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A B S T R A C T

In this research, we expose new results on the dynamics of a high disturbed chemostat model for industrial
wastewater. Due to the complexity of heavy and erratic environmental variations, we take into consideration
the polynomial perturbation. We scout the asymptotic characterization of our proposed system with a general
interference response. It is demonstrated that the long-run characteristics of the chemostat process are classified
by using the threshold classification approach. If the critical sill is strictly negative, the bacteria will disappear
exponentially, indicating that the chemostat wastewater process is not running (excluded scenario), otherwise,
the stationarity and ergodicity properties of our model are verified (practical scenario). The theoretical arsenal of
this work offers a comprehensive overview of the industrial wastewater behavior under general hypotheses and
introduces novel technical aspects to deal with other perturbed systems in biology. Numerically, we audit the
accuracy of our threshold in three particular situations: linear, quadratic and cubic perturbations. We establish
that the increasing order of disturbance has a passive influence on the extinction time of bacteria. This finding
highlights that complex noise sources fulfill a significant role in the transient dynamics of chemostat systems.
Research background and methodology

A bacterial chemostat is a lab setup composed of three inter-joined
containers that worked to breed and collect the bacteria in an appropri-
ate biological environment [1,2]. In its customary format, the supply
tank way out is the inlet of the culture vessel, while the exit of the
latter is the inlet of the collecting bottle. The first bottle comprises all
the alimentary elements that help to increase the bacteria. The content
of this vessel is pumped into the second one at a stationary rate. The
bacteria feed on nutrients from the alimentation vessel and live in
the culture vessel which is well stirred so that all the organisms have
similar access to the nutrients [3]. The content of the culture container
is then pumped into the third vessel which includes nutrient sources,
bacteria, and the bio-appendages produced by these bacteria [4].

Chemostat tool represents the usual exemplification of the physical
and biological rivalry that exists when two or more groups compete
for the same nourishment supply [5]. It carries out a pivotal role in
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the theoretical ecology [1], population dynamics [2], chemical do-
mains [6], industrial treatments [7], biochemical development [8],
and other areas. Chemostat is also used in wastewater treatment and
thanks to it we can transform wastewater into treated water which
is reused in daily activities [9,10]. In general, wastewater is full of
bacterial contaminants, chemicals, and other toxins that can result
from industrial production and standard human activities. Its treatment
process aims to reduce pollutants to reasonable levels and make the
water safe to discharge back into the environment [11]. Fig. 1 presents
a typical configuration and arrangement for a traditional process that
is employed in the wastewater treatment [12]. Firstly, the wastewater
flows through a sieve that clogs bulky solid objects such as human
and industrial waste employing a specially designed robotic shovel.
The sewage channel extends to the sedimentation zone, slowing down
the velocity of the incoming sewage and thus allowing coarse particles
such as gravel and sand, which are heavier than water, to settle to the
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Fig. 1. A standard setting of the unit of the sewage treatment. The process consists of two main stages: the mechanical stage and the biological purification stage with the
elimination of nutrients and microorganisms.
bottom of the stream [13]. In the first treatment basin, the filtered
water is kept for 120 minutes. In this large rectangular tank, elusive
suspended particles can settle as sludge at the bottom. This raw sludge
is removed, condensed and transported to a digestion tank. The fat
is discarded from light particles floating on the surface of the water
such as industrial fats and oils and drained into a separate tank. The
previous three operations constitute the first liquidation stage. Since
it involves a purely mechanical and hydraulic treatment of waste
water, it is also referred to as the mechanical treatment stage. This
stage eliminates approximately 30 percent of the pollutants from the
raw effluent wastewater that the plant has to treat in aggregate. In
the biological treatment stage, a chemical process is used by passing
the sewage liquid into the aeration tank. During the activated sludge
process, oxygen is introduced into the liquid to generate conditions for
microorganisms that feed on organic molecules dissolved in chemical
and effluents. A large number of microorganisms form colonies that
become visible as lumps of slime. These sludge clumps settle to the
bottom of the secondary settling tank or filter device and are either
returned to the activated sludge process or pumped into the primary
settling tank for sludge disposal. Thus, removing sewage sludge from
effluent removes degradable pollutants. Small sewage treatment plants
frequently use drip filters, which are circular concrete tanks filled with
porous rock that provide the large surface area that bacteria need to
settle. It forms a continuous film (‘‘bio-membrane’’—it can be compared
to a sludge conglomerate for the activated sludge process) through
which the effluent passes. The mechanical and biological treatment
stages clean the effluent by approximately 97% [14].

Mathematical modeling makes it possible to predict the asymptotic
behavior of wastewater treatment processes according to operating and
control parameters [15–17]. Mathematical models could be used to
maximize the production of renewable energy from waste in the form
of biogas which is mainly transformed into heat and electricity. For
the reuse of water in agriculture in semi-arid regions, wastewater treat-
ment uses biological depollution. The micro-organisms (or ‘‘biomass’’)
transform the material (or substrate) present in the waste into organic
form. Thus, the treatment uses microbial ecosystems to concentrate
the pollution that should be optimized and controlled by identifying
appropriate mathematical models. The chemostat is used as a starting
point and plays an important role as a model in mathematical biology
for wastewater treatment processes.

To mathematically describe the dynamics of bacteria (microor-
ganisms) at the biological purification stage by using the chemostat
approach, we consider a bacterial growth model in which the cell
mass 𝐌 grows through the consumption of a substrate species 𝐍.
The objective is to monitor the substrate and bacterial densities of
wastewater generated by industrial activities. In this regard, Nguyen
et al. in [18] proposed a chemostat wastewater model which takes the
following form:

⎧

⎪

⎪

⎨

⎪

⎪

d𝐍(𝑡) =
{

1
𝜃

(

𝑁⋆ − 𝐍(𝑡)
)

−
b𝐍(𝑡)𝐌(𝑡)
1 + K𝐍𝐍(𝑡)

}

d𝑡,

d𝐌(𝑡) =
{

b𝐍(𝑡)𝐌(𝑡)
1 + K𝐍𝐍(𝑡)

−
(

𝑄𝑑 +
1 + 𝑅𝑐

𝜃

)

𝐌(𝑡)
}

d𝑡, (1.1)
2

⎩

𝐍(0) > 0, 𝐌(0) > 0,
where 𝐍(𝑡) and 𝐌(𝑡) are the densities of the nourishing elements and the
microbial organisms at time 𝑡 respectively. 𝜃 is the hydraulic retention
time. 𝑁⋆ is the alimentation flux rate. b indicates the highest rate of
nutrient exhaustion and also the qualitative growing rate of 𝐌(𝑡). 𝑄𝑑
represents the death ratio of 𝐌. 𝑅𝑐 is the recycle percentage and K𝐍
is the saturation constant of 𝐍. For simplicity, we let 0 = 1

𝜃 and
1 =

(

𝑄𝑑 + 1+𝑅𝑐
𝜃

)

.
When dealing with wastewater process, other properties should be

included like the sensitivity of bacteria to nutrient concentrations and
the biological interference between the chemostat components [19–
21]. Therefore, the choice of the functional response affects the behav-
ior of wastewater operation dynamics [22,23]. For this purpose, the
present work puts forward a new chemostat wastewater system with
an interference function that includes many types of responses. In line
with this framework, the system (1.1) can be rewritten as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

d𝐍(𝑡) =
{

0
(

𝑁⋆ − 𝐍(𝑡)
)

− b
(

𝐍(𝑡),𝐌(𝑡)
)

𝐌(𝑡)
}

d𝑡,

d𝐌(𝑡) =
{

b
(

𝐍(𝑡),𝐌(𝑡)
)

𝐌(𝑡) −1𝐌(𝑡)
}

d𝑡,

𝐍(0) > 0, 𝐌(0) > 0.

(1.2)

To properly analyze this biological model, we assume that the general
interference function  ∈ 2(R+ × R+,R+) satisfies these two main
assumptions:

∙ 𝐀𝐚: (0,𝐌) = 0 ∀𝐌 ≥ 0;  is increasing in 𝐍 and decreasing in 𝐌;
and there exists a positive constant 𝜛 such that 𝜕(𝐍,𝐌)

𝜕𝐍 ≤ 𝜛, for
all 𝐍,𝐌 ≥ 0.

