🗲 FUJMA

Fundamental Journal of Mathematics and Applications

Journal Homepage: www.dergipark.gov.tr/fujma

Initial value problems spreadsheet solver using VBA for engineering education

Çiğdem Dinçkal^{a*}

^aÇankaya University, Ankara, Turkey ^{*}Corresponding author E-mail: cdinckal@cankaya.edu.tr

Article Info

Abstract

Keywords: Excel spreadsheet, Initial Value Problems (IVPs) spreadsheet solver, Runge-Kutta methods, VBA programming 2010 AMS: 65LXX, 65YXX, 68WXX,68UXX, 68NXX Received: 4 March 2018 Accepted: 22 April 2018 Available online: 30 June 2018

Spreadsheet solver using VBA programming has been designed for solving initial value problems (IVPs), analytically and numerically by all Runge-Kutta (RK) methods including also fifth order with calculation of true percent relative error for corresponding RK method. This solver is user-friendly especially for beginner users of Excel and VBA.

1. Introduction

IVPs arise in any field of science and engineering education such as mechanics, geotechnics, dynamics, chemical kinetics, optimization and stability, et cetera. There are computing approaches; exact solution method and numerical methods for solving these IVPs. Numerical methods are both applicable and practical in solving IVPs in many engineering problems because of the existence of complicated problems in engineering and limitations of exact solution method [1, 2]. Numerical methods yield approximate the solutions of the IVPs, particularly for the nonlinear IVPs.

This study mainly has focussed on numerical solutions followed by Euler and various Runge-Kutta methods for solving single IVPs. These methods progress the solution over step starting from some given initial condition at the initial starting point. To simplify the steps in solving IVPs by RK methods, a tool is used. This tool is a prevalent spreadsheet application, fundamentally called as Excel, also commonly used by professionals for diverse applications in business [3], engineering and science [4]-[6].

Numerical methods in science and engineering may also be implemented in by use of Excel and also VBA. Use of VBA in explicit form Visual Basic for Applications programming capability lurks in the background behind Excel handled in the texts like Lilley and Chapra [2, 7]. In addition to this, a series of studies in literature employed spreadsheet as a calculator or solver to focus on design of solver and calculator for polynomial interpolation [8, 9], solution for systems of linear and nonlinear equations [10, 11], computation of eigenvalues [12, 13], design of spreadsheet calculator for numerical differentiation [14]-[16], spreadsheet solver for solution of partial differential equations [17], a spreadsheet solution of system of initial value problems using fourth-order RK method [18], and fourth-order RK method by spreadsheet [19]. Only the works of Tay et al. [20, 21] include design of spreadsheet calculator for solving system of IVPs using fourth-order RK method and also solving IVPs using fourth-order RK method with use of VBA programming.

In this study, a spreadsheet solver is designed to solve both IVPs by all RK methods and also exact solution method in the spreadsheet environment based on VBA programming. Microsoft Excel 2010 and Microsoft Visual Basics for Applications 7.0 are used during this study. The generation of VBA programming includes three steps. The first step is to develop an user interface input form is designed to acquire the needed information such as initial conditions of independent and dependent variables for each RK method, step size and number of steps. Then a general VBA code for any IVPs is created behind the Solve button in user interface input form. The third step is to generate function files depending on the related IVP and its analytical solution. Once the SOLVE button in user interface input form is clicked, the complete numerical and analytical solutions of the IVP and corresponding true percent relative error will be computed automatically for each order of RK method.

Examples are presented from various fields of engineering to demonstrate the merits of this unconventional solver design which shields the tedious algorithmic implementation details from the user (such as students and educators) and greatly simplifies solving an IVP using RKSOLVER.

This spreadsheet solver is user-friendly such that users only require to enter initial conditions of independent and dependent variables for each RK method, step size and number of steps at the first step to compute the complete solution of the IVPs automatically without typing any commands in the spreadsheet cells. Here, complete solution of the IVPs means solutions from each order of RK method, exact solutions and also true percent relative errors in terms of comparison with each RK method and exact solutions. So users as educators have an oppurtunity to elucidate students the differences and similarities that exist between each order of RK method and also exact solutions at the same time and be able to comment on the solution of any engineering problem including IVPs correctly. There is no need to know the various derivations of RK methods and memorize the complicated formulations of RK methods. The solver is general and standard for any engineering problem. The main aim of this paper is to design a tool in other words spreadsheet solver which employes both numerical methods: RK methods with fifth order and also analytical methods giving exact solutions with automatically calculated true percent relative errors in solving IVPs at the same time. Therefore this solver is called as IVP spreadsheet solver.

2. Runge Kutta (RK) methods

This section is devoted to solving IVPs of the form given below:

$$\frac{dy}{dx} = f(x, y) \tag{2.1}$$

with the initial value $y(x_0) = y_0$ for the number of points *n* within the interval $x_0 \le x \le x_n$. Here *x* is the independent variable, *y* is the dependent variable, *f* is the function of derivation (in other words slope) and *h* is the fixed step size. *n*, the number of steps can be found as $(x_n - x_0)/h$ [1].

1) First-Order RK Method

Euler's Method:

 $y_{i+1} = y_i + hk_1 \tag{2.2}$

where $k_1 = f(x, y)$

2) Second-Order RK Methods

a) Heun's Method:

$$y_{i+1} = y_i + h(\frac{k_1 + k_2}{2}) \tag{2.3}$$

where $k_2 = f(x_i + h, y_i + hk_1)$

b) Midpoint (Improved Polygon) Method:

$$y_{i+1} = y_i + hk_2 \tag{2.4}$$

where $k_2 = f(x_i + \frac{h}{2}, y_i + \frac{k_1 h}{2})$

c) Ralston's Method:

$$y_{i+1} = y_i + \left(\frac{k_1 + 2k_2}{3}\right)h\tag{2.5}$$

where $k_2 = f(x_i + \frac{3h}{4}, y_i + \frac{3hk_1}{4})$

3) Third-Order RK Method

$$y_{i+1} = y_i + \left(\frac{k_1 + 4k_2 + k_3}{6}\right)h\tag{2.6}$$

where $k_2 = f(x_i + \frac{h}{2}, y_i + \frac{k_1 h}{2}), \quad k_3 = f(x_i + h, y_i - k_1 h + 2k_2 h)$

J

4) Fourth-Order RK Method

$$y_{i+1} = y_i + \left(\frac{k_1 + 2k_2 + 2k_3 + k_4}{6}\right)h$$
(2.7)

Function $f(x, y0, h)$
f = y0 / 0.2254
End Function

Table 1: Function module for stress-strain relationship IVP

Function fexact(x, y0, h, i)
fexact = Exp((h * i) / 0.2254)
End Function

Table 2: Function module for exact solution of stress-strain relationship

where $k_2 = f(x_i + \frac{h}{2}, y_i + \frac{k_1 h}{2}), \quad k_3 = f(x_i + \frac{h}{2}, y_i + \frac{k_2 h}{2}), \quad k_4 = f(x_i + h, y_i + k_3 h)$

5) Fifth-Order RK Method

$$y_{i+1} = y_i + \left(\frac{7k_1 + 32k_3 + 12k_4 + 32k_5 + 7k_6}{90}\right)h$$
(2.8)

where $k_2 = f(x_i + \frac{h}{4}, y_i + \frac{k_1 h}{4}), \quad k_3 = f(x_i + \frac{h}{4}, y_i + \frac{k_1 h}{8} + \frac{k_2 h}{8}), \quad k_4 = f(x_i + \frac{h}{2}, y_i - \frac{k_2 h}{2} + k_3 h), \quad k_5 = f(x_i + \frac{3h}{4}, y_i + \frac{3k_1 h}{16} + \frac{9k_4 h}{16}),$ and $k_6 = f(x_i + h, y_i - \frac{3k_1 h}{7} + \frac{2k_2 h}{7} + \frac{12k_3 h}{7} - \frac{12k_4 h}{7} + \frac{8k_5 h}{7})$

It should be noted that k's are recurrence relationships. In other words, k_1 appears in the equation for k_2 which appears in the equation for k_3 and so on. Since each k is a functional evaluation, this recurrence makes RK methods efficient for computations [1].

In this work, fifth-order RK method yields the superior results in terms of less error than the other order of RK methods. As the order of RK method increases, convergence to the exact results also increases in terms of less errors.

3. Numerical examples

Numerical examples are presented from various engineering applications.

1) Geotechnical Engineering

To mIVPl the the behavior of soil under the effect of load, it is required to formulate the stress and strain relationship and this is achieved by the following IVP:

$$\frac{d\sigma}{d\varepsilon} = \frac{\sigma}{c_C} \tag{3.1}$$

The exact solution for equation (3.1) is

$$\sigma = e^{\frac{\varepsilon}{c_C}} \tag{3.2}$$

where σ is the stress, ε is the strain of soil and c_C is the compression index and it is 0.2254 for this soil type. Initial conditions are, ε_0 is 0 for independent variable and σ_0 is 1 kPa for dependent variable. Final ε is 1.2 and step size (h) is 0.1. This means that number of steps (n) is 12. At first, for each numerical example, function modules are prepared for both IVP and exact solution of it respectively. These modules change from example to example. The functions for IVP and exact solution are illustrated in the following tables.

Here x is the independent variable, y0 is the initial dependent variable, i is the counter of steps.

Then equations (2.2) to (2.8) are applied to obtain the solutions by each order of RK method respectively. Besides exact solution of the IVP with true percent relative error for each RK method are also incorporated in the computations.

Finally IVP spreadsheet solver is applied which is discussed in the next section to obtain the complete solutions.

2) Mechanical Engineering

To determine the change in velocity in other words acceleration of a free-falling body to the forces acting on it with considering the air resistance, the following IVP is used:

$$\frac{dv}{dt} = g - \frac{c}{m}v \tag{3.3}$$

The exact solution for equation (3.3), which also gives velocity of the object, is

$$v(t) = \frac{gm}{c} (1 - e^{(-\frac{c}{m})t})$$
(3.4)

where *v* is the velocity (dependent variable *y*), *t* is the time in seconds (indepedent variable *x*), *g* is the gravitational constant, 9.8 m/s², m is the mass of the object, 68.1 kg and c is the drag coefficient, 12.5 kg/s. Initial conditions are, t_0 is 0 s and v_0 is 0 m/s [1]. Final value of time is 5 s and step size (h) is 0.5. This means that number of steps (n) for computation is 10.

At first, for this example, function modules are written for both IVP and exact solution of it respectively. These functions are illustrated in Table 3 and Table 4 respectively.

Here x is the independent variable corresponding to time, y0 is the initial dependent variable corresponding to velocity.

Function f(x, y0, h)	
f = 9.8 - ((12.5 / 68.1) * y0)	
End Function	

Table 3: Function module for exact solution yielding velocity

```
Function fexact(x, y0, h,i)
fexact = ((9.8 * 68.1) / 12.5) * (1 - Exp((-12.5 / 68.1) * (h * i)))
End Function
```

Table 4: Function module for exact solution yielding velocity

Like geotechnical engineering example, equations (2.2) to (2.8) are employed to find the solutions by each order of RK method respectively. Besides exact solution of the IVP with true percent relative error for each RK method are also inserted in the computations. Finally IVP spreadsheet solver is used which is mentioned in the next section to obtain the complete solutions.

3) Chemical Engineering: Mixture Problem

The mixture problem related to a tank containing 1000 L of brine with 15 kg of dissolved salt. Pure water enters the tank at a rate of 10 L/min. The solution is kept thoroughly mixed and drains from the tank at the same time. In this problem, it is required to determine the amount of salt after t minutes in this tank. For this reason, the following IVP is employed:

$$\frac{dA}{dt} = \frac{-A}{100} \tag{3.5}$$

A(t) is the amount of salt after t minutes in tank, also the dependent variable is obtained by the following exact solution:

$$A(t) = 15e^{\left(\frac{-t}{100}\right)} \tag{3.6}$$

Initial conditions are, t_0 is 0 min and A_0 is 15 kg. Final value of time is 0.96 min and step size (h) is 0.02. Number of steps (n) for computation is 49.

