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Abstract: Since high-voltage direct current (HVDC) systems are very expensive and operationally
critical, these systems must be tested before they are put into service. Insulation and performance
tests are the two main subjects of these tests. AC voltage tests, as part of the insulation tests, should
be performed after system installation is complete and before commissioning. However, in this study,
the objective was to perform these tests during the prototype phase of VSC HVDC. Unlike other
studies, this study attempted to use COMSOL Multiphysics to determine in advance the problems
that may occur in the real system. In this regard, the busbars connecting the submodules of the
VSC HVDC system were first modeled in 3D, and the tests to be performed were simulated using
COMSOL Multiphysics software. During the simulation, the finite element method (FEM) was used
to identify critical points that could cause partial discharge. To validate the simulation results, partial
discharge tests on a real system were conducted, and the design changes made in response to each
test result were explained. After the improvement actions, the targeted partial discharge values
were achieved.

Keywords: HVDC insulation; partial discharges; insulation testing

1. Introduction

The rapidly evolving voltage source converter (VSC)-based HVDC systems have
advantages over conventional line-commutated converter (LCC)-based HVDC technology,
such as flexible active and reactive power control, black start, and more. These advantages
make VSC-based HVDC systems the preferred choice in weak AC grids, island grids, and
when connecting renewable energy to grids [1–3].

Modular multilevel converters (MMCs) have become the preferred technology for
VSC-based HVDC grids because they offer several benefits over other two- and three-level
VSC HVDC systems. For example, higher voltage levels can be easily achieved when the
number of submodules is increased, the size of filters can be reduced, and the quality of
output currents is high [4–9].

The transformers, circuit breakers, busbars, and various devices used in VSC HVDC
systems have different breakdown voltage levels and therefore different voltage-time
characteristics. In addition, the design of VSC HVDC systems composed of a variety of
devices should be checked via various tests [10]. The most important of these tests are the
performance and insulation tests. The insulation tests recommended in the standards are
designed to check the mechanical design of the system and verifying the safe operation of
the devices under operating conditions [11].

There are studies in the literature that report a need for sub-module tests, high-voltage
energization tests, operational tests, power quality tests, performance tests, and insulation
tests prior to the commissioning of HVDC systems, and provide recommendations on these
studies [12–17]. In [11], information is provided on HVDC circuit structures, performances,
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the power requirements of VSCs, environmental effects of systems, and insulation tests.
In [12,14,18], information is provided on the testing and measurement circuits of the tests
described in [11]. In [19], information is given about the aging mechanisms of insulation
in hybrid AC/DC networks. There have also been some studies on the performance of
MMC-based HVDCs under DC or AC faults [20,21]. On the other hand, [22,23] empha-
sized the need for modeling and simulations for insulation studies of HVDC systems
and provided information on the boundary conditions for such systems. Furthermore,
in [24,25], information on the complexity of designing insulation materials for HVDC
systems is provided.

Partial discharges indicate a problem in the insulation of a system, and their presence
can lead to equipment failure. For this reason, partial discharge measurements are per-
formed as part of factory tests, commissioning tests, or periodic maintenance. It is a fact
that partial discharge measurements are crucial for detecting weak points in high-voltage
equipment [26].

For this reason, this study focused on insulation tests of an MMC type VSC HVDC
system and the design of the power stage, which had to be performed in accordance with
these tests prior to testing, and the experiments to be performed were determined via
simulation studies. In the simulation studies, the main busbar of the prototype VSC HVDC
was energized, and the points of partial discharge were roughly observed. Then, more
detailed simulation scenarios were tried at critical points. The improvement scenarios
were determined using a trial-and-error method and considering information obtained
from the literature, and a FEM analysis was performed at critical points using COMSOL
Multiphysics software. AC Voltage tests were performed in the real system, to verify the
scenarios in which, according to the simulation results, a significant reduction in partial
discharge values was observed. Then, the AC Voltage tests were explained in the context
of insulation tests, which are performed before commissioning VSC HVDC systems. The
relevant tests, as recommended in [11], the procedure for performing them, the criteria for
passing the tests, and the test results for the 10 MVA prototype VSC-based HVDC system,
are presented. The activities to improve the test results in terms of partial discharge and
the points to consider when performing these tests are highlighted. In addition, based on
the experience gained from the test results, recommendations are made for the mechanical
design of the power stage of the VSC HVDC or similar systems exposed to high voltage.

