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The Pythagorean fuzzy soft set (PFSS) is the most proficient and manipulative leeway of the Pythagorean fuzzy set (PFS), which
contracts with parameterized values of the alternatives. It is a generalized form of the intuitionistic fuzzy soft set (IFSS), which
provides healthier and more accurate evaluations through decision-making (DM). The main determination of this research is
to prolong the idea of Einstein’s aggregation operators for PFSS. We introduce the Einstein operational laws for Pythagorean
fuzzy soft numbers (PFSNs). Based on Einstein operational laws, we construct two novel aggregation operators (AOs) such as
Pythagorean fuzzy soft Einstein-weighted averaging (PFSEWA) and Pythagorean fuzzy soft Einstein-weighted geometric
(PFSEWG) operators. In addition, important possessions of proposed operators, such as idempotency, boundedness, and
homogeneity, are discussed. Furthermore, to validate the practicability of the anticipated operators, a multiple attribute group
decision-making (MAGDM) method is developed. We intend innovative AOs considering the Einstein norms for PFSS to elect
the most subtle business. Pythagorean fuzzy soft numbers (PFSNs) support us to signify unclear data in real-world perception.
Furthermore, a numerical description is planned to certify the efficacy and usability of the projected method in the DM
practice. The recent approach’s pragmatism, usefulness, and tractability are validated through comparative exploration with the
support of some prevalent studies.

1. Introduction

MAGDM is the most applicable method for finding the ade-
quate alternative from all conceivable alternatives. Conven-
tionally, it is anticipated that all data retrieving alternatives
according to attributes and their conforming weights are
stated in crisp numbers. On the other hand, maximum judg-
ments are taken in situations where the objectives are usually
indefinite or ambiguous in real-life circumstances. To over-

come such ambiguities and anxieties, Zadeh offered the con-
cept of the fuzzy set (ES) [1], a prevailing tool to handle the
obscurities and uncertainties in DM considering the member-
ship values of the alternatives. Experts mostly consider a mem-
bership and a nonmembership value in the DM process that
ES cannot handle. Atanassov [2] introduced the generalization
of the FS, the idea of the intuitionistic fuzzy set (IFS) to over-
come the inadequacy mentioned above. In 2011, Wang and
Liu [3] presented numerous operations on IFS, such as



Einstein product and Einstein sum, and constructed two AOs.
They also discussed some essential properties of these opera-
tors and utilized their proposed operator to resolve multiattri-
bute decision-making (MADM) for the IFS information.
Atanassov [4] presented a generalized form of IES in the light
of ordinary interval values, called interval-valued IFS. Garg
and Kaur [5] prolonged the impression of IFS and offered a
novel idea of the cubic intuitionistic fuzzy set.

The models mentioned above have been well recognized
by the specialists. Still, the existing IFS cannot handle the inap-
propriate and vague data. For example, if decision-makers
choose membership (MD) and nonmembership (NMD) 0.9
and 0.6, respectively, then 0.9 + 0.6 > 1. The IFS theory men-
tioned above cannot be applied to this data. To resolve the lim-
itation described above, Yager [6, 7] presented the notion of
the PES by improving the basic circumstance ¢ + #<1 to
@*+ 6% <1 and developed some results associated with the
score function and accuracy function. Rahman et al. [8] pre-
sented the Einstein geometric aggregation operator and intro-
duced a MAGDM methodology utilizing the proposed
operator. Zhang and Xu [9] developed some basic operational
laws and prolonged the technique for preference by similarity
to the ideal solution (TOPSIS) method to resolve multicriteria
decision-making (MCDM) complications under a PFS setting.
Wei and Lu [10] proposed the power AOs for PFS and dis-
cussed their fundamental properties. They also offered a DM
technique to resolve MADM complications using their pre-
sented operators. Wang and Li [11] protracted Bonferroni’s
mean AOs for PFS considering the interaction. IIbahar et al.
[12] introduced the Pythagorean fuzzy proportional risk
assessment technique to assess professional health risk. Zhang
[13] proposed a novel DM approach based on similarity mea-
sures to resolve PFS information’s multicriteria group
decision-making (MCGDM) problems. Peng and Yang [14]
introduced the division and subtraction operations for
Pythagorean fuzzy numbers (PENSs), proved their basic prop-
erties, and presented a superiority and inferiority ranking
approach under the PES to overcome the MAGDM complica-
tions. Garg [15, 16] introduced operational laws based on Ein-
stein norms for PFNs, proposed weighted AOs, and ordered
weighted AOs for PFS. Garg [17] introduced logarithmic
operational laws for the PFS and constructed various weighted
AOQOs based on the presented logarithm operational laws.

Gao et al. [18] settled interaction AOs under a PFS envi-
ronment and gave the MADM approach to solving real-life
problems. Wang et al. [19] protracted the interactive Hama-
cher AOs for the PFS and settled a DM method. Wang and
Li [20] utilized the interval-valued PES, presented some
novel PES operators, and offered a DM approach to resolve
the MCGDM complications. Moreover, to deal with the
MCDM complexities, Gao et al. [18] constructed hybrid
AOs for PFS and presented a DM methodology utilizing
these operators. Peng and Yuan [21] extended the AOs for
PES and introduced the generalized AOs for PFS with their
desirable properties. They also constructed a MADM
approach established on their advanced operators. Zulgar-
nain et al. [22] developed novel algorithms for multipolar
neutrosophic soft sets. They utilized their established algo-
rithms in medical diagnoses. Zulgarnain et al. [23] pro-
tracted the generalized TOPSIS method under a

Journal of Function Spaces

neutrosophic setting to solve MCDM problems. Arora and
Garg [24] presented basic operational laws for linguistic
IFS and suggested some AOs under the considered scenario.
To examine the ranking of normal IFS and interval valued
IFS, Garg [25] gave novel algorithms for solving the MADM
problems. Ma and Xu [26] modified the existing score func-
tion and accuracy function for PFNs and defined novel AOs
for PENs. All of the previously mentioned methods have
excessive applications in several fields, but due to their inef-
fectiveness, these methods have many limitations with
parameterization. Molodtsov [27] presented the basic notion
of soft sets (SS) and deliberated some basic operations with
their belongings. Maji et al. [28] presented the idea of SS
and demarcated several basic operations. In [29], the authors
developed a DM approach for SS. Maji et al. [30] demon-
strated the theory of IFSS and offered some basic operations
with their essential properties. Zulgarnain et al. [31] pre-
sented the TOPSIS method using a correlation coefficient
for interval-valued IFSS. Zulqarnain et al. [32] utilized the
TOPSIS method for the prediction of diabetes patients.

Nowadays, the conception and application consequences
of soft sets and the earlier-mentioned several research devel-
opments are evolving speedily. Peng et al. [33] established
the concept of PESS by merging two current models, PFS
and SS. They also debated some fundamental operations with
their essential possessions. Athira et al. [34] established
entropy measures for the PFSS. They also offered Euclidean
distance and hamming distance for the PFSS and utilized their
methods for DM [35]. Naeem et al. [36] developed the TOP-
SIS and VIKOR methods for PFSNs and presented an
approach for the stock exchange investment problem. Zulqar-
nain et al. [37, 38] introduced the AOs and interaction AOs
under the PFSS environs. They also constructed the DM
methods based on their operators and utilized them in green
supplier chain management. Siddique et al. [39] settled a
DM technique based on a score matrix for PFSS. Zulqarnain
et al. [40] presented the correlation coefficient (CC) for PFSS
and proposed the TOPSIS approach based on developed CC
to resolve MADM problems. Zulgarnain et al. [41, 42] intro-
duced the Einstein-ordered weighted AOs for PESS and settled
the DM approaches using their established operators.

The PFSS can potentially disclose unconvinced and
obscure information in practical applications. This article
establishes a new strategy for coping with DM issues under
the PESS environs. PESS is an innovative hybrid configura-
tion of PFS. Enriched organization approaches captivate
investigators to interpret confusing and deficient data. PFSS
performs a vital part in DM by congregation various sources
into a single value in terms of findings. According to the
best-known familiarity, the advent of hybridization of PFS
and SS is not separate from PFS’s perspective. Thus, to moti-
vate modern exploration on PFSS, we will state the AOs
based on rough data, with the subsequent elementary objec-
tives of the study:

(1) PESS is proficient in conducting complex problems
competently, considering the properties in the DM
progression. With this advantage in mind, we put
up the Einstein AOs for PFSS
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(2) In some cases, it has been noted that the prevailing
AOs do not seem keen to flag precise DM tech-
niques. To handle these specific troubles, these AOs
must be amended. We presented an advanced algo-
rithm for the Pythagorean fuzzy soft numbers
(PFSNs) founded on the Einstein norm

(3) The PFSEWA and PFSEWG operators are built
using Einstein operational laws with some basic
properties

(4) An innovative MAGDM method is established based
on the anticipated PEFSEWA and PFSEWG operators
to tackle the DM problem

(5) A comparative analysis of the settled MAGDM tech-
nique and current approaches has been offered to
deliberate realism and dominance

The configuration of the subsequent study is prear-
ranged as follows: in Section 2, we recalled some elementary
notions such as FS, IES, PES, SS, ESS, IESS, PESS, and Ein-
stein norms. Section 3 defined some basic operational laws
for PFSNs based on Einstein norms, developed PFSEWA
and PFSEWG operators, and discussed their essential prop-
erties. Section 4 settled the MAGDM methodology built on
planned operators and gave a numerical illustration for find-
ing the most delicate business to invest money in. In Section
5, a comparison with some prevailing methods has been
provided.

2. Preliminaries

This section comprises some elementary definitions, such as
SS, IES, PES, ESS, IESS, and PESS, which will deliver the basis
for the structure of the following manuscript.

Definition 1. (see [27]). Let X and IN be the universe of dis-
course and set of attributes, respectively. Let 9(X) be the
power set of X and &/ € IN. A pair (0, &) is called a SS over
X, and its mapping is expressed as follows:

Q: o — PX). (1)
Also, it can be defined as follows:
(Q, ) ={O(t) e P(X): te N, Q(t)=Qif t ¢ A}.  (2)

Definition 2. (see [6]). Let X be a collection of objects and
then a PFS, A over X is defined as

A={( @4(0), ba(x)) X € X}, 3

where @ ,(x), £,(x): X — [0, 1] represents the MD and
NMD such as 0 <z ,(x)> + £, (x)° <1 and [=1- @ (x)* -
4,(x)* expressed the indeterminacy.

Definition 3. (see [30]). Let X and IN be the universe of dis-
course and set of attributes, respectively; then, a pair (2, N)
is called an IFSS over X.