At first, function modules are formed for both IVP and exact solution of the problem respectively. These functions are displayed in Table 5 and Table 6 respectively.

Here x is the independent variable corresponding to time, y0 is the initial dependent variable corresponding to amount of salt after t minutes in the tank.

Then, equations (2.2) to (2.8) are used to determine the solutions by writing codes for each order of RK method respectively. These codes are standard and valid for any scince and engineering problem including IVP. So there is no need to write cIVP for various problems. Besides exact solution of the IVP with true percent relative error for each RK method are also included in the computations. True percent relative error is in the following form:

$$\varepsilon_T = \left| \frac{ExactResult - ApproximateResult}{ExactResult} \right| \times 100 \tag{3.7}$$

Where Exact Result in other words true result represents the solution obtained by analytically. Approximate Result corresponds with the corresponding solution obtained by numerical methods, any order of RK methods.

Finally IVP spreadsheet solver is employed which is argued in the next section to obtain the complete solutions.

4. IVP spreadsheet solver

Using this IVP spreadsheet solver leads to a macro named RKSOLVER which solves the whole IVP at once completely.

The general procedure for obtaining complete solution of an IVP is composed of some steps. These steps are standard and applicable for any type of IVP.

The first step is to design an user interface input form (userform) called as UserForm4 to enable users to enter required data for solving an IVP completely. The standard form of UserForm4 for any problem is illustrated in Figure 4.1.

The second step is to generate a new tab name as IVP Solver with RKSOLVER macro including codes for solving IVP by both numerically (by each order of RK method) and analytically (gives exact solution). RKSOLVER also provides user to compute true percent relative error for each RK method.

Figure 4.2 illustrates the standard IVP Solver tab with RKSOLVER button. One more variation is to add a button assigned RKSOLVER macro in the spreadsheet. So user is able to run the macro simply by clicking this button. It is sufficient to start the complete solution procedure of IVPs.

Function f(x, y0, h)
f = -y0 / 100
End Function

Function fexact(x, y0, h, i)
fexact = 15 * Exp(-(h * i) / 100)
End Function

 Table 6: Function module for exact solution of the problem

erForm4				
fine Inputs				
tial value of Independen riable:	it Number of Steps (n):	Step Size (h):	_	
nitial value of Dependen	t Variables:			
	For Euler's Method			
	For Heun's Method			
	For Midpoint's Method			
	For Third Oder Runge Kutta Method			
	For Fourth Oder Runge Kutta Method			
	For Fifth Oder Runge Kutta Method		SOLVE	

Figure 4.1: The standard userform for all examples

	- 47 ▼ (4 ▼ ₹				exa	mples - Microsof	't Excel	of the lot of		1
File		Page L	ayout Fo	ormulas D	ata Review View Developer	Developer	ODE Solver			
¢ ⁰	· 🔜 🖧									
ld-I	ins Macros RKSolver									
	New Group									
	G10 + (f _x							
4	A	В	С	D	E	F	G	Н	1	J
		Xi	k1	k2_Heun	k2_Midpoint, Third and Fourth orde	r k2_Ralston's	k2_fifth order	k3_Third order	k3_Fourth order	k3_Fifth orde
	RKSOLVER									
)										
) L 2 3										
-										
2										

Figure 4.2: The standard IVP Solver tab with RKSOLVER button

ile P		Insert	Page Lay											
2				vut	Formulas Data Review	View D	Developer [Developer Of	DE Solver					
٩														
	<u> </u>													
ín	s Macros RKSolv													
"	5 Macros Resolu													
	New Group													
-				201										
	G10	- + (**	ţ.	x										
T	A	В	C	D	E	F	G	Н	1	1	K	L	M	1
														-
		Xi	k1	k2_Heun	k2_Midpoint, Third and Fourth order	k2_Ralston's	k2_fifth order	k3_Third order	k3_Fourth order	k3_Fifth order	k4_Fourth order	k4_Fifth order	k5	k6
		-												
	RKSOLVER													

Figure 4.3: The standard blank spreadsheet image with k's (recurrence relationships) titles

						examples - Micr								
Layou	t Fa	rmulas	Data R	eview View	w Develope	r Developer	ODE S	olver						۵ 🕜
f_x														
0	Ρ	Q	R	S	т	U	٧	W	х	Y	Z	AA	AB	AC
Euler	yi+1Heun	yi+1Midpoint	yi+1Ralston's	yi+1Third Order	yi+1Fourth Order	yi+1Fifth Order	TRUE Results	Error_Euler	Error_Heun	Error_midpoint	Error_Raiston	Error_third order	Error_fourth order	Error_fifth order

Figure 4.4: The standard blank spreadsheet image with RK results, exact results and error titles

File	Edit	⊻i	ew	Insert	For	mat	Deb	ug	Ru	n	Too	ls	Ad	d-Ir	ns .	Wir	ndo	w.	Hel	р					
1000	- 🔜	36	-	CEL AN	1 10	0	•	00		1	. 9	a C	7	-	30										
00000000		888888	000000	888888888	8888888	8888888		100000		181-188	888888	101010101	16888	18888	88888	888888	18888	00000		08888	88888	88888	88888	181818181	8888
erForr	m4																							-8	
efine In	nputs			1111	111		111	111		111			11		11	111	11				111	11			
itial va		nder	ende	nt	Numbe	rofs	tene	(0).			Step	SIZE	0						11						
ariable	ide of s	ndep	ence	anc :	L	1 01 3	reps	0.0.		11	Step	5120	- Q Q	•					11						
										111							11								
		and in			111		111						11				11		1.1						
				nt Varial			:::	:::	: : :	: : :		: : :	11			: : :	::	: : :	::		: : :		:::		
rittal	alue o	rbep	ende	nt varia	nes:		111	:::	:::	: : :		: : :	11	:::	111	111	::	:::	1.1		: : :		:::		::
								111	111	: : :		:::	11	:::	::	111	11	:::	11		1 1 1	::	111	111	:: 📖
				FOLE	uler's M	letho	a	11							11										
				_:				1 2 2							::										:: #
				For H	eun's I	Metho	d	1.1	:::	:::	111	: : :	1.1	: : :	::	:::	1.1	: : :	::	: : :	: : :	::	:::	: : :	:: 8
									: : :	: : :			1.1	: : :	: :	: : :	::	: : :	: :		: : :	: :	: : :		:: 1
				For M	lidpoin	's Met	thod	1.1																	
				-i																					
				For R	alston	s Met	hod	11	:::	: : :					::	:::	11	:::	11		1 1 1		:::		
				1				. : :	: : :	: : :			::	: : :	: :	: : :	::		::		: : :				
												: : :	: :		11	111	: :	: : :	::		: : :				
				: For I	hird O	Jer Ru	inge K	utta	Met	bor					11										:: 8
								111							11				1.1			11			::
				Eor F	ourth	Dder F	Runne	Kutt	a Me	thor	1	: : :	: :		1.1									1:1	::
					0101010						orord.	: : :	: :	: : :	: :	÷			SI					1:1	:::
		:::	: : :									: : :			::									1:	:: 1
				- For F	ifth Oc	ler Ru	nge K	utta	Meth	od									• •					- J	· · •
				1												:::			11		1 1 1				
		:::		1111	111		111	:::	111	: : :		: : :	11	:::	111	111	11	:::	11		1 1 1	111	111		1 1 1
	:::::	111		1111				111	111	111	111				11			:::	1.1		111	11		11	:: 🔛
:::	: : : : :	: : :	: : :	1111	111	::::	:::	: : :	: : :	:::	:::	: : :	::		: :	: : :	::	: : :	: :		: : :	: :		: :	::
		1 1 1		1111	1.1.1.	1.1.1	1.1.1.		: : :	: : :		: : :	1 1	: : :		: : :	: :	: : :	1.1.		1 1 1		: : :		:::
	100000000	000000	000000	0000000000	00000000		0000000	000000	000000	0.00	000000	101010101	00000	00000	00000	00000	0000	00000		1010101010	00000	00000	anna:		100000

Figure 4.5: Userform for geotechnical engineering example

Then the only thing is to specify sufficient place in spreadsheet cells to make macro fill them with solutions for any IVP examples. For this reason, the titles for k's, RK results, exact results and error titles are written as is the case with Figure 4.3 and Figure 4.4 respectively.

The working procedure for IVP solver namely RKSOLVER is described for each numerical examples (geotechnical engineering, mechanical engineering and chemical engineering). The steps for geotechnical engineering example are illustrated in the Figure 4.5- Figure 4.11.

The first step is to call userform by clicking run in the toolbar or simply clicking RKSOLVER button. The image of this userform for geotechnical engineering example is given in Figure 4.5. This userform is standard for any IVP example.

Due to the fact that initial conditions are different for all IVPs, the filled userform is distinctive for all problems. As is the case with geotechnical engineering example. Userform is filled with initial conditions of the problem in Figure 4.6. Then by clicking SOLVE button in UserForm4; k's, numerical solutions obtained form all RK methods, exact solutions (true solutions) and true percent relative errors can be obtained and displayed as the spreadsheet images in Figure 4.7 to Figure 4.11 respectively.

To Figure 4.10 and Figure 4.11, fifth-order RK method gives the best solution in terms of the least error and best convergence to exact solutions.

Similarly for mechanical engineering, userform is invoked by clicking RKSOLVER in Figure 4.12. Then this form is filled with necessary data as it is shown in Figure 4.13.

By clicking the SOLVE button in userform, computations are performed and given in the spreadsheet images of Figure 4.14 to Figure 4.18. To Figure 4.17 and Figure 4.18, the worst solution is obtained by Euler's method while fifth-order RK method is the best one with the least error and best convergence to the exact solution.

For mixture problem, userform is called by clicking RKSOLVER button in spreadsheet. Figure 4.19 illustrates this process.

Then this userform is filled by entering initial conditions as given in Figure 4.20. Clicking the SOLVE button in userform leads to complete solution of the problem. These solutions are displayed in Figure 4.21 to Figure 4.25.

To Figure 4.24 and Figure 4.25, all RK methods give quite well solutions with convergence to exact results in terms of less errors.

