
AIMS Mathematics, 7 (10): 17829–17842. 

DOI: 10.3934/math.2022982 

Received: 15 April 2022 

Revised: 26 June 2022 

Accepted: 05 July 2022 

Published: 03 August 2022 

http://www.aimspress.com/journal/Math 

 

Research article 

An efficient algorithm for the numerical evaluation of pseudo 

differential operator with error estimation 

Amit K. Pandey1, Manoj P. Tripathi2, Harendra Singh3,*, Pentyala S. Rao1, Devendra Kumar4, 

D. Baleanu5,6 

1 Department of Mathematics and Computing, Indian Institute of Technology (ISM) Dhanbad-

826004, India 
2 Department of Mathematics, Udai Pratap Autonomous College, Varanasi-221002, India 
3 Department of Mathematics, Post-Graduate College, Ghazipur-233001, Uttar Pradesh, India 
4 Department of Mathematics, University of Rajasthan, Jaipur-302004, Rajasthan, India 
5 Department of Mathematics, Faculty of Arts and Sciences, Cankaya University, Eskisehir Yolu 

29. Km, Yukarıyurtcu Mahallesi Mimar Sinan Caddesi No: 406790, Etimesgut, Turkey 
6 Institute of Space Sciences, Magurele-Bucharest, Romania 

* Correspondence: Email: harendra059@gmail.com. 

Abstract: In this paper we introduce an efficient and new numerical algorithm for evaluating a pseudo 

differential operator. The proposed algorithm is time saving and fruitful. The theoretical as well as 

numerical error estimation of the algorithm is established, together with its stability analysis. We have 

provided numerical illustrations and established that the numerical findings echo the analytical 

findings. The proposed technique has a convergence rate of order three. CPU time of computation is 

also listed. Trueness of numerical findings are validated using figures. 

Keywords: pseudo differential operator; numerical algorithm; Hat functions 

Mathematics Subject Classification: 33F05, 35S99, 65K99 

 

1. Introduction 

Let 𝐻𝜇 denotes the test function space consisting of all complex valued infinitely differentiable 

function ( )  x  defined on I=(0, ∞ ) satisfying, 𝛾𝑚,𝑘
𝜇

(  )=Sup |𝑥𝑚(𝑥−1 𝑑

𝑑𝑥
)𝑘(𝑥−𝜇−

1

2 ( )  x )| < ∞ , 
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∀𝑚, 𝑘 ∈ 𝑁0 (𝑁0 = 𝑁 ∪ {0}), and 𝐻𝜇
′ is the dual of test function space 𝐻𝜇 . The Hankel transformation 

was extended to distributions belonging to 𝐻𝜇
′ by Zemanian [1] as 

(ℎ𝜇𝜑)(𝑥)=∫ (𝑥𝑦)
1

2
∞

0
J (𝑥𝑦)𝜑(𝑦)𝑑𝑦. 

L. Schwartz’s [2] systematic study of the Fourier Transform of a distribution in ℑ′(ℝ𝑛) has been 

exploited by many author’s to study pseudo differential operators, see for instance Zaidman [3]. A 

pseudo differential operator (PDO) T  is defined by means of a symbol ( , )x   which is a function of 

,x  ℝ𝑛  (sometimes restricted to 0  ), and by the formal rule ( ) ( , )ix ixT e x e   =  which is 

reminiscent of amplitude modulation in radio detection. In most cases, the relation between the 

operator T and the symbol ( , )x   is linearized. Using the Fourier transform, we write every f 

(ℝ𝑛) as a superposition of functions ixe  . 

1 ˆ( ) ( )
(2 )

ix

n
f x e f d  



=  .      (1.1) 

By linearity, we get 

1 ˆ( ) ( , ) ( )
(2 )

ix

n
Tf x e x f d   



=  .     (1.2) 

Equation (1.2) makes sense when ( , )x L   (ℝ𝑛 × ℝ𝑛) and induces the study of the PDO’ s through 

the Fourier transform. 