Let Q : N — IK* be a mapping and IK* be a collection
of intuitionistic fuzzy subsets. Also, it is defined as follows:

(€, 4) ={t, (@a(t), 44(t))|t € A}, (4)

where «,(t),4,(t): A— [0, 1] are MD and NMD and
0<a,(t)+8,(t)<1.

The above IFSS cannot contract with the state when the
combination of MD and NMD is more than one, so to con-
tract with such circumstances, Yager [6, 7] reformed the
state of IFSS to MD + NMD < 1 presenting a general concept

with its features. (MD)? + (NMD)* < 1.

Definition 4. (see [33]). Let X and IN be the universe of dis-
course and set of attributes, respectively; then, a pair (2, N)
is called a PFSS over X.

Let Q be a mapping such that Q : N — @K* and pK*
be a collection of Pythagorean fuzzy subsets. Also, it is
defined as follows:

(2 A4) ={t, (@ (1), £a(t))[t € A}, (5)

where @ ,(t),4,(t): A—[0,1] are MD and NMD,

respectively, and 0<a,(t) +4,(t)° <1 S =

\/ 1-a,(t)* - 4,(t)” expressed the indeterminacy.
If 7;; = (@, &;) is a PFSN, then to compute the alter-

natives, Zulqarnain et al. [37] offered the score and accuracy
functions for 7; as

_ 22
S(# ) =i - b (6)
where S(% ;) € [-1, 1]. It is reported that the score function

cannot discriminate the PFSNs in some cases. For example,
if ,, = (0.3162,0.44720.4472) and |, = (0.5477, 0.6324)
, then S(#;,)=-0.1 and S(#';,) —0.1. In that case, the
use of the score function for bargaining is incredible. An
accuracy function has been developed that combines MD
and NMD to handle this error.

A(Zy) = aizj + ﬂfj, (7)
where A(%;) € [-1,1].

Thus, to compare two PFSNs #';; and %
comparison laws are defined:

i the following

(1) IES(F ;) > S(R,)), then F ;> R,

(2) US(Z ;) = S(R;;), then

(i) IfA(Z ;) > A(Ry), then ;> R,
(ii) If A(Z ;) = A(R;;), then Z;; = R



Definition 5. (see [15]). Einstein sum €P, and Einstein prod-
uct (X, are good alternatives of algebraic t-norm and ¢
-conorm, respectively, given as follows:

a+pf
T+ (asp)’

aef3
1+(1

" T =01

(e, B) € [0, 1]
(8)

a@.p=

Under the Pythagorean fuzzy environment, Einstein
sum €P, and Einstein product ), are defined as

(x+/§2 B asf
T (wep) “S P r(1-@)(1- )

oD.p= V(. B) €[0,1)%,

©)

where aP, and a).f are known as t-norm and ¢
-conorm, respectively, satisfying the boundary, monotonic-
ity, commutativity, and associativity properties.

3. Einstein-Weighted Aggregation
Operators for the Pythagorean Fuzzy Soft Set

This section will construct a couple of Einstein-weighted
AOs such as PFSEWA and PFSEWG operators for PFSNs
with their essential properties.

3.1. Operational Laws for PFSNs

Definition 6. Let H = (a, ), 1y = {11, b11)> H 15 = 12>
4., be PESNs and 0 > 0, then based on Einstein norms, we
have

V) Hu D=1+ a}) - (1=t
\/(1+@§].)+(1 @A)\ [205 00 (2 - 62 + 82)

2) Q.7 1, = 2“%‘/\/(2_“%]') +0‘%j’
\/(1+ﬁ2 /\/1+ﬁ2 (1)

3) a%=<\/(1+az) - (1-a2)%

(1+a2)°+(1-a2)°/2(62)°
v v

(2-2%° +(2)")

4) ° = <\/2(a2)a/\/(2 - ?)’ + (a?),

Definition 7. Let ;= («;;, &;;) be a collection of PFSNs;
then, the PFSEWA operator is defined as

PESEWA (11, X 13> > K ) = @jril/\j(@?ﬂei%ij)’

(10)
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where (i=1,2,-+,n), (j=1,2,---,m), and 6,,A; represent
the weighted vectors such that 6, >0, }'_,6;=1 and}; >0,
Z] IA] =L

Theorem 8. Let ¥ ;= (a;;, ;) be a collection of PFSNs;
then, the aggregated value attained by equation (10) is given

as

PESEWA(Z |}, H 155 =+ » K
= @jrizAj (@?:191'%17)

f’lm)

where 0;,A; denote the weight vectors such that 6;> 0,
Yibi=landA;>0, 37 A= 1.

Proof. We will employ mathematical induction.
For n=1, we get 0, = 1.

PESEWA (P, # 155+,
:@;’il/\j%u

nm)

«
—]
]
TN
:1
—
N
%
TN
\_/
v

(12)
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Form=1, we get A;=1.

PESEWA(Z 1, 15 -+ H o)
= @?:191'%1'1
) <\/H,’-L1 Lo ad)" - [T (1- oh)°
VI (1 ad) T (- a3)”

So, equation (11) true for n=1 and m = 1.
Assume for n=3,,m=68,+land forn=35,+1, m=4,,
the above equation holds. Then,

@81+1A <®?2219%>
8, +1 2\ A 8,+1 [ 0 2\ 0 A
1 1
H i + "‘ij) - Hj:l [T ( - "‘fj)
< 61+1 2\ & 8,+1 /
[T4 i 1 + "‘ij) +]1:

B (o)
Ju (e (o)) - (1)
<\/H m( agj)ﬂf)f I (aﬁl(l_a?j)@)%
ot (1 ()"
e (neea)) e (1 ()" >

(14)

Now, for m=68,+1land n=6, + 1,

' (@l'e7,)
@8 T (@?310'%17 Y 9i+1%<5z+1) )
= (B @0A,7 ) (BT N0 5,0)

8 1 0 8,41 o\ Y
<¢H+ (e)) i (1 (1))
8, +1 6; 8,+1 6; A
\/H (12 (1+3) ) I (nll( -a3)")
8,+1 2 652“ 51+1 652+1 &
[T (1 * "‘(62+1)1
S¥ =
§,+1 952*' 51+1 952*1 !
\/Hjl ((1+“(252+1)j ) ( "‘52+1 )
S+ (140, [ 2\0 )"
\/21_[1'—1 <Hi:1 (ﬁij) >
\/Hé +1

)A] 6,+1 (
8,+1 95
\/ZH]T < 62+1 Y )
8,+1 05,41 5,+1 05,41 A1>
¢n () ™) 1 ()™
A
al 5, 51 5, 6\
<\/H H i= ;1 1+“12) ) . (Hx‘:l+ (1_“%‘) )
6, AR
\/HBIH 1 1+0‘;) ) 81+1 <Hirl(1*0@j> > j
8, +1 Syl [ 2 A
ZH] 1 H ﬂ
5+1 8+1 2\ i A 8+1 8+1 2\ Y Af>
(1 et 1<,z<ﬁ,,.>)

6 HA (@162;16 % )

- (8,+1)j

2ﬁ29

ﬁz) )AJ

1

So, it is true for m=3, + 1 and n =6, + 1. O

Example 9. Let R ={R,, R,, #;} be a set of experts with
the given weight vector 0,=(.1,.3,.3, .3)T, which want to
choose a vehicle under the defined set of attributes A = {A,
= air conditioner, A, = airbag, A, = price, A, = comfort level
, As =design} with weight vector A;=(.2,.2,.2, 4)". The
supposed rating values for all attributes in the PFSNs form
(#,A) = (a;,b, i) g B1VED @S

i
(0.5,0.8) (0.7,0.5) (0.4,0.6) (0.7,0.4)
(%’ !&) _ | (05,06) (09,0.1) (03,0.7) (0.4,05)
(0.4,0.8) (0.7,0.5) (0.4,0.6) (0.3,0.5)
(0.3,0.7) (0.6,0.5) (0.5,0.4) (0.5,0.7)



As we know that

PESEWA (11, 7 15, -+ 7 1)
<¢nﬂ L)) T (T - )
VI (T )
21, (nt (%))
o )

{(1.25)01(1.25)0 3(1.16)°3(1.09)%3 192 {(1.49)°1(1.81)%3(1.49)°3 (1.36)°2 }

{(1.16)°1(1.09)%3(1.16)°3(1.25)°3 }°2{ (1.49)*1(1.16)°%(1.09)3(1.25)°2 }**

[{(075)0 1(0.75)°3(0.84)°3(0.91)°2 12 £(0.51)°1(0.19)%3(0.51)°%(0.64)% } 2

{(0.84)°1(0.91)°3(0.84)°3(0.75)*3 12 £ (0.51)°
{(1.25)°1(1.25)°3(1.16)°3(1.09)°3}**{ (1.49)°

1(0.84)°3(0.91)°3(0.75)03 1
(1.81)°2(1.49)"(1.36)7 1%

{(1.16)°1(1.09)%3(1.16)°3(1.25)°3}°2{(1.49)*(1.16)°%(1.09)3(1.25)°3 }**

+

_ < [{(0 75)%1(0.75)%3(0.84)%3(0.91)%3 12 £(0.51)"1(0.19)"(0.51)°(0.64)* } ** >

{(0.84)°1(0.91)%3(0.84)°3(0.75)%31°%{ (0.51)*1(0.84)°%(0.91)%3(0.75)°2 }**

J {{(0.64)“(0.36)”3(0,64)0'3(0.49)0'3}0'2{(0.25)"1(0,01)0'3(0.25)0'3(0.25)”3}0'2]
2

{(0.36)°1(0.49)%3(0.36)°3(0.16)°3 }°*{ (0.16)*1(0.25)°%(0.25)%3(0.49)°3 } **

{(1.36)%1(1.64)°3(1.36)%3(1.51)*3 12 {(1.75)"1(1.99)°3(1.75)"3(1.75)"2 } >
{(1.64)%1(1.51)%3(1.64)%3(1.84)%3 12 £ (1.84)"1(1.75)°3(1.75)"3(1.51)2 } >
+
{(0.64)°1(0.36)%3(0.64)°2(0.49)°3}°2{(0.25)*1(0.01)°%(0.25)°3(0.25)** }**

{(0.36)°1(0.49)%3(0.36)°3(0.16)° }°*{ (0.16)*(0.25)°%(0.25)%3(0.49)°* } **

(1.0324)(1.0897)(1.0309)(1.0734) —

~ < [(0.9616)(0.8350

(1.0324)(1.0897)

/2[(0-8695)(0.6247)(0.7909) (0.6116)] >

1.0309)(1.0734) + | (1.0822)(1.1270)(1.1061)(1.2313) +

(
)
(
)

(
(0.9638)(0.9105)]

(

)

[(0.9616)(0.8350)(0.9638) (0.9105)]
= (0.5263,0.5225).

