𝐹 (𝑦)]𝑛 ,

(𝑛) ( 𝑦| 𝝃,𝝍) = exp

{

− (𝑛)
3
∑

𝑖=1
𝜉𝑖𝑦

−𝜓𝑖

}

, (16)

(1) ( 𝑦| 𝝃,𝝍) = 1 −
𝑛
∑

(

𝑛
)

(−1)𝑙 exp

{

−𝑙
3
∑

𝜉𝑖𝑦
−𝜓𝑖

}

. (17)
4

𝑙=1 𝑙 𝑖=1
Let (for 0 < 𝜁 < 1) Q(𝑚) (𝜁 ) be qf of 𝑌(𝑚). Eventually from (16) and (17)

Q(𝑛) (𝜁 ) = Q
(

𝜁1∕𝑛
)

, Q(1) (𝑦) = Q
{

1 − [1 − 𝜁 ]1∕𝑛
}

, (18)

where Q (.) is the qf of 𝑌 . Thus, from (24) and (18), the qfs of 𝑌(𝑛)
and 𝑌(1) are not in closed-form. In the case of i.i.d. random values, it
is possible to attain an expression for the 𝑟th ordinary moment of the
order statistics when 𝜇́𝑟 < ∞. So, as [28], we can represent the 𝑟th
moment of the 𝑚th order statistic as

𝜌𝑟(𝑚) = Ę
{

𝑌 𝑟(𝑚)
}

=
𝑛
∑

𝑗=𝑛−𝑚+1

(

𝑗 − 1
𝑛 − 𝑚

)(

𝑛
𝑗

)

(−1)𝑗−𝑛+𝑚−1 Į𝑗 (𝑟) , (19)

where Į𝑗 (𝑟) = 𝑟 ∫ ∞
0 𝑦𝑟−1 [1 −  (𝑦)]𝑗 𝑑𝑦. For the ATF model, we obtain

Proposition 2. Let 𝑌(1) ≤ 𝑌(1)... ≤ 𝑌(𝑛)be the order statistics of a sample
of size 𝑛 from the distribution ATF model.

The next outcome shows the 𝑟th moment of the 𝑌(𝑚) can be described
as

𝜌𝑟(𝑚) = 𝑅̂𝑡,𝑝,𝑞
𝑟𝑡𝑝+𝑞𝜉𝑝2𝜉

𝑞
3𝛤

{(

𝜓2𝑝 + 𝜓3𝑞 − 𝑟
)

∕𝜓1
}

𝜓1𝑝!𝑞!
{

𝑡𝜉1
}{(𝜓2𝑝+𝜓3𝑞−𝑟)∕𝜓1}

. (20)

where 𝕜𝑗,𝑚,𝑛 =
∑𝑛
𝑗=𝑛−𝑚+1 (−1)

𝑗−𝑛+𝑚−1 ( 𝑗−1
𝑛−𝑚

)(𝑛
𝑗

)

and 𝑅̂𝑡,𝑝,𝑞 = 𝕜𝑗,𝑚,𝑛
∑𝑗 ∑∞ ∑∞ (𝑡) −1 𝑡+𝑝+𝑞 .
𝑡=1 𝑝=0 𝑞=0 𝑗 ( )
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Fig. 3. Survival curves of ATF model at different parametric values.
Proof.

𝜌𝑟(𝑚) = Ę
{

𝑌 𝑟(𝑚)
}

=
𝑛
∑

𝑗=𝑛−𝑚+1

(

𝑗 − 1
𝑛 − 𝑚

)(

𝑛
𝑗

)

(−1)𝑗−𝑛+𝑚−1 Į𝑗 (𝑟) ,

Now, consider Į𝑗 (𝑟) = 𝑟 ∫ ∞
0 𝑦𝑟−1 [1 −  (𝑦)]𝑗 𝑑𝑦, where  (𝑦) is in (1). By

incorporating the  (𝑦), we have

Į𝑗 (𝑟) = 𝑟∫

∞

0

𝑗
∑

𝑡=0

(

𝑗
𝑡

)

(−1)𝑡 𝑦𝑟−1 exp
{

−𝑡
(

𝜉1𝑦
−𝜓1 + 𝜉2𝑦−𝜓2 + 𝜉3𝑦−𝜓3

)}

𝑑𝑦,

(21)

Letting 𝑧 = 𝑦−𝜓1 using the result 𝑑𝑦 = −1

𝜓1𝑧
1+ 1

𝜓1

𝑑𝑧 in (21) and after some

algebraic manipulation, we obtain

Į𝑗 (𝑟) = 𝑟
𝑗
∑

𝑡=1

∞
∑

𝑝=0

∞
∑

𝑞=0

(

𝑡
𝑗

)

(−1)𝑡+𝑝+𝑞
𝑡𝑝+𝑞𝜉𝑝2𝜉

𝑞
3

𝜓1𝑝!𝑞!

× ∫

∞

0
𝑧{(𝜓2𝑝+𝜓3𝑞−𝑟)∕𝜓1−1} exp

(

−𝑡𝜉1𝑧
)

𝑑𝑧.

By incorporating the equalities listed above together, the proof of the
proposition is completed. □

Stochastic ordering

For random variables 𝑋 and 𝑌 , we state, 𝑋 ≼𝑙𝑟 𝑌 , if the ratio of
the two respective pdfs a reducing function in 𝑥. An key technique for
analyzing relative behavior is stochastic ordering of continuous positive
5

random variables. It is supposed that random variable 𝑋 is smaller than
random variable 𝑌 in a

(i) stochastic order 𝑋 ≼𝑠𝑡 𝑌 . if 𝐹𝑋 (𝑦) ≼ 𝐹𝑌 (𝑦) for all 𝑦; (ii) hazard
rate order 𝑋 ≼ℎ𝑟 𝑌 if ℎ𝑋 (𝑦) ≽ ℎ𝑌 (𝑦) for all 𝑦; (iii) likelihood ratio (LR)
order 𝑋 ≼𝑙𝑟 𝑌 , if 𝑓𝑋 (𝑦)

𝑓𝑌 (𝑦)
reduces in 𝑦. The following implications are

well-known, as described in [29] chapter 9:

𝑋 ≼𝑙𝑟 𝑌 ⇒ 𝑋 ≼ℎ𝑟 𝑌 ⇒ 𝑋 ≼𝑠𝑡 𝑌 . (22)

The ATF models are ordered with respect to the strongest “LR” ordering
as demonstrated by the next theorem.

Theorem 3. Let 𝑋 ∼ 𝐴𝑇𝐹
(

𝜉1, 𝜉2, 𝜉3, 𝜓1, 𝜓2, 𝜓3
)

, and 𝑌 ∼ 𝐴𝑇𝐹
(

𝜉1, 𝜉2, 𝜉3, 𝜓1, 𝜓2, 𝜓3
)

. Case (𝑖) If 𝜉2 = 𝜉2, 𝜉3 = 𝜉3, and 𝜉1 ≤ 𝜉1, Case
(𝑖𝑖) If 𝜉1 = 𝜉1, 𝜉3 = 𝜉3, and 𝜉2 ≤ 𝜉2, Case (𝑖𝑖𝑖) If 𝜉1 = 𝜉1, 𝜉2 = 𝜉2, and
𝜉3 ≤ 𝜉3, then 𝑋 ≼𝑙𝑟 𝑌

(

𝑋 ≼ℎ𝑟 𝑌 , 𝑋 ≼𝑠𝑡 𝑌
)

in all three cases exits.

Proof. ∶ The LR is
𝑓𝑋 (𝑦)
𝑓𝑌 (𝑦)

= 𝑒𝑦
−𝜓1

(

𝜉1−𝜉1
)

+𝑦−𝜓2
(

𝜉2−𝜉2
)

+𝑦−𝜓3
(

𝜉3−𝜉3
)

𝑦𝛾2𝜓1𝜉1 + 𝑦𝛾3𝜓2𝜉2 + 𝑦𝛾1𝜓3𝜉3

(

𝑦𝛾2𝛾4 + 𝑦𝛾3𝛾5 + 𝑦𝛾1𝛾6
)

, (23)

where 𝛾1 = 𝜓1 + 𝜓2, 𝛾2 = 𝜓2 + 𝜓3, 𝛾3 = 𝜓1 + 𝜓3, 𝛾4 = 𝜓1𝜉1, 𝛾5 = 𝜓2𝜉2,
𝛾6 = 𝜓3𝜉3,

Case (𝑖) Thus if 𝜉2 = 𝜉2, 𝜉3 = 𝜉3, and 𝜉1 ≤ 𝜉1, then

𝑑
𝑑𝑦

[

𝑓𝑋 (𝑦)
𝑓𝑌 (𝑦)

]

= −
𝑒𝑦

−𝜓1
(

𝜉1−𝜉1
)

𝑦−𝜓1−1𝜓1
(

𝜉1 − 𝜉1
)

(

𝑦𝛾2𝜓1𝜉1 + 𝑦𝛾3𝛾5 + 𝑦𝛾1𝛾6
)2

×
[

𝑦2𝛾2𝜉 𝛾 𝜓 + 𝑦𝜓1+𝛾2
(

𝜉 + 𝜉
)

1 4 1 1 1
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Fig. 4. Plots of cumulative hrf curves of ATF model at different parameter values.
𝜓1
(

𝑦𝜓3𝛾5 + 𝑦𝜓2𝛾6
)

+ 𝑦2𝜓1
{

𝑦2𝜓3𝛾25
+𝑦𝛾2𝛾5

(

𝑦𝜓3
(

𝜓2 − 𝜓1
)

+ 2𝛾6
)

+𝑦2𝜓2𝛾6
(

𝛾6 + 𝑦𝜓3
(

𝜓3 − 𝜓1
))}]

≤ 0.

where 𝛾1 = 𝜓1 + 𝜓3, 𝛾1 = 𝜓1 + 𝜓3, As a result, it demonstrates that
𝑋 ≼𝑙𝑟 𝑌 , and in accordance with (22) these both are 𝑋 ≼ℎ𝑟 𝑌 , 𝑋 ≼𝑠𝑡 𝑌
also hold.

