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Abstract: The SARS-CoV-2 virus pandemic remains a pressing issue with its unpredictable nature,
and it spreads worldwide through human interaction. Current research focuses on the investigation
and analysis of fractional epidemic models that discuss the temporal dynamics of the SARS-CoV-2
virus in the community. In this work, we choose a fractional-order mathematical model to examine
the transmissibility in the community of several symptoms of COVID-19 in the sense of the Caputo
operator. Sensitivity analysis of R0 and disease-free local stability of the system are checked. Also,
with the assistance of fixed point theory, we demonstrate the existence and uniqueness of the system.
In addition, numerically we solve the fractional model and presented some simulation results via
actual estimation parameters. Graphically we displayed the effects of numerous model parameters
and memory indexes. The numerical outcomes show the reliability, validation, and accuracy of the
scheme.
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1. Introduction

In the 21st century, due to several applications of mathematical biology, researchers have shown
exceptional interest in this sector. So, in the case of mathematical modeling, their vital concern
is to express contagious diseases and control them. Brownlee [1] arranged a solid foundation of
mathematical biology. For the spread of infection [2], he suggested a law with the help of probabilistic
techniques. The implementation of fractional derivatives is helpful in the modeling of several problems
of mathematical biology, like hepatitis, glucose, Ebola, HIV, etc. [3–11].

Within a few years, several techniques were used to investigate the dynamics of COVID-19. Among
these, Caputo [12], Caputo-Fabrizio [13] and Atangana-Baleanu-Caputo (ABC) [14] are the focus
of attention around the world. [15–19] Some applications of these were helpful in several issues.
Also, over the last few months, numerous infection models have been constructed and discussed
based on various fractional-order operators to study the dynamic behavior and control of new COVID-
19 cases. In [20], with the help of the famous Caputo Fabrizio derivative, a new transmission model for
COVID-19 dynamics was established. In [21], the authors developed a fractional-order model with the
ABC operator. In [22], to see the effect of lockdown, Atangana presented a model with the assistance
of the fractal fractional operator. Vaccines play a vital role in decreasing the growth of COVID-19,
and their effects can be seen in [23]. In [24], Akgül et al. analyzed the differential equation model in
the context of COVID-19. Further, they determined its stability with fractal-fraction derivative. Din et
al. [25] proceed Akgül’s work to solve the problems of Hepatitis B. In [26], the authors qualitatively
used the stability theory of DEs and the basic reproduction number, which represents an epidemic
index obtained from the so-called maximum eigenvalues of the next-generation matrix. They presented
a mathematical model that calculates the results, and it turns out to be beneficial to public health
initiatives. [27–29] Various fractional operators associated with the infection COVID-19 have been
proposed to work the dynamics of fractional epidemic models. [30] Atangana et al. suggested a model
and extended it to the scope of nonlocal operators. Moreover, simulations were performed for different
non-integer numbers. In [31], the authors initially considered the classical integer model and then
generalized it by introducing the Caputo fractional derivative. Further, for the case of simulation, they
used the generalized Adams-Bashforth-Moulton scheme.

An inverse problem for the heat equation in two dimensional space with the Robin boundary
condition that involves a new fractional derivative, namely, the Atangana-Baleanu approach with
non-local and non-singular kernel was considered in [37]. Futher, a numerical algorithm in the
reproducing kernel Hilbert space (RKHS) approach was applied to the inverse source problem for the
diffusion equation in a time-space fractional sense, where determinations of state variables and source
parameters subject to initial boundary and over-determination conditions are the main goal. [38] dealt
with two types of inverse problems for diffusion equations involving Caputo fractional derivatives in
time and the fractional Sturm-Liouville operator for space. An inverse source problem for fractional
diffusion equation that containing fractional derivative with non-singular and non-local kernel, namely,
the Atangana-Baleanu-Caputo fractional derivative, was studied in [39].

The manuscript is arranged as follows: In Section 2, some basic notions related to the Caputo
derivative are described. In Section 3, we formulated COVID-19 model. We analyze the positivity
and local stability of the system in Section 4. Moving on, in Section 5, we proved some useful results
related to existence and uniqueness of the model. We develop numerical schemes in Section 6. Further,
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we discuss simulations in Section 7. The last segment consists of a conclusion.

2. Basic definitions

In this section, some primary notions are described that are helpful for analyzing the system.