The main contribution of this study is its investigation of the causes of partial discharge
that may occur in an VSC-based HVDC system operating in a high-voltage environment
and developing the most appropriate and scientific analytical approach for each problem.
AC Voltage tests are done before HVDC systems are commissioned. However, in this study,
the aim was to carry out the AC voltage tests normally performed at the prototype stage
before the actual system was completed. The main challenge for the particular prototype
under study in this phase was to perform the AC voltage tests on the prototype system
when operating at a lower voltage than that of the actual system, taking into account the
operating conditions of the actual system. To avoid unpredictable failures of large-scale
equipment, COMSOL Multiphysics was used in this article. The MMC type VSC-based
HVDC system, which is the subject of this work, is the first one of its kind, whereas
the practical studies and results presented in this paper are the first applied in Turkey.
The system was developed entirely by local engineers, with expertise areas varying from
mechanical design to control and from power stage implementation to protection software.

This article is organized as follows: Section 2 describes the prototype VSC-based
HVDC system, followed by details of the modelling methods in Section 3 and AC voltage
test methods in Section 4. Simulation and experimental results are discussed in Section 5,
and finally the conclusions are drawn in Section 6.

2. HVDC Prototype System

As part of the project, whose main motivation was to develop a VSC HVDC system
with a capacity of 100 MVA (2 × 50 MVA), a prototype system was first designed and
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implemented. The prototype system consists of self-commutated modular multi-level
converters (MMC) with a nominal capacity of 10 MVA. The voltage level of the main project
is 36 kV, and the voltage level of the prototype system, which consists of submodules with a
smaller number than the main system, is 5.5 kV, and the performance tests were performed
with this system.

The submodules were designed as half-bridge rectifiers, as shown in Figure 1, and
connected in series via copper busbars, as shown in Figure 2. The submodules consist
of two semiconductor switches (IGBT1, IGBT2), a by-pass switch (S), a capacitor (Cdc), a
discharge resistor (Rdischarge), and a thyristor switch (T). The prototype system consists
of 84 submodules, as shown in Figure 2. There are total of 14 submodules in each arm,
7 on the upper arm and 7 on the lower arm per phase. These submodules are arranged as
phases A, B, and C from top to bottom in the valve support structure.
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Figure 1. Half-bridge sub-module of the prototype system.
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Figure 2. HVDC prototype system circuit.

The main system with a capacity of 50 MVA will have 480 submodules. There will be
80 submodules in each arm, 40 on the upper arm and 40 on the lower arm per phase. The
objective of this study was to determine the partial discharge points that may occur when
the VSC-based HVDC prototype operating at 5.5 kV is exposed to ≥36 kV, to avoid the
problems that may occur due to partial discharges. If the tests were performed on the main
system, these tests would have to be applied to all 40 submodules in an arm, and many
more devices would be damaged if a failure occurred.

3. Modelling Method of the Prototype System

The HVDC prototype system was constructed by combining numerous devices with
different insulation levels. Since the auxiliary components, such as the busbar, bolts, cables,
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support structure, etc., used to connect the devices are also subjected to voltage stress, the
system must be thoroughly tested before it is put into operation. In the first step of testing,
modeling of the system and simulations of the tests are very useful, to identify the points
that could cause problems.

Accordingly, the busbars of the series-connected submodules in Figure 2, to which the
test voltages were applied, were modeled in the COMSOL Multiphysics software, taking
into account the real system. Since the bypass switches shown in Figure 2 were closed
during testing, this part was modeled as a shorted busbar in the simulation. The parts of
the submodules other than the busbars were not modeled, because this would complicate
the model too much and increase the simulation analysis time. In addition, the geometry
of the busbars in the prototype system, the distance to the ground point, and the valve
support structure, etc., were designed during modeling to be exactly compatible with the
real system.