Using the Zemanian theory of the Hankel transform , Singh and Pandey [4] extended it to study 

the PDO 
1( ) ,x D −−  for  ℝ and xI, I=(0,∞), D =

d

dx
 and proposed that the pseudo differential 

operator 
1( )x D −−  is an automorphism on a certain Frechet space F  consisting of complex valued C  

functions defined on I=(0,∞ ). They also deduced that 
1( )x D −−  is almost inverse of the Hankel 

Transform ℎ𝜇 in the sense that, 

1

0[  ( ) ]( ) = ( ), Fh o x D h

   −−  . 

Further, Pathak et al. [5] also used the Zemanian theory to study a certain class of pseudo differential 

operators which would encompass the theory of Bessel differential operators as a special case. Two 

new pseudo differential operators associated with Bessel operators were also developed by Pathak & 

Upadhya [6]. These developments in the field are purely analytical and are based on the distribution 

theory. In 2015, Tripathi et al. [7] developed an algorithm for numerical evaluation of the Hankel 

transform of order  > −1 , and it was established that the PDO is the inverse of the Hankel transform 

h  [4]. So, the numerical evaluation of a PDO can be achieved via numerical evaluation of the Hankel 

transform, and this motivated us for the present work. Some other applications of functions 

approximations using orthogonal polynomials can be found in [8–10]. In this paper. we are for the first 

time providing a numerical algorithm for the evaluation of the pseudo differential operator. 

2. Preliminaries 

In this section we introduce some basic preliminaries. We define the extended hat functions and 

some basic properties. Suppose that F  is the space of all functions ( )x  where ( )x  is a C  function, 

such that (0, )x I =  , and 
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2 2

0

 ( )  =  ( )
k

i k

i

i

x a x o x
=

+         (2.1) 

near the origin and is rapidly decreasing as x→ . 

For 
th-1/2 ,     order Hankel transform h  is defined on F  [4] by 

0

  ( ) = [ ( )]( ) ( ) ( ) ( ),y h x y x xy dm x  


 =  J       (2.2) 

where 

1
2 1( ) = ( )  = 2 1  ,dm x m x dx x dx 

−
+  +

        (2.3) 

-( ) = 2 ( 1) ( ) ,x x J x 

  +J        (2.4) 

and ( )J x  is the th  order Bessel function. 

The inversion formula for Eq (2.2) is given by [11–13]: 

0

  ( ) = ( ) ( ) ( ).x y xy dm y


 J        (2.5) 

The hat functions are members of [0,1]C  with the shape of hats in a two dimensional plane. When the 

closed unit interval [0,1]  is meshed in to n  collocation points 0, ℎ, 2ℎ, 3ℎ, . . . . . . . . . ., 𝑛ℎ = 1, then 

the hat function’s family of first ( 1)n+  functions is given as follows [14]: 

 ,  0 ,
 ( )

0 ,         otherwise,

h t
t h

t h

−
 

= 



0
         (2.6) 

( 1)
 , ( -1) ,

( 1)
( )    ,  ( 1) , 1,  2,  3...., 1

0 ,                  otherwise,             

i

t i h
i h t ih

h

i h t
t ih t i h i n

h


− −
 


+ −

=   + = −





,  (2.7) 

(1 )
 , 1- 1,

  ( )

0 ,                  otherwise.  
n

t h
h t

t h

− −
 

= 



       (2.8) 

It is evident that the value of the thi  hat function ( )i t  at the ( 1)thk + collocation point kh  is given by 

1 ,     = ,
  ( )  

0 ,    .
i

i k
kh

i k



= 


         (2.9) 
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3. Numerical evaluation 

This section deals with numerical evaluation of the PDO ( )1x D


−− . We use the hat basis function 

to approximate the various Hankel transforms appearing in the formulation of the PDO and propose 

an algorithm for the numerical approximation of the PDO. To derive the algorithm, we first assume 

that the effective domain space of input signal ( )x  is limited to a finite region 0 x T  . From the 

physical point of view, this assumption seems reasonable due to the fact that the input signal ( )x  

representing a physical field either is zero or has an infinitely long decaying tail outside a disc of finite 

radius T . Therefore, in many practical applications, either the input signal ( )x  has a compact 

support, or for a given 0   there exists a positive real T such that ( ) ( )
T

x x J xy dx 


 , which is 

the case if ( ) ( )x o x = , where 3 / 2  −  as x→ . 