Case (𝑖𝑖) Thus if 𝜉1 = 𝜉1, 𝜉3 = 𝜉3, and 𝜉2 ≤ 𝜉2, then

𝑑
𝑑𝑦

[

𝑓𝑋 (𝑦)
𝑓𝑌 (𝑦)

]

= −
𝑒𝑦−𝜓2 (𝜉2−𝜉2)𝑦−𝜓2−1𝜓2

(

𝜉2 − 𝜉2
)

(

𝑦𝛾2 𝛾4 + 𝑦𝛾3𝜓2𝜉2 + 𝑦𝛾1 𝛾6
)2

[

𝑦2𝛾3 𝜉2𝛾5𝜓2 + 𝑦𝜓1+𝛾2
(

𝜉2 + 𝜉2
)

𝜓2
(

𝑦𝜓3 𝛾4 + 𝑦𝜓1 𝛾6
)

+ 𝑦2𝜓2
{

𝑦2𝜓3 𝛾24 + 𝑦𝛾3 𝛾4
(

𝑦𝜓3
(

𝜓1 − 𝜓2
)

+ 2𝛾6
)

+𝑦2𝜓1 𝛾6
(

𝛾6 + 𝑦𝜓3
(

𝜓3 − 𝜓2
))}]

≤ 0.

As a result, it represents that 𝑋 ≼𝑙𝑟 𝑌 , and in accordance with (22) these
𝑋 ≼ℎ𝑟 𝑌 , 𝑋 ≼𝑠𝑡 𝑌 are also hold.

Case (𝑖𝑖𝑖) Thus if 𝜉1 = 𝜉1, 𝜉2 = 𝜉2, and 𝜉3 ≤ 𝜉3, then

𝑑
𝑑𝑦

[

𝑓𝑋 (𝑦)
𝑓𝑌 (𝑦)

]

= −
𝑒𝑦

−𝜓3
(

𝜉3−𝜉3
)

𝑦−𝜓3−1𝜓3
(

𝜉3 − 𝜉3
)

(

𝑦𝜓2+𝜓3𝛾4 + 𝑦𝜓1+𝜓3𝛾5 + 𝑦𝜓1+𝜓2𝜓3𝜉3
)2

[

𝑦2𝛾1𝜉3𝛾6𝜓3 + 𝑦𝜓1+𝛾2
(

𝜉3 + 𝜉3
)

𝜓3
(

𝑦𝜓2𝛾4 + 𝑦𝜓1𝛾5
)

+ 𝑦2𝜓3
{

𝑦2𝜓1𝛾25 + 𝑦𝜓2+𝜓3

× 𝛾5
(

𝑦𝜓1
(

𝜓2 − 𝜓3
)

+ 2𝛾4
)

+𝑦2𝜓2𝛾4
(

𝛾4 + 𝑦𝜓1
(

𝜓1 − 𝜓3
))}]

≤ 0.

(24)
6

Hence it shows that𝑋 ≼𝑙𝑟 𝑌 , and in accordance with (22) these𝑋 ≼ℎ𝑟 𝑌 ,
𝑋 ≼𝑠𝑡 𝑌 are also hold. □

Random number generator

Let 𝜁 be a consideration such that 𝜁 ∼ 𝑈 (0, 1). An observation of Y
can be provided as follows a solution of nonlinear equation
(

𝜉1𝑦
−𝜓1 + 𝜉2𝑦−𝜓2 + 𝜉3𝑦−𝜓3

)

+ log (𝜁 ) = 0. (25)

For the determination of 𝑌 from (25), computational algorithms like
Newton–Raphson techniques can be used. For exceptional cases, how-
ever, one may get the solution.

Special cases of quantile function

Case 1: When 𝜓1 = 0, 𝜓2 = 1, 𝜓3 = 2

𝑦 = 𝑄
(

𝑦| 𝜉𝑖, 𝜓𝑖
)

=
−𝜉2 ±

√

𝜉22 − 4𝜉1𝜉3 − 4𝜉3 log (𝜁 )

2(𝜉1 + log (𝜁 ))
. (26)

Case 2: When 𝜓1 = 𝜓2 = 1, 𝜓3 = 2

𝑦 = 𝑄
(

𝑦| 𝜉𝑖, 𝜓𝑖
)

=
−
(

𝜉1 + 𝜉2
)

±
√

(

𝜉1 + 𝜉2
)2 − 4𝜉3 log (𝜁 )

2(log (𝜁 ))
. (27)

Case 3: When 𝜓1 = 𝜓2 = 𝜓3 = 1

𝑌 = 𝑄
(

𝑦| 𝜉𝑖, 𝜓𝑖
)

=
−
(

𝜉1 + 𝜉2 + 𝜉3
)

. (28)

log (𝜁 )
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Fig. 5. Plots of median curves of ATF model at various parametric quantities.
Fig. 6. Plots of Quantile function and contour plot of Quantile function of ATF distribution at different parameter values.
Case 4: When 𝜓1 = 𝜓2 = 𝜓3 = 2

𝑌 = 𝑄
(

𝑦| 𝜉𝑖, 𝜓𝑖
)

= ±

√

(

−𝜉1 − 𝜉2 − 𝜉3
)

log (𝜁 )
. (29)

Case 5: When 𝜓1 = 𝜓2 = 2, 𝜓3 = 1

𝑦 = 𝑄
(

𝑦| 𝜉𝑖, 𝜓𝑖
)

= −
𝜉3 ±

√

𝜉23 − 4
(

𝜉1 + 𝜉2
)

log (𝜁 )

2 log (𝜁 )
. (30)

Case 6: When 𝜓1 = 𝜓2 = 2, 𝜓3 = 0

𝑌 = 𝑄
(

𝑦| 𝜉𝑖, 𝜓𝑖
)

= ±

√

(

−𝜉1 − 𝜉2
)

𝜉3 + log (𝜁 )
. (31)

By putting 𝜁 = (0.25, 0.50, 0.75) in (24), first three quartiles 𝑄1, 𝑄2, and
𝑄3 are obtained. Fig. 5 shows the median behavior of AFT model for
certain parameters values.

The graphs of median and quantile function of the ATF distribution
along with the corresponding contour plots are presented in Figs. 5 and
6, respectively. From Figs. 5 and 6, it is clear that for fixed values
of 𝜓𝑖, the median is decreased when 𝜉𝑖 is increased. (ii) For fixed
values of 𝜓𝑖, the quantile function is increased when 𝜉𝑖 increased.
Meaningful measurements of S𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 and K𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 are given by 𝜙3 =
𝜇3∕𝜎3 and 𝜙4 = 𝜇4∕𝜎4, respectively, where 𝜇𝜅 (𝜅𝑡ℎ moment) and 𝜎 is
the standard deviation. The measures that are more robust and do occur
for distributions without moments are Bowley’s Skewness measure S
7

𝐵

and Moors ’Kurtosis measure K𝑀 and are specified by

𝑆𝐵|𝝃,𝝍 =
Q (6∕8 |𝝃,𝝍 ) +Q ( 2∕8| 𝝃,𝝍) − 2Q ( 4∕8| 𝝃,𝝍)

Q ( 6∕8| 𝝃,𝝍) −Q ( 2∕8| 𝝃,𝝍)
, (32)

𝐾𝑀|𝝃,𝝍 =
Q ( 7∕8| 𝝃,𝝍) −Q ( 5∕8| 𝝃,𝝍) +Q ( 3∕8| 𝝃,𝝍) −Q ( 1∕8| 𝝃,𝝍)

Q ( 6∕8| 𝝃,𝝍) −Q ( 2∕8| 𝝃,𝝍)
,

(33)

where Q ( .| .) represents qf. If 𝑆𝐵|𝝃,𝝍 < 0 distribution is left skewed, if
𝑆𝐵|𝝃,𝝍 > 0, distribution is right skewed, and if 𝑆𝐵|𝝃,𝝍 = 0, distribution
is symmetrical. Instead, a high quality of 𝐾𝑀|𝝃,𝝍 signifies a heavy tail
for distribution and a low quality of 𝐾𝑀|𝝃,𝝍 means a mild tail instead.

