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Polar codes are decoded using successive cancellation (SC) algorithm where likelihood 

ratios (LRs) for data bits are calculated in a sequential manner, and decisions are made 

using the calculated LRs. During the decoding of an information bit, the decision results 

for the predecessor bits are used, and a wrongly decided predecessor bit has negative 

effect on the accurate calculation of the LR for the information bit being decoded. In SC 

algorithm, when LR=1, the information bit is decoded as u ̂_i=0, however, such a 

decision has 50% of chance of being correct. In this paper, we propose improved polar 

decoders utilizing a number of SC decoders. We consider the case of LR=1, and propose 

polar decoder structures for the more accurate calculation of the LRs of the successor 

bits. 

 

1. Introduction 

Polar codes invented by Arikan [1] is the primary class of error correcting codes that can provably achieve the 

capacity of binary discrete memoryless channel (B-DMC) when the code length approaches to infinity. Polar 

codes are decoded in a recursive manner using successive cancelation list (SC) algorithm. The successive 

cancellation list (SCL) introduced in [2] shows significant performance improvement compared to SC decoding. 

In an SCL decoder, both 0 and 1 are considered as estimated bits and two decoding paths are generated at each 

decoding stage. The cyclic redundancy check (CRC) is used in [3, 4] to select the correct decoding path in the 

SCL algorithm. However, SCL decoding has much higher decoding complexity [5, 6] compared to SC. In this 

paper, we propose new decoding approach for polar codes considering the case of LR=1. The proposed method 

employs multi-SC decoders constructed in parallel with enhanced decision functions to correct the lost bits that 

in turn leads to an increase in error propagation. The proposed technique provides a flexible configuration, and 

leads to pruning of unnecessary path searching operations, which reduce the decoding complexity. Multi-Parallel 

SC decoding show a significant performance improvement compared with the original SC decoding. 

2. Preliminaries and Notations 

Binary discrete memoryless channels (B-DMC) is considered for illustrative purposes in this paper. In this paper 

we write 𝑊: 𝑋 → 𝑌 to denote a generic binary discrete memoryless channel (B-DMC) with input alphabet 𝑋, 

output alphabet 𝑌 and transition probabilities 𝑊(𝑦|𝑥), 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌. For a BEC, the input alphabet 𝑋 is chosen 

from the binary set {0, 1} while 𝑌 and the transition probabilities may take arbitrary values. In the paper, 𝑦1
𝑁 =

(𝑦1, 𝑦2, … , 𝑦𝑁) are the observations of the code bits 𝑥1
𝑁 = (𝑥1, 𝑥2, … , 𝑥𝑁), obtained via encoding of the 

information bits 𝑢1
𝑁 = (𝑢1, 𝑢2, … , 𝑢𝑁), through 𝑁 copies of the channel 𝑊. 
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3. Successive Cancellation Decoding 

At the destination side, using the received word 𝑦1
𝑁 = (𝑦1, 𝑦2, … , 𝑦𝑁), information bits are estimated successively 

using the likelihood ratios (LRs) of the bits appearing in code structure. In this paper, binary erasure channel is 

employed for performance evaluation. A bit transmitted through binary erasure channel is either received 

correctly with probability 1 − 𝜖 or lost with probability 𝜖. It is shown in [1] that the LRs of the information bits 

can be recursively as. 
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N ,û1,e
2i−2)

 (1) 

 

LN
(2i)

(y1
N, û1
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The decision is made according to 

 

𝑢̂𝑖 = {
0  𝑖𝑓  𝐿𝑅(𝑢̂𝑖) ≥ 1 
1  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        

 (3) 

 

Where 𝐿𝑅(𝑢̂𝑖) is defined as 

 

𝐿𝑅(𝑢̂𝑖) =
𝑃𝑟𝑜𝑏(𝑢̂𝑖 = 0|𝑦)

𝑃𝑟𝑜𝑏(𝑢̂𝑖 = 1|𝑦)
  

 

4. Proposed M-Parallel SC Decoding Algorithm 

In SC decoding of polar codes [1], whenever 𝐿𝑅(𝑢̂𝑖) = 1 the decision is made as 𝑢̂𝑖 = 0 according to (4). 

However, in such an approach, we have 50% of making a correct decision. A wrong decision will certainly have 

negative effects on the determination of the successive bits. Considering this issue, we propose multipath parallel 

structures for SC decoding operations. 