∙ 𝐀𝐛: lim
𝐌→0

sup
𝐍>0

{

|(𝐍,𝐌) − (𝐍, 0)|
}

= 0.

The properties 𝐀𝐚 and 𝐀𝐛 are naturally verified in the case of the typical
examples listed in Table 1.

Stochastic calculus applied in biology represents a booming area of
research that merges probabilities, differential equations, and math-
ematical modeling [24–29]. This amalgamation aims to supply an
insight into micro-organisms dynamics under certain external fluc-
tuations [30–32]. Changes in lab conditions, temperature, lighting,
pressure and human intervention are concrete examples of factors
influencing species dynamics [33–36]. To characterize this randomness,
several analytical methods have been employed to extract information
and predict the future of the studied phenomenon [37–39]. One such
approach claims that stochastic fluctuations can be formulated by
integrating white noises into the underlying model [40]. By considering
this type of perturbations in its linear form, stochastic models have been
adopted extensively in epidemiology to examine the propagation of the
diseases [41–43], and in ecology to predict the long-time behavior of
the species [44,45]. In both cases, the core objective was the discussion
of some long-run properties such as: eradication and continuation of
the population [46], stationarity and periodicity [47], stability and
bifurcation analysis [48], etc.

Based on the fact that intense amounts of extrinsic fluctuations
can strongly affect population dynamics, Liu and Jiang [49] proposed
a new version of stochastic models. They showed that due to the



Results in Physics 39 (2022) 105799Y. Sabbar et al.
Table 1
List of some prototypes of the general interference function .
Name Expression

Functional response type 1 
(

𝐍,𝐌
)

= 𝐍
Functional response type 2 

(

𝐍,𝐌
)

= 𝐍
K𝐍 + 𝐍

, (K𝐍 > 0)

Functional response type 3 
(

𝐍,𝐌
)

= 𝐍2

(K𝐍 + 𝐍)(K⋆
𝐍 + 𝐍)

, (K𝐍 ,K⋆
𝐍 > 0)

Beddington–DeAngelis 
(

𝐍,𝐌
)

= 𝐍
1 +K𝐍𝐍 +K𝐌𝐌

, (K𝐍 ,K𝐌 > 0)

Crowley–Martin 
(

𝐍,𝐌
)

= 𝐍
(K𝐍 + 𝐍)(K𝐌 +𝐌)

, (K𝐍 ,K𝐌 > 0)

Modified Crowley–Martin 
(

𝐍,𝐌
)

= 𝐍
1 +K𝐍𝐍 +K𝐌𝐌 +K𝐍𝐌𝐍𝐌

, (K𝐍 ,K𝐌 ,K𝐍𝐌 > 0)
Table 2
Some studies on the dynamics of biological models with quadratic perturbation.

Source Biological model Studied properties

[50] Multi-stage HIV system Stationarity and extinction
[51] SICA-HIV system Stationarity and ergodicity
[52] General SIRS system Stationarity and extinction
[53] Epidemic model with relapse Periodicity and stationarity
[54] AIDS system with enhanced hypotheses Stationarity and extinction
[55] Multi staged HIV-AIDS system Stationarity and extinction
[56] Epidemic model with media intervention Ergodicity and extinction
[57] Impulsive chemostat system Stationarity and extinction
[58] Predator–prey system Stationarity and ergodicity
[59] Logistic equation with continuous delay Stationarity and extinction
[60] Standard SIR system Periodicity and ergodicity
[61] Switched Lotka–Volterra system Ergodic property
[62] Ecological system with additional food Stationarity and extinction
[63] HIV system Extinction and stationarity
[64] Hybrid stochastic SEQIHR epidemic model Extinction and stationarity
a

p
a
a

complexity of environmental variations, the order of the disturbance
can be elevated to the second one. That is, the densities of individuals
in the probabilistic part can depend on their squares next to the linear
noise. This form of disturbance adopts many names such as higher
order; second-order and non-linear perturbation. To unify these various
names and for the convenience of readers, in this research, we call it
quadratic fluctuations. In [49], the authors studied the stationarity and
extinction properties of a classical SIR model with quadratic fluctua-
tions. After that, scientific papers began to appear one by one adopting
the similar idea with diverse applications and contexts. In order to
offer an overview of the existing studies, we gather in Table 2 some
biological models with quadratic fluctuations.

In 2021, Zhou et al. [65] proposed the polynomial perturbation
by implementing the Taylor expansion. This framework extends the
aforementioned studies and provides a general setting of randomness.
In line with this alternative representation, the current study aims
to probe the impact of a complex polynomial perturbation on the
long-term behavior of a chemostat wastewater system. Focusing on
the unpredictability of bacteria interactions and the complexity of na-
ture’s random variations, we present the following stochastic chemostat
model with polynomial perturbations:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

d𝐍(𝑡) =

Deterministic part
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
{

0
(

𝑁⋆ − 𝐍(𝑡)
)

− b
(

𝐍(𝑡),𝐌(𝑡)
)

𝐌(𝑡)
}

d𝑡

+

Polynomial perturbation
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝐻
∑

ℎ=0
m1ℎ𝐍ℎ+1(𝑡)d𝐖1(𝑡),

d𝐌(𝑡) =
{

b
(

𝐍(𝑡),𝐌(𝑡)
)

𝐌(𝑡) −1𝐌(𝑡)
}

d𝑡 +
𝐻
∑

ℎ=0
m2ℎ𝐌ℎ+1(𝑡)d𝐖2(𝑡),

(1.3)

where 𝐖1(𝑡), 𝐖2(𝑡) are two independent Wiener processes defined
on a filtered probability space 𝛺 ,P ≡ (𝛺,  , {𝑡}𝑡≥0,P) such that
3

{𝑡}𝑡≥0 follows the usual assumptions, and m𝑘ℎ > 0 (𝑘 = 1, 2) (ℎ = c
0, 1, 2,… , 𝑁) are the polynomial order random intensities. Plainly, the
random component at 𝐻 = 0 is the standard linear noise form adopted
by many researchers. If 𝐻 = 1, it denotes the quadratic-order random
perturbation situation. If 𝐻 = 2, it denotes the random perturbation
with cubic order and so on.

Analytically speaking, the authors of [65] explored the long-run
attitude of an epidemic system with polynomial fluctuations. But their
suggested theoretical method has some restrictions and limitations, par-
ticularly since they offered two distinct critical values for extinction and
stationarity, which is not ideal when dealing with biological systems.
Furthermore, they pointed out that there is a critical gap between the
established criteria, and that obtaining the corresponding global sill
remains an open question (for more details, see the discussion part
of [65]). In this research, we address this problem from a different angle
by providing the sill value among the said asymptotic characteristics
of the chemostat model (1.3), and this is the significant contribution of
our analysis besides generalizing the functional response.

Technically, our new approach focuses on some characteristics of
the Markov process 𝐔(𝑡) that satisfies:

d𝐔(𝑡) =
(

0𝑁⋆ −0𝐔(𝑡)
)

d𝑡 +
𝐻
∑

ℎ=0
m1ℎ𝐔ℎ+1(𝑡)d𝐖1(𝑡), 𝐔(0) = 𝐍(0).