(0.8695)(0.6247)(0.7909) (0.6116)

(17)

Lemma 10. Let ;= (e, &6;), where 6,>0, ¥ ,0,=1

l])
and A;> 0, 37| A; = I; then,

=17

=1 ( >
Theorem 11. Let # ;= (¢
then,

iAjiei%ij. (18)

j=1 i=1

4;;) be a collection of PFSNs;
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PESWA(H 11, H 1, -+ H np) 2 PESEWA(H 11, I 135+ H )

(19)

where 0, A; denote the weight vectors such as 6;> 0,
Yibi=land A;>037 A, =1

Proof. As we know that

(20)

\/ e (1 (eed)') (s - a)') @)
tfie)

Ji)tjie,.(z—ﬁfj%iajie,.@?j):ﬁ, (24)

JH(e-ar) ()~ e

(26)

Let PESWA(Z , # 15> I ) = = (9, Bg) and
PFSEWA(T 11, Z 15 -+ I ) = = (gpe, Bgpe).  Then,
(22) and (26) can be converted into the forms g > @ g
and fig < fige., respectively. So, S(#) = @ 3? — bg” 2 @ 5
— B = S(H*). Hence, S(%) = S(9*).

If S(%) > S(F*), then

PESWA( 1y, H 3>+ H ) > PESEWA(T |\, T 15, -+, H

nm)'

(27)
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If S(%)=
bope® = S(H°).

So, @4 =g and lg = bge; then, by accuracy func-
tion, A(Z) = a3 + 63" = @ g’ + By = A(FF). Thus,

S(9¢), then S(¥)=caqy?—ly* =y’ -

PFSWA(%“, K iz %nm) = PFSEWA(%H, iz %nm)'

(28)
From (27) and (28), we get

PESWA( 11, # 13, I ) = PESEWA( 1), H 1, H

Vlm)'
(29)
O

Example 12. Let B ={R,, R,, %} be a set of experts with
the given weight vector 6,=(.1,.3,.3, .3)T, which want to
choose a vehicle under the defined set of attributes A = {A,
= air conditioner, A, = airbag, A, = price, A, = comfort level
, A; =design} with weight vector A;=(.2,.2,.2, 4)". The
supposed rating values for all attributes in the PFSNs form

(#,A) = (@), given as

(0.5,0.8) (0.7,0.5) (0.4,0.6) (0.7,0.4)

. (0.5,0.6) (0.9,0.1) (0.3,0.7) (0.4,0.5)

(%’ d> " (04,08) (07,05) (0.4,0.6) (0.3,0.5)
(0.3,0.7) (0.6,0.5) (0.5,0.4) (0.5,0.7)

(30)
As we know that

PESWA(T |1, H 155 -+ H 44)

(It ) e )

PESWA (71, # 1+ H 4s)
J {[{(0.75)01(0.75)03(0.84)03(0,91)0‘3}0Z{(O.Sl)o"(0419)03(0,51)“3(0.64)“3}“
1 —

{(0.84)%1(0.91)°%(0.84)°%(0.75)°2}**{(0.51)*1(0.84)%3(0.91)%3(0.75)°2}** } >

({(0 8)0 1(0 6)0'3(0 8)0'3(0 7 0.3}0-2{ 0.5 u.1<0 1)0.3(0 5>0.3(0 5)03}02)
{(0.6)1(0.7)°3(0.6)°%(0.4)°*1 2 {(0.4)°1(0.5)3(0.5)"3 (0.7)** }"
= < 1-{(0.9616)(0.8350)(0.9638)(0.9105)], ((0.9324)(0.7904)(0.8893)(0.7820)))

= (0.5404,0.5125).

(31)
Hence, from Examples 9 and 12, it is proven that

PESWA(Z 11 H 35 -5 H ) > PESEWA(T 11, Z 1gisas > H ) -

(32)
3.2. Properties of the PESEWA Operator

3.2.1. Idempotency.
PESEWA (11, H 15, s

If #,;=%=(a;06;)Vij, then

nm)

Proof. As we know that

PESEWA (), # 13 -+ F.

(o 1 (4))
A

3.2.2. Boundedness. Let  ;; = («;, ;) be a collection PFSNs
and 7, =min (%), ’and  nax =max (Z ;). Then,

F < PFSEWA(%”, Ky H o) < I max

Proof. Letg(y) = /(1 —»2)/(1 +y2), y €]0, 1]; then, d/dy(g

() ==29/(1+2)°/(1+»2)/(1-y2) <0, which displays
that g(y) is a decreasing function on |0, 1]. So, @, < @

@ max> vi, ] Hence, g(a’max) < g(a’l]) < g(a’min)> vi, J
Let 6; and A; represent the weight vectors such as ;>0
,2imb;=land A,>0,37 A, =1. We have

SUEESTRT (2 DI
fiin() )

IN

m

A

" Z: o\ A
- (1—0,;“)2,7,, f[ H 1-a}
1+ a2, i G\ a,?j

IN

IN
VRS
N
— =

+ |1
S
AR
=] =
S——
M
CD
~—
N




(36)
2 m " (1-a 0\ M
= 1+a2, 1+g<"=‘ <1+@,]> ) )
2
) L+ @hn
l+a?,, .
2 -
\/HHTl(H?1<<1—a?j)/<1+@§]>> )
E
S >
2
(38)
e/ 1+ag, < 2 :
I (T (1) (1049))')
</ 1+ad,o
(39)
oy/l+al, -1< 2 A171
(11 (- 3) (0 <2)))
Sy l+aqn-L
(40)

Let f(x)=+/(2-x2)/x2,x €]0, 1]; then, d/dx(f(x))=-
2/x°/x2/(2 — x2) < 0. So, f(x) is a decreasing function on |
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0,1]. Since &, < i < Brna Vi i, then, F(Cax) Sf(ﬁij) <f

Guw) S0 \J@- BB <\[C- 816 <
(2-62,)16%.. Let 0, and A; denote the weight vectors

suchas 0,>0,%",6,=1and A,>0,%7 A, =1. We have

m n 2 42 6.\ A m n 2 ﬁlz 0;
HECE )
=1 \i=1 max =1\l ij

A

IA
—
N
—=
/N
[®)

| !
RSN
EN

5
~——
)
~—
R

VRS
7N
(¥
Bmli)
E |
5
~—
™M
i
_Q)
~
™M
IN
=
oS
o
RS
)
S !
= R
]
~
o
~

IA
/0~

Y
N

—

Y

e ‘;‘i“ < — <\
\/1 17, (Hle ((2-23)183) )
(48)
Sl i < 2 T < Crnaeo
LT (1‘[;;1 ((2- ﬁfj)/ﬁfj)e’) ’
(49)

()
- y = < b
(1 o)) o (1 ()"

(50)

1
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Let PESEWA (%, # 13, > ¥ u) = ¥ . Then, inequal-  Definition 13. Let # ;= (@, &;;) be a collection of PFSNs;
ities (43) and (50) can be written as @in < & < @ and  then, the PESEWG operator is defined as

ﬁmm S ﬁ < ﬁmax Thus’ S(%) —a/ - ﬁz < ﬁ/max - ﬂ?ﬂln = S(
Hmax) and S(%) a? - 2 a’mm ﬁrznax S(Hmm)' PFSEWG(%H’ %12’ T %nm) = ®]”:11/1] (®?zlei%ij)’
If S(%) < S(H,,,x) and S(#) > S(H,;,)» then (56)
T in < PESEWA(Z 1, H 135 -+ H ) < H pax- (51) where i=1,2,--,n and j=1,2,---,m and 6;,A; repre-
If S(%)=SH,.) then el=g?  and £ =42 sent the weighted vectors such as 6,>0,)",6,=1
max max max* n _
Thus, S(%) = a? - 6* = a2 — 62, = S(H,p,y)- Therefore, andl; >0, ¥}, =
PESEWA(F 11, 7 125 > H ) = - (52) Theorem 14. Let # ;= (@, ;) be a collection of PFSNs;
then, the aggregated value attained by equation (56) is given
If S(%%) = S(Hmm) then, ¢ -6 =2, 62, =a’= 05
mm and ﬁz mln
Thus, A(%) = a? + 6 =al. +ﬁﬁm A(H pin)- So, PFSEWZ;(%“’?{”’ 5 )
= ®j:1/\j(®i:19i%1j)
PESEWA(T 11> H 13> > H ) = Z mins e A
(53) A (1))
H min SPESEWA (F 11, X 155 -+ H ) < H pax- 7=
O \/ 91 ¥
2 o +
3.2.3. Homogeneity. Prove that PFSEWA(Z(,, # 1y -+ HJ 1 1 ’ ) T 1( )
H ) = O0PFSEWA (H 1, H 15, -+, I ) TOr 0> 0. X o\ A
\/sz 11 1+ﬂ2> ) _H;Zz(nu( ﬁz) )
Proof. Let #;; be a PFSN and 0 be a positive number; then, >

1z (e (o)) o (1 (1))

(57)

ij = 4

20 _(1- g2 2)0
o _<\/(1+@ )~ (1-a2)? 2(6 >
Va2 + (1= a2/ (2-82) + ()

(54) where 0;,A; denote the weight vectors such as 6;> 0,
0;=land ;>0 3 A =1

So,
Proof. We will employ mathematical induction.
PFSEWA (O |, 0K 15, -+, 0K ) For n =1, we get 91. =1.

A
<\/H,1 - 1+¢xU ) -1
\/H,l 71 1+a )A’+H;gl<nyzl(1-a§j)e‘>' :< znﬁl(@?j)%
A Vi 2—a%,-)*’ +H;L(a%;)‘]
o (- ) >“ m<n,~.1<ﬁz>f">k’> Y ()" -1 (-4 “>
(Hj"i1<1_[;'_l<l+tx§j)g’ AJ>B— I (H;‘_l(l—a,?j)g’)A’)a \/H;l 1+ﬁu> +H;1 1— '
9, A
(H}ll <H;;1<1+a§j)6’ AL < \/ZHJ 1( )
e,- e
"r)a \/H]l 11(2 “z; ) +H]1(H11 ij >

J(H?I(H?I(z_ﬁ%,)g‘ A’>a+<n,l(nrl(ﬁg})6>">a> \/H;”1 H,Ll 1+ﬁgj)"‘) o (H, 1( ﬁ2>e>%>-
) w[“ » 1+ﬂ2) )M+H;’11(H3_1(1_ﬁ2)")%
(55)

O (58)

" 0; Aj
1<H"=1 (1 _a‘zj) ) PESEWG(Z 1, Z 135 > H ) = ®jnlllj%lj

T3

= OPFSEWA (%, ¥ 1> -+ ¥,
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Form=1, we get A;=1.