In [4] it has been shown that the PDO ( )1x D


−− ,  1/2, is almost an inverse of h  in the sense 

that, 

1

0[  ( ) ]( ) = ( ), .h o x D h F

   −−         (3.1) 

So, 

1 1

0

1

0

1

0

  ( ) ( ) = [  ]

                            = ( ( ))

                            = ( ),   ( ) ( ).

x D h o h

h h

h y y h









 





− −

−

−

−

  =

     (3.2) 

Using Eqs (2.2)–(2.4), 

0( ) = [ ( )]( )y h x y  

0

0

= ( ) ( )x x J xy dx


 .       (3.3) 

Using inversion formula (2.5), Eq (3.2) becomes 

1

0

( ) ( ) = ( ) ( ) ( )x D y xy dm y




−−  J  

- 1

0

    = ( ) ( ) .x y y J xy dy 





+        (3.4) 

Now, we use two level approximation in (3.3) and (3.4) as follows: 

1 - 1

0

( ) ( ) = ( ) ( )x D x x y y J xy dy  




− +−   

≅ - 1

0

( ) ( )

T

x y y J xy dy 



+   

1

- 1

0

                      = ( ) ( )   (By scaling).x y y J xy dy 



+      (3.5) 
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0

0

(y) = ( ) ( )x x J xy dx


  ≅ 0
0

( ) ( )
T

x x J xy dx  

1

0
0

( ) ( ) . (By scaling)x x J xy dx=        (3.6) 

The computation of the integral is not an easy one due to the involvement of the rapidly oscillating 

function 0( )J xy  in the integrand of 
1

0
0

( ) ( )x x J xy dx . So, we approximate 0( )J xy  through the hat basis 

functions ( )i x  as, 

0( )J xy ≅
0

( )
q

i i

i

c x
=

 , where 0( )ic J ihy= , 1/ ,h q=    (3.7) 

and q  is the number of collocation points in the interval [0,1] . With this approximation, Eq (3.6) 

becomes 

( )y ≅
1 1

0
0 0

0 0

( ) ( ) ( ) ( ) ( ) .
q q

i i i

i i

x x c x dx J yih x x x dx   
= =

 
= 

 
     (3.8) 

Using the support of the hat basis functions, Eq (3.8) is written as 

0 0
0

( 1) 11

0 0

1 ( 1) 1

( ) (0) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) .

h

i hq

i q

i i h h

y J x x x dx

J yih x x x dx J yqh x x x dx

 

   
+−

= − −

 =

+ +



  
 (3.9) 

The value of ( )y  computed from Eq (3.9) is used to find the approximate numerical value of the 

PDO from Eq (3.5), as follows. 

We approximate ( )J xy
 as 

( )J xy ≅
0

( )
m

j j

j

d y
=

 , where ( )jd J jh x
= , 1/h m = ,     (3.10) 

and m is the number of collocation points. Substituting ( )J xy  in Eq (3.5), we obtain ( )1 ( ( ))x D x


−−

≅
1

1

00

( ) ( )
m

j j

j

x y y d y dy  − +

=

 
  

 
 .  Hence, we get the following algorithm for the numerical 

computation of the PDO: 

( )1 ( ( ))x D x


−− ≅
1

1

0 0

( ) ( )
m

j j

j

x d y y y dy  − +

=

 
 

 
   

( 1)1
1 1

0
0

1 ( 1)

(0) ( ) ( )  ( ) ( ) ( )

j hmh

j

j j h

x J y y y dy J xjh y y y dy  

  

+−
− + +

= −


=  + 




   