In accordance with Lemma 5 of [65], 𝐔 admits the single steady

distribution 𝜋𝐔(𝑦) = 𝛱

(

𝐻
∑

ℎ=0
m1ℎ𝑦ℎ+1(𝑡)

)−2

𝑒2𝜂(𝑦), where

𝜂(𝑦) = ∫

𝑦

0𝑁⋆
u+z

(

0𝑁⋆ −0𝜏
)

( 𝐻
∑

ℎ=0
m1ℎ𝜏

ℎ+1(𝑡)

)−2

d𝜏,

nd 𝛱 is a specific constant that verifies ∫R+

𝜋𝐔(𝑦)d𝑦 = 1. From the

robabilistic comparison result [66], we can compare the processes 𝐔
nd 𝐍 as follows: 𝐔(𝑡) ≥ 𝐍(𝑡) almost surely (a.s.). Furthermore, the time
verage of 𝐔(𝑡) converges almost surely to ∫R+

𝑦𝜋𝐔(d𝑦) as 𝑡 → ∞. In
onsonance with the above results, we clearly point out that the present
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work aims to prove that the following quantity:

R𝛴
⋆ = b∫R+


(

𝑦, 0
)

𝜋𝐔(d𝑦) −1 − 0.5m2
20,

s the sill among the disappearance and ergodicity of 𝐌 by the use
f the probabilistic comparison theorem, the exponential inequality
or martingales, the Feller property and other mathematical tools. The
btained threshold value R𝛴

⋆ is regarded to be sufficient for having
n excellent view of the long-time chemostat process. Specifically, if
𝛴
⋆ > 0, we have the existence and uniqueness of an ergodic stationary
istribution, while the extinction happens when R𝛴

⋆ < 0.
The remainder of this research is ordered as the following arrange-

ent: in the section ‘‘Dynamical bifurcation of the stochastic system
1.3)’’, we deal with the dynamical bifurcation by demonstrating that
𝛴
⋆ is the real threshold of our system (1.3). In the section ‘‘Numerical

xperiment: Industrial wastewater treatment’’, we numerically verify
he correctness of our results in three particular situations: linear,
uadratic, and cubic perturbations. Finally, we discuss our theoretical
nd numerical results.

ynamical bifurcation of the stochastic system (1.3)

cenario 1: Disappearance of bacteria

This subsection aims to exhibit the criterion for the demise of the
acteria 𝐌.

Theorem 2.1. Let
(

𝐍(𝑡),𝐌(𝑡)
)

be the unique solution of system (1.3) with
any initial value

(

𝐍(0),𝐌(0)
)

∈ R2,⋆
+ . If R𝛴

⋆ < 0, then

lim sup
𝑡→∞

𝑡−1 ln𝐌(𝑡) ≤ R𝛴
⋆ < 0 a.s.,

which means that the bacteria 𝐌 will exponentially die out with probability
one. In addition, the distribution of the nutrient 𝐍(𝑡) converges weakly to
the stationary distribution 𝜋𝐔 of 𝐔(𝑡).

Proof. This demonstration is divided into two parts.
Part I. By using the Itô’s formula, we get

d ln𝐌(𝑡) =
⎛

⎜

⎜

⎝

b
(

𝐍(𝑡),𝐌(𝑡)
)

−1 − 0.5

( 𝐻
∑

ℎ=0
m2ℎ𝐌ℎ(𝑡)

)2
⎞

⎟

⎟

⎠

d𝑡

+
𝐻
∑

ℎ=0
m2ℎ𝐌ℎ(𝑡)d𝐖2(𝑡).

In line with the probabilistic comparison lemma (𝐔(𝑡) ≥ 𝐍(𝑡) a.s.), we
obtain

d ln𝐌(𝑡) ≤
⎛

⎜

⎜

⎝

b
(

𝐔(𝑡), 0
)

−1 − 0.5

( 𝐻
∑

ℎ=0
m2ℎ𝐌ℎ(𝑡)

)2
⎞

⎟

⎟

⎠

d𝑡

+
𝐻
∑

ℎ=0
m2ℎ𝐌ℎ(𝑡)d𝐖2(𝑡). (2.1)

We make two operations on both sides of (2.1): integration from 0 to 𝑡
and division by 𝑡, then

𝑡−1 ln𝐌(𝑡) − 𝑡−1 ln𝐌(0)

≤ 𝑡−1b∫

𝑡

0

(

𝐔(𝜏), 0
)

d𝜏 −1

+ 𝑡−1
⎛

⎜

⎜

⎝

∫

𝑡

0

𝐻
∑

ℎ=0
m2ℎ𝐌ℎ(𝜏)d𝐖2(𝜏) − 0.5∫

𝑡

0

( 𝐻
∑

ℎ=0
m2ℎ𝐌ℎ(𝜏)

)2

d𝜏
⎞

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=(𝑡)

.

(2.2)
4

s

Based on the use of the exponential inequality for martingales [67], we
get

P
⎧

⎪

⎨

⎪

⎩

sup
𝑡∈[0,𝑇1]

(

∫

𝑡

0

𝐻
∑

ℎ=0
m2ℎ𝐌ℎ(𝜏)d𝐖2(𝜏)

− 0.5𝛼1 ∫

𝑡

0

( 𝐻
∑

ℎ=0
m2ℎ𝐌ℎ(𝜏)

)2

d𝜏
⎞

⎟

⎟

⎠

>
2 ln 𝑇1
𝛼1

⎫

⎪

⎬

⎪

⎭

≤ 𝑇 −2
1 ,

for all 0 < 𝛼1 < 1 and 𝑇1 > 0. From the Borel–Cantelli result [67], we
assure the existence of 𝑇1,𝜔 = 𝑇1(𝜔), ∀𝜔 in 𝛺 such that the inequality

∫

𝑡

0

𝐻
∑

ℎ=0
m2ℎ𝐌ℎ(𝜏)d𝐖2(𝜏) ≤

2 ln 𝑇1
𝛼1

+ 0.5𝛼1 ∫

𝑡

0

( 𝐻
∑

ℎ=0
m2ℎ𝐌ℎ(𝜏)

)2

d𝜏,

olds for all 𝑇1 ≥ 𝑇1,𝜔 and 𝑇1 − 1 < 𝑡 ≤ 𝑇1 a.s. Under this setting, we
ave

−1(𝑡) ≤
2 ln 𝑇1
𝛼1𝑡

+ 𝑡−10.5𝛼1 ∫

𝑡

0

( 𝐻
∑

ℎ=0
m2ℎ𝐌ℎ(𝜏)

)2

d𝜏

− 𝑡−10.5∫

𝑡

0

( 𝐻
∑

ℎ=0
m2ℎ𝐌ℎ(𝜏)

)2

d𝜏

≤
2 ln 𝑇1

𝛼1(𝑇1 − 1)
− 𝑡−10.5(1 − 𝛼1)∫

𝑡

0

( 𝐻
∑

ℎ=0
m2ℎ𝐌ℎ(𝜏)

)2

d𝜏

≤
2 ln 𝑇1

𝛼1(𝑇1 − 1)
− 0.5(1 − 𝛼1)m2

20.

We take the superior limit on two sides of (2.2), then

lim sup
𝑡→∞

𝑡−1 ln𝐌(𝑡) ≤ b lim
𝑡→∞

𝑡−1 ∫

𝑡

0

(

𝐔(𝜏), 0
)

d𝜏 −1 + lim
𝑡→∞

𝑡−1(𝑡)

≤ b∫R+


(

𝑦, 0
)

𝜋𝐔(d𝑦) −1

+ lim
𝑇1→∞

2 ln 𝑇1
𝛼1(𝑇1 − 1)

− 0.5(1 − 𝛼1)m2
20

= b∫R+


(

𝑦, 0
)

𝜋𝐔(d𝑦) −1 − 0.5(1 − 𝛼1)m2
20 a.s.

e let 𝛼1 tends to 0+, then the obtained result is

im sup
𝑡→∞

𝑡−1 ln𝐌(𝑡) ≤ R𝛴
⋆ < 0 a.s.

ince the exponential disappearance of the bacteria implies the almost
urely extinction, then lim

𝑡→∞
𝐌(𝑡) = 0 a.s. In other words, the bacteria in

he chemostat of (1.3) will go to extinction with probability one.
Part II. Based on the result of Part I, we can conclude that for a small

> 0, we have the existence of t0 and 𝛺r ⊂ 𝛺 such that P(𝛺r) > 1 − r

nd
(

𝐍,𝐌
)

𝐌 ≤ 
(

𝐍, 0
)

𝐌 ≤ 𝜛r𝐍.

hus

0
(

𝑁⋆ − 𝐍(𝑡)
)

− b𝜛r𝐍(𝑡)
)

d𝑡 +
𝐻
∑

ℎ=0
m1ℎ𝐍ℎ+1(𝑡)d𝐖1(𝑡)

≤ d𝐍(𝑡) ≤
(

0
(

𝑁⋆ − 𝐍(𝑡)
))

d𝑡 +
𝐻
∑

ℎ=0
m1ℎ𝐍ℎ+1(𝑡)d𝐖1(𝑡),

ndicates that the distribution of 𝐍(𝑡) converges weakly to 𝜋𝐔(⋅). The
roof of the extinction theorem is finished. □

cenario 2: Continuation of bacteria

This subsection introduces a new approach to establish the condi-
ion of the existence of the unique ergodic stationary distribution of our
ystem (1.3).
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s
u

I
𝜅



Theorem 2.2. For any initial data
(

𝐍(0),𝐌(0)
)

∈ R2,⋆
+ , if R𝛴

⋆ > 0, the
olution

(

𝐍(𝑡),𝐌(𝑡)
)

to system (1.3) has the ergodic property and admits a
nique stationary distribution 𝜋𝛴 (⋅).

