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Abstract. The aim of this paper is to present new exact solution sets of nonlinear conformable time-fractional new
coupled mKdV equations which arise in interaction of two long waves with different dispersion relations by means of
sub-equation method. In addition, we also propose an analytical-approximate method namely residual power series
method (RPSM) for the system. The fractional derivatives have been explained in newly defined conformable type,
during the solution procedure. The exact solutions of the system obtained by the sub-equation method have been
compared to approximate solutions derived by RPSM. The results showed that both methods are robust, dependable,
easy to apply and a good alternative for seeking solutions of fractional partial differential equations.
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Key words and phrases. Conformable fractional derivative, Sub-equation method, Residual power series method, New
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1. Introduction

The fractional differential equations have been widely used by more researchers to model real-world problems
in recent years. It has been broadly studied and applied for various models in many branches of engineering
and science such as dynamical systems [10], mathematical physics [34], fluid mechanics [28], biology [19],
viscoelasticity [9] and control [35]. In addition, the investigations for analytical and approximate solutions of
fractional partial differential equations (FPDEs) gives scientists the opportunity to define phenomena in applied
sciences. Therefore, obtaining analytical and approximate solutions of FPDEs has significant and a special place
in above cited fields. Some o the classical analytical and approximate methods for solving fractional differential
equations (FDEs) are finite difference method (FDM) [27,32], Adomian decomposition method (ADM) [17,20],
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variational iteration method (VIM) [29], homotopy analysis method (HAM) [24, 25] and perturbation-iteration
algorithm [30,31].

In this article, the sub-equation [11,36] and residual power series methods [4–7] have been implemented to
receive new exact and approximate solutions of time-fractional new coupled mKdV equations of the form [12]:

∂αt u−
1

2
uxxx + 3u2ux − 3(vvx)x − 3(uv2)x = 0,

∂αt v + vxxx − 6uvux + 3(vux)x − (u2 − v2)vx = 0

(1.1)

The sub-equation method is a powerful tool for obtaining exact solutions of nonlinear FPDEs. It transforms
the given system to an ordinary differential equation to solve it easily. Residual power series is also set up on the
power series expansion. It may be applied to the equation directly in the absence of discretization, linearization
or any transformation by choosing proper initial conditions.

The remainder of the study is organized as follows. Brief explanations of the methods has firstly been given
and the implementation of the considered methods are presented on an example to show efficiency and reliability
of the proposed methods. Also figures and tables have been presented in order to compare their numerical
results. Finally, we discussed about the obtained results as a conclusion.

2. Preliminaries

There are a few definition of fractional derivative of order α > 0. The most widely used are the Riemann-
Liouville and Caputo fractional derivatives.

Definition 2.1. The Riemann-Liouville fractional derivative operator Dαf(x) defined as [2, 15, 16]:

(2.1) Dαf(x) =
dq

dxq

 1

Γ(q − α)

x∫
α

f(t)

(x− t)α+1−q dt


where α > 0 and q − 1 < α < q.

Definition 2.2. The Caputo fractional derivative of order α defined as [13]:

(2.2) Dα
∗ f(x) = Jn−αDnf(x) =

1

Γ(n− α)

x∫
α

(x− t)n−α−1
(
d

dt

)n
f(t)dt

where α > 0 for n ∈ N, n− 1 < α < n.

Recently, a new definition has been proposed by Khalil et al. [22] which is called "conformable fractional
derivative".

Definition 2.3. An α− th order “conformable fractional derivative” of a function f : [0,∞)→ R defined by

(2.3) Tα(f)(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε

for all α ∈ (0, 1) and t > 0.
The following theorem gives the properties of this new definition [22].
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Theorem 2.1. Let f and g are α-differantiable functions for α ∈ (0, 1] and t > 0. In that case

1. Tα(mf + ng) = mTα(f) + nTα(g) for allm,n ∈ R,
2. Tα(tp) = ptp−α for all p,
3. Tα(f.g) = fTα(g) + gTα(f),
4. Tα( fg ) = gTα(f)−fTα(g)

g2 ,
5. Tα(c) = 0 for all f(t) = c constant functions,
6. Tα(f)(t) = t1−α df(t)dt , if f is differentiable.