Definition 2.1. [32] A Caputo derivative of fractional order % ∈ (0, 1), for the function Z can be
defined as

{D%
t

(
z(t)

)
=

1
Γ(p − %)

∫ t

0

zp(ρ)
(t − ρ)%−p+1

]
dρ, p = [%] + 1.

Definition 2.2. [32] The integral operator of fractional order % ∈ (0, 1) corresponding to the Caputo
fractional derivative is defined as

{I %
t

(
z(t)

)
=

1
Γ(%)

∫ t

0
(t − ρ)%−1z(ρ)dρ.

Lemma 2.3. [12] Suppose S (f) ∈ C (0,T ), the result of the fractional differential equation{D p
0 @ (f) = S (f), f ∈ (0,T ),

@ (0) = S0,

is given by

I(f) =

p∑
m=0

Lm f
m +

1
Γ(ν)

∫ f

0
(f − ρ)ν−1S (ρ)dρ,

where Lm ∈ R, m = 0, 1, 2, ..., p.

Lemma 2.4. [14, 25, 33] For any arbitrary am ∈ R, m = 0, 1, 2, ..., p − 1, the following result holds:

I %[{D%
t f (t)] = f(t) + a0 + a1t + a2t2 + ... + ap−1tp−1,

where p = [%] + 1, and [%] represents the integer part of %.

Lemma 2.5. [25] Suppose f ∈ A Cl[0,T ], % > 0, and l = [%]. Then, the following condition is
satisfied:

I %[{D%
t f (∧)] = f(∧) −

l−1∑
m=0

Dm f (a)
m!

(t − a)m.

Lemma 2.6. [14, 25] From the above Lemma, 2.5, the outcome D% f (∧) = x(t), l − 1 < % < l, is

f (∧) = I %x(t) + b0 + b1t + b1t2 + ... + bl−1tl−1,

where bm ∈ R.

Definition 2.7. [14] If
{D%

t f (t) = Z(t,f(t)),

then

f (tm+1) = f(tm) +
z(tm,fm)

kΓ(%)

[2k
%

t%m+1 −
t%+1
m+1

% + 1
+

h
%

t%m −
t%+1

%

]
+
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z(tm−1,fm−1)
kΓ(%)

[k
%

t%m+1 −
t%+1
m+1

% + 1
+

t%m
% + 1

]
+ R%

m(t).

Here, R%
m(t) is the remainder.

Theorem 2.8. [32,33] Let B : Y → G be compact and continuous, where G is a Banach space. If the
set

F = {f ∈ G : f = nBf, n ∈ (0, 1)},

is bounded, then we can say that B has a unique fixed point.

3. Model formation

The epidemiological compartment concept is one that we support [34] that takes into consideration
the distinction among people with extreme symptoms, mild symptoms, and without symptoms.
We can split the model into nine parts at time t: Susceptible ZS (t), exposed ZE(t), severe
symptoms of infectious individuals, ZIss(t), mild symptoms infectious individuals ZIms(t), infectious
but asymptomatic individuals ZIa(t), hospitalized ZH(t), intensive care unit class ZIcu(t), recovery with
immunity ZR(t) and the class of death ZD(t).

dZS

dt
= −β

Zs(t)
N

(ZIss(t) + ZIms(t) + ZIa(t)),

dZE

dt
= β

Zs(t)
N

(ZIss(t) + ZIms(t) + ZIa(t)) − kZE(t),

dZIss

dt
= kp1ZE(t) − hZIss(t),

dZIms

dt
= kp2ZE(t) − γ3ZIms(t),

dZIa

dt
= k(1 − p1 − p2)ZE(t) − γ3ZIa(t), (3.1)

dZH

dt
= hq1ZIss(t) − ZH(t),

dZIcu

dt
= h(1 − q1)ZIss(t) − ZIcu(t),

dZR

dt
= γ3ZIms(t) + γ3ZIa(t) + (1 − δ1)ZH(t) + (1 + γ1)ZIcu(t),

dZD

dt
= δ1ZH(t) + γ1)ZIcu(t),

with initial condition

ZS (0) ≥ 0, ZE(0) ≥ 0, ZIss(0) ≥ (0), ZIms ≥ 0, ZIa(0) ≥ 0, ZH(0) ≥ 0,

ZIcu(0) ≥ 0, ZR(0) = 0, ZD(0) = 0.