Figs. 5 and 6 display the median and quantile function behavior in
connection of model of ATF and parametric values. Figs. 7 and 8 assess
the pattern graphically of these two measures in the light of ATF model
and as per qualities of the parameter.

Reliability in multicomponent stress–strength model

If 𝑌 , 𝑌1, 𝑌2,… , 𝑌𝑘 be a samples that makes 𝑋 (𝑥| .) is CDF of
common stress, 𝑌 , and 𝑌1, 𝑌2,… , 𝑌𝑘 are independently and identi-
cally distributed (iid) with 𝑌 ( 𝑦| .), subject to 𝑋, then, the reliability
in the multicomponent stress–strength model is described as follows
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Fig. 7. Plots of Skewness function and contour plot of Skewness function of ATF distribution at different parameter values.
Fig. 8. Plots of Kurtosis function and contour plot of Quantile function of ATF distribution at different parameter values.
(see [30])

R𝑠,.𝑘 = Pr
(

at least
(

𝑌1, 𝑌2,… , 𝑌𝑘
)

> 𝑋
)

=
𝑘
∑

𝑖=𝑠

(

𝑘
𝑖

)

∫

∞

−∞

[

1 − 𝑌 (𝑥| .)
]𝑖 [𝑌 (𝑥| .)

]𝑘−𝑖 𝑑𝑋 (𝑥| .) .

The goal of this section is to figure out how to describe reliability in
the multi-component stress-power model using two random variables:
strength (Y) and stress (X), where 𝑌 ∼ ATF (𝜉1, 𝜉2, 𝜉3, 𝜓1, 𝜓2, 𝜓3) and 𝑋
∼ ATF (𝜉1, 𝜉2, 𝜉3, 𝜓1, 𝜓2, 𝜓3). If at least s out of k components are active
at the same time, the system will function; otherwise, it will fail. Eqs.
(1), (2), and (34), respectively, can be used to establish the reliability
of an AFT distribution in a multicomponent stress–strength model:

R𝑠,.𝑘 =
𝑘
∑

𝑖=𝑠

𝑖
∑

𝑚=0

(

𝑘
𝑖

)(

𝑖
𝑚

)

(−1)𝑚 ∫

∞

0
𝑒−(𝑚+𝑘−𝑖)𝜉1𝑥

−𝜓1 𝑒(−(𝑚+𝑘−𝑖+1))(𝜉2𝑥
−𝜓2+𝜉3𝑥−𝜓3 )

𝑒−𝜉1𝑥
−𝜓1 {(𝜓1𝜉1𝑥

−𝜓1−1 + 𝜓2𝜉2𝑥
−𝜓2−1 + 𝜓3𝜉3𝑥

−𝜓3−1
)}

]

𝑑𝑥. (34)

After making the transformation 𝑧 = 𝑥−𝜓1 using the result 𝑑𝑥 =
−1

𝜓1𝑧
1+ 1

𝜓1

𝑑𝑧 in (35) and after some algebraic manipulation, we obtain

R𝑠, 𝑘 = 𝛶𝑝,𝑞,𝑖,𝑚 ∫

∞

0
𝑧
𝑝𝜓2+𝑞𝜓3

𝜓1 𝑒−𝑧[(𝑚+𝑘−𝑖)𝜉1+𝜉1] +
𝜉2𝜓2

𝜓1
𝑧

(𝑝+1)𝜓2+𝑞𝜓3
𝜓1

−1𝑒−𝑧[(𝑚+𝑘−𝑖)𝜉1+𝜉1]

+
𝜉3𝜓3 𝑧

𝑝𝜓2+(𝑞+1)𝜓3
𝜓1

−1𝑒−𝑧[(𝑚+𝑘−𝑖)𝜉1+𝜉1]
]

𝑑𝑧,
8

𝜓1
where 𝛶𝑝,𝑞,𝑖,𝑚 =
∑∞
𝑝=0

∑∞
𝑞=0

∑𝑘
𝑖=𝑠

∑𝑖
𝑚=0

(𝑘
𝑖

)( 𝑖
𝑚

)

(−1)𝑚+𝑝+𝑞
𝜉𝑝2𝜉

𝑞
3

𝑝!𝑞! (𝑚 + 𝑘 −
𝑖 + 1)𝑝+𝑞 .

Now

R𝑠,.𝑘 = 𝛶𝑝,𝑞,𝑖,𝑚
⎡

⎢

⎢

⎣

𝜉1𝛤 (𝜍𝑝,𝑞 + 1)
(

𝜗𝜉1 ,𝜉1
)(𝜍𝑝,𝑞+1)

+
𝜉2𝜓2

𝜓1

𝜉1𝛤 (𝜍𝑝,𝑞 +
𝜓2
𝜓1
)

(

𝜗𝜉1 ,𝜉1
)(𝜍𝑝,𝑞+

𝜓2
𝜓1

)
+
𝜉3𝜓3

𝜓1

𝜉1𝛤 (𝜍𝑝,𝑞 +
𝜓3
𝜓1
)

(

𝜗𝜉1 ,𝜉1
)(𝜍𝑝,𝑞+

𝜓3
𝜓1

)

⎤

⎥

⎥

⎦

,

(35)

where 𝜍𝑝,𝑞 =
𝑝𝜓2+𝑞𝜓3

𝜓1
, 𝜗𝜉1 ,𝜉1 =

[

(𝑚 + 𝑘 − 𝑖) 𝜉1 + 𝜉1
]

.

If 𝑠 = 𝑘 = 1, and 𝜉2 = 𝜉3 = 0, then the model of stress strength is
reduced to the equation:

R1,1 =
1
∑

𝑚=0

(

𝑖
𝑚

)

(−1)𝑚
𝜉1

𝜗𝜉1 ,𝜉1
,

Finally,

R1,1 = 1 −
𝜉1

𝜉1 + 𝜉1
=

𝜉1
𝜉1 + 𝜉1

, (36)

Notice that we consider the well known value in the identically dis-
tributed case where 𝜉1 = 𝜉1, is R1,1 = 0.5, that stress and strength are
same in magnitude.
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Non-central moments and generating function

For the ATF model, we get 𝑟th non-central moment 𝜌𝑟. If 𝑌 has pdf
(2), it is as follows.

𝜌𝑟 ( 𝑦| 𝝃,𝝍) = ∫

∞

0
𝑦𝑟𝑑𝐹 ( 𝑦| 𝝃,𝝍) ; 𝑟 = 1, 2,… , (37)

𝜌𝑟 ( 𝑦| 𝝃,𝝍) = ∫

∞

0
𝑦𝑟

3
∑

𝑖=1
𝜓𝑖𝜉𝑖𝑦

−(𝜓𝑖+1) exp

(

−
3
∑

𝑖=1
𝜉𝑖𝑦

−𝜓𝑖

)

𝑑𝑦, 𝑖 = 1, 2, 3.

(38)

The 𝑟th moment 𝜌𝑟 of 𝑌 is expressed in terms of the gamma function
in the following result.

Proposition 4. For 𝜓𝑖, 𝜉𝑖 > 0, the 𝑟th moment of 𝑌 is

𝜌𝑟 ( 𝑦| 𝝃,𝝍) = 𝛩
𝜙𝑗,𝑘
𝑗,𝑘

⎧

⎪

⎨

⎪

⎩

𝛤
{

𝜙𝑗,𝑘 + 1
}

+
𝜓2𝜉2
𝜓1

𝛤
{

𝜙𝑗,𝑘 +
𝜓2
𝜓1

}

{

𝜉1
}

𝜓2
𝜓1

+
𝜓3𝜉3
𝜓1

𝛤
{

𝜙𝑗,𝑘 +
𝜓3
𝜓1

}

{

𝜉1
}

𝜓3
𝜓1

⎫

⎪

⎬

⎪

⎭

, (39)

where 𝜙𝑗,𝑘 =
𝑗𝜓2+𝑘𝜓3−𝑟

𝜓1
, and 𝛩𝜙𝑗,𝑘𝑗,𝑘 =

∑∞
𝑗=0

∑∞
𝑘=0 (−1)

𝑗+𝑘 𝜉𝑗2𝜉
𝑘
3

𝑗!𝑘!{𝜉1}𝜙𝑗,𝑘
.

Proof. Allowing 𝑧 = 𝑦−𝜓1 using the result 𝑑𝑦 = −1

𝜓1𝑧
1+ 1

𝜓1

𝑑𝑧 and we have

𝜌𝑟 ( 𝑦| 𝝃,𝝍) = ∫

∞

0
𝑧

−𝑟
𝜓1

[

𝜉1 +
𝜉2𝜓2
𝜓1

𝑧
( 𝜓2
𝜓1

−1
)

+
𝜉3𝜓3
𝜓1

𝑧
( 𝜓3
𝜓1

−1
)
]

exp
{

−
(

𝜉1𝑧 +
𝜉2𝜓2
𝜓1

𝑧
( 𝜓2
𝜓1

−1
)

+
𝜉3𝜓3
𝜓1

𝑧
( 𝜓3
𝜓1

−1
)
)}

𝑑𝑧 ,

and after some algebraic manipulation We get,

𝜌𝑟 ( 𝑦| 𝝃,𝝍) =
∞
∑

𝑗=0

∞
∑

𝑘=0
(−1)𝑗+𝑘

𝜉𝑗2𝜉
𝑘
3

𝑗!𝑘!