The actual operating condition of the system was created by placing the model in a
large air-filled cube, as shown in Figure 3. Then the calculated test voltage was applied
to these busbars, to predetermine the points of partial discharge formation. By observing
the regions where the electric field streamlines and electric potential is intense, these parts
were targeted in the improvement activities. Following the results of the simulation studies,
insulation tests and improvement activities were performed on the power stage of the
HVDC prototype system.
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The electric field streamlines, whose directions are indicated by arrows, are shown
in red in Figure 3 and other simulation result figures. It was observed that the electric
field streamlines followed a path from the electrically charged busbar to the ground in the
air-filled volume. To avoid complicating the figures, the electric field streamlines are only
drawn for the evaluated region and with only 50 pieces per figure.

In addition, isometric coloring was applied to the figures, to show the volume affected
by the electric field that forms around the busbars when voltage is applied to the system.
The isometric coloring from blue to red shows that the amplitude of the electric field is
increasing. Therefore, the busbars where voltage was applied and their surroundings are
shown in red and the earthed area on the ground is shown in blue. Further illustrations
of the simulation results can be found in Section 5 and should be evaluated in accordance
with the above information.

4. AC Voltage Test Method

Insulation tests should be performed to determine if there are any design defects in a
system. If there is a design defect in the system, the tested device may be damaged. For this
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reason, testing should be performed on a part of the system that reflects the entire system,
to avoid possible major damage to the equipment. The minimum number of submodules
to be tested, depending on the valve levels in a single valve is detailed in [11].

In [11], it states that for a valve with 50 or fewer submodules, the tests should be
applied to all submodules. The valve in the final system will consist of 40 submodules per
phase, while the valve in the prototype system consisted of 7 submodules per phase. Con-
sidering the number of submodules in the prototype system, a test setup was established
and tests were performed to include all 7 submodules in one valve per phase.

The AC voltage tests mentioned in the standard can be divided into two types with
respect to the connection scheme of the test equipment. One of these connection schemes
is phase to phase, as shown in Figure 4, connection scheme (a), and is referred to as
dielectric tests on a multiple valve unit. The other is between phase to ground, as shown in
Figure 4, connection scheme (b), and is referred to as a dielectric test on the valve support
structure [11]. The voltage levels for the AC voltage tests were applied according to the
connection schemes (a) and (b).
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During the tests, the bypass switch (S) was closed, to avoid damage to other compo-
nents such as the IGBT, capacitor, and thyristor in Figures 1 and 4.

Partial discharges are localized dielectric failures in a small part of the electrical
insulation system subjected to a high-voltage stress, and which do not short-circuit the
space between two conductors. The purpose of AC voltage tests is to verify that the partial
discharge initial and final voltage values are above the maximum operating voltage values
for on the equipment. In this context, voltage values higher than the rated operating voltage
are applied to the system for an extended period of time. Subsequently, it is monitored to
see if an electrical failure occurs [11].

The test duration and values are shown in Figure 5. In the first phase of the test, a
value of no more than 50% of the maximum test voltage should be applied. Starting from
the initial voltage value, this should then be increased as quickly as possible to the 1-min
test voltage calculated according to Equation (1). After remaining at this value for 1 min, it
should be reduced as quickly as possible, to the 30-min test voltage calculated according to
Equation (2). This value must be held constant for 30 min and then reduced to zero. Before
the end of the 30-min test, the level of partial discharge must be monitored and recorded
for a period of 1 min. If the recorded value of the partial discharge is below 200 pC, the
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design can be accepted unconditionally, according to the standard, otherwise the insulation
level of the system should be re-evaluated [11].
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Figure 5. Method of applying a partial discharge test voltage.

High-voltage AC (High-Voltage ALT−120/60) in combination with a partial discharge
measuring system was used for AC voltage tests. The partial discharge measurement
system, in turn, was designed to measure partial discharges in the range of 1–2000 pC, up
to a voltage level of 60 kV AC. In addition, the test and measurement system had their own
filters to reduce interference, as suggested by the standard [27].

The calculation method of the applied test voltages, the simulation results, and the
test results before and after the improvement activities are explained in Section 5.

The RMS value of the AC test voltage was determined in accordance with the following
equations [11]:

U1min =
UmS1√

2
· k4 · kt (1)

U30min =
UmS2√

2
· k4 (2)

UmS1 is the peak value of maximum voltage appearing on the valve support in service,
particularly in a system fault condition and valve fault operation condition. UmS2 is
the peak value of the maximum repetitive operating voltage across the valve support
during steady-state operation, including switching overshoot. k4 is the safety factor and
it is recommended to be taken as 1.1 [11]. kt is the atmospheric correction factor and is
determined by the altitude of the system location. Details on calculating the atmospheric
correction factor are given in [28].