5. Conclusion

An IVP solver with use of RK methods including also the highest order; fifth order has been generated by VBA for the first time in literature. Emphasis was on all types of RK methods usable simultaneously and the solver generated applicable to IVPs for science and engineering problems.

		isert Pa	age Layout	Formulas	Data	Review	View [Developer	Developer	ODE Sol	ver			-
dd	Ins Macros RKSolver													
	New Group													
	K23	- (-	f.x											
	A	В	C	D	E	F	G	н	1	J	к	L	M	N
1														
2		×i	k1	k2_Heun	k2_Midpo	k2_Ralsto	k2_fifth o	k3_Third	k3_Fourt	hk3_Fifth o	k4_Fourth	k4_Fifth order	k5	k6
3														
4														
5														
6 7					UserForm4	2		-					53	
8					Define Inp	uta								
9						e of Indepen	dent Ni	mber of Steps	(0)	Step Size (h				
10					Variable:	- or mospen	Lacine inc	12		0.1				
11					0		1			1				
12					Teritial uni		dent Variable							
13					ar inder ver	de of Depend	Jerre variable							
14					1		For Eule	r's Method						
15							- Can Mary	n's Method						
16					1		Por Heu	ins method						
17					1		For Midp	oint's Method						
18							East Date	ton's Method						
19					1		or Rais	torra elethod						
20							Eor Thin	d Oder Runge	Kutta Metho	4				
21					1									
22					1		For Fou	rth Oder Rung	e Kutta Meth	od			1	
23												SOLVE		
24							- For Fifth	Oder Runge	Kutta Method	1				
26					1									
27														
28														
29														
30														
31														

Figure 4.6: Filled userform for geotechnical engineering example

-	, □ - (□ - =				-	-		_geotechical						-
Fil	e Home In	sert Page	Layout	Formulas	Data	Review	View De	eveloper	Developer	ODE Sol	rer			
Add-	Ins Macros RKSolver													
	New Group													
	AC14	v (n	fx 11.8	3919479320	589									
1	A	В	С	D	E	F	G	н	1	J	K	L	M	N
1														
2		Xi	k1	k2_Heun	k2_Midpo	k2_Ralsto	k2_fifth o	k3_Third c	k3_Fourth	k3_Fifth o	k4_Fourth	<pre>k4_Fifth order</pre>	k5	k6
3		0	4.436557	6.404861	5.420709	5.912785	4.928633	7.278111	5.639022	4.955922	6.938341	5.541972342	6.188649	6.90988
4		0.1	6.404861	9.683039	8.262263	8.972651	7.624295	11.3957	8.746018	7.691921	10.79344	8.635190014	9.601664	10.8135
5	RKSOLVER	0.2	9.246415	14.51246	12.5582	13.51918	11.77238	17.70682	13.48594	11.91246	16.68329	13.42041413	14.86514	16.8712
6		0.3	13.34864	21.60281	19.0397	20.25015	18.14649	27.34529	20.69257	18.41256	25.64941	20.80938265	22.96947	26.251
7		0.4	19.27084	31.98343	28.80048	30.18418	27.92855	42.01913	31.61722	28.40868	39.25563	32.19948491	35.42978	40.7482
8		0.5	27.82046	47.14615	43.47453	44.80645	42.92275	64.29676	48.13482	43.76028	59.84624	49.73011234	54.5618	63.1125
9		0.6	40.16316	69.25174	65.50021	66.28005	65.881	98.03436	73.0507	67.30723	90.93029	76.67334187	83.90165	97.5584
LO		0.7	57.98178	101.4283	98.51241	97.75227	100.9975	149.0128	110.5568	103.383	137.7531	118.0289297	128.8446	150.534
11		0.8	83.70573	148.2025	147.9243	143.7986	154.6603	225.8868	166.9091	158.5952	208.1455	181.4298683	197.6162	231.896
12		0.9	120.8423	216.1221	221.7897	211.0657	236.5922	341.5963	251.4339	243.0114	313.7849	278.5197644	302.7478	356.700
L3		1	174.4546	314.6556	332.0807	309.2025	361.5829	515.4661	378.0198	371.9605	472.0657	427.0466658	463.3177	547.919
14		1.1	251.8524	457.4918	496.5791	452.2083	552.1159	776.3237	567.3289	568.7676	708.8726	654.0442822	708.3533	840.583
15														
16														

Figure 4.7: Computation results for k's for geotechnical engineering example

ne Inse	rt Page	Layout Formu	las Data Rei	view View Deve	loper Developer Of	DE Solver
q						
•	6	<i>f</i> _∗ 11.891947	9320589			
0	Р	Q	R	S	Т	U
yi+1Euler	yi+1Heun	yi+1Midpoint	yi+1Ralston's	yi+1Third Order	yi+1Fourth Order	yi+1Fifth Orde
1.443656	1.542071	1.542070924	1.542070924	1.556625079	1.558239338	1.55839448
2.084142	2.346466	2.36829718	2.353743026	2.404118656	2.411820362	2.42233410
3.008783	3.534409	3.624117018	3.563235792	3.69055243	3.712120001	3.75650291
4.343647	5.281982	5.528087280	5.358200416	5.638098147	5.686496553	5.81332352
6.270731	7.844696	8.40813576	8.012840169	8.579629901	8.675861063	8.97927695
9.052777	11.59303	12.75558858	11.92728563	13.01321875	13.1906175	13.8454980
13.06909	17.06377	19.30560932	17.68472762	19.68319123	19.99387199	21.315293
18.86727	25.03428	29.1568508	26.13427148	29.70059605	30.22509227	32.7677855
27.23784	36.62969	43.94928083	38.51103481	44.72209143	45.58372588	50.3068297
39.32207	53.47791	66.128248	56.6101552	67.21537894	68.60163262	77.1394174
56.76753	77.93342	99.3363140	83.03881122	100.852767	103.046987	118.150615
81.95277	113.4006	148.9942263	3 121.5811084	151.0943093	154.5226722	180.776672

Figure 4.8: Computation results for each RK method for geotechnical engineering example

		ex_geotechica	l engineering - Microsoft	Excel		-	
Formulas Data	Review View	Developer	Developer ODE Solve	a			a 🕜 🗖 🖬
919479320589							
V	W	х	Y	Z	AA	AB	AC
RUE Results	Error Euler	Error Heun	Error midpoint	Error Ralston's	Error third order	Error fourth order	Error fifth order
1.558393874	7.362589976	1.047421393	1.047421393	1.047421393	0.113501165		3.93667E-05
2.428591468	14.18310264	3.381611137	2.482685413	3.081969229	1.007695683	0.690569245	0.257654038
3.784702066	20.50144892	6.613271635	4.243003701	5.851617122	2.487636662	1.917774866	0.745082536
5.898056516	26.35460128	10.44538333	6.27273119	9.153118461	4.407525912	3.586943647	1.436625617
9.191495146	31.77681002	14.6526716	8.522654606	12.82332154	6.656863059	5.609904312	2.308853858
14.32396973	36.79980377	19.06555263	10.94934701	16.73198244	9.150752258	7.912277461	3.340356939
22.32238668	41.45297508	23.55758767	13.51458252	20.77582085	11.82308816	10.43129807	4.511584689
34.78707067	45.76355247	28.03568497	16.18480588	24.87360685	14.62173883	13.11400561	5.804700193
54.21195784	49.75675972	32.43245311	18.93065186	28.96210293	17.50511655	15.91573575	7.20344407
84.48358301	53.45596349	36.70023859	21.72651024	32.99271506	20.43971557	18.79885987	8.693009074
131.6586982	56.88281006	40.80648133	24.55013198	36.92873139	23.3983259	21.73172879	10.25992425
205.1761088	60.05735196	44.7301015	27.38227316	40.74304797	26.35872171	24.68778502	11.89194793

Figure 4.9: Computation results for exact results (true results) and true percent relative errors of each RK method for geotechnical engineering example

-		x_geotechical en			_	_		- 0
Data Rei	view View I	Developer De	veloper OI	DE Solver				a 🕜 🗆
U	V	w	x	Y	Z	AA	AB	AC
Fifth Order	TRUE Results	Error Euler	Error Heun	Error midpoint	Error Raiston's	Error third order	Error fourth order	Error fifth order
1 558394488	1 558393874	7.362589976		1.047421393	1.047421393	0.113501165	0.009916402	
2.422334104	2.428591468	14,18310264	3.381611137	2,482685413	3.081969229	1.007695683	0.690569245	0.257654
3 756502912		20 50144892		4 243003701	5.851617122	2 487636662	1 917774866	
5.813323526	5.898056516	26,35460128	10.44538333	6.27273119	9.153118461	4,407525912	3,586943647	
8.979276955		31,77681002	14.6526716		12 82332154	6 656863059	5.609904312	
13.84549801	14.32396973	36,79980377	19.06555263	10,94934701	16.73198244	9.150752258	7,912277461	3.340356
21.3152933		41,45297508	23.55758767	13.51458252	20.77582085	11.82308816	10.43129807	
32.76778551	34.78707067	45.76355247	28.03568497	16.18480588	24.87360685	14.62173883	13.11400561	5.804700
50.30682978	54.21195784	49.75675972	32,43245311	18.93065186	28.96210293	17.50511655	15,91573575	7.20344
77.13941747	84,48358301	53,45596349	36.70023859	21.72651024	32,99271506	20.43971557	18.79885987	8.6930090
118,1506155		56.88281006		24,55013198	36,92873139		21,73172879	
180.7766728	205.1761088	60.05735196	44,7301015	27.38227316	40.74304797	26.35872171	24,68778502	11.891947
Virmonical Deculte	Numer	son of True ical Solutic Method	ons of All	ryi+1Heun -yi+1Midpoint -yi+1Raiston's -yi+1Piorth Order -yi+1Pourth Order	100 55	Error versus		al Effort for
2	50 -0.4 0.1	0.6 X		yi+1Fifth Order - TRUE Results - yi+1Euler	20 15 10 5 0	·		Error_Euler

Figure 4.10: Graphical display of the computation results for geotechnical engineering example

Figure 4.11: The spreadsheet image of full computation results for geotechnical engineering

File	Home Insert	Page L	ayout F	ormulas Di	ata Review View Developer	Developer	ODE Solver	1000	A. 96	100
	s Macros RKSolver									
	G10 -	-	fx							
1	A	В	С	D	E	F	G	н	1	J
			k1				k2 fifth order	k3 Third order	k3 Fourth order	
-		×i	KI	k2_Heun	k2_Midpoint, Third and Fourth order	k2_Raiston's	k2_titth order	k3_Inird order	k3_Fourth order	k3_Fifth orde
	RKSOLVER			UserFe					23	
					e Inputs					
		-								
				Varia	Value of Independent Number of Steps (r): Step :	Size (h):			
				1010	ial value of Dependent Variables:					
					For Euler's Method					
8					For Heun's Method					
6					For neuris method					
					For Midpoint's Method					
					For Raiston's Method					
					Por Raiston's Method					
					For Third Oder Runge Ku	tta Method				
					For Fourth Oder Runge F	utta Method				
								SOLVE		
					For Fifth Oder Runge Ku	ta Method				
-										
5										

Figure 4.12: Userform in spreadsheet for mechanical engineering example

	al 19 - (H - 1 =			-	-	ex_mech	inical engineering -	Microsoft Excel		-
File	Home Insert	Page L	ayout	For	mulas D	ata Review View Develop	r Developer	ODE Solver		
dd-Ir	ns Macros RKSolver									
_		(=	fx							
at 1	A	В		с	D	E	F	G	н	1
		×i	k1		k2_Heun	k2_Midpoint, Third and Fourth o	der k2_Ralston's	k2_fifth order	k3_Third order	k3_Fourth orde
		_								
					-					
	RKSOLVER				UserF	orm4				23
					Defi	ne Inputs				
					Initia	al value of Independent Number of Sti	os (n): Step	Size (h):		
					Varia	10 10	0.5	5		
D 1					Ini	tial value of Dependent Variables:				
2										
3						D For Euler's Method				
4						For Heun's Method				
5						•				
6						D For Midpoint's Meth	d			
7						For Raiston's Metho	i .			
в										
9						For Third Oder Run	e Kutta Method			
D										
1						For Fourth Oder Ru	ge Kutta Method			1
2							And a later of the second		SOLVE	
3						For Fifth Oder Run	e Kutta Method			
4						D				
5										
5										
7										
в										
9										
D										