1

1

1

 ( ) ( ) ( )m

h

J xqh y y y dy

 +

−


+  


 ,        (3.11) 

where ( )y  is calculated using Eq (3.9). 
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4. Error analysis 

In this section, we provide error estimation of the proposed scheme. We use the following 

notations: 

0 0

0

( ) ( ) ( ), 1/
q

q j

j

J xy J yjh x h q
=

 = ,      (4.1) 

0

( ) ( ) ( ), 1/ ,
m

m i

i

J xy J xih y h m  
=

  =       (4.2) 

1

0

0

( ) ( ) ( )q qy x x J xy dx   ,       (4.3) 

( )
1

1 1

0

( ( )) ( ) ( ) .q mqm
x D x x y y J xy dy

  

− − +−         (4.4) 

Theorem 4.1. If ( )J xy  is approximated by a set of first ( 1)m+  hat functions 0 1( ), ( ),..., ( )my y y    

as Eq (3.10), and 0( )J xy  is approximated by a set of first ( 1)q+  hat functions 0 1( ),  ( ),..., ( )qx x x    as 

Eq (3.7), then 

(i) ( ) ( ) 0, 0,1,2,..., .mJ xih J xih for i m 
 − = =  

(ii) 
2 3

2 3
( ) ( ) ,

2
m

x x
J xy J xy O

m m
 

 
−  +  

 
for ( 1) ,ih y i h   + 0,1,2,..., 1.i m= −  

(iii) 
2 3

2 3
( ) ( )  

4
q

My y
y y O

q n

 
 −  +  

 
, where ( )x M  . 

Proof. 

(i) From Eqs (4.2) and (2.9), the value of ( )mJ xy at the 
thi  collocation point , 0,1,2,...,y ih i m= = , 

is given by 

0

( ) ( ) ( )
m

m j

j

J xih J xjh ih  
=

  =  

1( ) ( ) ( ) ( ) ( )i iJ xih ih J xih ih ih J xih    +
     = + + = . 

So, 

( ) ( ) 0, 0,1,2,..., .mJ xih J xih for i m 
 − = =  

(ii) For ( 1) ,ih y i h   +  0,1,2,..., 1i m= − , 0,1,2,..., 1j n= − , and then from Eq (4.2), we 

have 

1( ) ( ) ( ) ( ) ( )vm i iJ xy J xih y J xih xh y   +
  = + +  

( 1)
( ) ( )

i h y y ih
J xih J xih xh

h h
 

 + − −   
  = + +   

    
 (using Eqs (2.6–2.8)) 

( ) ( ) ( ) ( )
( )

J xih xh J xh J xih xh J xh
J xih xih xy

xh xh

   


     + − + −   
 = − +       
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( ) ( )
( ) ( )

J xih xh J xih
J xih xy xih

xh

 


  + − 
 = + −   

.       (4.5) 

As 0,h→  from Eq (4.5), we obtain 

( )mJ xy ≅ ( ) ( ) ( )J xih xy xih J xih 
  + − ,     (4.6) 

where ( )J xih
   denotes the derivative of J  with respect to xy  at y ih= . 

By expanding ( )J xy
 in the form of Taylor series, in the powers of ( )xy xih− , we have 

( )

0

( )
( ) ( )

!

k
k

k

xy xih
J xy J xih

k
 



=

−
= ,       (4.7) 

where ( )kJ , denotes the 
thk  order derivative of J  with respect to xy  at y ih= . Using Eqs (4.7) and 

(4.6), we have  

( )

2

2
3

( )
( ) ( ) ( )

!

( )
                           ( ) ( ) .