Definition 2.4. The conformable partial derivatives of an f function of order α ∈ (0, 1] with x1, ..., xn variables, is defined

as [8]

(2.4) dα

dxαi
f(x1, ..., xn) = lim

ε→0

f(x1, ..., xi−1, xi + εx1−αi , ..., xn)− f(x1, ..., xn)

ε
.

Definition 2.5. The conformable integral of an f function for a > 0 is defined as [33]

(2.5) Iaα(f)(s) =

s∫
a

f(t)

t1−α
dt.

In this section, some important definitions and theorems about residual power series will be given.

Theorem 2.2. Suppose that f is an infinitely α−differentiable function at a neigborhood of a point t0 for some 0 < α ≤ 1,

then f has the fractional power series expansion of the form:

(2.6) f(t) =

∞∑
k=0

(T t0α f)
(k)

(t0)(t− t0)kα

αkk!
, t0 < t < t0 +R

1
α , R > 0.

Here (T t0α f)
(k)

(t0) represents the application of the fractional derivative k−times [1].

Definition 2.6. A multiple fractional power series about t0 = 0 is defined by
∞∑
n=0

fn(x)tnα for 0 ≤ m − 1 < α < m,

where t is a variable and fn(x) are functions called the coefficients of the series [3, 18].

Theorem 2.3. Assume that u(x, t) has a multiple fractional power series representation at t0 = 0 of the form [3]

(2.7) u(x, t) =

∞∑
n=0

fn(x)tnα, 0 ≤ m− 1 < α < m, x ∈ I, 0 ≤ t ≤ R 1
α .

If u(nα)t (x, t), n = 0, 1, 2, . . . are continuous on I × (0, R
1
α ), then fn(x) =

u
(nα)
t (x,0)
αnn! .

3. Basics of the Sub-Equation Method

In this section, we present a short explanation of sub equation method [36]. For a given conformable fractional
differential equation with two independent variables x and t, consider

(3.1) P
(
u,Dα

t u,Dxu,D
2α
t u,D2

xu, ...
)

= 0
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where Dα
t u is conformable fractional derivatives of unknown function u(x, t) and D2α

t stand for two times
conformable fractional derivative of it. By adopting the wave transformation [14]

(3.2) u(x, t) = U(ξ), ξ = x− k t
α

α

and chain rule [1], Eq. (3.1) turns into nonlinear ordinary differential equation

(3.3) G(U ;U ′;U ′′; ...) = 0

where primes show integer order derivatives with respect to new wave variables ξ and k that will be examined
later. We assume that equation (3.3) has a solution in the form

(3.4) U(ξ) =

N∑
i=0

aiϕ
i(ξ), aN 6= 0

where ai (0 ≤ i ≤ N) are constant coefficients to be determined later. N is a positive integer which is going to be
calculated by balancing the highest order derivatives of linear and nonlinear terms [26] in equation (3.3) and
ϕ(ξ) is a solution of Riccati equation

(3.5) ϕ′(ξ) = σ + (ϕ(ξ))
2

where σ is a constant. Some special solutions for the Riccati equation (3.5) are given by the following formulas.

(3.6) ϕ(ξ) =



−
√
−σ tanh

(√
−σξ

)
, σ < 0

−
√
−σ coth

(√
−σξ

)
, σ < 0

√
σ tan (

√
σξ) , σ > 0

√
σ cot (

√
σξ) , σ > 0

− 1
ξ+$ , $ is a cons., σ = 0

Subrogating equations (3.4) and (3.5) into equation (3.3) we obtain a polynomial with respect ϕ(ξ). Setting all
the coefficients of ϕi(ξ) to zero, one gets nonlinear algebraic system in k, ai (i = 0, 1, ..., N). By solving these
nonlinear algebraic systemwe determine the constants k, ai (i = 0, 1, ..., N). Then substituting obtained constants
from the nonlinear algebraic system and the solutions of equation (3.5) into equation (3.4) by the help of the
formulas (3.6) we acquire the exact solutions for equation (3.1).