Proof. For plainness and clarity, we set
( 𝐻
∑

ℎ=0
m2ℎ𝐌ℎ(𝑡)

)2

=
2𝐻
∑

ℎ=0

(

∑

𝑗+𝑘=ℎ
m2𝑗m2𝑘

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
uℎ

𝐌ℎ(𝑡) =
2𝐻
∑

ℎ=0
uℎ𝐌ℎ(𝑡).

Via using Itô’s formula, one obtains


(

− ln𝐌(𝑡)
)

= −b
(

𝐍(𝑡),𝐌(𝑡)
)

+1 + 0.5

( 𝐻
∑

ℎ=0
m2ℎ𝐌ℎ(𝑡)

)2

= −b
(

𝐔(𝑡), 0
)

+ b
(

𝐔(𝑡), 0
)

− b
(

𝐍(𝑡), 0
)

+ b
(

𝐍(𝑡), 0
)

− b
(

𝐍(𝑡),𝐌(𝑡)
)

+1 + 0.5m2
20 +m20m21𝐌(𝑡) + 0.5

2𝐻
∑

ℎ=2
uℎ𝐌ℎ(𝑡).

From assumption 𝐀𝐚, we have


(

− ln𝐌(𝑡)
)

≤ −b
(

𝐔(𝑡), 0
)

+1 + 0.5m2
20 + b𝜛

(

𝐔(𝑡) − 𝐍(𝑡)
)

+ b
(

𝐍(𝑡), 0
)

− b
(

𝐍(𝑡),𝐌(𝑡)
)

+m20m21𝐌(𝑡)

+ 0.5
2𝐻
∑

ℎ=2
uℎ𝐌ℎ(𝑡). (2.3)

On the other hand, we get


(

ln𝐔(𝑡) − ln𝐍(𝑡)
)

≤ 0𝑁⋆

(

𝐔−1(𝑡) − 𝐍−1(𝑡)
)

+ b
(

𝐍(𝑡),𝐌(𝑡)
)

𝐌(𝑡)𝐍−1(𝑡)

− 0.5

( 𝐻
∑

ℎ=0
m1ℎ𝐔ℎ(𝑡)

)2

+ 0.5

( 𝐻
∑

ℎ=0
m1ℎ𝐍ℎ(𝑡)

)2

.

Since 𝐔(𝑡) ≥ 𝐍(𝑡) a.s., we obtain


(

ln𝐔(𝑡) − ln𝐍(𝑡)
)

≤ −m10m11
(

𝐔(𝑡) − 𝐍(𝑡)
)

+ b𝜛𝐌(𝑡). (2.4)

We consider a function 𝑓 (𝑡) expressed by

𝑓 (𝑡) = − ln𝐌(𝑡) + b𝜛
m10m11

(

ln𝐔(𝑡) − ln𝐍(𝑡)
)

.

Based on (2.3) and (2.4), we get

𝑓 (𝑡) ≤ −b
(

𝐔(𝑡), 0
)

+1 + 0.5m2
20 +

(

m20m21 +
b2𝜛2

m10m11

)

𝐌(𝑡)

+ 0.5
2𝐻
∑

ℎ=2
uℎ𝐌ℎ(𝑡) + b

(

𝐍(𝑡), 0
)

− b
(

𝐍(𝑡),𝐌(𝑡)
)

. (2.5)

We add and subtract at the same time the quantity b∫R+

(𝑦, 0)𝜋𝐔(d𝑦)

in (2.5) as follows:

𝑓 (𝑡) ≤ −b∫R+

(𝑦, 0)𝜋𝐔(d𝑦) +1 + 0.5m2
20

+ b

(

∫R+

(𝑦, 0)𝜋𝐔(d𝑦) − 
(

𝐔(𝑡), 0
)

)

+
(

m20m21 +
b2𝜛2

m10m11

)

𝐌(𝑡) + 0.5
2𝐻
∑

ℎ=2
uℎ𝐌ℎ(𝑡)

+ b
(

𝐍(𝑡), 0
)

− b
(

𝐍(𝑡),𝐌(𝑡)
)

.

To eliminate the term associated with 𝐌(𝑡), we set

𝑓𝛽 (𝑡) = − ln𝐌(𝑡) + b𝜛
m10m11

(

ln𝐔(𝑡) − ln𝐍(𝑡)
)

+ 𝛽𝐌(𝑡),

where the positive constant 𝛽 verifies

𝛽1 ≥
(

m20m21 +
b2𝜛2 )

.

5

m10m11
Then, we have

𝑓𝛽 (𝑡) ≤

=−R𝛴
⋆

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

−b∫R+

(𝑦, 0)𝜋𝐔(d𝑦) +1 + 0.5m2
20

+ b

(

∫R+

(𝑦, 0)𝜋𝐔(d𝑦) − 
(

𝐔(𝑡), 0
)

)

+ 𝛽b
(

𝐍(𝑡),𝐌(𝑡)
)

𝐌(𝑡) + 0.5
2𝐻
∑

ℎ=2
uℎ𝐌ℎ(𝑡) + b

(

𝐍(𝑡), 0
)

− b
(

𝐍(𝑡),𝐌(𝑡)
)

.

n the same vein, we apply the differential operator  on the function
−1(1 + 𝐍(𝑡)

)𝜅 + 𝜅−1𝐌𝜅 (𝑡), 𝜅 ∈ (0, 1), then
(

𝜅−1(1 + 𝐍(𝑡)
)𝜅 + 𝜅−1𝐌𝜅 (𝑡)

)

=
(

1 + 𝐍(𝑡)
)𝜅−1

(

0𝑁⋆ −0𝐍(𝑡) − b
(

𝐍(𝑡),𝐌(𝑡)
)

𝐌(𝑡)
)

+ 0.5(𝜅 − 1)
(

1 + 𝐍(𝑡)
)𝜅−2

( 𝐻
∑

ℎ=0
m1ℎ𝐍ℎ+1(𝑡)

)2

+𝐌𝜅−1(𝑡)
(

b
(

𝐍(𝑡),𝐌(𝑡)
)

𝐌(𝑡) −1𝐌(𝑡)
)

+ 0.5(𝜅 − 1)𝐌𝜅−2(𝑡)

( 𝐻
∑

ℎ=0
m2ℎ𝐌ℎ+1(𝑡)

)2

.

Accordingly, we derive that


(

𝜅−1(1 + 𝐍(𝑡)
)𝜅 + 𝜅−1𝐌𝜅 (𝑡)

)

≤ 0𝑁⋆ − 0.5(1 − 𝜅)m2
11𝐍

𝜅+2(𝑡) + b𝜛𝐍(𝑡)𝐌𝜅 (𝑡)

−
(

1 + 0.5(1 − 𝜅)m2
20

)

𝐌𝜅 (𝑡)

+ (1 − 𝜅)m20m21𝐌𝜅+1(𝑡) − 0.5(1 − 𝜅)m2
21𝐌

𝜅+2(𝑡)

− 0.5(1 − 𝜅)
2𝐻
∑

ℎ=2
uℎ𝐌ℎ+𝜅 (𝑡)

≤ 0𝑁⋆ − 0.5(1 − 𝜅)m2
11𝐍

𝜅+2(𝑡) + b𝜛(𝜅 + 1)−1𝐍𝜅+1(𝑡)

+ b𝜛𝜅(𝜅 + 1)−1𝐌𝜅+1(𝑡)

− 0.5(1 − 𝜅)m2
21𝐌

𝜅+2(𝑡) − 0.5(1 − 𝜅)
2𝐻
∑

ℎ=2
uℎ𝐌ℎ+𝜅 (𝑡).