2

k
k

m

k

xy xih
J xy J xy J xih

k

xy xih
J xih O xy xih

  





=

−
− =

−   = + −


   (4.8) 

Since ( )xy xih xh −   and 1mh = , from Eq (4.8), we get 

2 3

2 3
( ) ( ) ( )

2
n

x x
J xy J xy J xih O

m m
  

 
 −  +  

 
.      (4.9) 

Since 
1 1

1
( )

2
J J J  − +
 = − , we have 

2 1

1
( 2 )

4
J J J J   − +
 = − + , and thus from Eq (4.9) we have 

2 3

2 12 3
( ) ( ) ( ) 2 ( ) ( )

8
n

x x
J xy J xy J xih J xih J xih O

m m
    − +

 
  −  − + +  

 
 

2 3

2 32

x x
O

m m

 
 +  

 
(as ( )  1J xih

  ).      (4.10) 

(iii) From Eqs (3.6) and (4.3), we get 

( )
( 1)1 1

0 0 0 0

00

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

i hq

q q q

i ih

y y x x J xy J xy dx x x J xy J xy dx 
+−

=

 − = −  −  . 

Replacing h  by h  and interchanging the role of x and y , from Theorem 4.1(ii), we get  

( 1) 2 31

2 3
0

( ) ( ) ( )
2

i hq

q

i ih

y y
y y x x O dx

q q


+−

=

 
 −  +  

 
   

( 1)2 3 2 31

2 3 2 3
0

 .
2 4

i hq

i ih

y y y y
M O xdx M O

q q q q

+−

=

    
 + = +    

    
  (4.11) 

This proves the third part of the theorem. 
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Theorem 4.2. With the postulates stated in Theorem 4.1, the upper bound for the absolute error ( )qm x  

between ( )1 ( ( ))x D x


−−  and ( )1 ( ( ))
qm

x D x


−−  is given by 

2 3

2 3 2 3

1 1 1
( )  

4 ( 3) 2( 2) 2
qm

x x
x Mx O O

q q m m


 

−
      

 + + +      
+ +       

. 

Proof. From Eqs (3.5) and (4.4), 

( ) ( ) ( )
1

1 1 1

0

( ( ))  ( ( )) ( ) ( ) ( ) ( )q mqm
x D x x D x x y y J xy y J xy dy

 
 

  − − − +
 

− − − =  − 
 
  

( )
1

1

0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )q q q mx y y J xy y J xy y J xy y J xy dy 

   

− +
 

=  − + − 
 
 . 

Thus, 

( ) ( )1 1( ) ( ( )) ( ( ))qm qm
x x D x x D x

 

  − −= − − −  

1 1

1 1

0 0

( ) ( ) ( ) ( ) ( ) ( )q q mx y y y J xy dy y y J xy J xy dy  

  

− + +
 

  − +  − 
 
   

( 1)1 1
1 1

00

( ) ( ) ( ) ( ) ( ) ( ) .

i hm

q q m

i ih

x y y y J xy dy y y J xy J xy dy  

  

+−
− + +

= 

 
=  − +  − 

 
   (4.12) 

Further from Eqs (4.3) and (4.1), 

1 1

0 0

0 0

( ) ( ) ( ) ( ) ( )q q qy x x J xy dx x x J xy dx  =    

1 1

0

0 00 0

( ) ( ) ( )
q q

i i

i i

M J yih x x dx M x x dx 
= =

     (as 0 ( ) 1J yih  ) 

( 1) 11

0

10 ( 1) ( 1)

( ) ( ) ( )

i hh q

i q

i i h q h

M x x dx x x dx x x dx  
+−

= − −

 
= + + 

  
    

( 1)1

10 ( 1)

( 1) ( 1)
i hh ihq

i i h ih

h x x i h i h x
M x dx x dx x dx

h h h

+−

= −

  − − − + −     
= + +               

    

1

( 1)

( 1)

q h

x q h
x dx

h
−

− − 
+  

  
  

1
2

1

1 3 1

6 6

q

i

q
Mh i

−

=

 −
= + + 

 
 2 21 1

2 2
Mq h M= = .        (4.13) 

Using Eqs (4.10), (4.11) and (4.13), the inequality in Eq (4.12) becomes 
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( 1)1 2 3 2 3 1
1 1

2 3 2 3
00

1
( )

4 2 2

i hm

qm

i ih

y y x x
x x M O y dy M O y dy

q q m m

  

+−
− + +

= 

       
 + + +       

        
 

2 3

2 3 2 3

1 1 1

4 ( 3) 2( 2) 2

x x
Mx O O

q q m m



 

−
      

= + + +      
+ +       

. 