The human-to-human transmission coefficient per unit time per person is β in this case. The rate
at which an individual departs the exposed clan by becoming contagious is represented by k. An
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incubation period is defined as a time of 1/k. The parameter p1 represents the likelihood that an
individual will leave an exposed compartment ZE and become infected with severe symptoms ZIss . p2

is the probability that an exposed person will become infected with moderate symptoms is called ZIms

and 1 − p1 − p2 is the likelihood that exposed people joined an asymptomatic clan. ZIa . h represents
the pace at which a person exits the compartment ZIss while q1 is the probability at which a person in
ZIss went to the compartment H of hospitalized individuals. The recovery rate of persons with minor
symptoms and asymptomatic people who are not hospitalized is γ3. The death rate of hospitalized
patients H who do not receive intensive care is δ1. γ1 is the death rate of hospitalized patients with
intensive care ZIcu .

We apply the Caputo derivative to the COVID-19 model

{Dα
t ZS = −β

Zs(t)
N

(ZIss(t) + ZIms(t) + ZIa(t)),

{Dα
t ZE = β

Zs(t)
N

(ZIss(t) + ZIms(t) + ZIa(t)) − kZE(t),

{Dα
t ZIss = kp1ZE(t) − hZIss(t),

{Dα
t ZIms = kp2ZE(t) − γ3ZIms(t),

{Dα
t ZIa = k(1 − p1 − p2)ZE(t) − γ3ZIa(t), (3.2)

{Dα
t ZH = hq1ZIss(t) − ZH(t),

{Dα
t ZIcu = h(1 − q1)ZIss(t) − ZIcu(t),

{Dα
t ZR = γ3ZIms(t) + γ3ZIa(t) + (1 − δ1)ZH(t) + (1 + γ1)ZIcu(t),

{Dα
t ZD = δ1ZH(t) + γ1)ZIcu(t),

with initial condition

ZS (0) ≥ 0, ZE(0) ≥ 0, ZIss(0) ≥ (0), ZIms ≥ 0, ZIa(0) ≥ 0, ZH(0) ≥ 0, ZIcu(0) ≥ 0,

ZR(0) = 0, ZD(0) = 0.

4. Analysis of the system

Theorem 4.1. The solution of the proposed model (3.2) along initial conditions is unique and bounded
in R9

+.
Proof. In system (3.2), we can get its existence and uniqueness on the time interval (0,∞). Afterwards,
we need to show that the non-negative region R9

+ is a positively invariant region. From model (3.2),
we find

{Dα
t ZS (t)|ZS =0 = −β

Zs(t)
N

(ZIss(t) + ZIms(t) + ZIa(t)),

{Dα
t ZE(t)|ZE=0 = β

Zs(t)
N

(ZIss(t) + ZIms(t) + ZIa(t)) − kZE(t),

{Dα
t ZIss(t)|ZIss =0 = kp1ZE(t) − hZIss(t),
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{Dα
t ZIms(t)ZIms =0 = kp2ZE(t) − γ3ZIms(t),

{Dα
t ZIa(t)|ZIa =0 = k(1 − p1 − p2)ZE(t) − γ3ZIa(t), (4.1)

{Dα
t ZH(t)|ZH=0 = hq1ZIss(t) − ZH(t),

{Dα
t ZIcu(t)|ZIcu =0 = h(1 − q1)ZIss(t) − ZIcu(t),
{Dα

t ZR(t)|ZR=0 = γ3ZIms(t) + γ3ZIa(t) + (1 − δ1)ZH(t) + (1 + γ1)ZIcu(t),
{Dα

t ZD(t)|ZD=0 = δ1ZH(t) + γ1)ZIcu(t).

If ZS (0), ZE(0), ZIss(0) ZIms , ZIa(0), ZH(0), ZIcu(0), ZR(0), ZD(0) ∈ R9
+, then according to Eq (4.1),

the solution cannot escape from the hyperplanes. Also, on each hyperplane bounding the non-negative
orthant, the vector field points into R9

+, i.e., the domain R9
+ is a positively invariant set.