Figure 4.13: Filled userform for mechanical engineering example

	₽) • (* =					1.10 1.10	ex_m	echanical engin	eering - Microso	ft Excel	- 8 -		-		
File	Home	Insert	F	Page Layo	ut Fo	rmulas Data Review V	iew Deve	loper Devel	oper ODE So	lver					۵ (
d-In	is Macros RKSolve														
	New Group														
	B25	•	8	f_x											
1	A	8	5	С	D	E	F	G	Н	I	J	K	L	М	N
		X		k1	k2_Heun	k2_Midpoint, Third and Fourth or	k2_Raiston's	k2_fifth order	k3_Third order	k3_Fourth order	k3_Fifth order	k4_Fourth order	k4_Fifth order	k5	k6
			0	9.8	8.90059	9.350293686	9.125440529	9.575146843	8.983132583	9.370929989	9.577726381	8.939966044	9.360375096	9.14814	8.94
			0.5	8.90059	8.12499	8.533426269	8.329209415	8.736408948	8.19112368	8.549041052	8.738292419	8.156022704	8.53955312	8.34661	8.1
	RKSOLVER		1	8.08372	7.41869	7.787740461	7.603528599	7.971397809	7.469476731	7.799767812	7.97268638	7.441297036	7.790959346	7.61556	5 7.43
			1.5	7.34182	6.77539	7.107051081	6.942077706	7.273610816	6.81193767	7.116673628	7.274393342	6.789659303	7.108216871	6.94877	6.78
			2	6.66801	6.18942	6.485708696	6.339106972	6.637120738	6.212807884	6.493893042	6.637475138	6.195523118	6.485513589	6.34056	6.18
			2.5	6.05604	5.65558	5.918553387	5.789385453	6.056524649	5.666894927	5.926081097	6.056519137	5.653797286	5.91755202	5.78577	5.64
			3	5.50024	5.16916	5.400872476	5.288153952	5.52689741	5.169467617	5,408367139	5.526591591	5,159841909			7 5.15
			3.5	4.99545	4.72588	4.928361896	4.831082233	5.043749286	4.716215096	4.936312726			4.926967059	4.81805	4.69
					4.32186		4.414230134	4.602987332	4.303209528						

Figure 4.14: Computation results for k's for mechanical engineering example

Inse	rt	Page L	ayout Fo	rmulas D	ata Rev	view View	Developer
	Ca	libri (Body) ~ 10	т А́ А́	= = =		Wrap Text
nter	в	ΙŪ	•	<u>⊘</u> - <u>A</u> -			🖬 Merge & Cente
154			Font	F54		Alignment	
	- (-		fx				
0		P	Q	R	S	т	U
yi+1Eu	ler	yi+1Heun	yi+1Midpoint	yi+1Ralston's	yi+1Third Ord	yi+1Fourth Order	yi+1Fifth Order
	4.9	4.67515	4.67514684	4.67514684	4.6820256	4.681867783	4.6818706
9.35	029	8.93154	8.94185998	8.93498121	8.9508103	8.950329842	8.95175974
13.3	922	12.8071	12.8357302	12.8167774	12.842823	12.8419993	12.8460405
17.0	631	16.3364	16.3892557	16.3544403	16.39132	16.39024353	16.3978645
20.3	971	19.5508	19.6321101	19.5788115	19.626625	19.62547184	19.6374481
23.4	251	22.4787	22.5913868	22.5179473	22.576388	22.57539771	22.5923329
26.1	752	25.1461	25.291823	25.197372	25.265821	25.26527779	25.2876232
28.6	729	27.5764	27.756004	27.6403069	27.717913	27.71812971	27.7462025
30.9	414	29.7911	30.0045494	29.8678802	29.953626	29.95493061	29.9889308
33.0	017	31.8096	32.0562843	31.899316	31.992071	31.99479802	32.0348234

Figure 4.15: Computation results for each RK method for mechanical engineering example

V V X Y Z AA AB AC TRUE Results Error_Euler Error_Heun Error_midpoint Error_Ralstor Error_third order Error_fourth order Error_fo		el					Chart	lools			
V W X Y Z AA AB AC TRUE Results Error_Euler Error_Heun Error_midpoint Error_Ralstor Conditional Format Cell From Styles Cells	ber	oper	Deve	loper C	DE Solver	Des	ign Layo	out Format			
Werge & Center + Image + % * %	xt	Text		General	-						Autos Fill ~
V W X Y Z AA AB AC TRUE Results Error_Euler Error_Heun Error_midpoint Error_Ralstor Error_third order Error_fourth order Error_fifth order 4.6818706 4.6590216 0.1436134 0.143613389 0.1436134 0.003310099 6.09425E-05 1.300 8.9531822 4.4354227 0.241706 0.126460405 0.2032908 0.026492481 0.031858677 0.015 12.649937 4.215604 0.3330267 0.10560409 0.2580538 0.05335943 0.061773432 0.030 16.404981 4.0114882 0.4177613 0.095855366 0.3080802 0.083269244 0.089834125 0.044 19.648276 3.6109851 0.4960917 0.0682247895 0.3351514 0.110203575 0.116073336 0.055 22.607167 3.617996 0.58215 0.0698014 0.3946518 0.136147269 0.140527115 0.065 23.06587 3.4324119 0.6343328 0.058340185 0.4846862 0.185017819	k Cente	& Cent	er -	······································	, 00. 00. 00. ⇒.0				Insert Delete F	ormat	Clear
TRUE Results Error_Leler Error_Mean Error_midpoint Error_Raistor Error_fourth order Error_fourder Error_fourth order Error_			154	Numb	er 🖙		Styl	es	Cells		
TRUE Results Error_Leler Error_Mean Error_midpoint Error_Raistor Error_fourth order Error_fourder Error_fourth order Error_											
4.6818706 4.6590216 0.1436134 0.143613389 0.1436134 0.003310099 6.09425E05 1.300 8.9531822 4.4354227 0.241706 0.126460405 0.2032908 0.026492481 0.031858677 0.015 12.849937 4.219604 0.3330287 0.10550409 0.2580538 0.058359343 0.061773432 0.030 16.404981 4.0114882 0.4177613 0.095855366 0.3080802 0.083269244 0.089384125 0.04 19.648278 3.8109851 0.4960917 0.082287895 0.3535514 0.11020375 0.116073336 0.055 22.607167 3.617996 0.568215 0.0698014 0.3946518 0.136147269 0.140527115 0.065 23.06587 3.422419 0.6343328 0.058340185 0.4315674 0.161088317 0.163234757 0.074 27.769291 3.2541143 0.6946524 0.047849573 0.4644862 0.185017819 0.18238583 0.083 30.016038 3.0829762 0.7493857 0.04327666 0.20792928 0.2			W	x	Y		Z	AA	AB	AC	
8.9531822 4.4354227 0.241706 0.126460405 0.2032908 0.026492481 0.031858677 0.015 12.849937 4.2196044 0.3330287 0.110560409 0.2580538 0.0055355434 0.061773432 0.030 16.404981 4.0114882 0.4177613 0.095855366 0.3080802 0.083269244 0.089834125 0.04 19.648278 3.8109851 0.4960917 0.082287895 0.3535514 0.110203575 0.116073336 0.055 22.607167 3.617996 0.568215 0.0698014 0.3946518 0.136147269 0.140527115 0.065 25.306587 3.4324119 0.6343328 0.058340185 0.415071819 0.146224757 0.074 27.769291 3.2541143 0.694524 0.047849573 0.464462 0.1808317 0.163234757 0.074 30.016038 3.0829762 0.7493557 0.038276016 0.4935966 0.20792928 0.203583685 0.090	s Error_	Its Error	r_Euler	Error_Heun	Error_midpoi	nt	Error_Raistor	Error_third order	Error_fourth order	Error_fifth or	der
12.849937 4.2196044 0.3330287 0.110560409 0.2580538 0.055359434 0.061773432 0.030 16.404981 4.011482 0.4177613 0.095855366 0.3080802 0.083269244 0.089384125 0.04 19.648278 3.8109851 0.4960917 0.082287895 0.3535514 0.11020375 0.116073336 0.055 22.607167 3.617996 0.568215 0.0698014 0.3946518 0.136147269 0.140527115 0.065 25.306587 3.4324119 0.6343328 0.058340185 0.4315674 0.161088317 0.163234757 0.074 27.765291 3.2541143 0.6946524 0.047849573 0.4644862 0.185017819 0.184238583 0.0833 30.016038 3.082762 0.7493857 0.038276016 0.4935966 0.20792928 0.203838855 0.093	5 4.65	06 4.6	5590216	0.143613	4 0.1436:	13389	0.1436134	0.00331009	6.09425E-05	1.30	578E-07
16.404981 4.0114882 0.4177613 0.095855366 0.3080802 0.083269244 0.089834125 0.04 19.648278 3.8109851 0.4960917 0.082287895 0.3355514 0.10203575 0.116073336 0.055 22.607167 3.617996 0.588215 0.06880414 0.3946518 0.136147269 0.140527115 0.065 25.306587 3.4324119 0.6343328 0.058340185 0.4315674 0.161088317 0.163234757 0.074 27.769291 3.2541143 0.6946524 0.047849573 0.4644862 0.185017819 0.184238583 0.083 30.016038 3.082762 0.7493857 0.482766 0.20792928 0.203583685 0.093	2 4.43	22 4.4	4354227	0.24170	6 0.12646	50405	0.2032908	0.02649248	0.031858677	0.015	887819
19.648278 3.8109851 0.4960917 0.082287895 0.3535514 0.110203575 0.116073336 0.055 22.607167 3.617996 0.568215 0.0698014 0.3946518 0.136147269 0.140527115 0.065 25.306587 3.4324119 0.6343328 0.058340185 0.4315674 0.161088317 0.163234757 0.074 27.765291 3.2541143 0.6946524 0.47849573 0.4644862 0.185017819 0.18423853 0.090 30.016038 3.0829762 0.7493857 0.038276016 0.4935966 0.20792928 0.203583685 0.090	7 4.21	37 4.2	196044	0.333028	7 0.11056	50409	0.2580538	0.055359434	4 0.061773432	0.030	324126
22.607167 3.617996 0.568215 0.0698014 0.3946518 0.136147269 0.140527115 0.065 25.306587 3.4324119 0.6343328 0.058340185 0.4315674 0.161088317 0.163234757 0.074 27.769291 3.2541143 0.6946524 0.047849573 0.4644662 0.185017819 0.18238583 0.083 30.016038 3.0829762 0.7493857 0.038276016 0.4935966 0.20792928 0.203583685 0.093	1 4.01	81 4.0	0114882	0.417761	0.09585	55366	0.3080802	0.08326924	4 0.089834125	0.04	337841
25.306587 3.4324119 0.6343328 0.058340185 0.4315674 0.161088317 0.163234757 0.074 27.769291 3.2541143 0.6946524 0.047849573 0.4644862 0.185017819 0.184238583 0.083 30.016038 3.0829762 0.7493857 0.038276016 0.4935966 0.207929928 0.203583685 0.090	8 3.81	78 3.8	3109851	0.496091	7 0.08228	87895	0.3535514	0.11020357	0.116073336	0.055	119649
27.769291 3.2541143 0.6946524 0.047849573 0.4644862 0.185017819 0.184238583 0.083 30.016038 3.0829762 0.7493857 0.038276016 0.4935966 0.207929928 0.203583685 0.090	7 3.6	67 3.	617996	0.56821	0.069	98014	0.3946518	0.13614726	0.140527115	0.065	616264
30.016038 3.0829762 0.7493857 0.038276016 0.4935966 0.207929928 0.203583685 0.090	7 3.43	87 3.4	324119	0.634332	8 0.05834	40185	0.4315674	0.16108831	0.163234757	0.074	935927
	1 3.25	91 3.2	2541143	0.694652	4 0.04784	49573	0.4644862	0.18501781	0.184238583	0.083	145376
32.065765 2.918862 0.7987488 0.029567196 0.5190872 0.229821773 0.221317681 0.096	8 3.08	38 3.0	0829762	0.749385	7 0.03823	76016	0.4935966	0.20792992	0.203583685	0.090	310244
	5 2.9	65 2.	.918862	0.798748	8 0.02956	57196	0.5190872	0.22982177	3 0.221317681	0.096	494889