U1min =
55kV√

2
× 1.1× 1

0.805
= 53.14kV (3)

U30min =
55kV√

2
× 1.1 = 42.77kV (4)

Ums1 and Ums2 values were determined as 55 kV from the simulations and the atmo-
spheric correction factor was calculated as 1/0.805. Test amplitudes calculated according to
Equations (3) and (4) for AC voltage tests were U1min = 53.14 kV and U30min = 42.77 kV for
the HVDC prototype.

5. Results

In this section, the results of the simulation studies performed with COMSOL Multi-
physics, described in detail in Section 3, and the results of the insulation tests, described in
detail in Section 4, are given, to verify the simulation results.

In this study, after roughly determining the points of partial discharge from the
simulation results, the improvement scenarios were determined using a trial-and-error
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method, in accordance with the information in the literature on partial discharge. As a
result of the improvement activity, scenarios with a significant reduction in partial discharge
values were included in this study. Scenario results with a decrease of less than 5 pC were
not included. Then, the scenarios used in the simulation studies were verified under the
condition that the test voltages U1min and U30min were applied to all phases separately and
between phase and ground, as shown in Figure 5. However, the AC Voltage test results
shared in the study were the result of the phase C to ground, where the highest amplitude
results were obtained.

In line with this information, the details of the initial conditions and the improvement
actions, numbered 1 to 6, were as follows:

1. It was observed that the electric potential and electric field streamlines of the long
busbar part at the end of the series-connected submodules were quite intense compared
to the other parts, when the calculated voltage was applied and before any improvement
action was taken. Considering the isometric coloring in Figure 6a, it was seen that the
electric field affected a much larger volume when the long busbar piece was installed in
the system. In Figure 6b, it can be seen how the intensity of the electric field streamlines
decreased after the long busbar piece was removed from the system.
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Figure 6. Effect of long busbar on electric field. (a) Before removal of busbar; (b) After removal
of busbar.

To see this positive effect from the simulation, test voltages were applied to the system
before any improvement actions were taken in the tests. However, it was found that the
partial discharge at 35 kV voltage level exceeded 1000 pC. In addition, the discharge noise
generated in the test environment approximately showed the region where the partial
discharge occurred. It was determined that the long busbar section at the end of the series-
connected submodules, which was also detected in the simulation, was the point where the
partial discharge occurred. For this reason, voltages higher than 35 kV were not applied, to
avoid damage to the HVDC system.

The long busbar marked in red in Figure 7 was only present in the prototype system;
there was no such part in the final system. For this reason, a sharp decrease in partial
discharge values was observed when the long busbar was removed and the tests were
repeated. It was found that the measured value for U30min decreased to 274 pC. However,
this value was still well above the 200 pC limit specified in the standard [11]. In order to
reduce this value, improvement measures were implemented in the next step.

2. The shields of the signal cables of the measurement system were grounded, to
reduce distortion, as specified in the standard [27]. All cables of the measurement system
were shielded, and their shields were grounded at the source point. However, the cable
used to apply the test voltage was not shielded. Therefore, the effect of the shielding of the
test cable was observed in the simulation. In Figure 8a, it can be seen that the electric field
streamlines were intense when the test voltage was applied to the initial condition of the
test cable. In Figure 8b, it can be seen that the electric field streamlines decreased compared
to the previous condition. In Figure 8c, it can be seen that the electric field streamlines of
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the test cable disappeared completely. In addition, it was found from the isometric coloring
that the volume affected by the electric field in the test environment decreased sharply.
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Figure 8. The effect of shielding the test cable: (a) initial state of the test cable; (b) test cable passed
through an aluminum tube; (c) test cable passed through a grounded aluminum tube.

To verify this result from the simulation in the AC Voltage test, the test cable between
the test system and the submodules was passed through a flexible aluminum tube as
marked in red in Figure 9, and the aluminum tube was grounded. The preferred test cable
was one with a minimum radius of 1 cm and a smooth surface. As a result of the AC
Voltage test, it was found that the U30min value decreased to 142 pC. With this improvement
in activity, precautions were thus taken against partial discharges that could emanate from
the test cable.