Now, we define a new function 𝑓𝛽,𝜅 as follows:

𝑓𝛽,𝜅
(

𝐍,𝐌
)

= 𝑆𝑓𝛽 + 𝜅−1(1 + 𝐍
)𝜅 + 𝜅−1𝐌𝜅 ,

where 𝑆 > 0 satisfies that −𝑆R𝛴
⋆ + + 2 ≤ 0 and  is given by

 = max
{

sup
(𝐍,𝐌)∈R2

+,⋆

{

0𝑁⋆ + b𝜛(𝜅 + 1)−1𝐍𝜅+1(𝑡)

− 0.25(1 − 𝜅)m2
11𝐍

𝜅+2(𝑡) + b𝜛𝜅(𝜅 + 1)−1𝐌𝜅+1(𝑡)

− 0.25(1 − 𝜅)m2
21𝐌

𝜅+2(𝑡) + 0.5
2𝐻
∑

ℎ=2
uℎ𝐌ℎ(𝑡)

− 0.5(1 − 𝜅)
2𝐻
∑

ℎ=2
uℎ𝐌ℎ+𝜅 (𝑡)

}

, 1
}

.

Clearly, the function 𝑓𝛽,𝜅 reaches its minimum value at a point (𝐍𝓁 ,𝐌𝓁).
For this reason, we will consider a new non-negative function defined
as follows:

𝑓𝛴
𝛽,𝜅

(

𝐍,𝐌
)

= 𝑆𝑓𝛽 + 𝜅−1(1 + 𝐍
)𝜅 + 𝜅−1𝐌𝜅 − 𝑓𝛽,𝜅 (𝐍𝓁 ,𝐌𝓁).

From the above calculation, we obtain

𝑓𝛴
𝛽,𝜅 (𝑡) ≤ −𝑆R𝛴

⋆ + 𝑆𝛽b𝜛𝐍(𝑡)𝐌(𝑡) + b𝑆
(


(

𝐍(𝑡), 0
)

− 
(

𝐍(𝑡),𝐌(𝑡)
)

)

+ 0.5𝑆
2𝐻
∑

uℎ𝐌ℎ(𝑡)

ℎ=2
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+0𝑁⋆ − 0.5(1 − 𝜅)m2
11𝐍

𝜅+2(𝑡) + b𝜛(𝜅 + 1)−1𝐍𝜅+1(𝑡)

+ b𝜛𝜅(𝜅 + 1)−1𝐌𝜅+1(𝑡)

− 0.5(1 − 𝜅)m2
21𝐌

𝜅+2(𝑡) − 0.5(1 − 𝜅)
2𝐻
∑

ℎ=2
uℎ𝐌ℎ+𝜅 (𝑡)

+ b𝑆

(

∫R+

(𝑦, 0)𝜋𝐔(d𝑦) − 
(

𝐔(𝑡), 0
)

)

= 𝑔
(

𝐍(𝑡),𝐌(𝑡)
)

+ b𝑆

(

∫R+

(𝑦, 0)𝜋𝐔(d𝑦) − 
(

𝐔(𝑡), 0
)

)

.

To continue our analysis, we need to define the following five sets:

𝑎,𝑎† =
{

(

𝐍(𝑡),𝐌(𝑡)
)

∈ R2,⋆
+ | 𝑎 ≤ 𝐍(𝑡) ≤ 𝑎−1, 𝑎† ≤ 𝐌(𝑡) ≤ 𝑎−1†

}

,

𝑎,1 =
{

(

𝐍(𝑡),𝐌(𝑡)
)

∈ R2,⋆
+ | 0 < 𝐍(𝑡) < 𝑎

}

,

𝑎† ,2 =
{

(

𝐍(𝑡),𝐌(𝑡)
)

∈ R2,⋆
+ | 0 < 𝐌(𝑡) < 𝑎†

}

,

𝑎,3 =
{

(

𝐍(𝑡),𝐌(𝑡)
)

∈ R2,⋆
+ | 𝐍(𝑡) > 𝑎−1

}

,

𝑎† ,4 =
{

(

𝐍(𝑡),𝐌(𝑡)
)

∈ R2,⋆
+ | 𝐌(𝑡) > 𝑎−1†

}

.

Here, R2,⋆
+ = {(𝑥, 𝑦) ∶ 𝑥 > 0, 𝑦 > 0}, 𝑎† = min{𝑎◦, 𝑎}, where 𝑎◦ > 0

verifies (2.11), and 𝑎 > 0 is chosen carefully such that

𝑆𝛽b𝜛𝑎 + b𝑆𝜛𝑎 +
𝜅𝑆𝛽b𝜛𝑎
𝜅 + 2

(

2𝑆𝛽b𝜛𝑎
0.25(𝜅 + 2)(1 − 𝜅)m2

21

)2𝜅−1

− 1 ≤ 0,

(2.6)

𝑆𝛽b𝜛𝑎 +
𝜅𝑆𝛽b𝜛𝑎
𝜅 + 2

(

2𝑆𝛽b𝜛𝑎
0.25(𝜅 + 2)(1 − 𝜅)m2

11

)2𝜅−1

− 1 < 0,

(2.7)
−𝑆R𝛴

⋆ + Z − 0.25(1 − 𝜅)m2
11𝑎

−𝜅−2 + 1 ≤ 0,
(2.8)

−𝑆R𝛴
⋆ + Z − 0.25(1 − 𝜅)m2

21𝑎
−𝜅−2 + 1 ≤ 0, (2.9)

where

Z = sup
(𝐍,𝐌)∈R2,⋆

+

{

0.5𝑆𝛽b𝜛𝐍2(𝑡) + 0.5𝑆𝛽b𝜛𝐌2(𝑡) + 𝑆b𝜛𝐍(𝑡)

+0𝑁⋆ + b𝜛(𝜅 + 1)−1𝐍𝜅+1(𝑡)

+ b𝜛𝜅(𝜅 + 1)−1𝐌𝜅+1(𝑡) − 0.25(1 − 𝜅)m2
11𝐍

𝜅+2(𝑡)

− 0.25(1 − 𝜅)m2
21𝐌

𝜅+2(𝑡)

+ 0.5𝑆
2𝐻
∑

ℎ=2
uℎ𝐌ℎ(𝑡) − 0.5(1 − 𝜅)

2𝐻
∑

ℎ=2
uℎ𝐌ℎ+𝜅 (𝑡)

}

.

Plainly, 𝑐
𝑎,𝑎†

= R2,⋆
+ ⧵𝑎,𝑎† = 𝑎,1∪𝑎† ,2∪𝑎,3∪𝑎† ,4. In the following,

we will verify that

1 + 𝑔
(

𝐍(𝑡),𝐌(𝑡)
)

≤ 0, (2.10)

for any
(

𝐍(𝑡),𝐌(𝑡)
)

∈ 𝑐
𝑎,𝑎†

which is equivalent to showing it on
𝑎,1, 𝑎† ,2, 𝑎,3 and 𝑎† ,4, respectively. For this reason, we have the
following situations:

1 Situation 1: assume that
(

𝐍(𝑡),𝐌(𝑡)
)

∈ 𝑎,1. From (2.6), we
obtain

𝑔
(

𝐍(𝑡),𝐌(𝑡)
)

≤ −𝑆R𝛴
⋆ + 𝑆𝛽b𝜛𝑎 + b𝑆𝜛𝑎 + 𝑆𝛽b𝜛𝑎𝐌2(𝑡)

− 0.25(1 − 𝜅)m2
11𝐍

𝜅+2(𝑡) + 𝑆0.5
2𝐻
∑

ℎ=2
uℎ𝐌ℎ(𝑡)

+0𝑁⋆ + b𝜛(𝜅 + 1)−1𝐍(𝑡)𝜅+1 + b𝜛𝜅(𝜅 + 1)−1𝐌𝜅+1(𝑡)

− 0.25(1 − 𝜅)m2
21𝐌

𝜅+2(𝑡)

− 0.25(1 − 𝜅)m2
21𝐌

𝜅+2(𝑡) − 0.5(1 − 𝜅)
2𝐻
∑

uℎ𝐌ℎ+𝜅 (𝑡)
6

ℎ=2
≤ −𝑆R𝛴
⋆ + + 𝑆𝛽b𝜛𝑎 + b𝑆𝜛𝑎

+
𝜅𝑆𝛽b𝜛𝑎
𝜅 + 2

(

2𝑆𝛽b𝜛𝑎
0.25(𝜅 + 2)(1 − 𝜅)m2

21

)2𝜅−1

≤ −1.