Figure 4.16: Computation results for exact results (true results) and true percent relative errors of each RK method for mechanical engineering example

Figure 4.17: Graphical display of the computation results for mechanical engineering example

					11	• A A		=	æ,-	📑 Wra			Gene			٠				4				Σ AutoSu Fill *	Z	
te 🛷 Fo		t Pair	iter G	B I ∐ ∗ I		<u>∧</u> • <u>A</u> •			Alignm	-	ge & Cente	er *	.	%	•		Condit Format		ormat Cell Table * Styles es	Inse • •			nat	2 Clear *		& Find r * Select
C2		-		f _x																						
* SOLVER	05 15 15 15 15 15 15 15 15		12_km/1 2 90059 2 12499 7 41249 6 77529 6 12540 5 60054 5 60054 5 16515 4 71528 4 71528	8 523-0216 7 1977-946 7 2075206 8 4277-926 8 5025207 8 502507 8 500507 8 50507 8 50507 8 5	2 12_100000 2 1200000 2 12000000 2 1200000 2 12000000 2 12000000 2 120000000000	8.5754840 8.72542840 7.87387859 8.62732788 8.62732788 8.6262740 1.5288742 1.04274286 4.62087420	× 42_71/42/44/ 4 55/12/50 4 15/12/50 4 15/12/50 4 11/2/14/ 5 65/02/42/ 5 65/02/42/ 4 15/12/50 4 15/12/50 4 15/12/50 5 15/2/11/16	42_fauth star 9_77003888 8_94040512 7_9407422 6_45880342 5_9505237 5_9505237 5_9505237 4_950527126 4_950527126 4_950527126 4_950527126 4_950527126	J 42_070144544 8_577756565 8_77855459 1_277465545 6_5577475188 6_55575154 1_27465545 6_55575155 1_244555512 1_24455125 1_245555125 4_125555125	 Classification Classification<th>\$ 26027506</th><th>51404 43460 1600 63407 63400 57607 5257 42000 42000</th><th>15 pr 2 54050 2 1545 5 7 40240 1 5 78020 7 5 58604 2 5 15074 3 5 15074 3 4 10805 3 4 10805 3</th><th>4.5 4 2503 4 1.300 1 1.300 1 1.300 1 1.400 1 1.400 1 1.400 1 1.400 2 4.000 2 4.000 2 4.000 2</th><th>Haun (</th><th>4 57514540 4 5346622 12 5346622 13 5346622 13 5346624 13 53766244 13 53766244 13 53766244 13 5375625 13 54626544 13 6426554 13 64766255</th><th>4 6010135 4 8010133 11 943833 12 943833 13 858235 13 974383 13 974383 13 974383 13 974383 13 959235</th><th>7 4 52357782 4 52357782 4 52357782 13 52538970 13 5254523 13 5254523 13 5254752 13 5254752 13 5254752 13 5245055 13 5245055 13 5245055 13 5245055</th><th>U V 4 65127351 4 6512735 4 65127351 4 651273 5 55755751 5 55025 12 4950551 12 49507 12 52575505 12 49507 12 51255551 12 55555 12 5455551 12 55555 12 5455551 12 55555</th><th>4 455234 1 4424273 1 4424273 1 4124248 2 4234234 2 4234235 2 423425 2 423425 2 423425 2 423425 2 423425 2 42345 2 42345</th><th>1 1425325 1 14273254 1 10001471 1 4277535 1 4401527 1 4401527 1 4540175 1 4540175 1 4540116 1 7401877</th><th>0 142612228 0 126463405 0 120563405 0 065655266 0 0652527885</th><th>1.105135 1.202343 1.3845379 1.202053 1.202554 1.2045375 1.425574 1.425574 1.425574 1.425574 1.4255654</th><th>AA 0 0000000000 0 000000000 0 00000000 0 00000000</th><th>48 6 (24/25-05 0 (25/25-05 0 (25/25-05 0 (25/25-05 0 (25/25-05 0 (25/25-05 0 (25/25-05 0 (25/25-05 0 (25/25-05) 0 (25/25-0</th><th>X 1.205782-07 0.05387405 0.05039418 0.05039418 0.0503949 0.0503949 0.0503949 0.0503949 0.0503949 0.0503949 0.0503949 0.0503949 0.0503949 0.0503949 0.0503949 0.0503949 0.05049429</th>	\$ 26027506	51404 43460 1600 63407 63400 57607 5257 42000 42000	15 pr 2 54050 2 1545 5 7 40240 1 5 78020 7 5 58604 2 5 15074 3 5 15074 3 4 10805 3 4 10805 3	4.5 4 2503 4 1.300 1 1.300 1 1.300 1 1.400 1 1.400 1 1.400 1 1.400 2 4.000 2 4.000 2 4.000 2	Haun (4 57514540 4 5346622 12 5346622 13 5346622 13 5346624 13 53766244 13 53766244 13 53766244 13 5375625 13 54626544 13 6426554 13 64766255	4 6010135 4 8010133 11 943833 12 943833 13 858235 13 974383 13 974383 13 974383 13 974383 13 959235	7 4 52357782 4 52357782 4 52357782 13 52538970 13 5254523 13 5254523 13 5254752 13 5254752 13 5254752 13 5245055 13 5245055 13 5245055 13 5245055	U V 4 65127351 4 6512735 4 65127351 4 651273 5 55755751 5 55025 12 4950551 12 49507 12 52575505 12 49507 12 51255551 12 55555 12 5455551 12 55555 12 5455551 12 55555	4 455234 1 4424273 1 4424273 1 4124248 2 4234234 2 4234235 2 423425 2 423425 2 423425 2 423425 2 423425 2 42345 2 42345	1 1425325 1 14273254 1 10001471 1 4277535 1 4401527 1 4401527 1 4540175 1 4540175 1 4540116 1 7401877	0 142612228 0 126463405 0 120563405 0 065655266 0 0652527885	1.105135 1.202343 1.3845379 1.202053 1.202554 1.2045375 1.425574 1.425574 1.425574 1.425574 1.4255654	AA 0 0000000000 0 000000000 0 00000000 0 00000000	48 6 (24/25-05 0 (25/25-05 0 (25/25-05 0 (25/25-05 0 (25/25-05 0 (25/25-05 0 (25/25-05 0 (25/25-05 0 (25/25-05) 0 (25/25-0	X 1.205782-07 0.05387405 0.05039418 0.05039418 0.0503949 0.0503949 0.0503949 0.0503949 0.0503949 0.0503949 0.0503949 0.0503949 0.0503949 0.0503949 0.0503949 0.0503949 0.05049429
																		Numer	nparison of True 5 rical Solutions of <i>J</i>	U RK Med			En	omparison of ror versus O rst through f	ith order RP	Effort for

Figure 4.18: The spreadsheet image of full computation results for mechanical engineering example

Fil	Ie Home 1	nsert	Page Layout	Formulas	Data	Review	View	ex_mixt Developer		blem - Mic reloper	ODE Solver	Statement Street	-	-		
r	🖌 Cut	Calit	ori	- 11 - A	с л ^ч =	- =	æ	🐺 Wrap Text		General		-			-	• 🍞
Past	te Format Paint Clipboard	er B	I ∐ →	🔟 * 🌆 * it	A • =		Alignmer	🚾 Merge & Ce	nter *	🥶 - %		Formatting	Format as Table Styles	- Styles -	Inse	rt Delete
	M22	- (-	f_{x}													
16	A	В	С	D	E	F	G	н	1		J K	L	M	P	N	0
1																
2		Xi	k1	k2_Heun	k2_Midp	o k2_Rals	to k2_fift	h ork3_Third	k3_Fc	ourth k3_F	ifth o k4_Fo	ourth k4_Fifth	o k5	k6		yi+1Euler
3																
4	RKSOLVER													53		
6				-	UserForm									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
7					Define In											
в					Initial val Variable:	ue of Indepe	ndent	Number of Steps	(n):	Step	Size (h):					
9					V COLUMN COM			1								
0																
1					Initial v	alue of Depe	ndent Varia	bles:								
12							For f	uler's Method								
13																
4							For H	eun's Method								
15							For N	lidpoint's Method								
16				-												
8				-			For R	alston's Method								
9				-	_			hird Oder Runge								
20				-			For I	hird Oder Runge	Kutta M	emod						
21							Eor F	ourth Oder Rung	e Kutte I	Method				_		
2							1011	our or ouch rung	C Hartan			s	OLVE			
23							- For F	ifth Oder Runge I	Sutta Me	thod			0.02/02/2			
24																
25																
26																
27																
28						-									_	

Figure 4.19: Userform in spreadsheet for mixture problem

Home I	nsert P	Page Layout	Formulas			View	Developer	Dev	eloper ODE	Solver				
Copy -	Calibri	u - 18	- 11 - A				Wrap Text	oter v	General		Conditional	Format	Cell	Insert Delet
Format Paint Clipboard	er a	Font				Alianmen		19	Number	.000	Formatting *	as Table - Styles	Styles -	Cells
M22	- (C	fx		- 4		- ang mine in		- 4	Humber			JUICI		Con
А	в	с	D	E	F	G	н	1	1	к	L	м	N	0
	×i	k1	k2_Heun	k2_Midpo	k2_Ralsto	k2_fift	o o k3_Third	k3_Fo	urth k3_Fifth	k4_Four	rth k4_Fifth	k5	k6	yi+1Eule
														-
				UserForm4									22	1
				Initial val	ue of Depend	For Ex For Hi For M For R For Th For Th	les: der's Method aun's Method dpoint's Method alston's Method aiston's Method aird Oder Runge burth Oder Runge	e Kutta N	lethod		54	DLVE		