4. Basics of the residual power series method

To illustrate the basic idea of RPSM, let’s take the following nonlinear fractional differential equation [23]:

(4.1) Tαu(x, t) +N [x]u(x, t) + L[x]u(x, t) = c(x, t),

where n− 1 < nα ≤ n, x ∈ R, t > 0 and given with the initial condition

(4.2) f0(x) = u(x, 0) = f(x).

Here, L[x] is a linear, N [x] is a non-linear operator and c(x, t) are continuous functions.
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The RPSM method made up of stating the solution of the equation (4.1) subject to (4.2) as a fractional power
series expansion around t = 0.

(4.3) f(n−1)(x) = T
(n−1)α
t u(x, 0) = h(x)

The expansion form of the solution is denoted by

(4.4) u(x, t) = f(x) +

∞∑
n=1

fn(x)
tnα

αnn!
.

In the next step, the k.truncted series of u(x, t), namely uk(x, t) can be written as:

(4.5) uk(x, t) = f(x) +

k∑
n=1

fn(x)
tnα

αnn!
.

Since the 1st approximate solution u1(x, t) is

(4.6) u1(x, t) = f(x) + f1(x)
tα

αn

then uk(x, t) might be reformulated as

(4.7) uk(x, t) = f(x) + f1(x)
tα

αn
+

k∑
n=2

fn(x)
tnα

αnn!
, k = 2, 3, 4, ...

for 0 < α ≤ 1, 0 ≤ t < R 1
v , x ∈ I .

Initially we express the residual function and the k − th residual function

(4.8) Resu(x, t) = Tαu(x, t) +N [x]u(x, t) + L[x]u(x, t)− c(x, t),

(4.9) Resuk(x, t) = Tαuk(x, t) +N [x]uk(x, t) + L[x]uk(x, t)− g(x, t), k = 1, 2, 3, ...

respectively. Obviously, Res(x, t) = 0 and lim
k→∞

Resuk(x, t) = Resu(x, t) for each x ∈ I and t ≥ 0. Indeed this
bring about ∂(n−1)α

∂t(n−1)αResuk(x, t) = 0 for n = 1, 2, 3, ..., k. Since the fractional derivative of a constant is zero in the
conformable sense [4,21]. Solving the equation ∂(n−1)α

∂t(n−1)αResuk(x, 0) = 0 gives us the required fn(x) coefficients.
So the un(x, t) approximate solutions can be obtained respectively in this fashion.

5. Implementation of the Considered Methods

5.1. Wave Solutions for Fractional New Coupled mKdV Equation. Let consider the fractional new coupled
mKdv equation in Eq. (1.1) where t ≥ 0, 0 < α ≤ 1 and the derivatives are in conformable sense. With the aid of
the chain rule [1] with the aid of wave transform ξ = x− k t

α

α [14] led to

−kU − 1

2
U ′′ + U3 − 3V V ′ − 3UV 2 = 0,

−kV + V ′′ + V 3 − 3V U ′ − 3V U2 = 0.

(5.1)



Asia Pac. J. Math. 2019 6:13 6 of 14

Using balancing procedure in equation (5.1), we obtain N = 1. So we set up

U(ξ) = a0 + a1ϕ(ξ),

V (ξ) = b0 + b1ϕ(ξ)
(5.2)

where ϕ(ξ) satisfies the Riccati equation (3.5). Subrogating equations (5.2) with equation (3.5) into eq. (5.1),
collecting and equating all the coefficients of ϕi(ξ) to zero yield a set of algebraic equations with respect to
a0, a1, b0, b1, k. These equations can be mentioned
ϕ0 : a30 − 3a0b