4.1. The basic reproduction number

For the system (3.2), the disease-free equilibrium is given by ZS = N, ZE = ZIss = ZIms = ZIa =

ZH = ZIcu = ZR = ZD = 0). Further, to figure out the reproduction number R0 of the proposed system,
we use the next-generation approach defined in [35, 36]. Thus,

F =



0 β β β 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(4.2)

and

V =



−k 0 0 0 0 0
kp1 −h 0 0 0 0
kp2 0 −γ3 0 0 0

k(1 − p1 − p2) 0 0 −γ3 0 0
0 hq1 0 0 −1 0
0 h(1 − q1) 0 0 0 −1


(4.3)

Hence,

R0 = FV−1 = β(
p1

h
+

1 − p1

γ3
). (4.4)

We investigate the sensitivity of R0 by taking the partial derivatives of R0 for the involved parameters
as follows:

∂R0

β
=

p1

h
+

1 − p1

γ3
> 0,

∂R0

∂p1
=

β

h
> 0,

∂R0

∂h
= −

βp1

h2
< 0,
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∂R0

∂γ3
=

β(p1 − 1)

γ2
3

> 0.

We see that change in parameter R0 is very sensitive. Here, β, p1, γ3 are growing while h is
decreasing. Hence, from the above analysis, we can say that prevention is better to control the disease.

4.2. Stability analysis

Theorem 4.2. If R0 < 1, the disease-free equilibrium (E∗) of the system (3.2) is locally stable, and it
is unstable if R0 > 1.
Proof. For (3.2), we haveZR(t) = γ3

∫ t

0
ZIms(s) + γ3

∫ t

0
ZIa(s) + (1 − δ1)

∫ t

0
ZH(S ),

ZD(t) = δ1

∫ t

0
ZH(S ) + γ1

∫ t

0
ZIcu(S ).

(4.5)

The total population N is constant, so we have

ZS (t) = N − [E + ZIss + ZIms + ZIa + ZH + ZIcu + ZR + ZD].

Thus, for the system (3.2), we can find the local stability through the variables ZE, ZIss , ZIms , ZIa , ZH

and ZIcu . Therefore, the system is:

{Dα
t ZE = β

Zs(t)
N

(ZIss(t) + ZIms(t) + ZIa(t)) − kZE(t),

{Dα
t ZIss = kp1ZE(t) − hZIss(t),

{Dα
t ZIms = kp2ZE(t) − γ3ZIms(t),

{Dα
t ZIa = k(1 − p1 − p2)ZE(t) − γ3ZIa(t), (4.6)

{Dα
t ZH = hq1ZIss(t) − ZH(t),

{Dα
t ZIcudt = h(1 − q1)ZIss(t) − ZIcu(t).

The Jacobian matrix J(E∗) for the above system is:

J(E∗) =



−k β β β 0 0
kp1 −h 0 0 0 0
kp2 0 −γ3 0 0 0

k(1 − p1 − p2) 0 0 −γ3 0 0
0 hq1 0 0 −1 0
0 h(1 − q1) 0 0 0 −1


(4.7)

The two eigenvalues are λ∗1 = λ∗2 = −1. For the remaining, we have

P∗(λ∗) = l0λ
4∗ + l1λ

3∗ + l2λ
2∗ + l3λ

∗ + l4 = 0, (4.8)

where

l0 = 1,
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l1 = h + k + 2γ3,

l2 = hk − kβ + γ2
3 + 2hγ3 + 2kγ3,

l3 = −hkβ − hkβp1 + hγ3
2 + kγ3

2 + 2hkγ3 − kβγ3 − kβγ3 p1, (4.9)
l4 = hkγ3

2 − kp1βγ3
2 − hkβγ3 + hkβp1γ3.

If R0 < 1, then all the states are fulfilled, which shows system (3.2) is locally stable and disease will
decrease. If R0 > 1, the last state is not fulfilled, which shows system (3.2) is unstable, and disease can
be increase.

5. Existence and uniqueness of the model

For the sake of the required goal, here we set up the states for the existence and uniqueness of the
system. Consider the functions:

∧1(t,ZS ,ZE,ZIss ,ZIms ,ZIa ,ZH,ZIcu ,ZR,ZD) = −β
Zs(t)

N
(ZIss(t) + ZIms(t) + ZIa(t)),

∧2(t,ZS ,ZE,ZIss ,ZIms ,ZIa ,ZH,ZIcu ,ZR,ZD) = β
Zs(t)