Figure 4.20: Filled userform for mixture problem

Home	Inse	rt P.	age Layou	t Formulas Data I	teview Vie	w Develope	r Develop	er ODE S	olver				
	-												
	5°-a												
ns Macros RE	Colver												
New Group													
		-											
AC51		· (-	for .	3.66004384452085E-08									
A	B	c	D	E	F	G	н	1	J	K	L	м	
	ai.	K1	k2 Meuro	k2 Mideoint, Third and Fourth orde	k2 Palatoo's	k2 fifth order	k2. Third order	k2 Fourth orde	k2 Eifth order	k4 Fourth orde	ké Eifth order	*5	k6
	0	-0.15	-0.15	0.149985	0.1499775	0.1499925		0.149985002	0.1499925	0.149970003	0.149985	0.15	
	0.02	-0.15	-0.1499	-0.149955006	-0.14994751	-0.149962504	-0.14994001	-0.149955007	-0.149962505	-0.149940012	-0.14995501	-0.1499	-0.
	0.04	-0.1499	-0.1499	-0.149925018	-0.14991752	-0.149932515	-0.14991003	-0.149925019	-0.149932515	-0.149910027	-0.14992502	-0.1499	-0.
	0.06	-0.1499	-0.1499	-0.149895036	-0.14988754	-0.149902531	-0.14988005	-0.149895037	-0.149902532	-0.149880048	-0.14989504	-0.1499	-0.
	0.08	-0.1499	-0.1499	-0.14986506	-0.14995757	-0.149972554	-0.14985008	-0.149865061	-0.149872554	-0.149950075	-0.14996506		-0.
	0.1	-0.1499	-0.1498	-0.14982509	-0.1498276	-0.149842582	-0.14982011	-0.149825091	-0.149842583	-0.149820108	-0.14983509	-0.1498	-0.1
	0.12	-0.1498	-0.1498	-0,149805126	-0.14979763	-0.149812617	-0.14979015	-0.149805127	-0.149812617	-0.149790147	-0.14980518		-0.
	0.14	-0.1498	-0.1498	-0.149775168	-0.14976768	-0.149782657	-0.14976019	-0.149775169	-0.149782658	-0.149760192	-0.14977517		-0.
	0.16	-0.1498	-0.1497	-0.149745216	-0.14973773	-0.149752704	-0.14973025	-0.149745217	-0.149752704	-0.149730243	-0.14974522		-0.
	0.18	-0.1497	-0.1497	-0.14971527	-0.14970778	-0.149722756	-0.1497003	-0.149715271	-0.149722757	-0.1497003	-0.14971527		-0.
	0.2	-0.1497	-0.1497	-0.14968523	-0.14967784	-0.149692815	-0.14967027	-0.149685221	-0.149692815		-0.14968522		-0.
	0.22	-0.1497	-0.1496	-0.149655296	-0.14964791	-0.149662879	-0.14964042	-0.149655397	-0.149662879	-0.149640482	-0.1496554		-0.
	0.24	-0.1496	-0.1496	-0.149625468	-0.14961799	-0.14963295	-0.14961051	-0.149625469	-0.14963295	-0.149610507	-0.14962547		-0.
	0.26	-0.1496	-0.1496	-0.149595546	-0.14958807	-0.149603026	-0.14958059	-0.149595547	-0.149603026	-0.149580587	-0.14959555		-0.
	0.28	-0.1496	-0.1496	-0.149565629	-0.14955815	-0.149573108	-0.14955068	-0.149565631	-0.149573109	-0.149550674			-0.
	0.3	-0.1496	-0.1495	-0.149535719	-0.14952824	-0.149543197	-0.14952077	-0.149535721	-0.149543197	-0.149520767	-0.14953572		-0.
	0.22	-0.1495	-0.1495	-0.149505815	-0.14949824	-0.149513291	-0.14949097	-0.149505817	-0.149512291	-0.149490866	-0.14950582		-0.
	0.24	-0.1495	-0.1495	-0.149475917	-0.14946844	-0.149483391 -0.149453498	-0.14946097	-0.149475918	-0.149482292	-0.149460971	-0.14947592		-0.
	0.36	-0.1495	-0.1494	-0.149446025	-0.14943855	-0.149453498	-0.14943108	-0.149446026	0.149453498	-0.149481082	-0.14944605		-0.
	0.50	-0.1494	-0.1494	-0.149386258	-0.14937879	-0.149393728	-0.14937132	-0.14935626	0.149393729	-0.149401198	-0.14938626		-0.
	0.42	-0.1494	-0.1494	-0.149386258	-0.14937879	-0.149393728	-0.1493/152	-0.149356386	-0.149363053	-0.1493/1321	-0.14935626		-0.
	0.44	-0.1492	-0.1493	-0.149226516	-0.14921905	-0.1492222982	-0.14921159	-0.149326517	-0.149333983	-0.149211585	-0.14932652		-0
	0.44	-0.1493	-0.1493	-0.149296653	-0.14928919	-0.149204119	-0.14928173	-0.149296655	-0.149304119	-0.149281725	-0.14929665	-0.1493	-0
	0.48	0.1493	0.1498	-0.149266797	0.14925988	-0.149274261	0.14925187	0.149266799	0.149274261	0.149251872	0.1492668		-0.
	0.5	-0.1475	-0.1492	-0 149236947	-0.14922948	0 149744409	0 14922205	0 1472 35745	0 147744407	-0.149222025	-0.14923695		-0
	0.52	-0.1492	-0.1492	-0.149207102	-0.14919964	-0.149214563	-0.14919219	-0.149207104	-0.149214564	-0.149192163	-0.1492071		-0
	0.54	-0.1492	-0.1492	-0.149177264	-0.1491698	-0.149104723	-0.14916235	-0.149177265	-0.149104724	-0.149162340	-0.14917726		-0.
	0.56	-0.1492	-0.1491	-0.149147421	-0.14913997	-0.14915489	-0.14913252	-0.149147433	-0.14915489	-0.149132518	-0.14914742		-0.
	0.58	-0.1491	-0.1491	-0.149117605	-0.14911015	-0.149125062	-0.1491027	-0.149117606	-0.149125062	-0.149102695	-0.14911761	-0.1491	-0.
	0.6	-0,1491	-0.1491	-0.149087784	-0.14908033	-0.149095239	-0.14907288	-0.149087786	-0.14909524	-0.149072877	-0.14908779	-0.1491	-0,
	0.62	-0.1491	-0.149	-0.14905797	-0.14905052	-0.149065423	-0.14904307	-0.149057971	-0.149065424	-0.149043066	-0.14905797	-0.1491	-5
	0.64	-0.149	-0.149	-0.149025161	-0.14902071	-0.149035613	-0.14901326	-0.149028163	-0.149035614	-0.14901326	-0.14902816		-0
	0.66	-0.149	-0.149	-0.140990359	-0.14099091	-0.149005809	-0.14090346	-0.14099036	-0.149005809	-0.14090346			-0
	0.68	-0.149	-0.149	-0.148968562	-0.14896111	-0.148976011	-0.14995267	-0.148968562	-0.148976011	-0.149953666	-0.14896856	-0.149	-
	0.7	-0.149	-0.1489	-0.148938771	-0.14893182	-0.148946219	-0.14892388	-0.148938773	-0.148946219	-0.148923879	-0.14893877		-0.
	0.72	-0.1489	-0.1489	-0.148908986	-0.14890154	-0.148916433	-0.1488941	-0.148908988	-0.148916433	-0.148894097	-0.14890899		-0.
	0.74	-0.1489	-0.1489	-0.148879207	-0.14887176	-0.148886652	-0.14886432	-0.148879209	-0.148886652	-0.148864321	-0.14887921	-0.1489	-0.
	0.76	-0.1489	-0.1488	-0.148849435	-0.14884199	-0.148856878	-0.14883455	-0.148849436	-0.148856878	-0.148834551	-0.14884944		-0.
	0.78	-0.1499	-0.1400	-0.140019660	-0.14991223	-0.148827109	-0.14000479	-0.140019669	-0.14992711	-0.148804787	-0.14991967	-0.1488	-0.
	0.8	-0.1488	-0.1498	-0.149799907	-0.14979247	-0.148797247	-0.14877502	-0.148789908	-0.149797247	-0.148775029	-0.14979991		-0.
	0.82	-0.1488	-0.1487	-0.148760152	-0.14875271	-0.148767591	-0.14874528	-0.148760153	-0.148767591	-0.148745277	-0.14876015		-0.
	0.84	-0.1487	-0.1487	-0.148730403	-0.14872297	-0.14873784	-0.14871553	-0.148730404	-0.14875784	-0.148715531	-0.1487304		-0.
	0.86	-0.1487	-0.1487	-0.14870066	-0.14869322	-0.148708095	-0.14868579	-0.148700661	-0.148708096	-0.148685791	-0.14870066		-0.
	0.68	-0.1487	-0.1487	-0.148670922	-0.14866349	-0.148678357	-0.14865606	-0.148670924	-0.148678357	-0.148656057	-0.14867092		-0.
	0.9	-0.1497	-0.1496	-0.148641191	-0.14963376	-0.148648624	-0.14962633	-0.149641193	-0.148648624	-0.148626329	-0.14864119		-0.
	0.92	-0.1486	-0.1486	-0.148611466	-0.14860402	-0.148618897	-0.14859661	-0.148611468	-0.148618897	-0.148596606	-0.14861147		-0.
	0.94	-0.1486	-0.1486	-0.148581747	-0.14857432	-0.148589177	-0.14856689	-0.148581748	-0.148589177	-0.14856689	-0.14858175		-0.
	0.96	-0.1486	-0.1485	-0.148552033	-0.14854461	-0.148559462		-0.148552035	-0.148559462	-0,14853718	-0.14855203	-0,1485	-0.1

Figure 4.21: Computation results for k's for mixture problem

View		eloper	Developer	ODE Solver	-	
01600	Devi	eroper	Developer	ODE solver		
0	P	9	P:	5	T	
				Visa Third Order	Vies Fourth Order	
Las Euler	14.997	14.9970005	Y Raiston's	14.9970003	14.9970003	yas Fifth Order
14.994	14.004	14.9940012	14.9940012	14.9940012	14,9940012	14.994001
14.991	14 221	14 9910027	14.9910027	14,9910027	14 9910027	14,991002
14.955	14,955	14,9550045	14,9550045	14,9550045	14,9550045	14,955004
14.905	14,903	14,9850075	14,9850075	14,9850075	14,9850075	14,9850071
14.952	14,982	14,9520105	14.9520105	14,9520105	14,9820108	14,982010
14.979	14,979	14,9790147	14,97901469	14,97901469	14,97901469	14,9790145
14.975	14,970	14,9760192	14,97501919	14,97001919	14,97601919	14,9700191
14.973	14.973	14.9730243	14.97302429	14,97302429	14.97302429	14.97302421
14.97	24.97	14.97003	14.97002998	14.97002998	14.97002998	14.97002991
14.997	34.997	14.9970393	14.99703927	14.99703927	14.99703927	14.99703921
3.4	14.0004	14.0040402	14.004817	14.004317	14.00404017	14.00040401
14.901	14.9011	14.9010507	14.98105088	14.90105000	14.98105088	14.90105004
14.0581	14.0581	14.0580587	14.95805875	14.05805875	14.95805875	14.05805871
14.9551	14.9551	14.9550674	14.95506745	14.95506743	14,95506743	14.95506741
14.9521	34.9523	14,9520767	14.95207672	14,95207672	14,95207672	14.95207672
14.9491	14.9491	14.9490866	14.9490866	14.9490866	14.9490866	14.9490864
14.9461	14.9461	14.9460971	14.94609709	14.94609708	14.94609708	14.94609700
14.9431	14.9431	14.9431082	14.94310817	14.94310816	14.94310816	14.94310814
14.9401	14.9401	14.9401198	14.94011984	14.94011984	14.94011984	14.94011984
14.9371	14.9371	14.9371321	14.93713212	14.93713212	14.93713212	14.93713211
14.9341	14.9341	14.934145	14.93414499	14.93414499	14.93414499	14.93414491
14.9312	14.9312	14.9311585	14.93115840	14.93115849	14.93115840	14.93115844
3.4. 0.2.0.2	3.43. 00.21.00.21	14.0281725	14.02817258	14.02817258	14.02817258	1.4.02817251
14.9292	14.0292	14.0251872	14.02518710	14.02518710	14.02518710	14.02518714
14.9222	14.9222	14.9222024	14.92220246	14.92220245	14.92220245	14.9222024
14.9192	14.9192	14.0102185	14.01021851	14.01021851	14.01021851	14.0102185
14.9162	14.9162	14.9162346	14,91623477	14,91623477	14.91623477	14.91623474
14.9132	14.9133	14.9132518	14.91325182	14.91325182	14.91325182	14.9132518
14.9103	14.9103	14.9102695	14.91026947	14.91026947	14.91026947	14.91026944
14.9073	14.9073	14,9072877	14.90728771	14,90728771	14.90728771	14.9072877
14.9043	14.9043	14.9043065	14,90430656	14,90430655	14.90430655	14,90132591
14.9993	14.09013	14.090340	14.00132500	14.090332500	14.00132500	14.0013250
14.8954	14.8924	14.8953000	14.89536666	14,89536665	14.89536665	14.8953666
14.8924	2.0.892.0	14.8923879	14.89238788	14.89238787	14.89238787	14.8923878
14.8894	Ad. BERDA	14.8894097	10.0000007	10.0000007	10 8880087	14 8884088
2.4.888.84	3.4.888.04	14.8884321	3.4.8884423232	14.88843211	3.4.888.43233	3.4.888843233
14.8834	1.0.00000	1d BERGERI	14.88345513	14.88345512	14.88345512	14.8834551
14. BBOR	14.8803	14.8804787	14.88047874	14.88047873	14.88047875	14.88047871
14.8775	14.8775	14,8775029	14,87750294	14,87750293	14,87750295	14,87750293
14.8745	14.8745	14,8745277	14.87452774	14,67452773	14.87452775	14.87452773
14.0715	14.0710	14.0713331	14.07133313	14.07155312	14.07155312	14.07155313
14.0000	14.0000	14.0005791	14.00057912	14,05057911	14.05057911	14.000579:
14.0000	14.0000	14.0050057	14.0050057	14.00500509	14.00500509	14.00300301
14.0020	14.0020	14.0020329	14.00203200	14,06263207	14.00203207	14.00203204
14.0390	14.0397	14.8596606	14.05966065	14.85966064	14.85966064	14.85966063
14.8297	14.8597	14.850089	14.85008902	14.850089	14.850089	14.85008
			14.85271798	14.85371799	14.85371790	14.8937179