PESEWG(Z 1), H 15+, H 1) =

) < VT ()

G- e + T ()]
m1(1+ﬁfj)""—n?1(1—ﬁ%,-)9‘>
\/H;“=1(1+ﬁfj)9‘+n" ( —ﬂ2>9'

Q10

()
\/H]1 ,1(2 alj)g‘) +HJI<H (12])9,)%

\/HJI 1L, 1+ﬁ2> >A]_H;—1(H?_1<1— ?j>91)1,>
() )

So, equation (57) holds for n=1 and m = 1.
Assume for n=0, and m=6, + 1 and for n=6, + 1 and
m =0,, the above equation holds.

®6+1 (®6z 9% )

VL)
\/ I (T (2 ))A I (11 ()" ’
.

¢Hf§l (Hfﬁl(l +ﬁfj>9‘)hJ ‘H}El (H?ﬁl(l _ﬁizj>e,) ]>
\/Hf‘fl( ?ﬁl(l+ﬂfj>9) Hf;d( ’1( ﬁ2>9)/\j ’

(@ 0,)
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Now, for m=68,+1land n=6, + 1,

(@07
= QYN (R0, @6, 7 5,
- (®?;;1®?ilgilf%ij> (®flrl)‘10t+l%6z+1 )

\/ZHf Tl ( ;. (%J)e,))»,
91) 51+1

e

05,41 A 8, +1
(1 *ﬁ(zazn);) > *H,-:‘f ((1 -
2 952*' A 8, +1
( ﬁ(52+1)j) +1T4
o4 (o 0\
(i)
8,+1 621 0; 8,+1 8,+1 o\
ﬁ[ (1 (o) ) o (e ()
8, +1 1 2 0; 8, +1 L, +1 2\ Yi
H;l 1+ﬁ H;l H 1 (l_ﬁij

2 )
ﬁ‘*‘ = 1+ﬁ2)9) I (11 I‘(l—ﬁ?j)e‘)A’>

= ®?:;r1 J(®?:Zl+16i7[ij) .

&
—
i
- i
S
—
+

So, it is true for m=3, + 1 and n =4, + 1. O

Example 15. Let & ={R,, R,, %} be a set of experts with
the given weight vector 0,=(.1,.3,.3, .3)T, which want to
choose a vehicle under the defined set of attributes A = {A,
= air conditioner, A, = airbag, A, = price, A, = comfort level
, As =design} with weight vector A;=(.2,.2,.2, 4)". The
supposed rating values for all attributes in the PFSNs form
(#,A) = (a;, b, i) g B1VED @S

i
(0.5,0.8) (0.7,0.5) (0.4,0.6) (0.7,0.4)
(%’ !&) _ | (05,06) (09,0.1) (03,0.7) (0.4,05)
(0.4,0.8) (0.7,0.5) (0.4,0.6) (0.3,0.5)
(0.3,0.7) (0.6,0.5) (0.5,0.4) (0.5,0.7)

(62)
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As we know that

PESEWG(Z,,, # 1, - .

PESEWG (3 e )
o1, (11 () ") ’
) <¢n;*, (s (-e)") it (1 ()"
wi,l (1t (13 ) -Hle(H?:n(l'ﬂi)ﬂY
¢H,1 11t (o)) e (1 - "’Z)S)A’>

[{(025)0 1(0.25)°%(0.16)°3(0.09)°%1°%{(0.49)*1 (0.81)° 3(0.36)03(025)“}“}
2

{(0.16)%1(0.09)°3(0.16)%(0.25)°3 }**{ (0.49)"1 (0.16)%(0.09)°3(0.25)°2 } **

{(1.75)°1(1.75)°3(1.84)°3(1.91)°3}°2{(1.51)* (1.09)%(1.64)°3(1.75)°3 }*
{(1.84)°1(1.91)%3(1.84)°3(1.75)03}°2{ (1.51)% (1.84)°3(1.91)%3(1.75)°3 }*
+
{(0.25)%1(0.25)%3(0.16)%(0.09)*3 12 { (0.49)" (0.81)"(0.36)" (0.25)°2 } >

{(0.16)%1(0.09)%3(0.16)%(0.25)%3 1 **{ (0.49)" (0.16)° (0.09)° (0.25)°2 }**

{(1.64)%1(1.36)%(1.64)"(1.49)*31*2{(1.25)1(1.01)"(1.25)>%(1.25)°2} >

*< {(1.36)%1(1.49)%3(1.16)%3(1.25)°3}*2{(1.16)"1(1.25)%(1.49)3(1.25)°2} >

[{(0,36)0"(0.64)03(0.36)”'3(0.51)0'3}0'2{(0.75)0'1(0.99)0'3(0,75)0'3(0.75)03}02

{(0.64)™ (0.51)°3(0.84)"3(0.75)"*}*2{ (0.84)" (0.75)# (0.51)°3(0.75)" }**
{(1.64)°1(1.36)%3 (1.64)°3(1.49)%2 }°2{ (1.25)%1(1.01)°%(1.25)%3(1.25)°2 }**

{(1.36)0-1(1.49)03(1,16)“-3(1.25 031020 (1.16 ”1(1425)03(1.49)0-3(1.25)03}“
+

[{(0.36)0 1(0.64)°3(0.36)°3(0.51)%3 12 {(0.75)°1(0.99)*3(0.75)*3(0.75)03 }°*

{(0.64)%1(0.51)%3(0.84)%(0.75)°3 12 { (0.84)"1(0.75)%(0.51)°%(0.75)°2 }**
)

(1.1477)(1.0651)(1.0872)(1.1850) -
_ / /2[(0.4953)(0.6938)(0.5664)(0.3355)] \ [(0.7841)(0.9220)(0.9035)(0.7079)]
(1.2346)(1.1676)(1.2208)(1.4786) + | (1.1477)(1.0651)(1.0872)(1.1850) +
(0.4953)(0.6938)(0.5664) (0.3355) [(0.7841)(0.9220)(0.9035)(0.7079)]

=(0.2211,0.7392).

(63)

Theorem 16. Let ¥ ;= («;;, 6;;) be a collection of PFSNs;

then,

PESWG (1, H 13> ++» H ) < PFSEWG (11, H 13> -+ T p)»

(64)

11

where 0, Aj denote the weight vectors such as 0,> 0,
' .0,=1and Ai>o0, 27:1,1]. =1

Proof. As we know that

(65)

Ji@ioi(z—afj%i}giei(a,ﬁ):ﬁ, (66)

m()') @)

A j=1 \i=1
\/ 17 (H,-”:l (1+4)’ )A m (H:Ll ( -ﬁi)e’)k
\/ml(“ﬁl(“ﬁ%)g Lo (ma(-4)") o

Let PESWG(# 11, # 15>+ H p) = FH = (e gp» b)) and
PESEWG(H |1, X 13> +++> H py) = = (ope, Bope).

Then, (67) and (71) can be changed into the succeeding
forms @ g < @ g and 4y = fig. correspondingly.

So, S(H) =@y’ — y* < age? — by’ =S(H*). Hence,
S(F) < S(°).

If () < S(#*), then

PESWG(# 1y, # 1>+ H ) < PESEWG(F 11, H 1y, -, H

nm)-

(72)
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If S(%)=S(%), then @gy?—tigy* =@z’ — by’ so
Cop = Coe and lg, = lgpe.

Then,  A(#)=agy’ + 0" =y’ + by’ = A(X°).
Thus,
PESWG( 11> H 13r -+ T ) = PESEWG(H 11y T 13r 0 T ).
(73)
From (72) and (73), we get
PESWG(T 1, H 13, > H ) < PESEWG(F 11, T 13,0, H ).
(74)

O

Example 17. Let & = { R, R,, &5} be a set of experts with
the given weight vector 6, =(.1,.3,.3,.3)", which want to
choose a vehicle under the defined set of attributes A = {A,
= air conditioner, A, = airbag, A, = price, A, = comfort level
, A; =design} with weight vector A;=(.2,.2,.2, 4)". The
supposed rating values for all attributes in the PFSNs form

(#,A) = (@ 63),,, given as
(0.5,0.8) (0.7,0.5) (0.4,0.6) (0.7,0.4)
(%) i{) _ | (05,06) (09,01) (03,07) (04,05)
(0.4,0.8) (0.7,0.5) (0.4,0.6) (0.3,0.5)
(0.3,0.7) (0.6,0.5) (0.5,0.4) (0.5,0.7)

(75)
As we know that

PESWG(Z 1), Z 15 -+ H 44)

(i) - (ie-o))

PESWG(T 1y, 13, -+ H 4y)
({(0-5>°-1<0-s>°3<o.4>°3<o.3>°3}“ Z{<o-7>°‘“"”03‘0'7)&3(&6)&3}01)

{(0_4)0 1(0_3>0v3 (0_4)0,3(0_5)0 3}0 2{(0_7>0v1 (0_4)0.3(0_3)0 3(0_5)0 3}0 4

) < J {{{(0.36)”‘1(0.64)0'3(0.36)03(0.51)0'3}02{(0.75)0‘(0.99)03(0.75)0'3(0.75)"'3}0'2:| >
1 —

{(0.64)1(0.51)°3(0.64)°3(0.84)** }°*{ (0.84)*1 (0.75)"3(0.51)(0.75)°3}**

(((0.8330)(0.9365)(0.8293)(0.7033)), /1 — [(0.7841)(0.9220) (0.9035)(0.7079)])
(0.4549,0.7332).

(76)
Hence, from Examples 15 and 17, it has been proven that

PESWG(F,y, # 1g» -+ H ppy) < PESEWG(H 11y H 1s ++» H ).