N
(ZIss(t) + ZIms(t) + ZIa(t)) − kZE(t),

∧3(t,ZS ,ZE,ZIss ,ZIms ,ZIa ,ZH,ZIcu ,ZR,ZD) = kp1ZE(t) − hZIss(t),
∧4(t,ZS ,ZE,ZIss ,ZIms ,ZIa ,ZH,ZIcu ,ZR,ZD) = kp2ZE(t) − γ3ZIms(t),
∧5(t,ZS ,ZE,ZIss ,ZIms ,ZIa ,ZH,ZIcu ,ZR,ZD) = k(1 − p1 − p2)ZE(t) − γ3ZIa(t), (5.1)
∧6(t,ZS ,ZE,ZIss ,ZIms ,ZIa ,ZH,ZIcu ,ZR,ZD) = hq1ZIss(t) − ZH(t),
∧7(t,ZS ,ZE,ZIss ,ZIms ,ZIa ,ZH,ZIcu ,ZR,ZD) = h(1 − q1)ZIss(t) − ZIcu(t),
∧8(t,ZS ,ZE,ZIss ,ZIms ,ZIa ,ZH,ZIcu ,ZR,ZD) = γ3ZIms(t) + γ3ZIa(t) + (1 − δ1)ZH(t) + (1 + γ1)ZIcu(t),
∧9(t,ZS ,ZE,ZIss ,ZIms ,ZIa ,ZH,ZIcu ,ZR,ZD) = δ1ZH(t) + γ1)ZIcu(t).

Consider the Banach space, C [0,T ] = B, having norm

‖%‖ = sup
t∈[0,T ]

[
|ZS (t)| + |ZE(t)| + |ZIss(t)| + |ZIms(t)| + |ZIa(t)| + |ZH(t)| + |ZIcu(t)| + |ZR(t)| + |ZD(t)|

]
,

where

f(t) =



ZS (t)
ZE(t)
ZIss(t)
ZIms(t)
ZIa(t),
ZH(t)
ZIcu(t)
ZR(t)
ZD(t)

f0 (t) =



ZS
0

ZE
0

ZIss
0

ZIms
0

ZIa
0,

ZH
0

ZIcu
0

ZR
0

ZD
0
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℘(t,f(t)) =



∧1(t,ZS ,ZE,ZIss ,ZIms ,ZIa ,ZH,ZIcu ,ZR,ZD)
∧2(t,ZS ,ZE,ZIss ,ZIms ,ZIa ,ZH,ZIcu ,ZR,ZD)
∧3(t,ZS ,ZE,ZIss ,ZIms ,ZIa ,ZH,ZIcu ,ZR,ZD)
∧4(t,ZS ,ZE,ZIss ,ZIms ,ZIa ,ZH,ZIcu ,ZR,ZD)
∧5(t,ZS ,ZE,ZIss ,ZIms ,ZIa ,ZH,ZIcu ,ZR,ZD).
∧6(t,ZS ,ZE,ZIss ,ZIms ,ZIa ,ZH,ZIcu ,ZR,ZD)
∧7(t,ZS ,ZE,ZIss ,ZIms ,ZIa ,ZH,ZIcu ,ZR,ZD)
∧8(t,ZS ,ZE,ZIss ,ZIms ,ZIa ,ZH,ZIcu ,ZR,ZD)
∧9(t,ZS ,ZE,ZIss ,ZIms ,ZIa ,ZH,ZIcu ,ZR,ZD)

(5.2)

From (5.2), we can represent the system (3.2) as{D p
0 f (t) = ℘(t,f(t)), t ∈ [0,T ],

f(0) = f0.
(5.3)

From Lemma 2.3, Eq (5.3) can be written as:

f (t) = f(0) +

∫ t

0

(t − ρ)%−1

Γ(%)
℘(ρ,f(ρ))dρ, t ∈ [0,T ]. (5.4)

We assume the following hypothesis.
•(h1) There exists constants ZK , ZM > 0

|℘(t,f(t))| ≤ ZK | f |
p + ZM.

• (h2) For each f, f, exists a constant ZL > 0

|℘(t,f)| − |℘(t,f| ≤ ZL‖ f −f‖.