2
0 − a0k − 3b0b1σ = 0, −3a20b0 + b30 − b0k + 3a1b0σ = 0,

ϕ1 : 3a20a1 − 3a1b
2
0 − 6a0b0b1 − a1k − a1σ − 3b21σ = 0, −6a0a1b0 − 3a20b1 + 3b20b1 − b1k + 2b1σ + 3a1b1 = 0,

ϕ2 : 3a0a
2
1 − 3b0b1 − 6a1b0b1 − 3a0b

2
1 = 0, 3a1b0 − 3a21b0 − 6a0a1b1 + 3b0b

2
1 = 0,

ϕ3 : −a1 + a31 − 3b21 − 3a1b
2
1 = 0, 2b1 + 3a1b1 − 3a21b1 + b31 = 0.

Solving the above system equations with the help of computer software Mathematica, we get

(5.3) a0 = 0, a1 = −1

2
, b0 = 0, b1 =

1

2
, k =

σ

2
.

Using the values of above coefficients and the equalities (3.6) along with the wave transform ξ = x− k t
α

α and
(5.2) yields the following travelling wave solutions

u1(x, t) =
1

2

√
−σ tanh

(√
−σ
(
x− σtα

2α

))
,

v1(x, t) = −1

2

√
−σ tanh

(√
−σ
(
x− σtα

2α

))
,

u2(x, t) =
1

2

√
−σ coth

(√
−σ
(
x− σtα

2α

))
,

v2(x, t) = −1

2

√
−σ coth

(√
−σ
(
x− σtα

2α

))
,

u3(x, t) = −1

2

√
σ tan

(√
σ

(
x− σtα

2α

))
,

v3(x, t) =
1

2

√
σ tan

(√
σ

(
x− σtα

2α

))
,

u4(x, t) =
1

2

√
σ cot

(√
σ

(
x− σtα

2α

))
,

v4(x, t) = −1

2

√
σ cot

(√
σ

(
x− σtα

2α

))
.

(5.4)

5.2. Approximate Solutions for FractionalNewCoupledmKdVEquation. Consider the nonlinear time-fractional

new coupled mKdV equation in Eq. (1.1) with the following initial equations

u(x, 0) = f(x) =
1

2

√
−σ tanh

(√
−σx

)
,

v(x, 0) = g(x) = −1

2

√
−σ tanh

(√
−σx

)
.

(5.5)
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For residual power series

u(x, t) = f(x) +

∞∑
n=1

fn(x)
tnα

αnn!
,

v(x, t) = g(x) +

∞∑
n=1

gn(x)
tnα

αnn!

(5.6)

and k.truncated series of u(x, t) and v(x, t)

uk(x, t) = f(x) +

k∑
n=1

fn(x)
tnα

αnn!
, k = 1, 2, 3, ...,

vk(x, t) = g(x) +

k∑
n=1

gn(x)
tnα

αnn!
, k = 1, 2, 3, ....

(5.7)

Therefore, the k-th residual functions of time-fractional new coupled mKdV equation are:

Resuk(x, t) = ∂αt uk −
1

2
uk,xxx + 3u2kuk,x − 3(vkvk,x)x − 3(ukv

2
k)x,

Resvk(x, t) = ∂αt vk + vk,xxx − 6ukvkuk,x + 3(vkuk,x)x − (u2k − v2k)vk,x.

(5.8)

To determine the coefficients f1(x) and g1(x), in u1(x, t) and v1(x, t), we should replace the 1st truncated series
u1(x, t) = f(x) + f1(x) t

α

α and v1(x, t) = g(x) + g1(x) t
α

α into the 1st truncated residual functions as

Resu1(x, t) = f1(x) + 3

(
f(x) +

tαf1(x)

α

)2(
f ′(x) +

tαf ′1(x)

α

)
− 3

(
g(x) +

tαg1(x)

α

)2

×
(
f ′(x) +

tαf ′1(x)

α

)
+ 6

(
f(x) +

tαf1(x)

α

)(
g(x) +

tαg1(x)