4.1. Multi-Parallel SCD (MP-SCD) for M=2 

Successive cancelation decoding operation is a sequential decoding operation. The decoding decision for the 𝑖𝑡ℎ 

bit, 𝑢𝑖, affects the decoding decisions of the successive bits, i.e., bits 𝑢𝑗, 𝑗 > 𝑖. Absolute value of the log-likelihood 

ratio, i.e., |𝐿𝐿𝑅|, is an indicator for the accuracy of the decision. Large |𝐿𝐿𝑅| implies a more robust decision. 

And a wrong estimation for the information bit 𝑢𝑖 will push the values of  |𝐿𝐿𝑅𝑠| towards 0 for the successive 

bits.  

 To alleviate the information loss and improve the decision robustness, considering the case of 𝐿𝑅(𝑢𝑖) = 1, 

we propose a structure as depicted in Fig.1 where we utilize two SC decoders, one of which uses the decision 

logic. 

 

𝑃𝐷1:  𝑢̂𝑖 = {
0,   𝑖𝑓  𝐿𝑅(𝑢𝑖) = 1

0,   𝑖𝑓  𝐿𝑅(𝑢𝑖) > 1 
1,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       

 (4) 

Whereas the other employs 
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𝑃𝐷2:  𝑢̂𝑖 = {

 1,   𝑖𝑓  𝐿𝑅(𝑢𝑖) = 1

 0,   𝑖𝑓  𝐿𝑅(𝑢𝑖) > 1
 1,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.       

 (5) 

 

Once the decoding operation for all information bits is complete, sum of the absolute log-likelihood ratios, i.e.. 

LLRs, is performed according to 

 

𝑆𝑃𝐷1
= 𝐷1: ∑  |𝐿𝐿𝑅𝑖|

𝑖

     𝑆𝑃𝐷2
= 𝐷2: ∑  |𝐿𝐿𝑅𝑖|

𝑖

 (6) 

 

Where 𝐿𝐿𝑅𝑖 indicates the log-likelihood ratio for information bit 𝑢𝑖 for the corresponding decoders.  The winner 

decoder is chosen considering 

 

𝑃𝐷𝑤 = {
𝑃𝐷1     𝑖𝑓 𝑆𝑃𝐷1 ≥ 𝑆𝑃𝐷2

𝑃𝐷2    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.       
 (7) 

 

The estimated bits of the winner decoder are accepted as the result of the decoding operation. The overall logic 

for the proposed decoding operation is illustrated graphically in Figure.1 and Figure.2. 

 

 

Figure 1. Block Diagram For M=2 Parallel Sc Decoding Operation 

 

The structure shown in Figure.1 corresponds to the case 𝑀 = 2 i.e., we have two parallel decoder. The sum of 

the absolute values of the LLRs is calculated for each decoder, and the decoder with larger summation result is 

chosen for decision operation. Unlike to the SC decoder where only one path is reserved at each level, the multi-

parallel algorithm utilizes M different searching paths. Therefore, it is more likely for the m-parallel algorithm 

to find the desired path than the SC algorithm. In Figure.1 (a) and Figure.1 (b), two examples for N = 8 

considering 𝐿𝑅 = 1 cases are depicted. 

 The example depicted in Figure.1 (a) illustrates the worst case. It is seen from the example that the decoded 

sequences can be 000 or 111, in this case just the first bit can be exactly correct and the number of paths is not 

greater than M=2. In the example depicted in Figure.1 (b), the 1st,  3rd  bits are lost and the  2nd bit is normally 

detected as 1. 

 

𝑦
𝑖
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𝑖
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𝑖

 

𝑆1 ⋛ 𝑆2 
Decide Winner 

Decoder 
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Figure 1. (A) Decoding procedure in Case 1, where the 1𝑠𝑡 , 2𝑛𝑑  And  3𝑟𝑑 bits are lost. 

 

The possible decoded words can be {010,111}. In the decoded sequence, the first and second bits are true, but 

the third bit can be true with probability of 0.5. 

 In this case we note that the path searching is changed by the second bit for which it is assumed that 𝐿𝑅 < 1. 

The path having the highest absolute logarithmic likelihood sum is chosen for the determination of the decoded 

sequence. 

 

Figure 1. (B) Decoding procedure in Case 2, where the 1𝑠𝑡  and  3𝑟𝑑 bits are lost but the  2𝑛𝑑  bit is normally 

detected as 1. 