Figure 4.22: Computation results for each RK method for mixture problem

Develope	r ODE So	lver.					~ 🕝 =
~	w	×	×	7		AB	AC
~	~	×	Y	Z	AA	AB	AC
RUEResults	Error Euler	Error Heun	Errer mideeint	France Option and	France shill and south an	Error fourth order	Error fifth order
14,9970003	2.000278-06	1.33358-10	1.333488-10	1.333488-10	1.184478-14	o	C C C C C C C C C C C C C C C C C C C
14,9940012	4 000535-05	4 66755-10	2.666675-10	4.000535-10	6.665195-11	6.66756E-11	3.112245-11
14,9910027	6.00085-06	1.00026-09	2.99932E-10	8.001016-10	1.999725-10	2.000075-10	9,225026-11
14,9880048	9.001075-06	1.73375-09	5.22168E-10	1.222526-09	2.999655-10	4.000246-10	1.86696-10
14.9850075	1.000135-05	2.66748-09	6.66362E-10	2.000325-09	6.66658E-10	6.66729E-10	8.11155-10
14.9820108	1.200165-05	3.80116-02	7.995146-10	2.800495-09	1.00006E-09	1.000135-09	4.667355-10
14.97901469	1.400195-05	5.1355-09	2.326375-10	3.73407E-09	1.40016E-09	1.40024E-09	6.53441E-10
14.97601919	1.600216-05	6.66916-09	1.065716-09	4.801026-09	1.866996-09	1.867026-09	8.712515-10
14.97802429	1.800246-05	8.40BBE-09	1.198785-09	6.00146-09	2.400555-09	2.400555-09	1.120185-09
14.97002998	2.000278-05	1.03388-08	1.331738-09	7.33528-09	3.000868-09	3.000795-09	1.400236-09
14.96703627	2 200226-05	1.24725-08	1.464695-09	8.802428-09	3.66794E-09	3.66776E-09	1.711416-09
14,96404217	2.400225-05	1.48075-08	1.59765-09	1.040216-08	4.401785-09	4.401466-09	2.05275-09
14.96105066	2.600355-05	1.78426-08	1.780475-09	1.218726-08	5.202395-09	5.201895-09	2.927115-09
14 75805875	2.800375-05	2.00785-08	1.86331E-09	1.000075-00	6.06385-03	6.063085-03	2,831655-09
14.95506743	3.00045-05	2 30145-08	1 99615-09	1.600575-08	7.004016-09	7.00301E-09	3.267316-09
14,95207672	3.200436-05	2.6156-09	2.128875-09	1.814025-08	8.005046-09	8.003725-09	2.72415-09
14,9490866	3.400455-05	2.94865-08	2.261585-09	2.040826-08	9.072885-09	9.071186-09	4.231995-09
14,94609708	3.600488-05	3.30238-08	2.394268-09	2,280978-08	1.020768-08	1.020548-08	4.761048-09
14,94310816	3.800518-05	3.50256-08	2.526886-09	2 5 3 6 6 5 - 0 5	1.140916-08	1.140655-08	5.321176-09
14.94011984	4.000536-05	4.06975-08	2.659486-09	2.801215-08	1.267755-08	1.267426-08	5.912455-09
14.93713211	4.200566-05	449255-09	2 792025-09	2.08156-08	1.401285-08	1.400895-08	6.524855-09
10.93010099	4.400595-05	9.91745-08	2.924545-09	3.375055-08	1.541495-08	1.541035-08	7.188375-09
14.23115846	4.600615-05	5.37135-08	3.057016-09	3.661265-08	1.666395-08	1.687855-08	7.873028-09
14.92017252	4.800646-05	5.04525-00	2.102446-02	4.002215-08	1.041995-00	1.041255-00	0.500795-09
14,92518719	5.000675-05	6.23926-08	2.221855-09	4.225826-08	2.002275-08	2.001526-08	9.22575-09
14.92220245	5.200695-05	6.85325-08	3.45418E-09	9.682795-08	2.169255-08	2.16845-08	1.011875-08
14.91921031	5.400728-05	7.38735-08	3.586516-09	5.043128-08	2.342926-08	2.341955-08	1.092296-08
14.91623476	5.60075E-05	7.94155-08	3.718795-09	5.416816-08	2.523295-08	2.522105-00	1.176325-08
14,91225181	5.800775-05	8.51575-08	2.851025-09	5.802855-08	2.710255-08	2.70916-08	1.262466-08
14,91026946	6.00085-05	9.10996-08	8.988215-09	6.20425E-08	2.90411E-08	2.902716-08	1.858715-08
14.90728771	6 200825-05	772425-08	4.115376-09	6.618012-08	3 104575-05	3,1035-08	1.447085-08
14.90430655	6.400858-05	1 03595-07	4.247486-09	7.045146-08	3.311726-08	3.309985-08	1.54356E-08
14.90132598	6.600885-05	1.10126-07	4.279566-09	7.485626-08	2.525585-08	2.523646-08	1.642156-08
14.89834602	6.80098-05	1.16886-07	4.5116E-09	7.939476-08	8.746145-08	8.743995-08	1.745865-08
14,89536664	7.000938-05	1.23828-07	4.643598-09	8,406688-08	3,97348-08	3.971038-08	1.851672-08
14.89536664	7 200955-05	1.30975-07	4 775535-09	8.887265-08	4.207365-08	4,20476E-08	1.96061E-08
14.88940969	7.400985-05	1.28225-07	4.907456-09	9.291215-09	4.448025-08	4,445185-08	2.072655-08
14,8864321	7.601016-05	1.45866-07	5.039326-09	9.888526-08	4.69546-08	4.69236-08	2.187815-08
10.88305512	7.80104E-05	1.53515-07	5.171155-09	1.040925-07	4.949485-08	9.94515-08	2.305085-08
14.88047872	8.001065-05	1.61565-07	5.302956-09	1.094325-07	5.210275-08	5,206595-08	2,427475-08
14 87750292	8 201095-05	1 69715-07	5 43475-09	1 149075-07	5 477775-00	5 473785-08	2 551975-08
14.87452772	8.401126-05	1.78075-07	5.566428-09	1.205146-07	5.751995-08	5.747665-08	2.679585-08
14.87155311	8.601145-05	1.86628-07	5.698095-09	1.262565-07	6.032915-08	6.02828E-08	2.8103E-08
14,8685791	8.80117E-05	1.25375-07	5.629736-09	1.321315-07	6.320546-08	6.315516-08	2,244145-08
14.06560560	9.00128-05	2.04325-07	5.961316-09	1.30146-07	6.614895-08	6.609475-08	2.08115-08
14.86263286	9.201225-05	2.12486-07	6.09286E-09	1.442836-07	6.915955-08	6.910126-08	2.221165-08
14.85966063	9.401255-05	2.22846-07	6.22438E-09	1.50568-07	7.228786-08	7.217495-08	8.864846-08
14 656666777	9.601285-05	2 32395-07	6.35586E-09	1 56575-07	7.538228-08	7,531546-08	3 510545-08
14.05371795	2.80135-05	2.42156-07	6.487295-09	1.635146-07	7.052446-08	7,85235-08	3.660046-08

Figure 4.23: Computation results for exact results (true results) and true percent relative errors of each RK method for mixture problem