α

)(
g′(x) +

tαg′1(x)

α

)
−3

((
g′(x) +

tαg′1(x)

α

)2

+

(
g(x) +

tαg1(x)

α

)(
g′′(x) +

tαg′′1 (x)

α

))

+
1

2

(
−f (3)(x)− tαf

(3)
1 (x)

α

)
,(5.9)

Resv1(x, t) = g1(x)− 6

(
f(x) +

tαf1(x)

α

)(
g(x) +

tαg1(x)

α

)(
f ′(x) +

tαf ′1(x)

α

)
−3

((
f(x) +

tαf1(x)

α

)2

−
(
g(x) +

tαg1(x)

α

)2
)(

g′(x) +
tαg′1(x)

α

)
+3

(
f ′(x) +

tαf ′1(x)

α

)(
g′(x) +

tαg′1(x)

α

)
+

(
g(x) +

tαg1(x)

α

)(
f ′′(x) +

tαf ′′1 (x)

α

)
+g(3)(x) +

tαg
(3)
1 (x)

α
.(5.10)

Now for the substitution of t = 0 through equation Resu1(x, t) and Resu1(x, t) to obtain

(5.11) Resu1(x, 0) = f1(x)+3f2(x)f ′(x)−3
(
g2(x)f ′(x) + 2f(x)g(x)g′(x)

)
−3
(
g′2(x) + g(x)g′′(x)

)
− 1

2
f (3)(x),

(5.12) Resv1(x, 0) = g1(x)− 6f(x)g(x)f ′(x)− 3
(
f2(x)− g2(x)

)
g′(x) + 3 (f ′(x)g′(x) + g(x)f ′′(x)) + g(3)(x).
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Thus for Resu1(x, 0) = 0 and Resv1(x, 0) = 0,

(5.13) f1(x) = −3f2f ′ + 3g2f ′ + 6fgg′ + 3g′2 + 3gg′′ +
1

2
f (3),

(5.14) g1(x) = 6fgf ′ + 3f2g′ − 3g2g′ − 3f ′g′ − 3gf ′′ − g(3).

Therefore, we obtain the 1st RPS approximate solutions of time-fractional equation as

(5.15) u1(x, t) = f +
tα
(
−3f2f ′ + 3g2f ′ + 6fgg′ + 3g′2 + 3gg′′ + 1

2f
(3)
)

α
,

(5.16) v1(x, t) = g +
tα
(
6fgf ′ + 3f2g′ − 3g2g′ − 3f ′g′ − 3gf ′′ − g(3)

)
α

.

Again, to determine the second unknown coefficients f2(x) and g2(x), we replace the 2nd truncated series
solutions u2(x, t) = f(x) + f1(x) t

α

α + f2(x) t
2α

2α2 and v2(x, t) = g(x) + g1(x) t
α

α + g2(x) t
2α

2α2 into the 2nd truncated
residual functions and obtain

Resu2(x, t) = f1(x) +
tαf2(x)

α
+ 3

(
f(x) +

tαf1(x)

α
+
t2αf2(x)

2α2

)2(
f ′(x) +

tαf ′1(x)

α
+
t2αf ′2(x)

2α2

)
−3

(
g(x) +

tαg1(x)

α
+
t2αg2(x)

2α2

)2(
f ′(x) +

tαf ′1(x)

α
+
t2αf ′2(x)

2α2

)
+6

(
f(x) +

tαf1(x)

α
+
t2αf2(x)

2α2

)(
g(x) +

tαg1(x)

α
+
t2αg2(x)

2α2

)
×
(
g′(x) +

tαg′1(x)

α
+
t2αg′2(x)

2α2

)
− 3

(
g′(x) +

tαg′1(x)

α
+
t2αg′2(x)

2α2

)2

+

(
g(x) +

tαg1(x)

α
+
t2αg2(x)

2α2

)
×
(
g′′(x) +

tαg′′1 (x)

α
+
t2αg′′2 (x)