For an operator � : B −→ B,

� f(t) = f0 +

∫ t

0

(t − ρ)%−1

Γ(%)
℘(ρ,f(ρ))dρ. (5.5)

Theorem 5.1. For the authentication of Eq (5.3), suppose our hypotheses are true. Then, it has at least
one solution h1, h2 are true. Then, it has at least one solution.
Proof. We validate it in the following four steps:
S1. Initially, we show that operator, � is continuous. For that, consider an operator ℘ is a continuous,
so that ℘(ρ,f(ρ)) is continuous as well. Further, if for f, fm ∈ G there exist fn −→ f then we have
�fn −→ �f. Suppose

‖ � fn −→ � f ‖ = max
t∈[0,T ]

|

∫ t

0

(t − ρ)%−1

Γ(%)
℘m(ρ,fm(ρ))dρ −

∫ t

0

(t − ρ)%−1

Γ(%)
℘(ρ,f(ρ))dρ|,

= max
t∈[0,T ]

|

∫ t

0

(t − ρ)%−1

Γ(%)
||℘m(ρ,fm(ρ))dρ − ℘(ρ,f(ρ))|dρ, (5.6)
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≤
T1

Γ(% + 1)
‖℘m − ℘‖ −→ 0 as m −→ ∞.

Thus, ℘ is continuous, so � is continuous.
S2. In this step, we show that � is bounded. For this, we consider that � fulfills the growth condition:

‖ � f‖ = max
t∈[0,T ]

| f0 +
1

Γ(%)

∫ t

0
(t − ρ)%−1℘(ρ,f(ρ))dρ|,

≤ | f0 | + max
t∈[0,T ]

|
1

Γ(%)

∫ t

0
|(t − ρ)%−1|℘(ρ,f(ρ))dρ|, (5.7)

≤ | f0 | +
T1

Γ(% + 1)
[ZK f0 ‖

p + ZM].

Hence, � is bounded.
S3. Furthermore, we show that � is equi-continuous. For this, consider t2 ≤ t1 = [0,T ]. Then,

| � f(t1) − � f (t2)| = |
1

Γ(%)

∫ t

0
(t1 − ρ)%−1℘(ρ,f(ρ))dρ −

1
Γ(%)

∫ t

0
(t2 − ρ)%−1℘(ρ,f(ρ))dρ|,

≤ |
[ 1
Γ(%)

∫ t

0
(t1 − ρ)%−1 −

1
Γ(%)

∫ t

0
(t2 − ρ)%−1

]
℘(ρ,f(ρ))dρ|, (5.8)

≤
T1

Γ(% + 1)
[ZK‖ f ‖

p + ZM][t1 − t2].

Thus, by using the theorem of Arzela-Ascoli, it is compact.
S4. At the final stage, we show that set E is bounded. For this, consider that for all t ∈ [0,T ], we have
f ∈ E and then

‖ f ‖ = m‖ � f‖ ≤ m[
T1

Γ(% + 1)
[ZK‖ f ‖

p + ZM]. (5.9)

So, it is bounded, and by following the outcomes of Schauder’s fixed point theorem, � has at least one
solution.

Theorem 5.2. If T %ZK
Γ(%+1) < 1, then Eq (5.3) has a distinct solution.

Proof. Suppose f,f ∈ G and then

‖ � f − �f‖ = max
t∈[0,T ]

∫ t

0
|
(t1 − ρ)%−1

Γ(%)
|℘(ρ,f(ρ))dρ − ℘(ρ,f(ρ))|dρ, (5.10)

≤
T %ZK�

Γ(% + 1)
‖ f −f‖.

Therefore, the fixed point is distinct and has a single outcome.
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6. Advanced numerical technique

In this part, our focus is to implement the operators on the proposed model. Further, we restore the
classical operators with the power-law kernel and implement the variable version. For the power-law
kernel

{Dα
t ZS = −β

Zs(t)
N

(ZIss(t) + ZIms(t) + ZIa(t)),

{Dα
t ZE = β

Zs(t)
N

(ZIss(t) + ZIms(t) + ZIa(t)) − kZE(t),

{Dα
t ZIss = kp1ZE(t) − hZIss(t),

{Dα
t ZIms = kp2ZE(t) − γ3ZIms(t),

{Dα
t ZIa = k(1 − p1 − p2)ZE(t) − γ3ZIa(t), (6.1)

{Dα
t ZH = hq1ZIss(t) − ZH(t),

{Dα
t ZIcu = h(1 − q1)ZIss(t) − ZIcu(t),

{Dα
t ZR = γ3ZIms(t) + γ3ZIa(t) + (1 − δ1)ZH(t) + (1 + γ1)ZIcu(t),

{Dα
t ZD = δ1ZH(t) + γ1)ZIcu(t).