[

∫

∞

0
𝜉1𝑧

( 𝑗𝜓2+𝑘𝜓3−𝑟
𝜓1

)

𝑒−𝜉1𝑧𝑑𝑧+

𝜉2𝜓2
𝜓1 ∫

∞

0
𝑧
( (𝑗+1)𝜓2+𝑘𝜓3−𝑟

𝜓1
−1

)

𝑒−𝜉1𝑧𝑑𝑧

+
𝜉3𝜓3
𝜓1 ∫

∞

0
𝑧
( (𝑘+1)𝜓3+𝑗𝜓2−𝑟

𝜓1
−1

)

𝑒−𝜉1𝑧𝑑𝑧
]

.

Finally, we obtain the above result. That fills out the proof. □

The MG function of ATF model may be indicated as

𝑀 ( 𝑦| 𝝃,𝝍) =
∞
∑

𝜍=0

∞
∑

𝑛=𝑟

𝑡𝜍

𝜍!
𝜌𝑟 ( 𝑦| 𝝃,𝝍) , (40)

here 𝜌𝑟 given in (39).

haracteristic function (CF)

The CFof Y is

( 𝜏𝑦| 𝝃,𝝍) = ∫

∞

0
𝑒𝑖𝜏𝑦𝑑𝐹 ( 𝑦| 𝝃,𝝍) . (41)

fter using exponential series, we have

( 𝜏𝑦| 𝝃,𝝍) =
∞
∑

𝜐=0

(𝑖𝜏)𝜐

𝜐! ∫

∞

0
𝑦𝜐𝑑𝐹 ( 𝑦| 𝝃,𝝍) .

ence, we obtain

( 𝜏𝑦| 𝝃,𝝍) =
∞
∑

𝜐=0

(𝑖𝜏)𝜐

𝜐!
𝛩
𝜙𝑗,𝑘
𝑗,𝑘

⎧

⎪

⎨

⎪

𝛤
{

𝜙𝑗,𝑘 + 1
}

+
𝜓2𝜉2
𝜓1

𝛤
{

𝜙𝑗,𝑘 +
𝜓2
𝜓1

}

{

𝜉
}

𝜓2
𝜓1
9

⎩
1 w
+
𝜓3𝜉3
𝜓1

𝛤
{

𝜙𝑗,𝑘 +
𝜓3
𝜓1

}

{

𝜉1
}

𝜓3
𝜓1

⎫

⎪

⎬

⎪

⎭

, (42)

where 𝜙𝑗,𝑘 = 𝑗𝜓2+𝑘𝜓3−𝜐
𝜓1

, and 𝛩
𝜙𝑗,𝑘
𝑗,𝑘 =

∑∞
𝑗=0

∑∞
𝑘=0 (−1)

𝑗+𝑘 𝜉𝑗2𝜉
𝑘
3

𝑗!𝑘!{𝜉1}𝜙𝑗,𝑘
. That

concludes the objective evidence. □

Factorial generating function (FGF)

The FGF of ATF model is

ϝ𝑦 ( 𝜏𝑦| 𝝃,𝝍) = ∫

∞

0
𝑒log(1+𝜏)

𝑦
𝑑𝐹 ( 𝑦| 𝝃,𝝍)

=
∞
∑

𝜐=0

(log (1 + 𝜏))𝜐

𝜐! ∫

∞

0
𝑦𝜐𝑑𝐹 ( 𝑦| 𝝃,𝝍) . (43)

So we can compose the integral in (43) as

ϝ𝑦 ( 𝜏𝑦| 𝝃,𝝍) =
∞
∑

𝜐=0

(log (1 + 𝜏))𝜐

𝜐!
𝛩𝜙𝑗,𝑘
𝑗,𝑘

⎧

⎪

⎨

⎪

⎩

𝛤
{

𝜙𝑗,𝑘 + 1
}

+
𝜓2𝜉2
𝜓1

𝛤
{

𝜙𝑗,𝑘 +
𝜓2
𝜓1

}

{

𝜉1
}

𝜓2
𝜓1

+
𝜓3𝜉3
𝜓1

𝛤
{

𝜙𝑗,𝑘 +
𝜓3
𝜓1

}

{

𝜉1
}

𝜓3
𝜓1

⎫

⎪

⎬

⎪

⎭

, (44)

here 𝜙𝑗,𝑘 =
𝑗𝜓2+𝑘𝜓3−𝜐

𝜓1
, and 𝛩𝜙𝑗,𝑘𝑗,𝑘 =

∑∞
𝑗=0

∑∞
𝑘=0 (−1)

𝑗+𝑘 𝜉𝑗2𝜉
𝑘
3

𝑗!𝑘!{𝜉1}𝜙𝑗,𝑘
.

ncomplete non-central moments

First, some notation are initiated. The upper incomplete gamma
unction symbolized by 𝛤 (𝜚, 𝑥) is defined as

(𝜚, 𝑥) = ∫

∞

𝑥
𝑢𝜚−1𝑒−𝑢𝑑𝑢, 𝑥 > 0, 𝜚 ∈ R. (45)

urthermore the exponential integral function can be specified re-
arding the upper incomplete gamma function as follows (cf. Olver
t al. [31])

ℏ (𝑥) = ∫

∞

1
𝑡−ℏ𝑒−𝑡𝑥𝑑𝑡, 𝑥 > 0, ℏ ∈ R, (46)

ℏ (𝑥) = 𝑥ℏ−1𝛤 (1 − ℏ, 𝑥) , ℏ, 𝑥 ∈ R. (47)

roposition 5. The 𝑟th incomplete moment 𝜌𝑌 , 𝑟 (𝑧) of 𝑌 is

𝑌 , 𝑟 (𝑧) = 𝛩
𝜙𝑗,𝑘
𝑗,𝑘

⎧

⎪

⎨

⎪

⎩

𝛤
{

1 − 𝜙𝑗,𝑘, 𝜉1𝑧−𝜓1
}

+
𝜓2𝜉2
𝜓1

𝛤
{

𝜙𝑗,𝑘 +
𝜓2
𝜓1
, 𝜉1𝑧−𝜓1

}

{

𝜉1
}

𝜓2
𝜓1

+
𝜓3𝜉3
𝜓1

𝛤
{

𝜙𝑗,𝑘 +
𝜓3
𝜓1
, 𝜉1𝑧−𝜓1

}

{

𝜉1
}

𝜓3
𝜓1

⎫

⎪

⎬

⎪

⎭

, (48)

here 𝜙𝑗,𝑘 = 𝑗𝜓2+𝑘𝜓3−𝑟
𝜓1

, and 𝛩
𝜙𝑗,𝑘(𝜓1 ,𝜓2 ,𝜓3)
𝑗,𝑘 =

∑∞
𝑗=0

∑∞
𝑘=0 (−1)

𝑗+𝑘

𝜉𝑗2𝜉
𝑘
3

𝑗!𝑘!{𝜉1}𝜙𝑗,𝑘
.

Further 𝑟th incomplete moment 𝜌𝑌 , 𝑟 (𝑧) in terms of the exponential
integral function

𝜌𝑌 , 𝑟 (𝑧) =
∞
∑

𝑗=0

∞
∑

𝑘=0
(−1)𝑗+𝑘

𝜉𝑗2𝜉
𝑘
3

𝑗!𝑘!

⎡

⎢

⎢

⎣

𝐸−𝜙𝑗,𝑘

(

𝜉1𝑧−𝜓1
)

𝜓1
(

𝜙𝑗,𝑘 + 1
) +

𝐸1− 𝜓2
𝜓1

−𝜙𝑗,𝑘

(

𝜉1𝑧−𝜓1
)

𝜓1𝜙𝑗,𝑘 + 𝜓2

+
𝐸1− 𝜓3

𝜓1
−𝜙𝑗,𝑘

(

𝜉1𝑧−𝜓1
)

𝜓1𝜙𝑗,𝑘 + 𝜓3

⎤

⎥

⎥

⎦

,

(49)

here 𝐸 𝑥 = ∫ ∞ 𝑒−𝑡𝑥𝑡−ℏ𝑑𝑡.
ℏ ( ) 1
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Table 1
First four non central moments, variance and coefficient of variation for a set of values of (𝝃,𝝍).
(

𝜉1 , 𝜉2 , 𝜉3 , 𝜓1 , 𝜓2 , 𝜓3
)

𝜇′

1
|

|

|𝝃,𝝍
𝜇′

2
|

|

|𝝃,𝝍
𝜇′

3
|

|

|𝝃,𝝍
𝜇′

4
|

|

|𝝃,𝝍
𝜎2|

|𝝃,𝝍 𝐶𝑉 |𝝃,𝝍

(0.8, 0.5, 0.8, 2, 1.5, 2.0) 0.372822 0.422800 0.495134 0.826426 0.283804 1.42892
(1.2, 0.5, 0.8, 2, 1.5, 2.0) 0.301762 0.322743 0.42798 0.814547 0.231683 1.59508
(1.5, 0.5, 0.8, 2, 1.5, 2.0) 0.23521 0.274132 0.395014 0.812991 0.218808 1.98873