(77)
3.3. Properties of the PESEWG Operator

3.3.1. Idempotency.
PFSEWG (%1, % 1> -+

If #,;=%=(a;06;)Vij, then
"%nm):%

Journal of Function Spaces

Proof. As we know that

PFSEWG(%“; 12;"';%

3.3.2. Boundedness. Let  ;; = (@ @ijs
and %mm = min (%1]) %max
PESEWG(F 1, # 13> -+ I,

#;;) be a collection PFSNs
=max (% ;). Then, #

m) S %max

min =

Proof. Let f(x) = /(2 — x2)/x2,x €]0, 1]; then d/dx(f(x)) =
—2/x*\/x21(2 - x2) < 0. So, f(x) is a decreasing function on

10, 1]. Since @y, < @ < @y, Vi j. Then, f(@,) < f(e@

) Sf(a’min)' So, \/ 2 - a’fnax)/a’fnax < \/ (2 - a%])/a’%] <

(2 - a/rmn)/ﬁ’mm
Let 0; and A; denote the weight vectors such as 6; >0,

Yia0;=1and 1;>0,37 A, =1. We have

g
/N
N

N
N
i %
5 N
~—
™
_m
N~
g
IA N
=
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]
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N~
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2
o <2 B f’max) <
@ max

2 2 m n 2—a 6i Aj
a —
o1 max 1 1j
() e () )
(2 - fvfnm)
<y /1+ 5 ,
@ hin
(81)
NG
2 m n 2 0/2 i 2
o /——< |1+ H — <y |——
@imax j=1 i=1 a’i] @ min
(82)
ﬁ’xznin 1 a’rznax
=4 < < s
2 A 2
it (12 (G- <)o)
(83)
2
S i < o 1= @ max>
VeI (T (2 <))
(84)
0; Aj
\/ZH; I(H < 1]) )
@ min < < @ max-
0; Aj " n 0; A
\/H] 1(H (2 “) ) +]I (Hi:l (“izj) )
(85)

Again, let g(y) =+/(1—»2)/(1 +y?2),y€]0,1]. Then, d/

dy(g(y)) ==2y/(1 +y*)*\/(1+32)I(1=y?) <0. So, g(y) is

a decreasing function on |0, 1]. Thus, &, <&; <&, Vi, .
SO’ g(ﬁmax) < g(ﬁt]) < g(ﬁmin)’ VZ, ]
1+22 1+ ﬁz

min

Let 0; and A; denote the weight vectors such as 6; >0,
Yia0;=land A;>0,37% A, =1. We have

13

A
> o
A
=
N
ST
ER E
g
i3
+
X
Y
E

6;
S ((-a) 1+ﬁ2)>

&
A

In
>
A
=
"
Y
Y
&
i3
>
ES

6;

LT, H. 1 ﬂl 1+ﬂ2)>

P

IN

— 1< by © brin

’ 1+H,1(H1 1 gz 1+ﬂ2 )s)m
w—lm H”l 1+ﬁ2, o -Ht,(ngl(l_ﬁé)ay]

w}}ml H L 1+r>2 +H}",<H (- fz)(’))‘j

(87)

Let PESEWG (#',, # 15> > # ) = 5 then, equations

(85) and (87) can be written as @, <@ <@, and &,
SELEn. Thus, S(H)=a?-6"<a?, — ﬁfnm =S(H )
and S( ) @’ -8z a’mm B ﬁlznax (Hmm)'
If S(%) < S(H,,,,) and S(%) > S(H,,,;, ) then
K in <PESEWG (Z\, H 15, > H ) < H max-  (88)
If S(Z)=S(H ) Then, at=ca?%, and £ =062 .
Thus, S(%) = ¢? - 6* = %, — 62, =S (H ) Therefore,
PESEWG (Z 11, X 135 s X y) = H max: (89)
If S(%)=S(H,,;,). Then, «*-6*= - = a?
=%, and #* =42 . Thus, A(¥ ) B fnm -
6% =A(H,;,). Therefore,
PESEWG (1), Z 135 s Z ) =  mmin- (90)

So we proved that

H <PFSEWG(%11,%12)"

min = "%nm)g%max' (91)
O

3.3.3. Homogeneity. Prove that PFSEWG(%,,, # 15 -+
H uym) = 0PESEWG (H |1, # 15, -+, H ,,) for any 0> 0.
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Proof. Let #; be a PFSN and 0 be a positive real number;
then,

2(a?)° (1+6%)° 52)
ay/,.j:< v VI > (92)
\/(2—42)a+(@2)3 \/(1+ﬁ2) +( -

So,

PESEWG (0, 0 15, -+, O,

nm)

{ otz (11 ()”)
(o)) o1 1)

\/H“ (10 4)") -1 (1 (1-4)° )>
I () (1 - )
< <2nrn<nl >> .
(o)) (1

(1w (1 (1+0”)6)M> (HH(“ (- ﬁ)>>>
o)) )

=3PFSEWG (¥, # 1, - ¥,

nm)‘

O

4. Multiattribute Group Decision-
Making Approach

This section has settled a DM methodology for resolving
MAGDM complications based on the projected PESEWA
and PFSEWG operators and numerical examples.

4.1. Proposed Approach. Let § = {H', %, 9°,---, §°} be the
set of s alternatives, O={0,, 0,, 05, -+, 0, } be the set of r
experts (decision-makers), and N = {t, t,,t;, -+, t,,} be the
set of m attributes. Let the weighted vector of experts O(i
=1,2,3,--,7)  be  0=(0,,0,,65--6,)"  such
thatf; >0, Y " 6, =1. Let the weight vector of attributes ¢,(i
=1,2,3,-,m) be A= (A, A,, A3, 4,)" such that A; >0,
YiiA;=1. The team of experts O;(i=1,2,3,,

siders the alternatives $' (i=1,2,3,--,s) for attributes in
the form of PFSNs such as F=(%;) = (a;6)

571 pem
where 0<a;4;<1 and 0<a?, by <1Vi,j are given in
Tables 1-5.

We will apply the proposed PFSEWA and PFSEWG
operators to resolve the MAGDM problem, which has the

succeeding phases:

r) con-

Step 1. Acquire decision matrices for each alternative F =
(%), ,,, in the PESN form.

Journal of Function Spaces

TaBLE 1: PFS decision matrix for $'.

t, t, ty t,
o (0.8,0.5) (0.7,0.5) (0.6,0.4) (0.7,0.4)
0 (0.6,0.5) (0.9,0.1) (0.7,0.3) (0.4,0.5)
o (0.8,0.4) (0.7,0.5) (0.6,0.4) (0.3,0.5)
o* (0.7,0.3) (0.6,0.5) (0.4,0.5) (0.5,0.7)
TaBLE 2: PFS decision matrix for $?.
t t, ts t,
o' (0.7,0.5) (0.8,0.5) (0.6,0.4) (0.8,0.4)
0 (0.6,0.3) (0.9,0.2) (0.8,0.3) (0.7,0.5)
o (0.5,0.4) (0.6,0.5) (0.6,0.3) (0.3,0.6)
o (0.7,0.4) (0.6,0.4) (0.7,0.5) (0.5,0.7)
TABLE 3: PFS decision matrix for $°.
t t t 2
o' (0.7,0.5) (0.7,0.4) (0.6,0.4) (0.8,0.4)
o (0.6,0.6) (0.9,0.1) (0.6,0.3) (0.4, 0.5)
o (0.8,0.3) (0.7,0.2) (0.6,0.5) (0.4,0.5)
o* (0.7,0.6) (0.3,0.5) (0.4,0.5) (0.5,0.6)
TABLE 4: PFS decision matrix for $*.
t t t 2
o' (0.8,0.5) (0.7,0.5) (0.7,0.4) (0.6, 0.4)
0? (0.6,0.4) (0.8,0.1) (0.7,0.3) (0.4, 0.7)
o’ (0.7,0.4) (0.7,0.5) (0.6,0.4) (0.3, 0.5)
o* (0.6,0.3) (0.6,0.3) (0.8,0.5) (0.5, 0.6)
TaBLE 5: PES decision matrix for 5'95 .
2 5 5 2
o' (0.6,0.5) (0.6,0.5) (0.6,0.4) (0.5,0.4)
0 (0.6,0.4) (0.8,0.1) (0.8,0.3) (0.7,0.5)
0 (0.6,0.4) (0.7,0.3) (0.6,0.4) (0.6,0.5)
o* (0.7,0.4) (0.7,0.5) (0.4,0.5) (0.5,0.8)

Step 2. Normalize the decision matrix to convert the rating
value of cost-type parameters into benefit-type parameters
by using the normalization formula.

B ;= (6> a;j) cost-type parameter, o)
Yol ij = (;;7,;) benefit-type parameter.
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[ Define the alternatives ’

Appoint a team of experts

Choose the parameters
according to DM problem

!

—1

Development of decision matrices for alternatives |
according to experts evaluation in form of PFSNs

Converts rating value of its into benefit ]4

type attributes by using normalization rule I

PFSEWA operator J<—

v
Identify the cost type
attributes
Aggregation process
v
‘ PESEWG operator ’

-

\4

Collect aggregated Pythagorean fuzzy soft numbers J

(PFSNs)

Compute the score value of aggregated numbers ’

v

Choose the alternative with
maximum score value

’4% Rank the alternatives ’—»

FiGURE 1: Graphical model of the proposed PEFSEWA and PFSEWG operators.

Step 3. Use the developed PEFSEWA and PFSEWG operators
to aggregate the PFSNs #;; for each alternative § = {9,

9.9 9}

Step 4. Compute the score values for each alternative using
equation (6).

Step 5. Choose the most feasible alternative with the maxi-
mum score value.

The graphical representation of the proposed model is
given in Figure 1.

4.2. Numerical Example. Suppose a businessman desires to
invest money, and he has five alternatives such as 51 ;a
restaurant, $7;afillingstation, $’;apharmacy, $*;a
leather factory, and §° ; a supermart. There are four consid-
ered attributes, according to which people in business must
have to take decision such as ¢, ; socioeconomic impact, t, ;
environment, f,;riskof loss, andt, ; growthrate, with the

weight vector A =(0.2,0.2,0.2, O.4)T. Here, t,, t; are cost-
type parameters and t,, t, are benefit-type parameters. Peo-
ple in business hire a team of four experts O, (r=1,2,3,4)

for decision-making with the vector 0=

(0.1,0.3,0.3,0.3)".

weight

4.2.1. By the PFSEWA Operator

Step 1. Decision-maker’s opinions in the PESN form for each
alternative are prearranged in Tables 1-5.

Step 2. The normalization rule developed the normalized
decision matrices for each alternative. Because ¢, and t; are
cost-type parameters, the normalized PFS decision matrices
are given in Tables 6-10.