For clarification, we represent the model as;

{Dα
t ZS = ZS 1(t,ZS ,ZE,ZIss ,ZIms ,ZIa ,ZH,ZIcu ,ZR,ZD),

{Dα
t ZE = ZE1(t,ZS ,ZE,ZIss ,ZIms ,ZIa ,ZH,ZIcu ,ZR,ZD),

{Dα
t ZIss = ZIss 1(t,ZS ,ZE,ZIss ,ZIms ,ZIa ,ZH,ZIcu ,ZR,ZD),

{Dα
t ZIms = ZIms 1(t,ZS ,ZE,ZIss ,ZIms ,ZIa ,ZH,ZIcu ,ZR,ZD),

{Dα
t ZIa = ZIa 1(t,ZS ,ZE,ZIss ,ZIms ,ZIa ,ZH,ZIcu ,ZR,ZD), (6.2)

{Dα
t ZH = ZH1(t,ZS ,ZE,ZIss ,ZIms ,ZIa ,ZH,ZIcu ,ZR,ZD),

{Dα
t ZIcu = ZIcu 1(t,ZS ,ZE,ZIss ,ZIms ,ZIa ,ZH,ZIcu ,ZR,ZD),

{Dα
t ZR = ZR1(t,ZS ,ZE,ZIss ,ZIms ,ZIa ,ZH,ZIcu ,ZR,ZD),

{Dα
t ZD = ZD1(t,ZS ,ZE,ZIss ,ZIms ,ZIa ,ZH,ZIcu ,ZR,ZD),

where

ZS 1(t,ZS ,ZE,ZIss ,ZIms ,ZIa ,ZH,ZIcu ,ZR,ZD) = −β
Zs(t)

N
(ZIss(t) + ZIms(t) + ZIa(t)),

ZE1(t,ZS ,ZE,ZIss ,ZIms ,ZIa ,ZH,ZIcu ,ZR,ZD) = β
Zs(t)

N
(ZIss(t) + ZIms(t) + ZIa(t)) − kZE(t),

ZIss 1(t,ZS ,ZE,ZIss ,ZIms ,ZIa ,ZH,ZIcu ,ZR,ZD) = kp1ZE(t) − hZIss(t),
ZIms 1(t,ZS ,ZE,ZIss ,ZIms ,ZIa ,ZH,ZIcu ,ZR,ZD) = kp2ZE(t) − γ3ZIms(t),
ZIa 1(t,ZS ,ZE,ZIss ,ZIms ,ZIa ,ZH,ZIcu ,ZR,ZD) = k(1 − p1 − p2)ZE(t) − γ3ZIa(t), (6.3)
ZH1(t,ZS ,ZE,ZIss ,ZIms ,ZIa ,ZH,ZIcu ,ZR,ZD) = hq1ZIss(t) − ZH(t),
ZIcu 1(t,ZS ,ZE,ZIss ,ZIms ,ZIa ,ZH,ZIcu ,ZR,ZD) = h(1 − q1)ZIss(t) − ZIcu(t),
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ZR1(t,ZS ,ZE,ZIss ,ZIms ,ZIa ,ZH,ZIcu ,ZR,ZD) = γ3ZIms(t) + γ3ZIa(t)
+(1 − δ1)ZH(t) + (1 + γ1)ZIcu(t),

ZD1(t,ZS ,ZE,ZIss ,ZIms ,ZIa ,ZH,ZIcu ,ZR,ZD) = δ1ZH(t) + γ1)ZIcu(t).

For the Caputo fractal fractional derivative, consider{Dα,τ
0 f (t) = ℘(t,f(t)), t ∈ [0,T ],

f(0) = f0.
(6.4)

By applying the fractional integral with power law kernel, we can write the above expression as:

f (t) = f(0) +

∫ t

0

(t − %)τ−1

Γ(%)
%1−α℘(%,f(%))d%. (6.5)

At tσ+1 = (σ + 1)∆t, we get

f (t) = f(0) +

∫ tσ+1

0

(tσ+1 − %)τ−1

Γ(%)
%1−α℘(%,f(%))d%. (6.6)

For clarity, we take
Q(t,f(t)) = ℘(t,f(t))tτ−1. (6.7)

We also have

f (tσ+1) = f(0) +

σ∑
m=2

∫ tl+1

l

(tσ+1 − %)τ−1

Γ(%)
%1−αQ(%,f(%))d%. (6.8)