2 Situation 2: here, we use the uniform continuity at 𝐌 = 0 of
the function 

(

𝐍(𝑡),𝐌(𝑡)
)

. By assumption 𝐀𝐚, ∃𝑎◦ > 0 such that
as 0 < 𝐌 ≤ 𝑎◦,

𝑆𝛽b𝜛𝑎 +
𝜅𝑆𝛽b𝜛𝑎
𝜅 + 2

(

2𝑆𝛽b𝜛𝑎
0.25(𝜅 + 2)(1 − 𝜅)m2

11

)2𝜅−1

+ b𝑆
(


(

𝐍(𝑡), 0
)

− 
(

𝐍(𝑡),𝐌(𝑡)
)

)

< 1. (2.11)

Consequently, if 𝐌 < 𝑎† = min{𝑎◦, 𝑎}, we get from (2.7) that

𝑔
(

𝐍(𝑡),𝐌(𝑡)
)

≤ −𝑆R𝛴
⋆ + 𝑆𝛽b𝜛𝑎 + 𝑆𝛽b𝜛𝑎𝐍2(𝑡) − 0.25(1 − 𝜅)m2

11𝐍
𝜅+2(𝑡)

+ 0.5𝑆
2𝐻
∑

ℎ=2
uℎ𝐌ℎ(𝑡) +0𝑁⋆

+ b𝑆
(


(

𝐍(𝑡), 0
)

− 
(

𝐍(𝑡),𝐌(𝑡)
)

)

+ b𝜛(𝜅 + 1)−1𝐍(𝑡)𝜅+1

+ b𝜛𝜅(𝜅 + 1)−1𝐌𝜅+1(𝑡)

− 0.25(1 − 𝜅)m2
21𝐌

𝜅+2(𝑡)

− 0.5(1 − 𝜅)
2𝐻
∑

ℎ=2
uℎ𝐌ℎ+𝜅 (𝑡)

≤ −𝑆R𝛴
⋆ + + 𝑆𝛽b𝜛𝑎 +

𝜅𝑆𝛽b𝜛𝑎
𝜅 + 2

(

2𝑆𝛽b𝜛𝑎
0.25(𝜅 + 2)(1 − 𝜅)m2

11

)2𝜅−1

+ b𝑆
(


(

𝐍(𝑡), 0
)

− 
(

𝐍(𝑡),𝐌(𝑡)
)

)

≤ −1.

3 Situation 3: assume that
(

𝐍(𝑡),𝐌(𝑡)
)

∈ 𝑎,3. From (2.8), we
have

𝑔
(

𝐍(𝑡),𝐌(𝑡)
)

≤ −𝑆R𝛴
⋆ − 0.25(1 − 𝜅)m2

11𝐍
𝜅+2(𝑡) + 0.5𝑆𝛽b𝜛𝐍2(𝑡)

+ 0.5𝑆𝛽b𝜛𝐌2(𝑡) + 𝑆b𝜛𝐍(𝑡)
+0𝑁⋆ + b𝜛(𝜅 + 1)−1𝐍(𝑡)𝜅+1 + b𝜛𝜅(𝜅 + 1)−1𝐌𝜅+1(𝑡)

− 0.25(1 − 𝜅)m2
11𝐍

𝜅+2(𝑡)

− 0.25(1 − 𝜅)m2
21𝐌

𝜅+2(𝑡) + 0.5𝑆
2𝐻
∑

ℎ=2
uℎ𝐌ℎ(𝑡)

− 0.5(1 − 𝜅)
2𝐻
∑

ℎ=2
uℎ𝐌ℎ+𝜅 (𝑡)

≤ −𝑆R𝛴
⋆ + Z − 0.25(1 − 𝜅)m2

11𝑎
−𝜅−2

≤ −1.

4 Situation 4: assume that
(

𝐍(𝑡),𝐌(𝑡)
)

∈ 𝑎† ,4. From (2.9), we get

𝑔
(

𝐍(𝑡),𝐌(𝑡)
)

≤ −𝑆R𝛴
⋆ − 0.25(1 − 𝜅)m2

21𝐌
𝜅+2(𝑡) + 0.5𝑆𝛽b𝜛𝐍2(𝑡)

+ 0.5𝑆𝛽b𝜛𝐌2(𝑡) + 𝑆b𝜛𝐍(𝑡)
+0𝑁⋆ + b𝜛(𝜅 + 1)−1𝐍(𝑡)𝜅+1

+ b𝜛𝜅(𝜅 + 1)−1𝐌𝜅+1(𝑡) − 0.25(1 − 𝜅)m2
11𝐍

𝜅+2(𝑡)

− 0.25(1 − 𝜅)m2
21𝐌

𝜅+2(𝑡) + 0.5𝑆
2𝐻
∑

ℎ=2
uℎ𝐌ℎ(𝑡)

− 0.5(1 − 𝜅)
2𝐻
∑

ℎ=2
uℎ𝐌ℎ+𝜅 (𝑡)

≤ −𝑆R𝛴
⋆ + Z − 0.25(1 − 𝜅)m2

21𝑎
−𝜅−2

≤ −1.
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B

Table 3
Some values used in the traditional wastewater process with a fully mixed flow reactor.

Parameters Standard domain Units Scenario 1 Scenario 2

𝜃: Hydraulic retention time 0.5–7.5 day 1.97 2.95
b: Constant growth of bacteria 2–10 mg of cells × day 8 8
K𝐍: Saturation constant of N 25–100 mg of cells × day/𝓁 60 60
K𝐌: Saturation constant of M 25–100 mg of cells × day/𝓁 60 60
𝑄𝑑 : Death ratio of M 0.025–0.075 1/day 0.06 0.06
𝑅𝑐 : Recycle percentage 25%–75% – 50% 50%
𝑁⋆: Input concentration – mg of cells × day/𝓁 15 15
T
w
e

𝑇

f
o
f
t

L

t

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

a

d

I
s
p

S

m

R

T
g
s
t
d

In summary, the assertion (2.10) is verified. On the other hand, we can
easily show that ∃ > 0 such that 𝑔

(

𝐍,𝐌
)

≤ , for all
(

𝐍,𝐌
)

∈ R2,⋆
+ .

Accordingly, we get

∫

𝑡

0
E
(

𝑔
(

𝐍(𝜏),𝐌(𝜏)
))

d𝜏

+ 𝑆𝜛E
(

∫

𝑡

0 ∫

∞

0
(𝑦, 0)𝜋𝐔(d𝑦)d𝜏 − ∫

𝑡

0

(

𝐔(𝜏), 0
)

d𝜏
)

≥ ∫

𝑡

0
E
(

𝑓𝛴
𝛽,𝜅

(

𝐍(𝜏),𝐌(𝜏)
)

)

d𝜏

= E
(

𝑓𝛴
𝛽,𝜅

(

𝐍(𝑡),𝐌(𝑡)
)

)

− E
(

𝑓𝛴
𝛽,𝜅

(

𝐍(0),𝐌(0)
)

)

≥ −E
(

𝑓𝛴
𝛽,𝜅

(

𝐍(0),𝐌(0)
)

)

.

y using the ergodic property of 𝐔(𝑡), we conclude that

0 ≤ lim inf
𝑡→∞

𝑡−1 ∫

𝑡

0

(

E𝑔
(

𝐍(𝜏),𝐌(𝜏)
)

1{
(𝐍(𝜏),𝐌(𝜏))∈𝑐

𝑎,𝑎†

}

+E𝑔
(

𝐍(𝜏),𝐌(𝜏)
)

1{
(𝐍(𝜏),𝐌(𝜏))∈𝑎,𝑎†

}

)

d𝜏

≤ lim inf
𝑡→∞

𝑡−1 ∫

𝑡

0

(

−P
(

(𝐍(𝜏),𝐌(𝜏)) ∈ 𝑐
𝑎,𝑎†

)

+ P
(

(𝐍(𝜏),𝐌(𝜏)) ∈ 𝑎,𝑎†

)

)

d𝜏

= −1 + (1 + )lim inf
𝑡→∞

𝑡−1 ∫

𝑡

0
P
(

(𝐍(𝜏),𝐌(𝜏)) ∈ 𝑎,𝑎†

)

d𝜏.