(1.2, 0.2, 0.8, 2, 1.5, 2.0) 0.129165 0.132892 0.168136 0.298518 0.116209 2.63922
(1.2, 0.5, 0.8, 2, 1.5, 2.0) 0.301762 0.322743 0.427980 0.814547 0.231683 1.59508
(1.2, 0.9, 0.8, 2, 1.5, 2.0) 0.504935 0.563847 0.788414 1.621110 0.308887 1.10069

(1.2, 0.9, 0.3, 2, 1.5, 2.0) 0.202191 0.213808 0.283219 0.555504 0.172926 2.05668
(1.2, 0.9, 0.6, 2, 1.5, 2.0) 0.387537 0.424369 0.581751 1.175200 0.274183 1.35116
(1.2, 0.9, 0.9, 2, 1.5, 2.0) 0.562228 0.633435 0.893865 1.853340 0.317334 1.00195

(1.2, 0.9, 0.9, 3, 1.5, 2.0) 0.538163 0.650538 0.929483 1.808390 0.360919 1.11633
(1.2, 0.9, 0.9, 4, 1.5, 2.0) 0.543832 0.670881 0.953937 1.802200 0.375128 1.12622
(1.2, 0.9, 0.9, 5, 1.5, 2.0) 0.554626 0.688070 0.971390 1.803710 0.380459 1.11213

(1.2, 0.9, 0.9, 3, 1.1, 2.0) 0.544835 0.701090 1.149250 5.023560 0.404245 1.16696
(1.2, 0.9, 0.9, 3, 1.5, 2.0) 0.538163 0.650538 0.929483 1.808390 0.360919 1.11633
(1.2, 0.9, 0.9, 3, 2.0, 2.0) 0.535175 0.608508 0.783882 1.216200 0.322096 1.06047

(1.2, 0.9, 0.9, 3, 2.1, 1.5) 0.536150 0.638943 0.891106 1.642310 0.351486 1.10578
(1.2, 0.9, 0.9, 3, 2.1, 2.0) 0.535454 0.602367 0.763325 1.150490 0.315656 1.04926
(1.2, 0.9, 0.9, 3, 2.1, 2.5) 0.541718 0.581433 0.687562 0.926152 0.287974 0.99061
U

a
i

I

e

Ĩ

Ĩ

N

𝐼

𝐼

N

𝑓

Proof. By definition

𝜌𝑌 , 𝑟 (𝑧) = ∫

𝑧

0
𝑦𝑟𝐹 ( 𝑦| 𝝃,𝝍) , 𝑟 = 1, 2,… , (50)

e have

𝑌 , 𝑟 (𝑧) =
∞
∑

𝑗=0

∞
∑

𝑘=0
(−1)𝑗+𝑘

𝜉𝑗2𝜉
𝑘
3

𝑗!𝑘!

⎡

⎢

⎢

⎣

∫

∞

𝜉1𝑧−𝜓1

1

𝜉
𝜙𝑗,𝑘
1

𝑡𝜙𝑗,𝑘𝑒−𝑡𝑑𝑡

+
𝜉2𝜓2
𝜓1 ∫

∞

0

1

𝜉
𝜙𝑗,𝑘+

𝜓2
𝜓1

1

𝑡
𝜓2
𝜓1

+𝜙𝑗,𝑘−+1𝑒−𝑡𝑑𝑡

+
𝜉3𝜓3
𝜓1 ∫

∞

0

1

𝜉
𝜙𝑗,𝑘+

𝜓3
𝜓1

1

𝑡
𝜓3
𝜓1

+𝜙𝑗,𝑘−+1𝑒−𝑡𝑑𝑡

⎤

⎥

⎥

⎥

⎦

. (51)

fter using (45) and (47), we have final results. Which acquire the
equired outcome. □

As a numerical illustration, Table 1 gives values 𝜇′

1
|

|

|𝝃,𝝍
, 𝜇′

2
|

|

|𝝃,𝝍
,

𝜇′

3
|

|

|𝝃,𝝍
, 𝜇′

4
|

|

|𝝃,𝝍
, 𝜎2||

|𝝃,𝝍
and 𝐶𝑉 |𝝃,𝝍 of ATF model. We observe that there

re significant impact of 𝜉𝑖 and 𝜓𝑖 on first four non central moments,
ariance and coefficient of variation. For the fixed levels of 𝜉𝑖 and 𝜓𝑖; it
an be observed that, mixed behavior of 𝜇′

1
|

|

|𝝃,𝝍
, 𝜇′

2
|

|

|𝝃,𝝍
, 𝜇′

3
|

|

|𝝃,𝝍
, 𝜇′

4
|

|

|𝝃,𝝍
,

𝜎2||
|𝝃,𝝍

and 𝐶𝑉 |𝝃,𝝍 with the few exceptions are observed. The ATF
istribution is simply demonstrated to be over-dispersed when 𝜎|𝝃,𝝍 >
, equi-dispersed 𝜎|𝝃,𝝍 = 𝜇, as well as under-dispersed 𝜎|𝝃,𝝍 < 𝜇. We

still have𝜎|𝝃,𝝍 > 𝜇, so the distribution is over-dispersed with small
variations for 𝜇′

𝑗
|

|

|𝝃,𝝍
, 𝑗 = 1, 2, 3, 4.

Conditional moments and mean deviations

The 𝑟th conditional moment of 𝑌 is

𝐸 (𝑌 𝑟| 𝑌 > 𝑡) = 1
𝑆 (𝑡)

[

𝐸 (𝑌 𝑟) − ∫

𝑡

0
𝑦𝑟𝑓 (𝑦) 𝑑𝑦

]

,

=
𝜌𝑟 ( 𝑦| 𝝃,𝝍)|𝑟=1 − 𝜌𝑌 , 𝑟 (𝑡)

1 − exp
{

−𝜉1𝑡−𝜓1 + 𝜉2𝑡−𝜓2 + 𝜉3𝑡−𝜓3
} . (52)

The mean deviations include valuable knowledge on a population’s
features and can be estimated from first incomplete moment. Moreover,
the amount of dispersion in a data may be measured to certain degree
by all deviations from the mean and median. The mean deviations of 𝑌
bout the mean 𝜌1 = 𝐸(𝑌 ) and about the median 𝑀𝑒𝑑 can be stated as
= 2𝐹

(

𝜌1
)

− 2𝜆1𝜌1 and 𝛹 = 𝜌1 − 2𝜆1𝑀𝑒𝑑 , where 𝜆1 (𝜏) = ∫ 𝜏0 𝑦𝑓 (𝑦) 𝑑𝑦
and 𝐹

(

𝜌1
)

is specified in (1).
10
ncertainty measures

Information generating function, Shannon entropy, Renyi entropy
nd other entropies for the distribution of ATF are being investigated
n this section.

nformation generating function

For the ATF model the information generating function for Y is
stimated as:

(𝑓 ) = 𝐸
[

𝑓 𝜂−1 ( 𝑦| 𝝃,𝝍)
]

= ∫

∞

0
𝑓 𝜂 ( 𝑦| 𝝃,𝝍) 𝑑𝑦, (53)

(𝑓 ) = ∫

∞

0

( 3
∑

𝑖=1
𝜓𝑖𝜉𝑖𝑦

−(𝜓𝑖+1) exp

(

−
3
∑

𝑖=1
𝜉𝑖𝑦

−𝜓𝑖

))𝜂

𝑑𝑦, (54)

ow making the transformation 𝑧 = 𝑦−𝜓1 using the result 𝑑𝑦 =
−1

𝜓1𝑧
1+ 1

𝜓1

𝑑𝑧 in Eq. (54) and after a little simplification we got

̃ (𝑓 ) =
𝛩
𝜙𝑟,𝑟1
𝑟,𝑟1
𝜓1

𝛤𝜗𝑟,𝑟1
(

𝜓1, 𝜓2, 𝜓3
)

{

𝛿𝜉1
}𝜗𝑟,𝑟1 (𝜓1 ,𝜓2 ,𝜓3)

, (55)

where 𝜙𝑟,𝑟1 =
∑∞
𝑟=0

∑∞
𝑟1=0

(𝜂
𝑟

)( 𝑟
𝑟1

) (

𝜉1𝜓1
)𝜂−𝑟 (𝜓2𝜉2

)𝑟−𝑟1 (𝜓3𝜉3
)𝑟1 , 𝛩

𝜙𝑟,𝑟1
𝑟,𝑟1 =

∑∞
𝑝=0

∑∞
𝑞=0

𝜉𝑝2𝜉
𝑞
3

𝑝!𝑞! 𝜙𝑟,𝑟1 , and 𝜗𝑟,𝑟1
(

𝜓1, 𝜓2, 𝜓3
)

=
{

(𝜂+𝑟)𝜓1+(𝑟−𝑟1+𝑝)𝜓2+(𝑟+𝑞)𝜓3−1
𝜓1

}

.

Entropy measures

Entropy is an useful concept in various fields such as commu-
nications, statistical mechanics, information theory, thermodynamics,
topological dynamics, measure-preserving dynamical systems, and so
on. There are various definitions of entropy, and none of them are ideal
for all purposes.