2α2

)
+

1

2

(
−f (3)(x)− tαf

(3)
1 (x)

α
− t2αf

(3)
2 (x)

2α2

)
,(5.17)

Resv2(x, t) = g1(x) +
tαg2(x)

α
− 6

(
f(x) +

tαf1(x)

α
+
t2αf2(x)

2α2

)(
g(x) +

tαg1(x)

α
+
t2αg2(x)

2α2

)
×
(
f ′(x) +

tαf ′1(x)

α
+
t2αf ′2(x)

2α2

)
− 3

(
f(x) +

tαf1(x)

α
+
t2αf2(x)

2α2

)2

−3

(
g(x) +

tαg1(x)

α
+
t2αg2(x)

2α2

)2

×
(
g′(x) +

tαg′1(x)

α
+
t2αg′2(x)

2α2

)
+3

(
f ′(x) +

tαf ′1(x)

α
+
t2αf ′2(x)

2α2

)(
g′(x) +

tαg′1(x)

α
+
t2αg′2(x)

2α2

)
+

(
g(x) +

tαg1(x)

α
+
t2αg2(x)

2α2

)(
f ′′(x) +

tαf ′′1 (x)

α
+
tαf ′′2 (x)

2α2

)
+g(3)(x) +

tαg
(3)
1 (x)

α
+
t2αg

(3)
2 (x)

2α2
.(5.18)

Now, applying Tα on both sides of Resu2(x, t) and Resv2(x, t) and equating to 0 for t = 0 gives:
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f2(x) = − α5

2α5 − 9t5αg2g′2

(
12ff1f

′ − 12gg1f
′ − 12gf1g

′ − 12fg1g
′ + 6f2f ′1 − 6g2f ′1 − 12fgg′1 − 12g′g′1

)
− α5

2α5 − 9t5αg2g′2

(
−6g1g

′′ − 6gg′′1 − f
(3)
1 − 12fgg′1 − 12g′g′1 − 6g1g

′′ − 6gg′′1 − f
(3)
1

)
,(5.19)

g2(x) = 6gf1f
′ + 6fg1f

′ + 6ff1g
′ − 6gg1g

′ + 6fgf ′1 − 3g′f ′1

+3f2g′1 − 3g2g′1 − 3f ′g′1 − 3g1f
′′ − 3gf ′′1 − g

(3)
1 .(5.20)

Therefore the 2nd RPS approximate solutions of time-fractional new coupled mKdV equation is obtained as:

u2(x, t) = f +
tαf1
α
− t2αα3

2 (2α5 − 9t5αg2g′2)

(
12ff1f

′ − 12gg1f
′ − 12gf1g

′ − 12fg1g
′ + 6f2f ′1

)
− t2αα3

2 (2α5 − 9t5αg2g′2)

(
−6g2f ′1 − 12fgg′1 − 12g′g′1 − 6g1g

′′ − 6gg′′1 − f
(3)
1

)
,(5.21)

v2(x, t) = g(x) +
tαg1(x)

α
+
t2α

2α2
(6gf1f

′ + 6fg1f
′ + 6ff1g

′ − 6gg1g
′ + 6fgf ′1)

+
t2α

2α2

(
−3g′f ′1 + 3f2g′1 − 3g2g′1 − 3f ′g′1 − 3g1f

′′ − 3gf ′′1 − g
(3)
1

)
.(5.22)

In the same manner, we apply the same procedure for n = 3 to obtain the following results.