 

4.2. Multi-Parallel SCD (MP-SCD) for M=4 

To improve the decision accuracy, we can increase the number of parallel decoders which handle 𝐿𝑅(𝑢𝑖) = 1 

case in different ways. In Figure.2, multi-parallel SCD structure for 𝑀 = 4 is depicted. 

 

𝑢̂3𝑟𝑑 = 0 

𝒊𝒇 (𝑳𝑹 = 𝟏) 

𝑢̂1𝑠𝑡 = 0 
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𝑖

 𝑆2 = ∑|𝐿𝐿𝑅(𝑢𝑖)|

𝑖
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Figure 2. Block diagram for M=4 parallel Sc decoding operation. 

 

In Figure.2, 𝑃𝐷1 always makes the decision '0' when LR=1, 𝑃𝐷2 makes the decision '0' only once when LR = 1, 

and it makes the decision '1' for the other LR=1 cases, 𝑃𝐷4 always makes the decision '1', 𝑃𝐷3 makes the decision 

'1' only once when LR = 1, and it makes the decision '0' for the other LR=1 cases. Two examples for M=4 are 

provided in Figures 2(a) and 2(b). 

 

 

Figure 2. (A) Decoding procedure in Case 1, where the 1𝑠𝑡 , 2𝑛𝑑  and  3𝑟𝑑 bits are lost. 

 

In Figure. 2(a) for M=4, we consider the case where the first 3 bits are erased, and in this case the candidate 

sequences for the decoder output are {000, 110, 001, 111}. For the example of Figure.2(b) for M=4, we consider 

the case where the 1st and 3rd  bits are lost but the  2nd bit is normally decoded as 1, and in this case the candidate 

sequences for the decoder output are {010, 110, 011, 111}. As it is clearly seen from Figure.2(b) search path is 

altered by the second bit which acts as a path corrector, and the winner path has the largest absolute logarithmic 

likelihood sum. 
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Figure 2. (B) Decoding procedure in Case 2, where the 1𝑠𝑡  and  3𝑟𝑑 bits are lost but the  2𝑛𝑑  bit is normally 

detected as 1. 

 

5. Simulation Results 

Computer simulations are performed using frame length of 1024 and 128 for binary erasure channels having 

erasure probabilities 0.5, and bit-error-rate (BER) and frame-error-rate (FER) performance curves for moderate 

frame lengths are obtained as shown in Figures.3, 4 and Figures.5, 6 respectively. It is seen in Figure. 3 that, two 

types of simulation curves are available. 

 In figures, the lines with label ‘*’ indicates the simulation results assuming that perfect channel knowledge is 

available at the receiver side, and if the sequence associating with one of the decoded paths matches the 

transmitted frame, it is accepted as the decoder result, otherwise, the path having the largest absolute LLR sum 

is chosen. It is seen from the performance curves that the code performance increases as the number of parallel 

branches increases, and when parallel branch number is 4, the performance of the proposed method approaches 

to the performance for which perfect channel knowledge is available. We obtain significant performance 

improvement over (SCD). 

 

Figure 3. BER performance under different M size for frame- length  P(1024) over binary erasure channel. 

 

𝒊𝒇 (𝑳𝑹 = 𝟏) 
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Figure 4. FER performance under different M size for frame- length P(1024) over binary erasure channel. 

 

 

Figure 5. BER performance under different M size for frame- length  P(128) over binary erasure channel. 
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Figure 6. FER performance under different M size for frame- length P(128) over binary erasure channel. 

 

6. Conclusions 

In SC decoding of polar codes, when LR=1 for an information bit, the decision is made in the favour of 0, 

however, in such a decision an uncertainty occurs, and in this instance polar decoder has 50% chance of making 

a correct decision. Considering this circumstance, we proposed novel polar decoding methods, which considers 

two decisions i.e., '0' and '1', for LR=1 at the node of the decoding tree.  

 In one approach, path doubling is only done once when LR=1, which corresponds to two parallel decoders, 

i.e., M=2. And, in the next approach, we considered path doubling twice, i.e., a path doubling is made when 

LR=1, and another path doubling is made when LR=1 and no more, which corresponds to four parallel decoders, 

i.e., M=4.  Simulation results indicate that the proposed approaches show significant performance improvement 

over classical SC decoder 
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