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Abstract: We study the monotonicity method to analyse nabla positivity for discrete fractional
operators of Riemann-Liouville type based on exponential kernels, where

(
CFR

c0
∇θF

)
(t) > −ε Λ(θ −

1)
(
∇F

)
(c0 + 1) such that

(
∇F

)
(c0 + 1) ≥ 0 and ε > 0. Next, the positivity of the fully discrete

fractional operator is analyzed, and the region of the solution is presented. Further, we consider
numerical simulations to validate our theory. Finally, the region of the solution and the cardinality
of the region are discussed via standard plots and heat map plots. The figures confirm the region of
solutions for specific values of ε and θ.

Keywords: discrete fractional calculus; Caputo-Fabrizio fractional difference; nabla positivity;
numerical analysis

1. Introduction

The construction of discrete fractional sums and differences from the knowledge of samples of their
corresponding continuous integrals and derivatives arises in the context of discrete fractional calculus;
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see [1–6] for more details. Recently, discrete fractional operators with more general forms of their
kernels and properties have gathered attention in both areas of physics and mathematics; see [7–10].

In discrete fractional calculus theory, we say that F is monotonically increasing at a time step t if
the nabla of F is non-negative, i.e.,

(
∇F

)
(t) := F(t) − F(t − 1) ≥ 0 for each t in the time scale set

Nc0+1 B {c0 + 1, c0 + 2, . . .}. Moreover, the function F is θ−monotonically increasing (or decreasing)
on Nc0 if F(t + 1) > θ F(t)

(
or F(t + 1) < θ F(t)

)
for each t ∈ Na

)
. In [11, 12] the authors considered

1−monotonicity analysis for standard discrete Riemann-Liouville fractional differences defined on N0

and in [13] the authors generalized the above by introducing θ−monotonicity increasing and
decreasing functions and then obtained some θ−monotonicity analysis results for discrete
Riemann-Liouville fractional differences defined on N0. In [14–16], the authors considered
monotonicity and positivity analysis for discrete Caputo, Caputo-Fabrizio and Attangana-Baleanu
fractional differences and in [17, 18] the authors considered monotonicity and positivity results for
abstract convolution equations that could be specialized to yield new insights into qualitative
properties of fractional difference operators. In [19], the authors presented positivity and monotonicity
results for discrete Caputo-Fabrizo fractional operators which cover both the sequential and
non-sequential cases, and showed both similarities and dissimilarities between the exponential kernel
case (that is included in Caputo-Fabrizo fractional operators) and fractional differences with other
types of kernels. Also in [20] the authors extended the results in [19] to discrete Attangana-Baleanu
fractional differences with Mittag-Leffler kernels. The main theoretical developments of monotonicity
and positivity analysis in discrete fractional calculus can be found in [21–24] for nabla differences,
and in [25–28] for delta differences.

The main idea in this article is to analyse discrete Caputo-Fabrizo fractional differences with
exponential kernels in the Riemann-Liouville sense. The results are based on a notable lemma
combined with summation techniques. The purpose of this article is two-fold. First we show the
positiveness of discrete fractional operators from a theoretical point of view. Second we shall
complement the theoretical results numerically and graphically based on the standard plots and heat
map plots.

The plan of the article is as follows. In Section 2 we present discrete fractional operators and the
main lemma. Section 3 analyses the discrete fractional operator in a theoretical sense. In Section 4 we
discuss our theoretical strategy on standard plots (Subsection 4.1) and heat map plots (Subsection 4.2).
Finally, in Section 5 we summarize our findings.

2. Basic definitions and a lemma

First we recall the definitions in discrete fractional calculus; see [2, 3, 5] for more information.

Definition 2.1 (see [2, Definition 2.24]). Let c0 ∈ R, 0 < θ ≤ 1, F be defined on Nc0 and Λ(θ) > 0 be a
normalization constant. Then the following operator

(
CFR

c0
∇θF

)
(t) B Λ(θ)∇t

t∑
r=c0+1

F(r)(1 − θ)t−r {
t ∈ Nc0+1

}
,

is called the discrete Caputo-Fabrizio fractional operator with exponential kernels in the Riemann-
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Liouville sense CFR, and the following operator

(
CFC

c0
∇θF

)
(t) B Λ(θ)

t∑
r=c0+1

(
∇rF

)
(r)(1 − θ)t−r {

t ∈ Nc0+1
}
,

is called the discrete Caputo-Fabrizo fractional operator with exponential kernels in the Caputo sense
CFC.