5. Stability analysis 

In this section we have analyzed the stability of the proposed algorithm under the influence of 

random noise. If the data function  ( ) x is perturbed by adding a random noise  , and  the perturbed 

data function is denoted by  ( ) x , then  ( ) = x ( ) +x  , where   is a uniform random variable 

in  1,1− . So, we have ( ) ( ) x x − < . 

Using the approximation scheme developed in Sections 3 and 4, we have obtained Eq (4.4) as  

( )
1

1 1

0

( ( )) ( ) ( )q mqm
x D x x y y J xy dy

  

− − +−   , where mJ  and q  are given by Eqs (4.2) and (4.3), 

respectively. Now, Eq (4.4) can be used to obtain the pseudo-differential operator of the noisy data 

function ( )x  as 

( )
1

1 1

0

( ( )) ( ) ( )q mqm
x D x x y y J xy dy

    

− − +−   ,    (5.1) 

where 

1

0

0

( ) ( ) ( )q qy x x J xy dx  =  , (from Eq (4.3)).     (5.2) 

So, we have 

( ) ( )
1 1

1 1 1 1

0 0

( ( )) ( ( )) ( ) ( ) ( ) ( )q m q mqm qm
x D x x D x x y y J xy dy x y y J xy dy

 
     

  − − − + − +− − − =  −    

=
1

1

0

( ( ) ( )) ( )q q mx y y y J xy dy  



− +  −  

≤
1

1

0

( ) ( ) ( )q q mx y y y J xy dy  



− +  −  

≤
1

0

( ) ( )q qx y y dy −  − .       (5.3) 

Now, replacing  ( ) = x ( ) +x   in Eq (5.2), we have 

( )q y =
1 1 1

0 0 0

0 0 0

( ) ( ) ( ) ( ) ( )q q qx x J xy dx x x J xy dx x J xy dx  = +   .  (5.4) 

Using Eq (5.1), Eq (5.4) can be rewritten as 
1

0

0

( ) ( ) ( )q q qy y x J xy dx  − =  . So, we have 
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1

0

0

( ) ( ) ( )q q qy y x J xy dx  − =   

1

0

00

( ) ( )
q

j

x J yjh j h dx 
=

=   

( 1) 1( 1)

0 0 0 0

10 ( 1) (1 )

(0) ( ) ( ) ( ) ( ) ( )

j hh q h

j q

j j h h

J x x dx J yjh x x dx J yqh x x dx   
+−

= − −

 
= + + 

  
    

( ) ( )( 1)( 1)

0 0

10 ( 1)

( 1) ( 1)( )
(0) ( )

jh j hh q

j j h jh

x x j h x j h xx h x
J dx J yjh dx dx

h h h


+−

= −

  − − + −−
= + + 

   
    

(using definition of hat functions) 

2 2( 1)
2 2

0 0

1

1 1
( ) ( )

6 2 6 2 6 2 6
 

q

j

h j j h h
J yjh h h J y

−

=

      
= + − + + + −      

       
 . 

Therefore, 

2 2( 1)
2 2

0 0

1

1 1
( ) ( ) ( ) ( )

6 2 6 2 6 2 6
 

q

q q

j

h j j h h
y y J yjh h h J y 

−

=

      
 − = + − + + + −      

       
 ≤

2


. 

Using the above upper bound for ( ) ( )q qy y − , the inequality in Eq (5.3) reduces to 

( ) ( )1 1( ( )) ( ( ))
qm qm

x D x x D x
 

 − −− − − ≤
1

0
2 2

x dy x  − −= .    (5.5) 

The above analysis leads to the following theorem. 

Theorem 5.1. When the input data ( )x is corrupted with a random noise  , the proposed algorithm 

reduces the noise at least by a factor of
2

x  −  in the numerically approximated PDO ( )1

qm
x D


−− . 