Step 3. Using the PFSEW A operator acquired the aggregated
values of each alternative in the form of PFSN such as
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TaBLE 6: Normalized PFS decision matrix for $'.
2 5 L 2
o' (0.5,0.8) (0.7,0.5) (0.4,0.6) (0.7,0.4)
0 (0.5,0.6) (0.9,0.1) (0.3,0.7) (0.4,0.5)
0 (0.4,0.8) (0.7,0.5) (0.4,0.6) (0.3,0.5)
o (0.3,0.7) (0.6,0.5) (0.5,0.4) (0.5,0.7)
TaBLE 7: Normalized PFS decision matrix for £
f 5 t; 2
o' (0.5,0.7) (0.8,0.5) (0.4,0.6) (0.8,0.4)
0? (0.3,0.6) (0.9,0.2) (0.3,0.8) (0.7,0.5)
0 (0.4,0.5) (0.6,0.5) (0.3,0.6) (0.3,0.6)
o (0.4,0.7) (0.6,0.4) (0.5,0.7) (0.5,0.7)
TaBLE 8: Normalized PFS decision matrix for $
t, t, t, t
o' (0.5,0.7) (0.7,0.4) (0.4,0.6) (0.8,0.4)
0? (0.6,0.6) (0.9,0.1) (0.3,0.6) (0.4,0.5)
0 (0.3,0.8) (0.7,0.2) (0.5,0.6) (0.4,0.5)
o (0.6,0.7) (0.3,0.5) (0.5,0.4) (0.5,0.6)
TaBLE 9: Normalized PFS decision matrix for §*.
f 5 t; ty
o' (0.5,0.8) (0.7,0.5) (0.4,0.7) (0.6,0.4)
0 (0.4,0.6) (0.8,0.1) (0.3,0.7) (0.4,0.7)
0 (0.4,0.7) (0.7,0.5) (0.4,0.6) (0.3,0.5)
o (0.3,0.6) (0.6,0.3) (0.5,0.8) (0.5,0.6)
TaBLE 10: Normalized PFS decision matrix for $
t P t ty
o' (0.5,0.6) (0.6,0.5) (0.4,0.6) (0.5,0.4)
o? (0.4,0.6) (0.8,0.1) (0.3,0.8) (0.7,0.5)
o’ (0.4,0.6) (0.7,0.3) (0.4,0.6) (0.6,0.5)
o (0.4,0.7) (0.7,0.5) (0.5,0.4) (0.5,0.8)

N
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{(1.25)%1(1.25)°3(1.16)°3(1.09)°2 1 2 { (1.49)%1 (1.81)%3 (1.49)°3 (1.36)° 12

{(1.16)%1(1.09)°3(1.16)%3(1.25)°3} 72 {(1.49)"(1.16)°3(1.09)°%(1.25)"3 1>

[{(0.75)0-1(0.75)”-3(0.84)0 3(0.91)%197£(0.51)1(0.19)%3(0.51)°%(0.64)°3 1

75)°31921(0.51)"(0.84)%3(0.91)°%(0.75)°3 1

{(1.16)%1(1.09)°3(1.16)%3(1.25)°31°2{(1.49)"(1.16)°3(1.09)°3(1.25)"3 1 **
+

[{(0.75)‘“(0,75)"‘3(0,84)" 3(0.91)°2192£(0.51)°1(0.19)°(0.51)°3(0.64)**}*

{(0.84)°1(0.91)%3(0.84)°3(0.75)°2}*2(0.51)*1 (0.84)°%(0.91)°3(0.75)* }°*

{(1.25)0-'(1.25)“3(1 6)°(1.09)°7 1°2{(1.49)7 (1.81)°3(1.49)°3(1.36) }°2

|:{(0,64)° 1(0.36)°%(0.64)%3(0.49)°% 1°%{(0.25)"1(0.01)*3(0.25)°%(0.25)"}°
2

{(0.36)%1(0.49)°3(0.36)%3(0.16)°2 }°*{ (0.16)"(0.25)%3(0.25)°%(0.49)°3 1 **

|

{(1.36)%1(1.64)°3(1.36)%(1.51)°}°2{ (1.75)°1(1.99)%3(1.75)°% (1.75)°3 } 2
{(1.64)°1(1.51)°3(1.64)%3(1.84)%2 12 { (1.84)%1(1.75)%3(1.75)°3 (1.51)°2 }**
+
{(0.64)°1(0.36)°%(0.64)%(0.49)°}°%{ (0.25)"1(0.01)*3(0.25)°%(0.25)"3 }**

{(0.36)°1(0.49)°7(0.36)%2(0.16)°}°*{ (0.16)" (0.25)%3(0.25)° (0.49)* } **

(1.0324)(1.0897)(1.0309)(1.0734) —

(
(0.9616)(0.8350)(0.9638
(

) (0.9105)] /2[(0.8695)(0.6247)(0.7909)(0.6116)]
(1.0324)(1.0897)(1.0309)
)

(
)
(1.0734) + J (1.0822)(1.1270)(1.1061)(1.2313) +
)

[(0.9616)(0.8350)(0.9638)(0.9105)] (0.8695)(0.6247)(0.7909) (0.6116)

= (0.5263,0.5225),

{(1.25)%1(1.09)%3(1.16)°3(1.16)3 1 { (1.64)*1 (1.81)*3(1.36)*3(1.36)* }°

{(1.16)°1(1.09)°(1.09)°3(1.25)"2 12 (1.64)* (1.49)°3(1.09)(1.25)*3 1

[{(0.75)0"(0.91)0'3(0.84)03(0.84)“'3}02{(0.36)"'1(0.19)03(0.64)0'3(0.64)0'3}“

(0.84)°1(0.91)°(0.91)°3(0.75)°2}*2{(0.36)" (0.51)°3(0.91)"3 (0.75)*3 14

{(1.16)°1(1.09)°(1.09)°3(1.25)"2} %% (1.64)" (1.49)°3(1.09)(1.25)*3 1 **
+

[{(0.75)“ 1(0.91)%3(0.84)%3(0.84)%2 192 {(0.36)%1 (0.19)%3(0.64)*3(0.64)* }°

{(0.84)°1(0.91)°3(0.91)%3(0.75)°2 12 (0.36)"(0.51)°3(0.91)"(0.75)*3 14

{(1.25)°1(1.09)°3(1.16)°3(1.16)"2 12 (1.64)* (1.81)°3(1.36) (1.36) "3 12 ’

{ {(0.49)°1(0.36)"(0.25)°3(0.49)°21°2{(0.25)"1(0.49)%3(0.25)%(0.16)" }
2

{(0.36)°1(0.64)"(0.36)°3(0.49)°2 1°2{(0.16)°1(0.25)%(0.36)°%(0.49)" }

0.2
04:|

{(1.51)°1(1.64)°3(1.75)%3(1.51)°3 12 { (1.75)%1(1.51)%3(1.75)°3 (1.84) 31 °
{(1.64)°1(1.36)°(1.64)%3(1.51)°3 12 (1.84)%(1.75)%3(1.64)"(1.51)*3} 4
+
{(0.49)°1(0.36)°(0.25)%3(0.49)°2 12 {(0.25)"(0.41)°3(0.25)3(0.16)* 1°

{(0.36)°1(0.64)°(0.36)*(0.49)°2 12 (0.16)"(0.25)°3(0.36)" (0.49) 3 }**

(1.0278)(1.0858)(1.0270) (1.1104) —

(
[(0.9681)(0.8406) (0.9684
(

(

) (0.8457)] . /2[(0.8174)(0.7682)(0.8595)(0.6389)]
(1.0278)(1.0858)(1.0270)

)

(
)
(11104)+ J (1.1010)(1.1113)(1.0862)(1.2218) +
)

[(0.9681)(0.8406) (0.9684) (0.8457)] (0.8174)(0.7682)(0.8595)(0.6389)

I, = (0.5591,0.5918),
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{(1.25)°1(1.36)"(1.09)°3(1.36)"2 }** { (1.49)* (1.81)°3(1.49)"3 (1.09) " 1 *2

{(1.16)°1(1.09)°3(1.25)°3(1.25)"2 12 {(1.64)" (1.04)°3(1.04)*3(1.25)*3 14

[{(0,75)”"(0.64)03(0.91)0'3(0.64)0'3}0'2{(0.51)‘“(0.19)"'3(0.51)0'3(0,91)0'3}“

{(0.84)°1(0.91)°3(0.75)%3(0.75)°2 1*2{(0.36)* (0.96)°3(0.96)" (0.75)** }°*

{(1.25)°1(1.36)"3(1.09)°3(1.36)°% }**{ (1.49

{(1.16)°1(1.09)°3(1.25)°3(1.25)°2 %2 { (1.64)" (1.04)°3(1.04)*3(1.25)*3 14
+

o :< [{(0475)""(0.64)°3(0.91)0'3(0.64)”'3}0'2{(0.51)0‘(0.19)0'3(0,51)"'3(0491)”‘3}0'2

{(0.84)°1(0.91)°3(0.75)%3(0.75)°2 1> (0.36)*(0.96)°3(0.96)" (0.75)** }°*

)° 1(1.81)"’3(1‘49)0.3(109)0,3}0.2 >

{ {(0.49)°1(0.36)°(0.64)°3(0.49)°2 12 (0.16)* (0.01)°3(0.04)"3(0.25)** 1 °
2

{(0.36)°1(0.36)"(0.36)°3(0.16)°2 }*2{(0.16)* (0.25)°3(0.25)"(0.36)** } **

{(151)°1(1.64)°3(1.36)°3(1.51)"2 12 (1.84)*1(1.99)°3(1.96)"3 (1.75)* 1 °2
{(1.64)°1(1.64)°3(1.64)°3(1.84)"3 12 £ (1.84)*1(1.75)°3(1.75)"3 (1.64) " }**
+
{(0.49)°1(0.36)%3(0.64)%3(0.49)°2 1*2£(0.16)*(0.01)°3(0.04)"(0.25)** }°2

{(0.36)°1(0.36)°(0.36)%3(0.16)°2 }**{(0.16)*(0.25)°3(0.25)°(0.36)* } °*

(1.0476)(1.0753)(1.0355)(1.0575) —

(

~ < [(0.9370)(0.8528
(
)

(0.9572)(0.9183)] \/2[(0,8762)(05547)(0,7764)(05894)]>

(1.0476)(1.0753) (1.0355)(1.0575) + J (1.0844)(1.1359)(1.1116)(1.2436) +

(
)
(
)

[(0.9370)(0.8528)(0.9572)(0.9183)] (0.8762)(0.5547)(0.7764) (0.5894)

I 5 = (0.5238,0.4806),

{(1.25)°1(1.16)°3(1.16)%3(1.09)°2 }*2{(1.49)" (1.64)°3(1.49)"3 (1.36)*3 } 2
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[{ (0.75)°1(0.84)"(0.84)%3(0.91)°2 12 (0.51)* (0.36)°3(0.51)" (0.64)** 1°2
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{(1.25)°1(1.16)3(1.16)°3(1.09)°2 }°*{ (1.49)"

{(1.16)°1(1.09)°3(1.16)%3(1.25)°3 }*2{(1.36)* (1.16)°3(1.09)" (1.25)*3 } °*
+

%4_< [{(0475)0"(0.84)“3(0.84)0'3(0,91)03}02{(0.51)0"(0,36)0'3(051)0‘3(0464)0‘3}02

{(0.84)°1(0.91)°3(0.84)°3(0.75)"2 12 £ (0.64)*(0.84)°3(0.91)"(0.75)*3 1

(1.64)°3(1.49)(1.36)*3} % '

[ {(0.64)°1(0.36)%(0.49)%3(0.36)°2 1> {(0.25)* (0.01)°3(0.09)"? (0.25)** }°2
2

{(0.49)%1(0.49)%3(0.36)°2(0.16)° 12 { (0.16)*1 (0.49)°*(0.25)*3(0.36)** }**

{(1.36)"1(1.64)"(1.51)°3(1.64)°3 12 (1.75)* (1.99)°3(1.91)%3(1.75)* 1 *2
{(1.51)°1(1.51)%3(1.64)%3(1.84)°3 12 £ (1.84)% (1.51)°3(1.75)° (1.64) "3} **
+
{(0.64)°1(0.36)"3(0.49)°3(0.36)"2 12 (0.25)*(0.01)°3(0.09)°3(0.25)*3 }°2