Definition 2.2 (see [3]). For F : Nc0−κ → R with κ < θ ≤ κ + 1 and κ ∈ N0, the discrete nabla CFC and
CFR fractional differences can be expressed as follows:(

CFC
c0
∇θF

)
(t) =

(
CFC

c0
∇θ−κ∇κF

)
(t),

and (
CFR

c0
∇θF

)
(t) =

(
CFR

c0
∇θ−κ∇κF

)
(t),

respectively, for each t ∈ Nc0+1.

The following lemma is essential later.

Lemma 2.1. Assume that F is defined on Nc0 and 1 < θ < 2. Then the CFR fractional difference is

(
CFR

c0
∇θF

)
(t) = Λ(θ − 1)

{(
∇F

)
(t) + (1 − θ)(2 − θ)t−c0−2(∇F)(c0 + 1)

+ (1 − θ)
t−1∑

r=c0+2

(
∇rF

)
(r)(2 − θ)t−r−1

}
,

for each t ∈ Nc0+2.

Proof. From Definitions 2.1 and 2.2, the following can be deduced for 1 < θ < 2 :

(
CFR

c0
∇θF

)
(t) = Λ(θ − 1)

{ t∑
r=c0+1

(
∇rF

)
(r)(2 − θ)t−r −

t−1∑
r=c0+1

(
∇rF

)
(r)(2 − θ)t−r−1

}

= Λ(θ − 1)
{(
∇F

)
(t) +

t−1∑
r=c0+1

(
∇rF

)
(r)

[
(2 − θ)t−r − (2 − θ)t−r−1

]}
= Λ(θ − 1)

{(
∇F

)
(t) + (1 − θ)(2 − θ)t−c0−2(∇F)(c0 + 1)

+ (1 − θ)
t−1∑

r=c0+2

(
∇rF

)
(r)(2 − θ)t−r−1

}
,

for each t ∈ Nc0+2.
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3. Theoretical analysis results

In the following theorem, we will show that F is monotonically increasing at two time steps even if(
CFR

c0
∇θF

)
(t) is negative at the two time steps.

Theorem 3.1. Let the function F be defined on Nc0+1, and let 1 < θ < 2 and ε > 0. Assume that(
CFR

c0
∇θF

)
(t) > −ε Λ(θ − 1)

(
∇F

)
(c0 + 1) for t ∈ {c0 + 2, c0 + 3} s.t.

(
∇F

)
(c0 + 1) ≥ 0. (3.1)

If (1 − θ)(2 − θ) < −ε, then
(
∇F

)
(c0 + 2) and

(
∇F

)
(c0 + 3) are both nonnegative.

Proof. From Lemma 2.1 and condition (3.1) we have

(
∇F

)
(t) ≥ −

(
∇F

)
(c0 + 1)

[
(1 − θ)(2 − θ)t−c0−2 + ε

]
− (1 − θ)

t−1∑
r=c0+2

(
∇rF

)
(r)(2 − θ)t−r−1, (3.2)

for each t ∈ Nc0+2. At t = c0 + 2, we have

(
∇F

)
(c0 + 2) ≥ −

(
∇F

)
(c0 + 1)

[
(1 − θ) + ε

]
− (1 − θ)

c0+1∑
r=c0+2

(
∇rF

)
(r)(2 − θ)c0+1−r

︸                           ︷︷                           ︸
=0

≥ 0,

where we have used (1− θ) < (1− θ)(2− θ) < −ε and
(
∇F

)
(c0 + 1) ≥ 0 by assumption. At t = c0 + 3, it

follows from (3.2) that

(
∇F

)
(c0 + 3) = −

(
∇F

)
(c0 + 1)

[
(1 − θ)(2 − θ) + ε

]
− (1 − θ)

c0+2∑
r=c0+2

(
∇rF

)
(r)(2 − θ)c0+2−r

= −
(
∇F

)
(c0 + 1)︸         ︷︷         ︸
≥0

[
(1 − θ)(2 − θ) + ε

]︸                  ︷︷                  ︸
<0

− (1 − θ)︸ ︷︷ ︸
<0

(∇F)(c0 + 2)︸         ︷︷         ︸
≥0

≥ 0, (3.3)

as required. Hence the proof is completed.

Remark 3.1. It worth mentioning that Figure 1 shows the graph of θ 7→ (1 − θ)(2 − θ) for θ ∈ (1, 2).

In order for Theorem 3.1 to be applicable, the allowable range of ε is ε ∈
(
0,−(2 − θ)(1 − θ)

)
for a

fixed θ ∈ (1, 2)
Now, we can define the set Hκ,ε as follows

Hκ,ε :=
{
θ ∈ (1, 2) : (1 − θ)(2 − θ)κ−c0−2 < −ε

}
⊆ (1, 2), ∀ κ ∈ Nc0+3.
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Figure 1. Graph of θ 7→ (1 − θ)(2 − θ) for θ ∈ (1, 2).