3. The series-connected submodules were uniformly mounted on the valve support
structure. It was assumed that the electric field distribution between the submodules was
the same, since they were geometrically uniform and identical. However, at the far end of
the last submodule, a different electric field distribution was predicted, because the uniform
geometric structure changed. Partial discharges can occur when the electric field is not
uniform [29]. Therefore, after several different experiments, a metal sphere was added in
the simulation, to unify the electric field streamlines at the end point of the series-connected
submodules, as shown in Figure 10b. To avoid complicating Figure 10, only the electric
field lines of the part of interest were drawn in the simulation. In both figures in Figure 10,
50 electric field streamlines were drawn. After using the metal sphere, it was observed that
the volume occupied by the electric field streamlines decreased and became smoother.
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To see this positive effect obtained in the simulation, a metal sphere was connected to
the other end of the submodules connected in series, as marked in red in Figure 11 in the
AC voltage test. After this improvement, it was observed that the partial discharge values
for U30min decreased to 92 pC as a result of the AC voltage test.
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was observed. In Figure 12b, it can be seen that after adding the metal sphere to the point
where the test voltage was applied, the volume occupied by the electric field streamlines
decreased and the streamlines became smoother.
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5. Typically, partial discharge actively occurs at conductive sharp edges and points [30–32].
The sharp points on the part where the test voltage was applied were the bolts used in the
copper busbars between the submodules. To investigate the effects of partial discharge
of the bolts, a simulation scenario was tried, where the short and long bolts were in the
same busbar. It was observed that the electric field stream lines were significantly higher
on the long bolt than on the short bolts, as shown in Figure 14. This prevented uniform
distribution of the electric field and caused partial discharge.

To see the effect of long bolts, the bolts were shortened, so that they did not exceed the
nuts in the AC voltage test, as marked in red in Figure 15. After this improvement activity,
it was observed that the partial discharge values for U30min decreased to 55 pC.

6. The need for electric field control at sharp edges is a common problem in electrical
engineering, but a simple method of limiting the electric field in these parts is to round
or screen sharp metallic edges [30,31]. Examination of the metal and sharp points of
the prototype revealed that the metal bolts used for the mechanical connection in the
valve support structure were consistent with this information. These bolts are not directly



Energies 2022, 15, 7628 11 of 16

exposed to voltage stress, but they remain in the electric field because they are located near
the busbars, as shown in Figure 16. Simulation modeling was carried out, to determine the
effects of the bolts in question on the partial discharge.
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metal plates.

In Figure 16, only the electric field of the metal bolts in the valve support structure
located near the busbars is plotted. The valve support structure is not been shown, to
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increase the clarity of the figure. Based on the isometric coloring in Figure 16a, it can be
seen that the bolts were yellow, i.e., they remained in the average electric field.

Since it was not possible to remove the bolts that provide mechanical strength to the
valve support structure, an attempt was made to limit the electric field by covering the bolts
in question with metal plates. In Figure 16b, it was seen that there was no visible change in
the electric potentials of the respective metal plates in terms of isometric coloring.

To investigate the effect of metal plates on the electric field lines, a cross-section was
drawn in the z-axis direction, from the point where the metal plates were attached to the
ends of the bolts in Figure 16, and Figure 17 was drawn. The electric field streamlines in
the initial state are shown in Figure 17a, and the electric field streamlines after the bolts
were closed with metal plates are shown in Figure 17b. In Figure 17b, in the lower picture,
it can be seen that the electric field lines have changed their direction somewhat and have
become slightly thinner.
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Although this improvement activity did not have a serious effect, it was applied in the
AC voltage test. The bolts that were not directly subjected to voltage stress during testing
were covered with metal plates, as marked in red in Figure 18. After this improvement
activity, it was observed that the partial discharge values for U30min decreased to 46 pC.
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Finally, the partial discharge values corresponding to the voltage level of U30min from
the improvement activities, numbered 1 to 6 above, are shown in Table 1. Although the
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partial discharge values fell below the 200 pC limit with improvement activity number 2,
the design improvement studies continued. The AC voltage tests provided a preliminary
identification of potential trouble spots when exposed to voltages higher than the operating
voltage of the VSC HVDC prototype. The system improvement studies, on the other hand,
provided an idea of the points to be considered in the final design of the system.