f3(x) = −6f21 f
′ − 6ff2f

′ + 6g21f
′ + 6gg2f

′ + 6gf2g
′ + 12f1g1g

′ + 6fg2g
′

−12ff1f
′
1 + 12gg1f

′
1 − 3f2f ′2 + 3g2f ′2 + 12gf1g

′
1 + 12fg1g

′
1

+6g′21 + 6fgg′2 + 6g′g′2 + 3g2g
′′ + 6g1g

′′
1 + 3gg′′2 +

1

2
f
(3)
2 ,(5.23)

g3(x) = 6gf2f
′ + 12f1g1f

′ + 6fg2f
′ + 6f21 g

′ + 6ff2g
′ − 6g21g

′ − 6gg2g
′

+12gf1f
′
1 + 12fg1f

′
1 + 6fgf ′2 − 3g′f ′2 + 12ff1g

′
1 − 12gg1g

′
1 − 6f ′1g

′
1

+3f2g′2 − 3g2g′2 − 3f ′g′2 − 3g2f
′′ − 6g1f

′′
1 − 3gf ′′2 − g

(3)
2 ,(5.24)

u3(x, t) = f(x) +
tαf1
α

+
t2αf2
2α2

+
t3α

6α3

(
−6f21 f

′ − 6ff2f
′ + 6g21f

′ + 6gg2f
′ + 6gf2g

′ + 12f1g1g
′)

+
t3α

6α3

(
+6fg2g

′ − 12ff1f
′
1 + 12gg1f

′
1 − 3f2f ′2 + 3g2f ′2 + 12gf1g

′
1 + 12fg1g

′
1

)
+
t3α

6α3

(
+6g′21 + 6fgg′2 + 6g′g′2 + 3g2g

′′ + 6g1g
′′
1 + 3gg′′2 +

1

2
f
(3)
2

)
,(5.25)

v3(x, t) = g +
tαg1
α

+
t2αg2
2α2

+
t3α

6α3
(6gf2f

′ + 12f1g1f
′ + 6fg2f

′ + 6f21 g
′ + 6ff2g

′ − 6g21g
′ − 6gg2g

′)

+
t3α

6α3
(12gf1f

′
1 + 12fg1f

′
1 + 6fgf ′2 − 3g′f ′2 + 12ff1g

′
1 − 12gg1g

′
1 − 6f ′1g

′
1)

+
t3α

6α3
(3f2g′2 − 3g2g′2 − 3f ′g′2 − 3g2f

′′ − 6g1f
′′
1 − 3gf ′′2 − g

(3)
2 ).(5.26)
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In Tables 1-2, the fourth-order approximate RPSM solutions of time-fractional new coupled mKdV equation
are compared numerically with the exact solutions

(5.27) u(x, t) =
1

2

√
−σ tanh

(√
−σ
(
x− σtα

2α

))
,

(5.28) v(x, t) = −1

2

√
−σ tanh

(√
−σ
(
x− σtα

2α

))
.

Table 1. Numerical results of third order RPSM (u3(x, t)) solutions with absolute errors for
σ = −1/2 and t = 0.1.

α = 0.25 α = 0.50 α = 0.75

x RPSM Exact Abs. Error RPSM Exact Abs. Error RPSM Exact Abs. Error

0.0 0.132820 0.133616 7.96289E-4 0.039363 0.039364 8.19389E-7 0.014810 0.014810 6.09402E-9
0.1 0.160405 0.154454 5.95048E-3 0.063818 0.063821 3.06690E-6 0.039651 0.039651 5.64029E-8
0.2 0.183978 0.174045 9.93250E-3 0.087657 0.087662 5.16170E-6 0.064102 0.064102 1.02078E-7
0.3 0.201688 0.192320 9.36789E-3 0.110677 0.110684 6.98854E-6 0.087935 0.087935 1.39622E-7
0.4 0.214072 0.209244 4.82823E-3 0.132701 0.132709 8.40691E-6 0.110946 0.110946 1.66603E-7
0.5 0.223533 0.224810 1.27678E-3 0.153588 0.153598 9.28657E-6 0.132959 0.132959 1.81898E-7
0.6 0.232774 0.239038 6.26428E-3 0.173234 0.173243 9.55621E-6 0.153833 0.153833 1.85693E-7
0.7 0.243403 0.251971 8.56755E-3 0.191566 0.191575 9.23384E-6 0.173464 0.173464 1.79282E-7
0.8 0.255536 0.263664 8.12801E-3 0.208547 0.208556 8.42239E-6 0.191780 0.191780 1.64722E-7
0.9 0.268286 0.274188 5.90160E-3 0.224172 0.224179 7.27695E-6 0.208745 0.208745 1.44442E-7
1.0 0.280523 0.283619 3.09595E-3 0.238457 0.238463 5.96287E-6 0.224352 0.224352 1.20880E-7