{(0.49)°1(0.49)°3(0.36)°3(0.16)"2 }*2{ (0.16)* (0.49)°3(0.25)"3(0.36)** } **

(1.0278)(1.0833)(1.0309)(1.0695) —

( (
_/\ [(0-9681)(0.8676) (0.9638) (0.9188)] \/2[(0.8400){0.5976){(0.7958){(0-6389)]
(1.0278)(1.0833)(1.0309)(1.0695) + _ J (1.0944)(1.1330)(1.1043)(1.2292) +
)

[(0.9681)(0.8676)(0.9638)(0.9188)] (0.8400)(0.5976)(0.7958)(0.6389)

I, =(0.4953,0.5131),
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{(1 257 (1.16)°3(1.16)°3(1.16 03}02{ 1.36)"1(1.64)°3(1.49)"3(1.49 1)3}02

{(1.16)%1(1.09)%3(1.16)%3(1.25)°3 12 {(1.25)"(1.49)"3(1.36)"(1.25)*2 } >

[{(0.75)0-1 (0.84)°3(0.84)%3(0.84)°2 12 £(0.64)°1(0.36)"3(0.51)°3(0.51)% 1

(0.84)°1(0.91)%3(0.84)°3(0.75)%3}°2{ (0.75)%1(0.51)°%(0.64)*3(0.75)°3 }**
{(1.25)%1(1.16)%3(1.16)*(1.16)*2 1 *2 £ (1.36)" (1.64)" (1.49)"3 (1.49)3 } > '

{(1.16)%1(1.09)°3(1.16)%3(1.25)°3 12 {(1.25)"(1.49)"3 (1.36)" (1.25)*3 } >

+

%,:< [{(0.75)°7(0.84)°2(0.84)°% (0.84)°}*{ (0.64) (0.36)°2(0.51)°* (0.51)° 2 >

{(0.84)%1(0.91)%3(0.84)%3(0.75)%31 2 £(0.75)"1(0.51)°3 (0.64)" (0.75)3 } >

{(0.36)%1(0.64)%3(0.36)%(0.16)°2 }**{ (0.16)1(0.25)°3(0.25)°% (0.64)* }

[{(036)"‘(0.36)"»3(0449)0'3(0,36 )03192£(0.25)%1(0.01)%3(0.09)%3(0.25) “»3}"’2]
2

{(1.64)°1(1.64)°3(1.51)%3(1.64)°3 }°2{(1.75)%1(1.99)°%(1.91)%3(1.75)°3 } 2
{(1.64)°1(1.36)%3(1.64)°3(1.84)03 }°2{(1.84)%1(1.75)°%(1.75)°3(1.36)°* } **
+

{(0.36)°1(0.36)°3(0.49)*3(0.36)*3 1“2 (0.25)"1(0.01)"2(0.09)"(0.25)2 } >

{(0.36)%1(0.64)°3(0.36)°3(0.16)*3 12 (0.16)"(0.25)"3(0.25)" (0.64)"3 } **

(1.0316)(1.0872)(1.0309)(1.1280) —

(
~ < [(0.9635)(0.8598)(0.9638

(
) (0.8349)] \/2[(0.8301)(0.5876)(0.8037)(0.6315)]>
(1.0316)(1.0872)(1.0309)
) )

1.1280) + $ (1.0985)(1.1330)(1.0992)(1.2160) +

(
)
(
)

[(0.9635)(0.8598)(0.9638) (0.8349)] (0.8301)(0.5876)(0.8037)(0.6315)

I 5 = (0.5687,0.5089). (95)

Step 4. Compute the score values using equation (6); S = oc?j
2
- 4.

S(F,) = 0.0039, S(%,) = —0.0376, S(% ;) = 0.0433,

S( ;) =—0.0179, S(9 5) = 0.0644. (96)

Step 5. Compute the ranking of the alternatives S(7’5) > S(
Hs)>S(H))>S(H,)>S(H,). So, H°>9H>9H'>H'>
9°.

So, $° is the most suitable alternative.

4.2.2. By the PFSEWG Operator

Step 1. Obtain the Pythagorean fuzzy soft decision matrices
(Tables 1-5).

Step 2. Use the normalization formula to normalize the
obtained Pythagorean fuzzy soft decision matrices
(Tables 6-10).

Step 3. Using the PESEWG operator acquired the aggregated
values of each alternative in the form of PFSN such as
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{(0.25)°1(0.25)°7(0.16)%(0.09)°2}1°%{ (0.49)" (0.81)*3(0.36)°% (0.25)"? } **
2
{(0.16)°1(0.09)3(0.16)*2(0.25)°*}%{(0.49)"(0.16)*3(0.09) (0.25)* } **
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{(1.84)°1(1.91)°(1.84)%3(1.75)°2 %2 (1.51)"(1.84)%3(1.91)°%(1.75)°3 1
+
{(0.25)°1(0.25)°3(0.16)3(0.09)°2 1 *{ (0.49)*1 (0.81)*3(0.36)*(0.25)* }°

{(0.16)°1(0.09)(0.16)°3(0.25)°2 12 (0.49)"(0.16)*3(0.09)%(0.25)*3 1 **

{(1.64)°1(1.36)%(1.64)%(1.49)°7 %2 {(1.25)"(1.01)*3(1.25)°3(1.25)*3 1 *

{(1.36)°1(1.49)°(1.16)°3(1.25)" 12 (1.16)"(1.25)°3(1.49)3(1.25)*2 1 >

[{(0.36)0‘(064)03(036)03(051)03}0'2{(0,75)0 1(0.99)°3(0.75)"(0.75)%3 1%
0%}02{
03}02{

{(1.36)0‘(1.49)"'}(1.16)”'3 (1.25)°2121(1.16)"(1.25)°3(1.49)°3(1.25)°3 1

{(0.64)"!(0.51)**(0.8
{(1.64)"!(1.36)*(1.6

4)01(0.75)°3(0.51)%3(0.75)°3 1

3(1.25)%3(1.25)031°

5)%1(1.01)"

+

[{ (0.36)°1(0.64)"(0.36)*(0.51)°2 121 (0.75)*1(0.99)°3(0.75)3(0.75)* 12

{(0.64)°1(0.51)°(0.84)%3(0.75)°2 12 (0.84)"(0.75)%3(0.51)"(0.75) 3 14

(1.1477)(1.0651)(1.0872)(1.1850) —

_ / /2[(0-4953)(0.6938)(0.5664)(0.3355)]
$ (1.2346)(1.1676)(1.2208)(1.4786) +

(0.4953)(0.6938) (0.5664) (0.3355)

(1.1477)(1.0651)(1.0872)(1.1850) +

( (
[(0.7841)(0.9220)(0.9035)(0.7079)] >

( (

) )

[(0.7841)(0.9220)(0.9035) (0.7079)]

| =(0.2211,0.7392),

{(0.25)°1(0.09)%(0.16)%3(0.16)°% }*2{ (0.64)*(0.81)°3(0.36)"(0.36)** }*2
2

(0.16)°1(0.09)°%(0.09)°%(0.25)°3 }°{ (0.64)*(0.49)°3(0.09)°3(0.25)°3 1 4

{ Ja }

{(1.75)°1(1.91)°3(1.84)°3(1.84)°2 12 £(1.36)* (1.19)°3(1.64)"3 (1.64)* 1 *2

{(1.84)°1(1.91)°3(1.91)°3(1.75)°2 12 (1.36)*1(1.51)°3(1.91)°(1.75)*3 14
+
{(0.25)%1(0.09)%3(0.16)%3(0.16)° 1 { (0.64)*1 (0.81)°3(0.36)*3(0.36)** }**

{(0.16)°1(0.09)°2(0.09)°3(0.25)"% 12 £ (0.64)*(0.49)°3(0.09)"(0.25)*3 1

{(1.49)°1(1.36)%3(1.25)%3(1.49)°2 12 {(1.25)* (1.04)°3(1.25)°(1.16)** }°

{(1.36)°1(1.64)°3(1.36)%3(1.49)°2 1> {(1.16)* (1.25)°3(1.36)° (1.49)* }°* >
[{ (0.51)°1(0.64)%3(0.75)%3(0.51)°2 }*2{(0.75)*(0.96)°3(0.75)° (0.84)** }°2

{(0.64)°1(0.36)°3(0.64)°3(0.51)°2 12 (0.84)*(0.75)°3(0.64)"(0.51)*3 }**
{(1.49)°1(1.36)"3(1.25)°3(1.49)"2 12 £ (1.25)*1 (1.04)°3(1.25)"3(1.16)* }°2

{(1.36)°1(1.64)"3(1.36)°3(1.49)"3 12 £(1.16)* (1.25)°3(1.36)" (1.49)* 1 **
+

[{(0.51)“-'(0.64)0 3(0.75)%3(0.51)°2 12 {(0.75)%(0.96)°3(0.75)° (0.84) - }°2

{(0.64)°1(0.36)°3(0.64)%3(0.51)°2 12 (0.84)*(0.75)°3(0.64)"(0.51)** }**

(1.0658)(1.0295)(1.0813)(1.1246) —

] \/2[(0.6756)(0.8657)(0.6644)(0.5719)]
- J(1,1310)(10789)(1.1313)(12294)+

(0.6756)(0.8657)(0.6644)(0.5719)

( (
[(0.9067)(0.9647)(0.8716)(0.8387)]
(1.0658)(1.0295)(1.0813)(1.1246) +

) )

[(0.9067)(0.9647)(0.8716) (0.8387)]

#,=(0.4811,0.5932),
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{(0.25)%1(0.36)%(0.09)°3(0.36)° 1 *{ (0.49)*1 (0.81)*3(0.49)%3(0.09) }°*
2
{(0.16)°1(0.09)°(0.25)°3(0.25)*2 1% {(0.64)"(0.16)*3(0.16) (0.25)** }**

{(1.75)°1(1.64)°3(1.91)%3(1.64)°2 12 (1.51)*1(1.19)°3(1.51)3(1.91)*3 1%

{(1.84)°1(1.91)°(1.75)°3(1.75)°2 12 (1.36)" (1.84)°3(1.84)"3 (1.75)°3 14
+
{(0.25)°1(0.36)"(0.09)*3(0.36)"2} "% (0.49)" (0.81)°3(0.49)"3(0.09) 3 12