Replacing them in the above equation and substituting Q(t,f(t)) = ℘(t,f(t))tτ−1, we get the numerical
scheme

f(tσ+1) =
(∆t)τ

Γ(τ + 1)

α∑
m=2

t1−σ
m−2℘

(
tm−2,f

m − ∆t℘(tm,f
m) − ∆t℘(tm−1,f

m − ∆t℘(tm,f
m))

)
×

[
(σ − m + 1)τ − (σ − m)τ

]
+

(∆t)τ

Γ(τ + 2)

σ∑
m=2

[
t1−α
m−1℘(tm−1,f

m − ∆t℘(tm,f
m)

− t1−α
m−2℘

(
tm−2,f

m − ∆t℘(tm,f
m) − ∆t℘(tm−1,f

m − ∆t℘(tm,f
m)

)
×

[
(σ − m + 1)τ(σ − m + 3 + 2τ) − (σ − m)τ(σ − m + 3 + 3τ)

]
+

(∆t)τ

2Γ(τ + 3)

σ∑
m=2

[
t1−α
m ℘(tm,f

m − 2∆t1−α
m−1℘(tm−1,f

m) − ℘(tm,f
m∆)

+ t1−α
m−2℘

(
tm−2,f

m − ∆t℘(tm,f
m)) − ∆t℘(tm−1,f

m − ∆t℘(tm,f
m))

)]
×

[
(σ − m + 1)τ[2(σ − m)2 + (3τ + 10)(σ − m) + 2τ2 + 9τ + 12

]
− (σ − m)τ

[
2(σ − m)2 + (5τ + 10)(σ − m) + 6τ2 + 18τ + 12

]]
.
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7. Simulation and discussion

The plot plays a dominant role in realizing the behavior of the simulation of the model with the
Caputo operator. We plot, for different values of α = 0.85, 0.9, 0.95, 1.0, all nine compartments of the
model in Figures 1–9. In Figures 1 and 6, we can see that the plot of susceptible and hospitalized people
are decreasing with the passage of time. We see that the number of exposed ones and population having
no symptoms both are increasing as shown in Figure 2. In the cases of people with severe and mild
symptoms, their numbers initially go down rapidly and then rise. Similarly, the number of people in the
intensive care unit also goes down rapidly. At certain value, plot moves smoothly, which means minor
patients are in severe condition, as shown in Figures 3–7. Lastly, computational results of recovers and
death populations are shown in Figures 8 and 9. The results of the nonlinear system memory were also
detected with the help of fractional value results. Results provides a better way in case you want to
control the disease without defining other parameters.
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Figure 1. Computational results of ZS (t) with Caputo derivative.
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Figure 2. Computational results of ZE(t) with Caputo derivative.
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Figure 3. Computational results of ZIss(t) with Caputo derivative.
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Figure 4. Computational results of ZIms(t) with Caputo derivative.

0 20 40 60 80 100 120 140 160 180 200

t

0

20

40

60

80

100

120

140

160

180

Z
I a

(t
)

Proposed Method

=1.0
=0.95
=0.90
=0.85

Figure 5. Computational results of ZIa(t) with Caputo derivative.

AIMS Mathematics Volume 7, Issue 9, 16741–16759.



16755

0 20 40 60 80 100 120 140 160 180 200

t

0

50

100

150

200

250

300

350

400

Z
H

(t
)

Proposed Method

=1.0
=0.95
=0.90
=0.85

Figure 6. Computational results of ZH(t) with Caputo derivative.
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Figure 7. Computational results of ZIcu(t) with Caputo derivative.
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Figure 8. Computational results of ZR(t) with Caputo derivative.
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Figure 9. Computational results of ZD(t) with Caputo derivative.

8. Conclusions

The spread of COVID-19 infections is not only for both human health, but also a serious threat to
the economy. Although the amount of exercise and the number of reports on the possibility of this
new pandemic possibility control are published in recent years. In this study, we have formulated a
new mathematical model to analyze the complex transfer dynamics of COVID-19 under the Caputo
operator. The model has been studied qualitatively as well as quantitatively. For the suggested system,
positivity, uniqueness, and boundedness for solution are proven. The proposed compartment model is
prescribed by a classic differential equation first with an integer order. Treatment classes are suitable
for model construction. We determined that our obtained results are effective for the proposed model.
Some theoretical results were also discussed for the model.
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