Renyi entropy

The Renyi entropy Ĩ𝛿 (𝑌 ) for Y with ATF is

𝛿̃ (𝑌 ) =
1

1 − 𝛿
log∫

∞

0
𝑓 𝛿 ( 𝑦| 𝝃,𝝍) 𝑑𝑦, 𝛿 ≠ 1, 𝛿 > 0. (56)

ow

𝛿 ( 𝑦| 𝝃,𝝍) =
{

𝜉1𝜓1𝑦
−(𝜓1+1) + 𝜉2𝜓2𝑦

−(𝜓2+1) + 𝜉3𝜓3𝑦
−(𝜓3+1)

}𝛿

exp
{

−𝛿
(

𝜉 𝑦−𝜓1 + 𝜉 𝑦−𝜓2 + 𝜉 𝑦−𝜓3
)}

. (57)
1 2 3
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𝑆

By putting the above transformation, we have

∫

∞

0
𝑓 𝛿 ( 𝑦| 𝝃,𝝍) 𝑑𝑦 =

𝛩
𝜙𝑟,𝑟1
𝑟,𝑟1
𝜓1 ∫

∞

0
𝑡𝜗𝑟,𝑟1 (𝜓1 ,𝜓2 ,𝜓3)−1𝑒−𝛿𝜉1𝑡𝑑𝑡,

𝐼𝛿 (𝑌 ) =
1

1 − 𝛿
log

⎧

⎪

⎨

⎪

⎩

𝛩
𝜙𝑟,𝑟1
𝑟,𝑟1 𝛤𝜗𝑟,𝑟1

(

𝜓1, 𝜓2, 𝜓3
)

𝜓1
{

𝛿𝜉1
}𝜗𝑟,𝑟1 (𝜓1 ,𝜓2 ,𝜓3)

⎫

⎪

⎬

⎪

⎭

, (58)

where 𝜙𝑟,𝑟1 =
∑∞
𝑟=0

∑∞
𝑟1=0

(𝛿
𝑟

)( 𝑟
𝑟1

) (

𝜉1𝜓1
)𝛿−𝑟 (𝜓2𝜉2

)𝑟−𝑟1 (𝜓3𝜉3
)𝑟1 , 𝛩

𝜙𝑟,𝑟1
𝑟,𝑟1 =

∞
𝑝=0

∑∞
𝑞=0

𝜉𝑝2𝜉
𝑞
3

𝑝!𝑞! 𝜙𝑟,𝑟1 , and 𝜗𝑟,𝑟1
(

𝜓1, 𝜓2, 𝜓3
)

= [(𝛿+𝑟)𝜓1+(𝑟−𝑟1+𝑝)𝜓2+(𝑟+𝑞)𝜓3+𝛿−1]
𝜓1

.
Finally we have

𝐼𝛿 (𝑌 ) = 1
1 − 𝛿

[

log
{

𝛩
𝜙𝑟,𝑟1
𝑟,𝑟1

}

+ log𝛤𝜗𝑟,𝑟1
(

𝜓1, 𝜓2, 𝜓3
)

− log
{

𝜓1
}

−𝜗𝑟,𝑟1
(

𝜓1, 𝜓2, 𝜓3
)

log
{

𝛿𝜉1
}

]

. (59)

The Shannon entropy is the special case of Renyi entropy and is
characterized by 𝑆𝛿 (𝑌 ) = 𝐸 {− ln [𝑓 (𝑌 )]}. It can be obtained by the
formula 𝑆𝛿 (𝑌 ) = lim𝛿→1+ 𝐼𝛿 (𝑌 ).

Tsallis entropy

Tsallis entropy of 𝑌 is defined by

𝑇𝛿 (𝑌 ) =
1

𝛿 − 1

(

1 − ∫

∞

0
𝑓 𝛿 ( 𝑦| 𝝃,𝝍) 𝑑𝑦

)

, 𝛿 ≠ 1. (60)

sing the above results we have

𝛿 (𝑌 ) =
1

𝛿 − 1

⎛

⎜

⎜

⎜

⎝

1 −

⎧

⎪

⎨

⎪

⎩

𝛩
𝜙𝑟,𝑟1
𝑟,𝑟1 𝛤𝜗𝑟,𝑟1

(

𝜓1, 𝜓2, 𝜓3
)

𝜓1
{

𝛿𝜉1
}𝜗𝑟,𝑟1 (𝜓1 ,𝜓2 ,𝜓3)

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎟

⎟

⎠

. (61)

Mathai–Houbold entropy

Classical Shannon entropy has been expanded in various ways one
of them is 𝛿 generalized entropy developed by [32] and is

𝐼𝑀𝐻 (𝑌 ) = 1
𝛿 − 1

(

∫

∞

0
𝑓 2−𝛿 ( 𝑦| 𝝃,𝝍) 𝑑𝑦 − 1

)

, 𝛿 ≠ 1. (62)

imilar arguments to (𝑓 𝛿) gives

2−𝛿 ( 𝑦| 𝝃,𝝍) =
{

𝜉1𝜓1𝑦
−(𝜓1+1) + 𝜉2𝜓2𝑦

−(𝜓2+1) + 𝜉3𝜓3𝑦
−(𝜓3+1)

}2−𝛿

exp
{

− (2 − 𝛿)
(

𝜉1𝑦
−𝜓1 + 𝜉2𝑦−𝜓2 + 𝜉3𝑦−𝜓3

)}

. (63)

herefore,

∞

0
𝑓 2−𝛿 ( 𝑦| 𝝃,𝝍) 𝑑𝑦 =

𝛩̂
𝜙𝑟,𝑟1
𝑟,𝑟1
𝜓1 ∫

∞

0
𝑡𝜗̂𝑟,𝑟1 (𝜓1 ,𝜓2 ,𝜓3)−1𝑒−(2−𝛿)𝜉1𝑡𝑑𝑡.

The final form is

𝐼𝑀𝐻 (𝑌 ) = 1
1 − 𝛿

⎧

⎪

⎨

⎪

⎩

𝛩̂
𝜙𝑟,𝑟1
𝑟,𝑟1 𝛤𝜗𝑟,𝑟1

(

𝜓1, 𝜓2, 𝜓3
)

𝜓1
{

𝛿𝜉1
}𝜗̂𝑟,𝑟1 (𝜓1 ,𝜓2 ,𝜓3)

− 1

⎫

⎪

⎬

⎪

⎭

, (64)

where 𝜙̂𝑟,𝑟1 =
∑∞
𝑟=0

∑∞
𝑟1=0

(2−𝛿
𝑟

)( 𝑟
𝑟1

) (

𝜉1𝜓1
)−(2−𝛿)−𝑟 (𝜓2𝜉2

)𝑟−𝑟1 (𝜓3𝜉3
)𝑟1 ,

𝛩̂
𝜙𝑟,𝑟1
𝑟,𝑟1 =

∑∞
𝑝=0

∑∞
𝑞=0

𝜉𝑝2𝜉
𝑞
3

𝑝!𝑞! 𝜙̂𝑟,𝑟1 , and
̂𝑟,𝑟1

(

𝜓1, 𝜓2, 𝜓3
)

= [(2−𝛿+𝑟)𝜓1+(𝑟−𝑟1+𝑝)𝜓2+(𝑟+𝑞)𝜓3−𝛿+1]
𝜓1

.

Residual life function with a certain measure of reliability

Random variables of residual life and inverted residual life are
widely practiced in risk investigation. Hence, in connection with the
ATF distribution, we explore some associated statistical features, like
variance, survival function and mean. The residual life is explained
by 𝑅 𝑡 = 𝑌 − 𝑡 𝑌 > 𝑡, 𝑡 ≥ 0, and described as the period between
11

( ) |
the moment 𝑡 and moment of failure. The reversed residual life (or
time since failure) can also be described as 𝑅⃛ (𝑡) = 𝑡 − 𝑌 | 𝑌 ≤ 𝑡, This
refers to the moment elapsed due to the component’s failure, given that
its lifetime ≤ 𝑡 (cf. Suchismita and Nanda [33], Tang et al. [34], and
Siddiqui and Çaǧ lar [35]).

Characteristic of residual lifetime function

The survival function of 𝑅(𝑡) (for 𝑡 ≥ 0 and 𝑦 > 0) for the ATF model
is

𝑆𝑅(𝑡) (𝑦) =
𝑆 (𝑦 + 𝑡)
𝑆 (𝑡)

=
1 − exp

{

−
(

𝜉1 (𝑦 + 𝑡)
−𝜓1 + 𝜉2 (𝑦 + 𝑡)

−𝜓2 + 𝜉3 (𝑦 + 𝑡)
−𝜓3

)}

1 − exp
{

−
(

𝜉1𝑡−𝜓1 + 𝜉2𝑡−𝜓2 + 𝜉3𝑡−𝜓3
)} .