Table 1. AC voltage test results for phase-C to ground.

Test Voltage Improvement Activities (pC)

0 1 2 3 4 5 6

U1min 1077+ 427 392 377 372 370 368
50 kV 1077+ 367 352 342 332 330 324
45 kV 1077+ 337 312 312 312 312 277
U30min 1077+ 274 142 92 80 55 46
40 kV 1077+ 242 52 50 40 32 26
35 kV 1077 52 42 32 37 21 1

Table 1 shows the largest of the 30 values measured at 1-min intervals within the time
interval of the 30-min test. The rows in Table 1 show the results obtained by varying the
amplitude of the applied test voltages. The columns in the table show the results of the
improvement actions that were performed to improve the test results.

As can be seen in Figure 19, the greatest decrease in partial discharge values was
observed after the removal of the long busbar section, which was not present in the original
system. The next largest drop was observed after the test cable was passed through a metal
tube and the tube was subsequently grounded. After that, with the four improvement
actions implemented, a threefold decrease in partial discharge values was observed.
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and by considering the electrical insulation distances. The valve support structure made 
of insulated and non-combustible material was placed on the concrete floor. Since the 
floor with which the valve support structure is in contact is concrete, a grounding grid 
was formed of metal plates 2 mm thick and 300 mm wide, as marked in red in Figure 20, 
and this grid was connected together to ensure equipotentiality. For this reason, valve 
support AC voltage tests were performed between the submodules and the newly created 
grounding grid. 
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Figure 19. Partial discharge values corresponding to U30min.

Many HVDC designs on the market use metal supports and insulators to isolate the
valve support structure from the ground. However, in this design, insulation between the
submodules and the ground was provided by the material of the valve support structure
and by considering the electrical insulation distances. The valve support structure made
of insulated and non-combustible material was placed on the concrete floor. Since the
floor with which the valve support structure is in contact is concrete, a grounding grid
was formed of metal plates 2 mm thick and 300 mm wide, as marked in red in Figure 20,
and this grid was connected together to ensure equipotentiality. For this reason, valve
support AC voltage tests were performed between the submodules and the newly created
grounding grid.
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6. Conclusions

Insulation tests are very important to verify the mechanical design of a system. The
partial discharge tests described in the “AC Voltage Tests” section of this work are extremely
sensitive for this application. The sensitivity of these tests can be seen in the results of
improvement activity number 2. After passing the test cable through a metal tube and when
the metal tube was grounded, the partial discharge values decreased significantly. The
results and recommendations obtained after all simulation studies and tests are listed below:

• The magnitude and profile of test voltage must be carefully calculated and applied
considering Figure 5.

• While performing these tests, all other electrical equipment in the test environment
must be turned off, so that they do not interfere with the measurement results.

• Conducting tests in a silent and dark environment can be helpful in determining the
starting points of the partial discharge.

• It is also advantageous to use an isolation transformer of the required rating to supply
power to the test equipment and measurement system, to isolate the electrical network
and the measurement system.

• The measurement system must have its own filters, to avoid interference. It should be
ensured that the measured values are real values and clear of interference. Otherwise,
misinterpretations may occur.

• In addition, the shielded signal cables used in the measurement system must be
grounded. Random positioning of test and measurement cables in the test environment
might also affect results.

• High-voltage terminals and cables should be selected from thick, rounded, and smooth
materials, to avoid highly non-uniform electrical fields, and hence sources of partial
discharge.

• Attention should also be paid to the connection contact between the wires and the
terminals, so that there are no sharp points and hence no additional sources for partial
discharge.

• As a rule of thumb, the relationship between partial discharge and electric field
distribution should always be kept in mind. Since the distribution of the electric field
depends on the geometry of the device, avoiding designs with sharp edges ensures a
uniform distribution of the electric field and thus reduces partial discharge.

• In other words, partial discharge test results are greatly improved when sharp edges
are avoided as much as possible in the system design. If it is not possible to change
the system design during testing, sharp metal conductive edges should be rounded or
shielded, to limit partial discharge.

After the improvement activities, the target partial discharge values were achieved in
the AC voltage tests. Thus, the AC voltage tests performed on a VSC HVDC system in the
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prototype phase according to the actual system conditions were successful with the help of
FEM analysis and the simulations performed in advance.
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