Absolute errors are presented for α = 0.25, α = 0.50 and α = 0.75. The results indicate that as the x values
increase the absolute errors also increase. Besides, as the α values increase, the absolute errors decrease. Also the
Tables 1 and 2 show competitive solutions of the RPSM with highly approximate results. Moreover, in figures,
the surface plots of the approximate solutions are illustrated for α = 0.25, α = 0.50 and α = 0.75.

Table 2. Numerical results of third order RPSM (v3(x, t)) solutions with absolute errors for
σ = −1/2 and t = 0.1.

α = 0.25 α = 0.50 α = 0.75

x RPSM Exact Abs. Error RPSM Exact Abs. Error RPSM Exact Abs. Error

0.0 -0.133176 -0.133616 4.40433E-4 -0.039363 -0.039364 8.19364E-7 -0.014810 -0.014810 6.09402E-9
0.1 -0.154147 -0.154454 3.07373E-4 -0.063818 -0.063821 3.31577E-6 -0.039651 -0.039651 5.64978E-8
0.2 -0.173537 -0.174045 5.07560E-4 -0.087657 -0.087662 5.55303E-6 -0.064102 -0.064102 1.02223E-7
0.3 -0.191150 -0.192320 1.16995E-3 -0.110676 -0.110684 7.36827E-6 -0.087935 -0.087935 1.39755E-7
0.4 -0.207176 -0.209244 2.06771E-3 -0.132701 -0.132709 8.64380E-6 -0.110946 -0.110946 1.66675E-7
0.5 -0.222035 -0.224810 2.77502E-3 -0.153588 -0.153598 9.32228E-6 -0.132959 -0.132959 1.81889E-7
0.6 -0.23609 -0.239038 2.94836E-3 -0.173234 -0.173243 9.41358E-6 -0.153833 -0.153833 1.85615E-7
0.7 -0.249455 -0.251971 2.51534E-3 -0.191566 -0.191575 8.98895E-6 -0.173464 -0.173464 1.79169E-7
0.8 -0.261997 -0.263664 1.66669E-3 -0.208547 -0.208556 8.16298E-6 -0.191780 -0.191780 1.64611E-7
0.9 -0.273478 -0.274188 7.09964E-4 -0.224172 -0.224179 7.06952E-6 -0.208745 -0.208745 1.44359E-7
1.0 -0.283708 -0.283619 8.86102E-5 -0.238458 -0.238463 5.83883E-6 -0.224352 -0.224352 1.20836E-7
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(a)

(b)

(c)

Figure 1. The surface plots of u3(x, t) for σ = −1/2 and t = 0.1 and for a.) α = 0.25, b.) α = 0.50,
c.) α = 0.75.
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(a)

(b)

(c)

Figure 2. The surface plots of v3(x, t) for σ = −1/2 and t = 0.1 and for a.) α = 0.25, b.) α = 0.50,
c.) α = 0.75.
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6. Conclusion

In this paper, firstly the exact solutions of the nonlinear time-fractional new coupled mKdV equations are
obtained by the sub-equation method. Then the approximate solution of the model is demonstrated by the
residual power series method. The fractional derivatives in the solution procedure is taken in the conformable
sense. By the proposed methods and conformable fractional derivative definition, it is shown dependable ways
of obtaining exact and approximate solutions for nonlinear fractional partial differential equations. Approximate
solutions are compared with the exact solutions to show the reliability of the methods. Absolute errors are given
with approximate and exact solutions with the help of figures and tables. Therefore, we can conclude that the
methods are very effective tools for FDEs arising in different branches of applied sciences.
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