6. Results discussion  

We use the algorithm developed to compute the numerical evaluation of the pseudo differential 

operator for ( )
21 xx D e


− −−  and ( )

21 2 /2( ),xx D x e


− −− ℝ. All the computations have been done using 

MATLAB-7.0. For evaluating ( )
21 xx D e


− −−  numerically, we take 7T = , 1/ 2 =  and 100q m= = . 

In Figure 1, a comparison between the exact PDO [15] ( )
21/2

1 xx D e− −−  and approximate value of the 

PDO ( )
1/2

21 x

qm
x D e− −−  is shown. Figure 2 shows the absolute error ( )qm x , for 100q m= = , between 

the approximated and the exact PDO ( ) ( )
21/2

1 xx D e− −− . The elapsed time (CPU time) for this example 

is 9.797 seconds. For this example, we have also calculated the absolute errors ( ), 1,2,3,4,5qm ix i =  for 

different values of m  at randomly selected different node points 

1 2 3 4 50.1, 1.6, 3.1, 4.6, 6.1x x x x x= = = = =  and listed them in Table 1. 
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Table 1. Absolute errors ( ),qm ix  for different values of m  and q m=  at node points 

1 2 3 4 50.1, 1.6, 3.1, 4.6, 6.1x x x x x= = = = = . 

m  
1( )qm x  2( )qm x  3( )qm x  4( )qm x  5( )qm x  

10 0.0560 0.0068 4.9765 × 10−5 7.0761× 10−6 2.4117× 10−5 

20 0.0136 0.0017 2.7442 × 10−5 6.3599 10−7 8.5926× 10−6 

50 0.0017 2.1862× 10−4 1.5035× 10−5 9.6113× 10−6 1.4369× 10−5 

100 5.1915 × 10−5 9.5177× 10−6 1.1446× 10−5 1.2587× 10−5 1.4984× 10−5 

500 6.0178 × 10−4 5.7430× 10−5 7.8500× 10−6 1.4771× 10−5 1.4840× 10−5 

 

Figure 1. Exact (solid red) and approximate (blue-dashed) values of ( )
21/2

1 xx D e− −− . 

 

Figure 2. Absolute error ( )qm x , for 100q m= = . 
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For numerical evaluation of the PDO ( )
21/3

1 2 /2( )xx D x e
−

− −− , we take 6T = , 1/ 3 = −  and 

100q m= = . Figure 3 compares the exact value of ( )
21/3

1 2 /2( )xx D x e
−

− −− , i.e., 
22 /2( 2 ) , 1 / 3xx e −− = − , 

and the approximate value of the PDO, i.e., ( )
21/3

1 2 /2( )x

qm
x D x e

−
− −− . Figure 4 presents the absolute error 

( )qm x , for 1000q m= = , between the exact PDO ( )
21/3

1 2 /2( )xx D x e
−

− −−  and approximate PDO 

( )
21/3

1 2 /2( )x

qm
x D x e

−
− −− . The elapsed time (CPU time) for this example is 10.64 seconds. 

 

Figure 3. Exact (solid red) and approximate (blue - starred) values of ( )
21/2

1 2 /2( )xx D x e− −− . 

 

 

Figure 4. Absolute error ( )qm x , for 1000q m= = . 
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7. Conclusions 

In the present manuscript, the algorithm developed for the numerical evaluation of ( )1 ,x D


−− 

ℝ, successfully corresponds to the analytical findings. The error estimation of the algorithm is also 

given in the paper, which is accompanied with stability analysis. Since it is the first time that numerical 

evaluation of the pseudo-differential operator has been achieved, we have nothing to compare with, 

but still we can say that theoretical finding of the proposed scheme together with the error estimation 

is very effective. From the numerical discussion section we can see that the proposed scheme is also 

time saving because a very little span of time is required for computation. In the future, we can use 

different orthogonal polynomials and wavelets using the same scheme for better results. 
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