(65)

The density function of 𝑅(𝑡) then simplifies to

𝑓𝑅(𝑡) ( 𝑦| 𝝃,𝝍) =

{

𝜉1𝜓1 (𝑦 + 𝑡)
−(𝜓1+1) + 𝜉2𝜓2 (𝑦 + 𝑡)

−(𝜓2+1) + 𝜉3𝜓3 (𝑦 + 𝑡)
−(𝜓3+1)

}

exp
{

𝜉1𝑡−𝜓1 + 𝜉2𝑡−𝜓2 + 𝜉3𝑡−𝜓3
}

− 1
.

(66)

he hrf of 𝑅(𝑡) is

𝑅(𝑡) ( 𝑦| 𝝃,𝝍) =

{

𝜉1𝜓1 (𝑦 + 𝑡)
−(𝜓1+1) + 𝜉2𝜓2 (𝑦 + 𝑡)

−(𝜓2+1) + 𝜉3𝜓3 (𝑦 + 𝑡)
−(𝜓3+1)

}

exp
{

𝜉1𝑡−𝜓1 + 𝜉2𝑡−𝜓2 + 𝜉3𝑡−𝜓3
}

×

{

1
(

1 − exp
{

−
(

𝜉1 (𝑦 + 𝑡)
−𝜓1 + 𝜉2 (𝑦 + 𝑡)

−𝜓2 + 𝜉3 (𝑦 + 𝑡)
−𝜓3

)})

}

. (67)

he average residual life function (𝑀𝑅𝐿) has many applications, like in
insurance, maintenance and quality control of products, economics and
social studies. For ATF distribution, we can represent its mean residual
life as

𝛬 (𝑡) = 𝐸 {𝑅(𝑡)} = 1
1 − 𝐹 (𝑡) ∫

∞

𝑡
𝑦𝑓 (𝑦) 𝑑𝑦 − 𝑡, 𝑡 ≥ 0,

= 1
1 − 𝐹 (𝑡)

[

𝐸 (𝑌 ) − 𝜌𝑌 , 1 (𝑧)
]

− 𝑡, 𝑡 ≥ 0, (68)

where 𝐹 (𝑦), 𝑓 (𝑦), are specified in (1), (2) and

𝐸 (𝑌 ) = 𝜌𝑟 ( 𝑦| 𝝃,𝝍)|𝑟=1 .

he variance residual life 𝑉𝑅𝐿 is another measure of concern that has
ncreased attention in latest years (Khorashadizadeh et al. [36] and
upta [37]).

𝑅𝐿 = 𝑉 (𝑅(𝑡)) = 2
𝑆 (𝑡) ∫

∞

𝑡
𝑦𝑆 (𝑦) 𝑑𝑦 − 2𝑡𝛬 (𝑡) − 𝛬2 (𝑡) ,

= 1
𝑆 (𝑡)

[

𝐸
(

𝑌 2) − 𝜌𝑡, 2 (𝑧)
]

− 𝑡2 − 2𝑡𝛬 (𝑡) − 𝛬2 (𝑡) , (69)

here 𝐸
(

𝑌 2) = 𝜌𝑟 ( 𝑦| 𝝃,𝝍)|𝑟=2. and 𝜌𝑡, 2 (𝑧) specified in Eq. (48) by
etting 𝑟 = 2.

haracteristic of reversed residual lifetime function

The survival function of reversed residual lifetime 𝑅⃛(𝑡) (for 0 ≤ 𝑦 <
) for ATF model is

𝑅⃛(𝑡) (𝑦) =
𝐹 (𝑡 − 𝑦)
𝐹 (𝑡)

=
exp

{

−
(

𝜉1 (𝑡 − 𝑦)
−𝜓1 + 𝜉2 (𝑡 − 𝑦)

−𝜓2 + 𝜉3 (𝑡 − 𝑦)
−𝜓3

)}

exp
{

−
(

𝜉1𝑡−𝜓1 + 𝜉2𝑡−𝜓2 + 𝜉3𝑡−𝜓3
)} .

(70)

Then the 𝑅⃛(𝑡) pdf will become

𝑓𝑅⃛(𝑡) ( 𝑦| 𝝃,𝝍)

=

[{

𝜉1𝜓1 (𝑡 − 𝑦)−(𝜓1+1) + 𝜉2𝜓2 (𝑡 − 𝑦)−(𝜓2+1) + 𝜉3𝜓3 (𝑡 − 𝑦)−(𝜓3+1)
}

exp
{

−
(

𝜉1 (𝑡 − 𝑦)−𝜓1 + 𝜉2 (𝑡 − 𝑦)−𝜓2 + 𝜉3 (𝑡 − 𝑦)−𝜓3
)}]

exp
{

−
(

𝜉1𝑡−𝜓1 + 𝜉2𝑡−𝜓2 + 𝜉3𝑡−𝜓3
)} .

(71)
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The hrf of 𝑅⃛(𝑡) is therefore reduced to

ℎ𝑅⃛(𝑡) ( 𝑦| 𝝃,𝝍)

=

[{

𝜉1𝜓1 (𝑡 − 𝑦)−(𝜓1+1) + 𝜉2𝜓2 (𝑡 − 𝑦)−(𝜓2+1) + 𝜉3𝜓3 (𝑡 − 𝑦)−(𝜓3+1)
}

exp
{

−
(

𝜉1 (𝑡 − 𝑦)−𝜓1 + 𝜉2 (𝑡 − 𝑦)−𝜓2 + 𝜉3 (𝑡 − 𝑦)−𝜓3
)}]

exp
{

−
(

𝜉1 (𝑡 − 𝑦)−𝜓1 + 𝜉2 (𝑡 − 𝑦)−𝜓2 + 𝜉3 (𝑡 − 𝑦)−𝜓3
)} .

(72)

The 𝑅⃛(𝑡) mean and variance is provided by

𝛬 (𝑡) = 𝐸
{

𝑅⃛(𝑡)
}

= 𝑡 − 1
𝐹 (𝑡) ∫

𝑡

0
𝑦𝑓 (𝑦) 𝑑𝑦, 0 < 𝑦 < 𝑡,

= 𝑡 − 1
𝐹 (𝑡)

[

𝜌𝑡, 1 (𝑧)
]

, 0 < 𝑦 < 𝑡. (73)

and

𝑉𝑅⃛𝐿 = 𝑉
(

𝑅⃛(𝑡)
)

= 2𝑡𝛬 (𝑡) − 𝛬2 (𝑡) − 2
𝐹 (𝑡) ∫

𝑡

0
𝑦𝐹 (𝑦) 𝑑𝑦,

= 2𝑡𝛬 (𝑡) − 𝛬2 (𝑡) − 𝑡2 + 1
𝐹 (𝑡)

[

𝜌𝑡, 2 (𝑧)
]

, (74)

where 𝐹 (𝑡), 𝑓 (𝑦) and 𝜌𝑡, 2 (𝑧) can be identified from (1), (2) and () by
setting 𝑟 = 2, respectively.

Reliability measures

The curves of Bonferroni and Lorenz are income inequality measures
that are commonly helpful and beneficial to certain other fields having
reliability, demography, medicine and insurance and medicine. The
Bonferroni curve 𝐵𝐹 (𝑦) of 𝑌 is

𝐵𝐹 (𝑦) =
1

𝐸 (𝑌 )𝐹 (𝑦) ∫

𝑦

0
𝑦𝑓 (𝑦) 𝑑𝑦 =

𝜌𝑌 , 1 (𝑧)
𝐸 (𝑌 )𝐹 (𝑦)

. (75)

Groves-Kirkby et al. [38] highlights the significance of the Lorenz curve
for applications in various scientific fields. he Lorenz curve 𝐿𝐹 (𝑦) of 𝑌
is

𝐿𝐹 (𝑦) =
1

𝐸 (𝑌 ) ∫

𝑦

0
𝑦𝑓 (𝑦) 𝑑𝑦 =

𝜌𝑌 , 1 (𝑧)
𝐸 (𝑌 )

. (76)

Estimation

The parameters of the ATF model can be assessed utilizing the log-
likelihood based on the sample using Matlab (log lik), R (optimum
and MaxLik features), the Ox programme (subroutine MaxBFGS), or
SAS (PROC NLMIXED). Additionally, certain goodness-of-fit statistics
are included for comparing density estimates and model selection.

Maximum likelihood estimation

The maximum likelihood estimates (MLEs) are provided by optimiz-
ing this equation according to 𝜉𝑖, and 𝜓𝑖, 𝑖 = 1, 2, 3. They are also
characterized as the maximum of the log-likelihood function defined
by 𝑙 𝐲|𝝃,𝝍 = log𝐿 ( 𝐲| 𝝃,𝝍).

The log-likelihood function for the ATF model is provided by the
data set 𝑦1,… , 𝑦𝑛.