The following lemma shows that the collection
{
Hκ,ε

}∞
κ=c0+1 forms a nested collection of decreasing

sets for each ε > 0.

Lemma 3.1. Let 1 < θ < 2. Then, for each ε > 0 and κ ∈ Nc0+3 we have that Hκ+1,ε ⊆Hκ,ε .

Proof. Let θ ∈Hκ+1,ε for some fixed but arbitrary κ ∈ Nc0+3 and ε > 0. Then we have

(1 − θ)(2 − θ)κ−c0−1 = (1 − θ)(2 − θ)(2 − θ)κ−c0−2 < −ε.

Considering 1 < θ < 2 and κ ∈ Nc0+3, we have 0 < 2 − θ < 1. Consequently, we have

(1 − θ)(2 − θ)κ−c0−2 < −ε ·
1

2 − θ︸︷︷︸
>1

< −ε.

This implies that θ ∈Hκ,ε , and thus Hκ+1,ε ⊆Hκ,ε .

Now, Theorem 3.1 and Lemma 3.1 lead to the following corollary.

Corollary 3.1. Let F be a function defined on Nc0+1, θ ∈ (1, 2) and(
CFR

c0
∇θF

)
(t) > −ε Λ(θ − 1)

(
∇ F

)
(c0 + 1) such that

(
∇F

)
(c0 + 1) ≥ 0, (3.4)

for each t ∈ Ns
c0+3 := {c0 + 3, c0 + 4, . . . , s} and some s ∈ Nc0+3. If θ ∈ Hs,ε , then we have

(
∇F

)
(t) ≥ 0

for each t ∈ Ns
c0+1.

Proof. From the assumption θ ∈Hs,ε and Lemma 3.1, we have

θ ∈Hs,ε = Hs,ε ∩

s−1⋂
κ=c0+3

Hκ,ε .
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This leads to

(1 − θ)(2 − θ)t−c0−2 < −ε, (3.5)

for each t ∈ Ns
c0+3.

Now we use the induction process. First for t = c0 + 3 we obtain (∇F) (c0 + 3) ≥ 0 directly as
in Theorem 3.1 by considering inequalities (Eq 3.4) and (Eq 3.5) together with the given assumption
(∇F)(c0 + 1) ≥ 0. As a result, we can inductively iterate inequality (Eq 3.2) to get

(∇F) (t) ≥ 0,

for each t ∈ Ns
c0+2. Moreover,

(
∇F

)
(c0 + 1) ≥ 0 by assumption. Thus, (∇F) (t) ≥ 0 for each t ∈ Ns

c0+1 as
desired.

4. Numerical analysis results

In this section, we consider the methodology for the positivity of ∇F based on previous observations
in Theorem 3.1 and Corollary 3.1 in such a way that the initial conditions are known. Later, we will
illustrate other parts of our article via standard plots and heat maps for different values of θ and ε. The
computations in this section were performed with MATLAB software.

Example 4.1. Considering Lemma 2.1 with t B c0 + 3:(
CFR

c0
∇θF

)
(c0 + 3) = Λ(θ − 1)

{(
∇F

)
(c0 + 3) + (1 − θ)(2 − θ)

(
∇F

)
(c0 + 1)

+(1 − θ)
c0+2∑

r=c0+2

(
∇rF

)
(r)(2 − θ)c0+2−r

}
.

For c0 = 0, it follows that

(
CFR

0∇
θF

)
(3) = Λ(θ − 1)

{(
∇F

)
(3) + (1 − θ)(2 − θ)

(
∇F

)
(1) + (1 − θ)

2∑
r=2

(
∇rF

)
(r)(2 − θ)2−r

}
= Λ(θ − 1)

{(
∇F

)
(3) + (1 − θ)(2 − θ)

(
∇F

)
(1) + (1 − θ)

(
∇F

)
(2)

}
= Λ(θ − 1)

{
F(3) − F(2) + (1 − θ)(2 − θ)

[
F(1) − F(0)

]
+ (1 − θ)

[
F(2) − F(1)

]}
.

If we take θ = 1.99, F(0) = 0, F(1) = 1, F(2) = 1.001, F(3) = 1.005, and ε = 0.007, we have(
CFR

0∇
1.99F

)
(3) = Λ(0.99)

{
0.004 + (−0.99)(0.01)(0) + (−0.99)(0.001)

}
= −0.0069 Λ(0.99) > −0.007 Λ(0.99) = −ε Λ(0.99)

(
∇F

)
(1).

In addition, we see that (1 − θ)(2 − θ) = −0.0099 < −0.007 = −ε. Since the required conditions are
satisfied, Theorem 3.1 ensures that (∇F)(3) > 0.