{(0.16)°1(0.09)°(0.25)°3(0.25)"2 12 (0.64)"(0.16)°3(0.16)*(0.25)*3 1 **

{(1.49)°1(1.36)"(1.64)°3(1.49)"2 12 (1.16)* (1.01)°3(1.04)3 (1.25)*3 1%

{(1.36)°1(1.36)"(1.36)°3(1.16)"2} 2 (1.16)" (1.25)°3(1.25)°3(1.36) 3 }** >

[{ (0.51)°1(0.64)%(0.36)%3(0.51)°% 12 {(0.84)*(0.99)°3(0.96)" (0.75)** 12

{(0.64)0 1(0.36)°3(0.64)° (0.84 03}02{
{(1.49)°1(1.36)"3(1.64)°3(1.49)*2 12 { (1.1

01(0 75)03( )03(0464)03}04
6)°1(1.01)°3(1.04)°%(1.25)*3 1%

{(1.36)°1(1.36)"(1.36)°3(1.16)"2} "2 (1.16)" (1.25)°3(1.25)°3(1.36) 3 1
+

[{(0,51)”"(0.64)03(0.36)0'3(0.51)0'3}0'2{(0.84)0"(0.99)"'3(0.96)0'3(0,75)”'3}U'Z

{(0.64)°1(0.36)°(0.64)*(0.84)°% 1*2{(0.84)*(0.75)°3(0.75)" (0.64)* 1 °*
(1.0833)(1.0194)(1.0533)(1.1011) —

_ [ \/2[(0-4466)(0.8071)(0.7064) (0.5357)] [(0.8676)(0.9764)(0.8981)(0.8784)]
(1.1155)(1.0857)(1.12254)(1.2533) + | (1.08338)(1.0194)(1.0533)(1.1011) +
(074466)(0.8071)(0.7064) (0.5357) )

[(0.8676)(0.9764)(0.8981)(0.8784)]

I, = (0.3696,0.5605),

{(0.25)°1(0.16)3(0.16)*3(0.16)** 12 { (0.36)" (0.64)°3(0.49)" (0.49) 3 1*2
2
{(0.16)°1(0.09)°(0.16)*3(0.25)°2 12 {(0.25)"(0.49)%3(0.36) (0.25)"3 }**

{(1.75)°1(1.84)°(1.84)%3(1.84)°2 12 (1.64)" (1.36)°3(1.51)3(1.51)*3 1%

{(1.84)°1(1.91)°(1.84)%3(1.75)°2 %2 (1.75)" (1.51)°3(1.64)"3 (1.75)*3 14
+
{(0.25)°1(0.16)"(0.16)°3(0.16)"2} "2 (0.36)" (0.64)°3(0.49)"3 (0.49) 3 12

{(0.16)°1(0.09)°(0.16)°3(0.25)°2 121 (0.25)"(0.49)°3(0.36)* (0.25)"3 1 **

{(1.36)°1(1.36)"(1.36)°3(1.49)"2 12 £ (1.25)"1(1.01)°3(1.09)"3 (1.25)*3 1%

{(1.36)°1(1.64)°(1.36)°3(1.16)°2}**{ (1.16)" (1.25)°3(1.25)°%(1.64) 3 1** >

[{(0.64)” 1(0.64)%2(0.64)°2(0.51)°21°2£(0.75)%1(0.99)°2 (0.91)°3(0.75)%31 %2

{(0.64)°1(0.36)°7(0.64)°3(0.84)°}**{ (0.8
{(1.36)°1(1.36)(1.36)°3(1.49)°3 12 { (1.2

01(0 75)03( )03(0_36)0.3}04
5)%1(1.01)%3(1.09)°3(1.25)*3 1%

{(1.36)°1(1.64)°(1.36)°3(1.16)°2 "2 (1.16)" (1.25)°3(1.25)°3 (1.64) 3 14
+

[{(0,64)"“ (0.64)°3(0.64)°(0.51)*21°2{(0.75)°1(0.99)"3(0.91)°3(0.75)*3}**

{(0.64)°1(0.36)°3(0.64)°3(0.84)3 12 { (0.84)%1(0.75)°3(0.75)%3(0.36) }**

(1.0692)(1.0239)(1.0652) (1.1262) —

_ / /2[(0:5848)(0.8756)(0.6877) (0.5787)]
$ (1.1128)(1.0809)(1.1228)(1.2193) +

[(0.5848)(0.8756)(0.6877)(0.5787)]

( (
[(0.9022)(0.9711)(0.8981)(0.8198)]
(1.0692)(1.0239)(1.0652)(1.1262) + /

) )

[(0.9022)(0.9711)(0.8981)(0.8198)]

I, = (0.4691,0.5841),
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TaBLE 11: Comparison of projected operators with some prevailing operators.

Approach 5! 5 9’ 9* 5° Alternative ranking

Proposed PFSEWA operator 0.0039 -0.0376 0.0433 -0.0179 0.0644 H5>9>9'> 9> 9’
Proposed PESEWG operator -0.4975 -0.1204 -0.1775 -0.1211 -0.0778 5 >H>9H'>9> 9!
PFSWA operator 0.0293 0.0369 0.0783 -0.0938 0.0858 H5>9>9">9H'>H!
PFSWG operator -0.3306 -0.1383 -0.1092 -0.1661 -0.5957 H>9>9'>9H' > 9
PFEWA operator 0.0039 -0.0376 0.0433 -0.0179 0.0644 5°>9>9'>H> 9’
PFEWG operator -0.4975 -0.1204 -0.1775 -0.0778 -0.1211 H'>9>9>9H>H'

{(0.25)°1(0.16)"(0.16)°3(0.09)°2 }*2{ (0.49)" (0.64)°3(0.49)"3 (0.36)*3 1 *2

{(0.16)°1(0.09)°3(0.16)°3(0.25)°2 1*2{(0.36)"(0.16)°3(0.96)" (0.25)** 1 **

{(1.75)°1(1.84)%3(1.84)%3(1.91)°2 %2 {(1.51)*(1.36)°3(1.51)°(1.64)* }°
{(1.84)%1(1.91)°3(1.84)%3(1.75)%31 %2 £ (1.64)°1 (1.84)%3(1.04) %3 (1.75)°2 }
+

{(0.25)°1(0.16)°3(0.16)%3(0.09)°% }*2{(0.49)* (0.64)°3(0.49)" (0.36)** }°2

{(0.16)°1(0.09)°3(0.16)%3(0.25)°% }1*2{(0.36)*(0.16)°3(0.96)"(0.25)** }**

{(1.64)°1(1.36)°3(1.36)°3(1.49)°3 %2 £ (1.25)* (1.01)°3(1.09)°3 (1.25)*31

o

{(1.49)°1(1.49)%3(1.36)03(1.64)°2 %2 {(1.16)* (1.49)°3(1.25)"(1.36)** }** >

[{(036)" 1(0.64)%3(0.64)°3(0.51)°2 12 (0.75)%1(0.99)°3(0.51)°(0.75)* }°2

{(0.51)°1(0.51)°3(0.64)°3(0.36)"2 12 (0.84)*(0.75)°3(0.75)" (0.64)* }**
{(1.64)°1(1.36)%3(1.36)%3(1.49)°3 12 £(1.25)*1(1.01)°3(1.09)° (1.25)*} °

{(1.49)°1(1.49)%3(1.36)%3 (1.64)°2 12 { (1.16)* (1.49)°3(1.25)°(1.36)* } **
+

[{(036)0 1(0.64)°3(0.64)%3(0.51)% 192 {(0.75)1(0.99)°3(0.51)°3(0.75)"3}*

{(0.51)°1(0.51)°3(0.64)°3(0.36)"2 }**{ (0.84)*(0.75)°3(0.75)"3 (0.64)** }**
(1.0732)(1.0239)(1.0833)(1.1246) —

(0.8788)] >

1.1246) +

_ < +/2[(0.6756)(0.8648) (0.6877)(0.6491)]

$ (1.1310)(1.0844)(1.1228)(1.1791) + | (1.0732)(1.0239)(1.0833)

( (

[(0.8919)(0.9379) (0.8676)

( (

(0.6756)(0.8648)(0.6877)(0.6491) ) )
=(0.5260,0.5954).

(0.8919)(0.9379)(0.8676)(0.8788)]

(97)

Step 4. Compute the score values using equation (6); S = (xfj
2
- &

S() = -0.4975, S(%,) = —0.1204,

S(H5) =—0.1775,S(# ;) = ~0.1211, S(% 5) = ~0.0778.
(98)

Step 5. Compute the ranking of the alternatives S(%5) > §(
H,)>S(H,)>S(Hs)>S(H)). So, §°>9H>H'>9H>
9.

So, $° is the most suitable alternative.

5. Comparative Studies

To demonstrate the efficiency of the projected technique, a
comparison with some prevailing methods under the PFS
and PFSS environments is presented.

5.1. Comparative Analysis. To authenticate the usefulness of
the anticipated technique, we compare the obtained results
with some existing techniques under the environment of
PFS and PFSS. A summary of all outcomes is given in
Table 11. Firstly, we present a comparison with methods
proposed by Zulqarnain et al. [37]. Their proposed aggrega-
tion operators are based on algebraic norms, while the pro-
posed operators in this work are based on the Einstein
norms. Secondly, we compare PFEWA and PFEWG opera-
tors proposed by Garg [15]. He developed the DM technique
for PFNs by utilizing the Einstein norms that cannot accom-
modate the parametrized values of the alternatives. On the
other hand, our established approach capably contracts with
parametrized values of the alternatives and supplies superior
facts comparative to existing methods. In this work, two
aggregation operators, such as PESEWA and PFSEWG oper-
ators, are planned to fuse the assessment data and then use
the score function to estimate the ranking of the alternatives.
Moreover, PESS theory condenses to PFS if only one param-
eter is presumed. Therefore, the PFSS concept is the most
general Pythagorean fuzzy set (PFS). So, the operators
planned in this work are influential, more consistent, and
more effective based on the above facts.

6. Conclusion

The core objective of this research is to formulate some
operational laws using the Einstein norms. Then, we devel-
oped two new operators such as PESEWA and PESEWG,
using our established operational laws. Some fundamental
properties have been discussed for developed Einstein AOs,
such as idempotency, homogeneity, and boundedness.
Moreover, a MAGDM approach has been established to
solve real-life complications based on developed Einstein
AOQs. To confirm the strength of a specified method, we
deliver an inclusive numerical illustration for selecting the
best business for investors. A comparative analysis with
some prevailing approaches is offered, showing the con-
structed approach’s practicality. Finally, based on the
attained outcomes, it is determined that the technique
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anticipated in this study is the utmost reasonable and ade-
quate to solve the MAGDM difficulties. Further research will
use many other operators under PESS to present DM tech-
niques. In addition, several other structures can be proven
and projected, such as topological structures, algebraic struc-
tures, and sequential structures. This study will open new
avenues for researchers in this field.
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