Figure 4.24: Graphical display of the computation results for mixture problem

- 7	• (° •	Ŧ	_		-	ect	nixture p	roblem	- Micros	oft Exc	el	-		-	-	-	-		rt Tools			-	-		-			0
	Home	Inse	rt Page Lay	out	Formula	s D	ata	Review	View	D	eveloper	De	evelop	er	ODE S	olver	Design	n L	ayout	Form	at					a (ø
-	- 5																											
111	💆 🗗	-																										
ns Mad	cros RKS	olver																										
New	Group																											
Cha			· (=]	ç																							_	-
		0				*	1. T		× 1	5	64 N	0		a		,	7	w.	7	w	×	¥	1			~	10	M
	15 13			L.Menaria	2,770	a mean	2,74/9 4/94	Univer 1	Carlos and			-			-		-Pault Diller		-	w.t.w		Insumation I	ine destructions		tra-Javmania-	tra-Mousier		
-	A		-0 Longer				-0.1499900022		-0.1-0070000 -0				14 MMT 14		LA SUPPORT	LA SUPPORT	LA SETTIONS	14 SUPTOOLS	14 9970009	3 000278-08		2.444476.22	1.000425.10	5.584478-04	A MONTH I	amoni		
VER	3.04 -0.14004 -0	14941	-0.140008018	-0.140017811	-0.1400000038	-0.14000002	-0.140000000		-0.048830007 -0				14.001 14.		14.0013027	14 8830007	14.0053037	14 3830007	14 8810007	4.00040-04	1.00030-08	3 000000-53	8.000.000-0.0	1.000730-00	3 00007E-30	9.338000-11		
_	0.08 -0.14988 -0	1-945	-0.14948300	-0.149907500	-0.149871034	-0.149900179	-0.149900001	-0.149871554	-0.1-0400079 -0		0 14980 -0 1498	14 385	14 947 14	*******	14 3850075	14 9490079	14 3850079	14 9830075	14 3430075	1 000148-03	1.007978-08	8.054509-10	1.000409-09	8.555548-10	6 667196-51	8 11156-10		
	8 1 -0 14000 -0		-0.14000000			-0.14070018	-D LANGERED		A DESCRIPTION OF				LA BER LA		LA GEODINE	TA STOCKED	LA GEDOLINE	LA BESCADE	14 STOCKER	1 200142-04	1 100105-00	7 0041-02.53	3 724270-08	1.000042.00	1.000126-00	A 887962.10		
	114 -014979 -0		-0.149770108		-0.149790877		-0.149772089	-0.249790828	-0.049780080 -0				14.978 14	#1905.80 S	A STRUCTURE	14 PROCESS	14 PROCESCO	14 PROCESS	14 PROCESS	1 000110-02	6.00000-09	1.000710-00	4.805228-08	1.00000-00	1.807080-08	8.713518-30		
													14.67 1	4.47083	LA STOCOGRE					1 006275-05								
	11 -1140° -0		-0.14042030		-0.140400418	-0.149670366	-0.149426331	-0.149490928	-0.040670040 -0				14.847 14	NTONS 1	A 84709417	14 84708407	14.86703607	14.04703427	14 84703407	1 100306-08	1.147240-08	1.46460-00	1000000	1007040-00	3.467768-00	1.711412-00		
																14 98105088			14 98105088									
	1 14 -1 14041 -1	Labor	-0.140600520	-D LODGEDOM	-0.140670106	-0.140500577	-0.140540421	-0.140670008	- Constants -	- LANGERSON -	A LINES of LINES	14 6425	A 9581 14	CARDINAL I	A 66306742	14 peacears 14 peacers	14.05206276	LA DEBORATE	14.852062752	3 00040-05	1.007764.04	1.00010.00	1.40071-04	A Design in	7.00002-00	2 221452-00		
	0.82 -0.14900 -0	1-0-0	-0.149009415		-0.1495(2091	-0.149490908	-0.149505817	-0.1495(4091	-0.149490988 -0	149503410	-0.1490 -0.1494	14 9495	19491 11		A SANDOWN	14 BARDONNE	In process	14 9490800	14 BARDINE	1-00-00-00	1.0-00-00	1.101540-09	1.00000-00	1.000705-00	\$ CT1140-CH	A 101000-CB		
	0.30 -0.34940 -		-0.049-08139	-0.140408027	-0.149-0361	-0.549401303	-0.34945834	-0.34940365	-0.049405388 -0	1.149-02039 -	0.14942 -0.1494	14,3402 0	4,0402, 24,	HOLDS D	A BACLINGA	14 PHOLENEH	14.84003884	14.94001984	14 PHOLINE	4 000038-02	4.089730-08	1.00440-09	1.00330-08	1.107700-08	1.007+00-00	3.313400-09		
	0.40 -0.1400* -0	Logian	-0.140006004	-1.1499-9915	-0.140000042	-0.149201452	-0.14020607	-0 140203000	distants of		- Lesis - 6 Loss	ba sanh in	4 9343 L	-	A SECLORY	14 BRILLING	14 STATES		14 BRILLING	4 400402-05	1.017000-00	3.057016-00	2.00000.00	1.600000.00	1.007000-00	7.472006-00		
	2.48 -0 14908 -0	14935	-0.140000000	-0.149023888	-0.149274081	-0.149130873	-0.149308799	-0.349274083	-0.1-01218*** -0		0.14908 -0.1492				A STOLAT	14 STREETS	14 STREETS	14 PERSONAL PROPERTY.	14 STREETS	5.00079-02	5.000000-00	8 811408-09	1.00000-08	1.000179-04	1.001508-08	5 100 TO -CR		
								-0.140214044																				
	0.04 -0.04008 -0	14916	-0.040077004	-0.1490@88004	-0.14858-713	-0.149040301	-0.549577585	-0.348584704	-	1.140077368 -	0.1405* -0.1403	14,8080 1	4,0000 14	10022-0	A 20000477	14 SOLDATE	14 81610477	14 20822-10	14 ROED-TH	3 800730-02	1040400-08	3 718790-09	140803-08	1 100000-00	1.00000-00	1.170308-08		
	14 4146 4	14807	-0.140007104 -0.14002787	-0.1400000000	-0.140006120	-0.14001046	-0.140007784	-0.14909934	-0.048048088 -0	1 140007108	0.14000 -0.1400	14,0070 1	4 8043 14	Second 1	A BOADORDE	14 80128775	14.80138773	14 BOX DOTE	14.80128715	4.000402-04	A 104086-08	4.114270-00	1000408	3 104170-04	3 3000-00	1.040000-00		
	1.04 -0.14904 -0		-0.1-9009001		-0.149090818		-0.149009088	-0.149080814			0 14902 -0 1492				A 90121299	14 PELETER	14 90121209		14 PELETON	0.000000-02	1.101818-0*	* 379000-09	1 40000-08	1 202249-04	1 1110-0-0	1.040130-08		
	0.7 -0.1400 -0	1480	-0.140008771	-0.140001314	-0.048048008		-0.148808773	-0.048948008	-0.04883879 -0	1.148008773 -	0.14800 -0.1488	14,8804 1	4.8824 14.	4812979 2	A BECORTER	14 BRIDETET	14.88138797	14 80036797	14 BELLETER	7.00048-08	1.309690-07	4.775220-09	1.007080-08	4.307360-08	4.004768-08	1.000020-00		
			-0.1446793177	-0.148871788	-0.140000512	-0.148854834	-0.1488793059													7 MELCON-05	1.154546-07					2.147414-04		
	3 16 -3 14226 -3	14223	-0.140040408		10.140004876	-0.140004884	-0.1488/8404	-0.140054UTG	A Designation of	11400-0428	0.1400 -0.1400	14,0004 1	A 2022 14	2024/001 1	4 88248813	14 88248813	14.00248813	14 20240013	14 88248813	1 201042-05	1.454(36-07	6 171166-00	1.040830-07	4.040400.00	1.04412-02	2 204040-04		
	2.8 -0.1488 -0		-0.148790907		-0.148797947		-0.1487899038		-0 148779008 -0						4 87750394	14 8********	14 87750098		14 87750590	4 101099-02	1.007049-07	3.49479-09	1140070-07	3 400000-08	5 473796-08	1.111071-08		
	0.44 -0.14877 -0	14875	-0.140700102			-0.14070524	-0.542790104	-0.544757565	- CLASSER -	1 140700400 -	0.14875 -0.1487	LA STLE 1	1 and 14	4714521	LA STUDIOTA	14 27255212	LA STANGTON		14 21252213	4 401144-05	1.00001-07	5 Steamers	1.20066-07	5.750006-04	5.101000.00	2.41000.00		
	140 -0.14872 -0		-0.14870080		-0.148708080	-0.140632704	-0.148700661		-0.04068790 ···						A 86807903	14.00077011	14.86827903		14.0002795	4 801170-02	1.000710-07	1.410730-00	1.301330-07	6.300040-08	6.310010-00	1.044040-00		
	8.9 -0.14658 -0	1-010	-0.1445401911	-1 144544778	-D LANSAUTLA	-0.1445-0442	-0.146541188	-D Destention	-0.144535419 -0		0 14454 -0 1445	14.6525 1		atition 1		14 whiters"	14 65150007			\$ 201228-05	A 10405-07	5.01105-09	1.440389-07	6 915956-04	5 \$32144-04	* *******		
	140 -11400 - 104 -11400 -1		-0.140082747		-0.140080177		-0.142411-042		-0.14000000 -0						A STATIST	14 BEDEADEN	14 DESCRIPTION	14 BUSADAD	14 BOLLADED		3 204245-07	4 101040-00	1.00070-07	1 202126-08	7.317462.00	3 344242.02		
	2.80 -0.1407 -0	14834	-0.148000088	-0.148044808	-0.148009481	-0.14809*189	-0.348000080	-0.348009481	-0.34858758 -0	148000084 -	0.14804 -0.1480	14.8087 1	4 8037 14	400718	* #2271798	14 80371790	14 82271790	14 80371790	14 83371790	S RELEFCE	14039-01	8.487390-09	1.00049-0*	1 809449-08	7.62130-08	3.0000-0-08		
														c		n of True S			ical						elative Error v			
															So	lutions of	All RK Met	hods				Computa	bonal Effo	rt for first th	brough fifth or	der RK		
																								methods				
															N						1 1							
															1				TRANK.		2							
														1	N.				- Challens		100							
													- 1	1					a difference and	1	1							
														1	1				-		1				-10-10-0			
																1		-	-									
																1			That form to		101				+			
																			- Char		(1)					tuar		
																	3.3							a short we should be				

Figure 4.25: The spreadsheet image of full computation results for mixture problem

This spreadsheet solver is so user-friendly that users (students, educators and also beginner users of Excel and VBA) only require to click RKSOLVER button and enter relevant information in userform to perform all computations for the complete solution of IVPs efficiently without typing any commands in the spreadsheet.

It is hoped that this spreadsheet solver can be used as a marking scheme for users who need the complete solutions of IVPs numerically and analytically with comparison of them in terms of error at the same time. Lastly, it is hoped that this spreadsheet solver could serve as not only a numerical IVP tool but also an analytical IVP tool with a comparison of them that is convenient for the community of engineering educators and students.

References

- S.C. Chapra, R.P. Canale, Numerical Methods for Engineers, McGraw Hill, 2006.
- D.G. Lilley, Numerical Methods Using Excel/VBA for Engineers, Cambridge University Press, 2010.
- [3] E.D. Laughbaum, K. Seidel, Business Math Excel Applications, Prentice Hall, 2008.
- [4] R.W. Larsen, Engineering with Excel, Pearson Prentice Hall, 2009.
- [5] D.M. Bourq, Excel Scientific and Engineering, Cookbook. O'Reilly, 2006.
- [6] E. J. Billo, Excel for Scientists and Engineers, Wiley –Interscience, 2007.
 [7] S.C. Chapra, Power Programming with VBA/Excel, Prentice Hall, Upper Saddle River, 2003.
- [8] S.L. Kek, K.G. Tay, Design of spreadsheet solver for polynomial interpolation, National Seminar on Science and Technology (PKPST 2009), 69-73 (2009)
- [9] K.G. Tay, S.L. Kek, R. Abdul-Kahar, A bivariate approximation spreadsheet calculator by Lagrange interpolation, Spreadsheets in Education (eJSiE), 7, 1-8 (2014).
- [10] S.L. Kek, K.G. Tay, Solver for system of linear equations, Proceeding of the National Symposium on Application of Science Mathematics 2008 (SKASM 2008), 605-615 (2008).
- K.G. Tay, S.L. Kek, R. Abdul-Kahar, Solving non-linear systems by Newton's method using spreadsheet Excel, Proceeding of the 3rd International Conference on Science and Mathematics Education (CoSMED 2009), 452-456 (2009). [11]
- [12] K.G. Tay, S.L. Kek, Approximating the dominant eigenvalue using Power method through spreedsheet Excel, Proceeding of the National Symposium on pplication of Science Mathematics 2008 (SKASM 2008), 599-604 (2008).
- K.G. Tay, S.L. Kek, Approximating the Smallest Eigenvalue Using Inverse Method Through Spreadsheet Excel, Proceeding of the 17th National Symposium on Mathematical Science (SKSM 2009), 653-658 (2009). [13]
- [14] K.G. Tay, S.L. Kek, R. Abdul-Kahar, Improved Richardson's Eextrapolation spreadsheet calculator for numerical differentiation, AIP Conference Proceedings, 1605, 740-743 (2014).
- [15] K.G. Tay, S.L. Kek, R. Abdul-Kahar, M.A. Azlan, M.F. Lee, A Richardson's extrapolation spreadsheet calculator for numerical differentiation, Spreadsheets in Education (eJSiE), 6, 1-5 (2013).
- K.G. Tay, S.L. Kek, R. Abdul-Kahar, Numerical differentiation spreadsheet calculator, Proceedings of the National Symposium on Application of [16] Science Mathematics 2008 (SKASM 2013), 111-120 (2013).
- C.K. Ghaddar, Unlocking the spreadsheet utility for calculus: A pure worksheet solver for differential equations, Spreadsheets in Education (eJSiE), 9, [17] -16 (2016)
- [18] K.G. Tay, S.L. Kek, R. Abdul-Kahar, A spreadsheet solution of a system of initial value problems using the fourth-order Runge-Kutta method, Spreadsheets in Education (eJSiE), 5, 1-10, (2012).
- K.G. Tay, S.L. Kek, Fourth Order Runge-Kutta Method Using Spreadsheet Excel. Proceedings of the 4th International Conference on Research and [19] Education in Mathematics (ICREM4). 666-672 (2009).
- K.G. Tay, T.H. Cheong, M.F. Lee, S.L. Kek, R. Abdul-Kahar, A fourth-order Runge-Kutta (RK4) spreadsheet calculator for solving a system of two [20] [21] K.G. Tay, S.L. Kek, T.H. Cheong, R. Abdul-Kahar, M. F. Lee, The fourth order Runge-Kutta spreadsheet calculator using VBA programming for initial
- value problems, Procedia-Social and Behavioral Sciences, 204, 231-239 (2015).