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7272–7283.
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4.1. Standard plots

In Figure 2, the sets Hκ,0.008 and Hκ,0.004 are shown for different values of κ, respectively in Figure
2a,b. It is noted that Hκ,0.008 and Hκ,0.004 decrease by increasing the values of κ. Moreover, in Figure
2a, the set Hκ,0.008 becomes empty for κ ≥ 45; however, in Figure 2b, we observe the non-emptiness
of the set Hκ,0.004 for many larger values of κ up to 90. We think that the measures of Hκ,0.008 and
Hκ,0.004 are not symmetrically distributed when κ increases (see Figure 2a,b). We do not have a good
conceptual explanation for why this symmetric behavior is observed. In fact, it is not clear why the
discrete nabla fractional difference CFR

c0
∇θ seems to give monotonically when θ → 1 rather than for

θ → 2, specifically, it gives a maximal information when θ is very close to 1 as ε → 0+.

(a) Graph of Hκ,0.008 for κ ∈ N60
3 . (b) Graph of Hκ,0.004 for κ ∈ N120

3 .

Figure 2. Graph of Hκ,ε for different values of κ and ε.

In the next figure (Figure 3), we have chosen a smaller ε (ε = 0.001), we see that the set Hκ,0.001 is
non-empty for κ > 320. This tells us that small choices in ε give us a more widely applicable result.

Figure 3. Graph of Hκ,ε for κ ∈ N350
3 and ε = 0.001.

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7272–7283.
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4.2. Heat map plots

(a) Heat map forHκ with 1 < θ < 2. (b) Heat map forHκ with 1 < θ < 1.5.

(c) Heat map forHκ with 1 < θ < 1.1. (d) Heat map forHκ with 1 < θ < 1.05.

Figure 4. The cardinality of Hκ for different values of θ with 0.00001 ≤ ε ≤ 0.0001 in heat
maps.

In this part, we introduce the set Hκ B {κ : θ ∈ Hκ,ε} to simulate our main theoretical findings for
the cardinality of the set Hκ via heat maps in Figure 4a–d. In these figures: we mean the warm colors
such as red ones and the cool colors such as blue ones. Moreover, the θ values are on the x−axis and ε
values are on the y−axis. We choose ε in the interval [0.00001, 0.0001]. Then, the conclusion of these
figures are as follows:

• In Figure 4a when θ ∈ (1, 2) and Figure 4b when θ ∈ (1, 1.5), we observe that the warmer colors
are somewhat skewed toward θ very close to 1, and the cooler colors cover the rest of the figures
for θ above 1.05.
• In Figure 4c,d, the warmest colors move strongly towards the lower values of θ, especially, when
θ ∈ (1, 1.05). Furthermore, when as θ increases to up to 1.0368, it drops sharply from magenta

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7272–7283.
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to cyan, which implies a sharp decrease in the cardinality of Hκ for a small values of ε as in the
interval [0.00001, 0.0001].

On the other hand, for larger values of ε, the setHκ will tend to be empty even if we select a smaller
θ in such an interval (1, 1.05). See the following Figure 5a,b for more.

(a) Heat map forHκ with 0.001 < ε < 0.01.
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(b) Heat map forHκ with 0.01 < ε < 0.1.

Figure 5. The cardinality ofHκ for different values of ε with 1 < θ < 1.05 in heat maps.

In conclusion, from Figures 4 and 5, we see that: For a smaller value of ε, the set Hκ,ε tends to
remain non-empty (see Figure 4), unlike for a larger value of ε (see Figure 5). Furthermore, these
verify that Corollary 3.1 will be more applicable for 1 < θ < 1.05 and 0.01 < ε < 0.1 as shown in
Figure 4d.

Although, our numerical data strongly note the sensitivity of the setHκ when slight increasing in ε
is observed for θ close to 2 compares with θ close to 1.

5. Concluding remarks

In this paper we developed a positivity method for analysing discrete fractional operators of
Riemann-Liouville type based on exponential kernels. In our work we have found that (∇F)(3) ≥ 0
when

(
CFR

c0
∇θF

)
(t) > −ε Λ(θ − 1)

(
∇F

)
(c0 + 1) such that

(
∇F

)
(c0 + 1) ≥ 0 and ε > 0. We continue to

extend this result for each value of t in Ns
c0+1 as we have done in Corollary 3.1.

In addition we presented standard plots and heat map plots for the discrete problem that is solved
numerically. Two of the graphs are standard plots for Hκ,ε for different values of κ and ε (see Figure
2), and the other six graphs consider the cardinality ofHκ for different values of ε and θ (see Figures 4
and 5). These graphs ensure the validity of our theoretical results.

In the future we hope to apply our method to other types of discrete fractional operators which
include Mittag-Leffler and their extensions in kernels; see for example [5, 6].
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