Consequently

lim inf
𝑡→∞

𝑡−1 ∫

𝑡

0
P
(

(

𝐍(𝜏),𝐌(𝜏)
)

∈ 𝑎,𝑎†

)

d𝜏 ≥ (1 + )−1 > 0.

Hence

lim inf
𝑡→∞

𝑡−1 ∫

𝑡

0
P
(

(

𝐍(0),𝐌(0)
)

; 𝜏,𝑎,𝑎†

)

d𝜏 > 0, ∀
(

𝐍(0),𝐌(0)
)

∈ R2,⋆
+ .

Identical to the demonstration of (Lemma 3.2., [68]) and the mutually
limited possibilities lemma [69], we establish the existence, uniqueness
and ergodicity of a single invariant distribution 𝜋𝛴 for the perturbed
model (1.3). □

Numerical experiment: Industrial wastewater treatment

This section is devoted to numerically verifying the above-mentioned
theoretical results. We aim to make sure that 𝛴

◦ is the sharp sill
of the model (1.3). So, we present three situations of system (1.3),
and in each case, we explore the complex long-run behavior of the
bacteria. As an instance of the function , we use the Beddington–
DeAngelis interference function introduced in Table 1. We apply the
Euler–Maruyama method to discretize the disturbed system (1.3). By
using the software Matlab2015b and the parameter values listed in
Table 3 (taken from [12]), we deal with two scenarios of wastewater
operation under heavy fluctuations.

Remark 3.1. The threshold of our model with Beddington–DeAngelis
interference function is expressed by

R𝛴
⋆ = b 

(

𝑦, 0
)

𝜋𝐔(d𝑦) −1 − 0.5m2
20
7

∫R+
d

= lim
𝑇→∞

𝑇 −1
∫

𝑇

0

b𝐔(𝜏)
1 + K𝐍𝐔(𝜏)

d𝜏 −1 − 0.5m2
20.

he probability density function 𝜋𝐔 obeys a Fokker–Planck equation,
hich is easy to approximate it through Monte Carlo simulations. Via
rgodic property, we can also estimate this quantity

lim
→∞

𝑇 −1
∫

𝑇

0

b𝐔(𝜏)
1 + K𝐍𝐔(𝜏)

d𝜏,

or a large time 𝑇 . This last technique is the one that we will use in
ur simulations. Since the equation of 𝐔 is disturbed by polynomial
luctuations, said limit will be modified according to the magnitude of
he intensity and, consequently, the threshold will also be changed.

inear perturbation case (𝐻 = 0)

In this case, we numerically study the model treated in [18] which
akes the following system:

d𝐍(𝑡) =
(

1
𝜃

(

𝑁⋆ − 𝐍(𝑡)
)

−
b𝐍(𝑡)𝐌(𝑡)

1 + K𝐍𝐍(𝑡) + K𝐌𝐌(𝑡)

)

d𝑡

+0.1𝐍(𝑡)d𝐖1(𝑡),

d𝐌(𝑡) =
(

b𝐍(𝑡)𝐌(𝑡)
1 + K𝐍𝐍(𝑡) + K𝐌𝐌(𝑡)

−
(

𝑄𝑑 +
1 + 𝑅𝑐

𝜃

)

𝐌(𝑡)
)

d𝑡

+0.3𝐌(𝑡)d𝐖2(𝑡),
𝐍(0) = 10, 𝐌(0) = 4.5,

(3.1)

ssociated with the following auxiliary process:

𝐔(𝑡) =
( 1
𝜃

(

𝑁⋆ − 𝐔(𝑡)
))

d𝑡 + 0.1𝐔(𝑡)d𝐖1(𝑡), 𝐔(0) = 10.

Practically, we have the following two scenarios.

Scenario 1: Disappearance of bacteria
By selecting parameters values from Table 3 (Scenario 1) and choos-

ing a sufficiently large number 𝑇 > 0, we obtain

R𝛴
⋆ = b∫R+


(

𝑦, 0
)

𝜋𝐔(d𝑦) −1 − 0.5m2
20

= lim
𝑇→∞

𝑇 −1
∫

𝑇

0

b𝐔(𝜏)
1 + K𝐍𝐔(𝜏)

d𝜏 −1 − 0.5m2
20 = −0.0028 < 0.

t follows from Theorem 2.1 that the bacteria 𝐌 in wastewater chemo-
tat process go to extinction with probability one and the substrate 𝐍
ersists. Fig. 2 is the corresponding numerical simulation diagram.

cenario 2: Persistence of bacteria
Now, we choose parameters values from Table 3 (Scenario 2) to

ove from the case of extinction to the case of continuation. Then
𝛴
⋆ = b∫R+


(

𝑦, 0
)

𝜋𝐔(d𝑦) −1 − 0.5m2
20

= lim
𝑇→∞

𝑇 −1
∫

𝑇

0

b𝐔(𝜏)
1 + K𝐍𝐔(𝜏)

d𝜏 −1 − 0.5m2
20 = 0.0163 > 0.

hus, it follows from Theorem 2.2 that there exists a unique er-
odic steady distribution of model (3.1). This means that bacteria are
till present in the wastewater regulation process and we can collect
hem constantly. In Fig. 3, we depict the permanence phenomenon by
rawing trajectories and sketching the experimental two-dimensional
ensity of 𝜋𝛴 (𝐍,𝐌).
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Fig. 2. Line I: trajectories of densities (𝐍,𝐌) and their associated probability density function 𝜋𝛴 (𝐍,𝐌). Line II: the projection drawing of 𝜋𝛴 on different coordinate planes. The
deterministic parameters are selected from Table 3 (Scenario 1). For the noise intensities, we select m10 = 0.01 and m20 = 0.3. In this case, R𝛴

⋆ = −0.0028 < 0.

Fig. 3. Line I: trajectories of densities (𝐍,𝐌) and their associated probability density function 𝜋𝛴 (𝐍,𝐌). Line II: the projection drawing of 𝜋𝛴 on different coordinate planes. The
deterministic parameters are selected from Table 3 (Scenario 2). For the noise intensities, we select m10 = 0.01 and m20 = 0.3. In this case, R𝛴

⋆ = 0.0163 > 0.
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Fig. 4. Line I: trajectories of densities (𝐍,𝐌) and their associated probability density function 𝜋𝛴 (𝐍,𝐌). Line II: the projection drawing of 𝜋𝛴 on different coordinate planes.
The deterministic parameters are selected from Table 3 (Scenario 1). For the noise intensities, we select m10 = 0.01, m20 = 0.3, m11 = 0.0122 and m21 = 0.0113. In this case,

𝛴
⋆ = −0.0146 < 0.
I
u
b
c
p
t

C

(
t

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

d

H

uadratic perturbation case (𝐻 = 1)

In this case, we deal with following probabilistic system:

d𝐍(𝑡) =
(

1
𝜃

(

𝑁⋆ − 𝐍(𝑡)
)

−
b𝐍(𝑡)𝐌(𝑡)

1 + K𝐍𝐍(𝑡) + K𝐌𝐌(𝑡)

)

d𝑡

+0.1𝐍(𝑡)d𝐖1(𝑡) + 0.0122𝐍2(𝑡)d𝐖1(𝑡),

d𝐌(𝑡) =
(

b𝐍(𝑡)𝐌(𝑡)
1 + K𝐍𝐍(𝑡) + K𝐌𝐌(𝑡)

−
(

𝑄𝑑 +
1 + 𝑅𝑐

𝜃

)

𝐌(𝑡)
)

d𝑡

+0.3𝐌(𝑡)d𝐖2(𝑡) + 0.0113𝐍2(𝑡)d𝐖1(𝑡),
𝐍(0) = 10, 𝐌(0) = 4.5,

(3.2)

with its corresponding auxiliary process:

d𝐔(𝑡) =
( 1
𝜃

(

𝑁⋆ − 𝐍(𝑡)
))

d𝑡 + 0.1𝐔(𝑡)d𝐖1(𝑡) + 0.0122𝐔2(𝑡)d𝐖1(𝑡), 𝐔(0) = 10.