𝐿
(

𝐲| 𝜓1, 𝜓2, 𝜓3, 𝜉1, 𝜉2, 𝜉3
)

=
∏𝑛

𝑖=1

(

𝜉1𝜓1𝑦
−𝜓1−1
𝑖 + 𝜉2𝜓2𝑦

−𝜓2−1
𝑖 + 𝜉3𝜓3𝑦

−𝜓3−1
𝑖

)

× exp
{

−
(

𝜉1𝑦
−𝜓1
𝑖 + 𝜉2𝑦

−𝜓2
𝑖 + 𝜉3𝑦

−𝜓3
𝑖

)}

,

(77)

𝑙 𝐲| 𝜓1 , 𝜓2 ,𝜓3 , 𝜉1 , 𝜉2 ,𝜉3 =
∑𝑛
𝑖=1 log

(

𝜉1𝜓1𝑦
−𝜓1−1
𝑖 + 𝜉2𝜓2𝑦

−𝜓2−1
𝑖 + 𝜉3𝜓3𝑦

−𝜓3−1
𝑖

)

−
∑𝑛
𝑖=1

(

𝜉1𝑦
−𝜓1
𝑖 + 𝜉2𝑦

−𝜓2
𝑖 + 𝜉3𝑦

−𝜓3
𝑖

)

.

12

(78) t
able 2
escriptive statistics.
Min. 1st Quartile Median Mean 3rd Quartile Max.

1.516 2.789 3.178 3.282 3.637 6.869

Table 3
Maximum likelihood estimates.

Distribution Estimates

ATF (𝝃,𝝍) 7.52620 8.3147 7.5625 3.1695 3.1689 3.1693
AWD 0.02098 0.06647 0.00054 0.0007 2.0877 1.34626
AED 0.01569 0.03564 0.25345

We obtain the components of parameter vector
𝛬𝝃,𝝍 =

(

𝛬𝜓1 , 𝛬𝜓2 , 𝛬𝜓3 , 𝛬𝜉1 , 𝛬𝜉2 , 𝛬𝜉3
)𝜏

, and set them zero and given

by

𝛬𝜓1
=

𝜕𝑙 𝐲| 𝝃,𝝍
𝜕𝑙 𝐲|𝜓1

=
𝑛
∑

𝑖=1
𝜉1𝑦

−𝜓1
𝑖 log

(

𝑦𝑖
)

+
𝑛
∑

𝑖=1

𝜉1𝑦
−𝜓1−1
𝑖 − 𝜉1𝜓1𝑦

−𝜓1−1
𝑖 log

(

𝑦𝑖
)

𝜉1𝜓1𝑦
−𝜓1−1
𝑖 + 𝜉2𝜓2𝑦

−𝜓2−1
𝑖 + 𝜉3𝜓3𝑦

−𝜓3−1
𝑖

, (79a)

𝛬𝜓2
=

𝜕𝑙 𝐲| 𝝃,𝝍
𝜕𝑙 𝐲|𝜓2

=
𝑛
∑

𝑖=1
𝜉2𝑦

−𝜓2
𝑖 log

(

𝑦𝑖
)

+
𝑛
∑

𝑖=1

𝜉2𝑦
−𝜓2−1
𝑖 − 𝜉2𝜓2𝑦

−𝜓2−1
𝑖 log

(

𝑦𝑖
)

𝜉1𝜓1𝑦
−𝜓1−1
𝑖 + 𝜉2𝜓2𝑦

−𝜓2−1
𝑖 + 𝜉3𝜓3𝑦

−𝜓3−1
𝑖

, (79b)

𝛬𝜓3
=

𝜕𝑙 𝐲| 𝝃,𝝍
𝜕𝑙 𝐲|𝜓3

=
𝑛
∑

𝑖=1
𝜉3𝑦

−𝜓3
𝑖 log

(

𝑦𝑖
)

+
𝑛
∑

𝑖=1

𝜉3𝑦
−𝜓3−1
𝑖 − 𝜉3𝜓3𝑦

−𝜓3−1
𝑖 log

(

𝑦𝑖
)

𝜉1𝜓1𝑦
−𝜓1−1
𝑖 + 𝜉2𝜓2𝑦

−𝜓2−1
𝑖 + 𝜉3𝜓3𝑦

−𝜓3−1
𝑖

, (79c)

𝛬𝜉1 =
𝜕𝑙 𝐲| 𝝃,𝝍
𝜕𝑙 𝐲|𝜉1

= −
𝑛
∑

𝑖=1
𝑦−𝜓1
𝑖 +

𝑛
∑

𝑖=1

𝜓1𝑦
−𝜓1−1
𝑖

𝜉1𝜓1𝑦
−𝜓1−1
𝑖 + 𝜉2𝜓2𝑦

−𝜓2−1
𝑖 + 𝜉3𝜓3𝑦

−𝜓3−1
𝑖

, (79d)

𝛬𝜉2 =
𝜕𝑙 𝐲| 𝝃,𝝍
𝜕𝑙 𝐲|𝜉2

= −
𝑛
∑

𝑖=1
𝑦−𝜓2
𝑖 +

𝑛
∑

𝑖=1

𝜓2𝑦
−𝜓2−1
𝑖

𝜉1𝜓1𝑦
−𝜓1−1
𝑖 + 𝜉2𝜓2𝑦

−𝜓2−1
𝑖 + 𝜉3𝜓3𝑦

−𝜓3−1
𝑖

, (79e)

𝛬𝜉3 =
𝜕𝑙 𝐲| 𝝃,𝝍
𝜕𝑙 𝐲|𝜉3

= −
𝑛
∑

𝑖=1
𝑦−𝜓3
𝑖 +

𝑛
∑

𝑖=1

𝜓3𝑦
−𝜓3−1
𝑖

𝜉1𝜓1𝑦
−𝜓1−1
𝑖 + 𝜉2𝜓2𝑦

−𝜓2−1
𝑖 + 𝜉3𝜓3𝑦

−𝜓3−1
𝑖

. (79f)

To obtain MLE (𝝃,𝝍) =
(

𝝃̂, 𝝍̂
)

setting 𝛬𝜓1 = 𝛬𝜓2 = 𝛬𝜓3 = 𝛬𝜉1 =
𝛬𝜉2 = 𝛬𝜉3 = 0 and solving them simultaneously. Since they are not
solvable in closed form, different numerical iterative methods available
and applied like Newton–Raphson kind algorithms. In order to esti-
mate the intervals of the parameters, we need the 6 × 6 information
matrix 𝐽 (𝛬) = 𝐽

𝝃,𝝍
(𝛬). The asymptotic distribution

(

𝛬̂
𝝃,𝝍

− 𝛬
𝝃,𝝍

)

is

6
(

0, 𝛥 (𝛬)−1
)

, where 𝛥 (𝛬) = 𝐸 {𝐽 (𝛬)}. The approximate multivariate
ormal 𝑁6

(

0, 𝐽 (𝛬)−1
)

distribution, where 𝐽 (𝛬)−1 is the inverse of
nformation matrix at 𝛬

𝝃,𝜓
= 𝛬̂𝝃,𝝍 can be implemented under standard

egularity conditions to develop approximate confidence intervals for
he model parameters.

eal data implementation

Let us just look at a real data set to evaluate if our new model
rovides better fit for the data than some other distributions. Using
oodness of fit criteria including Akaike Information Parameters (AIC),
ayesian Information Criterion (BIC), Consistent Akaike Information
riterion (CAIC) and -Log-likelihood (−𝐿𝐿), the ATF’s goodness of fit

s compared to the Additive Weibull Distribution (AWD), and Additive
xponential Distribution (AED). As expected, the lower these criteria’s
alues are the better the fit. The AFT distribution does have the smallest
tatistics. The AFT distribution then provides the best fit among the
istributions compared. This data represents drought mortality rate.
he data contains 36 days of COVID-19 data (Canada), from 10 April
o 15 May 2020 [39]. See Abu El Azm et al. [40], Shafiq et al. [41],
indhu et al. [42,43] and Almongy et al. [44] for other examples of
OVID-19 data applications.

The data summary, MLEs of ATF model and goodness-of-fit (GoF)
easures are provided in Tables 2–4. The outcomes of these Tables

learly show that ATF is the best model as it has the smaller values
f the -LL, AIC, BIC, and CAIC. In comparison to AWD and AED model
rovides a very good fit for this data, as seen in the Tables. Fig. 9 shows

he profiles of the log-likelihood function (PLLF) based on data set.
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Fig. 9. Plots of profiles of the log-likelihood function.
Table 4
Goodness of fit criteria: AIC, CAIC, BIC, -Log-likelihood (−𝐿𝐿).

Distribution −𝐿𝐿 AIC BIC CAIC

ATF (𝝃,𝝍) -52.92007 117.8401 127.3413 120.7367
AWD -58.55368 129.1074 138.6085 132.0039
AED -78.77977 163.5595 168.3101 164.3095

Concluding remarks

We implement the six-parameter lifetime model recognized as the
ATF distribution. Different mathematical properties were discussed
with discussion involving quantile function, stochastic ordering and
related measures. Under the certain restrictions, we can obtain random
variables from the novel model. We include some figures for pdf,
cdf, hazard function, quantile function, median, skewness and kurtosis.
The general non-central complete, incomplete moments, characteristic
function factorial generating function and residual life function with
a certain measure of reliability are also discussed. For the generating
function, generating function, non-moment (complete and incomplete),
conditional moments and mean deviations, residual lifetime and re-
versed residual life functions, we also get explicit expression for the
suggested model. Through using the classical goodness of fit indica-
tors, we evaluate the efficiency of the new model with its significant
counterparts. These findings are in line with the fact that the current
distribution is quite suitable for real-life data applications.
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