Also, we treat the following two scenarios.

Scenario 1: Disappearance of bacteria
By choosing parameters values from Table 3 (Scenario 1) and

considering a sufficiently large number 𝑇 > 0, we obtain

R𝛴
⋆ = b∫R+


(

𝑦, 0
)

𝜋𝐔(d𝑦) −1 − 0.5m2
20

= lim
𝑇→∞

𝑇 −1
∫

𝑇

0

b𝐔(𝜏)
1 + K𝐍𝐔(𝜏)

d𝜏 −1 − 0.5m2
20 = −0.0146 < 0.

ccording to Theorem 2.1, we conclude that the bacteria 𝐌 in wastew-
ter chemostat process go to extinction with probability one and the
ubstrate 𝐍 persists. From Fig. 4, we confirm this theoretical result.

cenario 2: Persistence of bacteria
We select parameters values from Table 3 (Scenario 2) to obtain the

ontinuation of our model. Then

𝛴
⋆ = b 

(

𝑦, 0
)

𝜋𝐔(d𝑦) −1 − 0.5m2
20
9

∫R+
w

= lim
𝑇→∞

𝑇 −1
∫

𝑇

0

b𝐔(𝜏)
1 + K𝐍𝐔(𝜏)

d𝜏 −1 − 0.5m2
20 = 0.0107 > 0.

n accordance with Theorem 2.2, we conclude that there exists a
nique ergodic steady distribution of model (3.2). This indicates that
acteria are still present in the wastewater regulation process and we
an collect them constantly. In Fig. 5, we illustrate the continuation
henomenon by drawing trajectories and providing the experimental
wo-dimensional density of 𝜋𝛴 (𝐍,𝐌).

ubic perturbation case (𝐻 = 2)

In this part, we numerically prove that R𝛴
◦ is the sill of the system

1.3) in the special case of cubic perturbation. So, we firstly introduce
his probabilistic model:

d𝐍(𝑡) =
(

1
𝜃

(

𝑁⋆ − 𝐍(𝑡)
)

−
b𝐍(𝑡)𝐌(𝑡)

1 + K𝐍𝐍(𝑡) + K𝐌𝐌(𝑡)

)

d𝑡

+0.1𝐍(𝑡)d𝐖1(𝑡)
+0.0122𝐍2(𝑡)d𝐖1(𝑡) + 0.014𝐍3(𝑡)d𝐖1(𝑡),

d𝐌(𝑡) =
(

b𝐍(𝑡)𝐌(𝑡)
1 + K𝐍𝐍(𝑡) + K𝐌𝐌(𝑡)

−
(

𝑄𝑑 +
1 + 𝑅𝑐

𝜃

)

𝐌(𝑡)
)

d𝑡

+0.3𝐌(𝑡)d𝐖2(𝑡)
+0.0113𝐌2(𝑡)d𝐖2(𝑡) + 0.0135𝐌3(𝑡)d𝐖2(𝑡),

𝐍(0) = 10, 𝐌(0) = 4.5,

(3.3)

with its corresponding auxiliary process:

𝐔(𝑡) =
( 1
𝜃

(

𝑁⋆ − 𝐔(𝑡)
))

d𝑡 + 0.1𝐔(𝑡)d𝐖1(𝑡) + 0.0122𝐔2(𝑡)d𝐖1(𝑡)

+ 0.014𝐔3(𝑡)d𝐖1(𝑡), 𝐔(0) = 4.5.

ere, we keep the other coefficient values as the above two cases and

e deal the following cases.
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Fig. 5. Line I: trajectories of densities (𝐍,𝐌) and their associated probability density function 𝜋𝛴 (𝐍,𝐌). Line II: the projection drawing of 𝜋𝛴 on different coordinate planes.
The deterministic parameters are selected from Table 3 (Scenario 2). For the noise intensities, we select m10 = 0.01, m20 = 0.3, m11 = 0.0122 and m21 = 0.0113. In this case,
R𝛴

⋆ = 0.0107 > 0.

Fig. 6. Line I: trajectories of densities (𝐍,𝐌) and their associated probability density function 𝜋𝛴 (𝐍,𝐌). Line II: the projection drawing of 𝜋𝛴 on different coordinate planes.
The deterministic parameters are selected from Table 3 (Scenario 1). For the noise intensities, we select m10 = 0.01, m20 = 0.3, m11 = 0.0122, m21 = 0.0113, m12 = 0.0014 and
m22 = 0.0135. In this case, R𝛴

⋆ = −0.0511 < 0.
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Fig. 7. Line I: trajectories of densities (𝐍,𝐌) and their associated probability density function 𝜋𝛴 (𝐍,𝐌). Line II: the projection drawing of 𝜋𝛴 on different coordinate planes.
The deterministic parameters are selected from Table 3 (Scenario 2). For the noise intensities, we select m10 = 0.01, m20 = 0.3, m11 = 0.0122, m21 = 0.0113, m12 = 0.0014 and
22 = 0.0135. In this case, R𝛴
⋆ = 0.0032 > 0.
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cenario 1: Disappearance of bacteria
Again, if we select the parameters values from Table 3 (Scenario 1),

hen the result is
𝛴
⋆ = b∫R+


(

𝑦, 0
)

𝜋𝐔(d𝑦) −1 − 0.5m2
20

= lim
𝑇→∞

𝑇 −1
∫

𝑇

0

b𝐔(𝜏)
1 + K𝐍𝐔(𝜏)

d𝜏 −1 − 0.5m2
20 = −0.0511 < 0.

heoretically, we have the disappearance of the bacteria 𝐌 according
to Theorem 2.1. It remains to verify it numerically. From Fig. 6, the
bacteria will clear up in about five days with long-term persistence of
𝐍.

Scenario 2: Continuation of bacteria
Now, if we select the parameters values from Table 3 (Scenario 2),

then we get

R𝛴
⋆ = b∫R+


(

𝑦, 0
)

𝜋𝐔(d𝑦) −1 − 0.5m2
20

= lim
𝑇→∞

𝑇 −1
∫

𝑇

0

b𝐔(𝜏)
1 + K𝐍𝐔(𝜏)

d𝜏 −1 − 0.5m2
20 = 0.0032 > 0.

From Theorem 2.1, we establish that there is a single stable distribution
for (3.3) which is depicted in Fig. 7. In this figure, we remark also the
persistence of all classes.

Remark 3.2. From Figs. 2, 4 and 6, we emphasize that heavy fluctu-
ations have a passive influence on the time extinction of the disease.

Conclusion

This research proposed a new approach to deal with an industrial
wastewater model with strong fluctuations. Explicitly, we have pro-
posed and treated a new form of the chemostat system which integrates
two improvements: general response function and polynomial white
noises. This fusion offers a global view of the interaction between
11

T

the different elements of the chemostat process in a highly disturbed
environment. The outcomes of this part can be summarized as follows:

∙ We have given the global threshold of our model based on some
dynamical properties of an auxiliary Markov process 𝐔 perturbed
by polynomial perturbations.

∙ In Theorem 2.1, we have studied the extinction case and the weak
convergence of the distribution of 𝐍 to that of 𝐔.

∙ In Theorem 2.2, we have proved the stationarity and ergodicity of
our system. It should be mentioned that the analysis of these two
properties is very significant for perturbed systems. Especially, in
the case of chemostat models, the ergodicity offers a general idea
of the bacteria permanence.

Numerically, we have chosen the first three values of 𝐻 , that are,
linear, quadratic and cubic cases. Our main objective was to verify the
sharpness of the proposed threshold. For this cause, we have selected
appropriate parameter values that give an amount of R𝛴

⋆ close to zero
in both sides. From numerical outcomes, we have emphasized that R𝛴

⋆
s the real sill of the model (1.3) in the three studied cases. What caught
ur attention is that when we increase the order of the disturbance, the
acteria extinction time decreases. That is, strong fluctuations have a
assive influence on the duration of the chemostat process.

In general, we point out that this study generalizes many previous
orks to the case of general perturbation. Furthermore, it offers new

nsights into understanding wastewater mechanisms with complex real-
orld assumptions. In other words, the approach proposed in this
rticle leaves many research avenues to be explored in future works.
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