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Abstract: This study aims to solve the nonlinear fifth-order induction motor model (FO-IMM) 

using the Gudermannian neural networks (GNNs) along with the optimization procedures of 

global search as a genetic algorithm together with the quick local search process as active-set 

technique (GNN-GA-AST). GNNs are executed to discretize the nonlinear FO-IMM to prompt 

the fitness function in the procedure of mean square error. The exactness of the GNN-GA-AST is 

observed by comparing the obtained results with the reference results. The numerical 

performances of the stochastic GNN-GA-AST are provided to tackle three different variants 

based on the nonlinear FO-IMM to authenticate the consistency, significance and efficacy of the 

designed stochastic GNN-GA-AST. Additionally, statistical illustrations are available to 

authenticate the precision, accuracy and convergence of the designed stochastic GNN-GA-AST. 

Keywords: Gudermannain neural network; Fifth-order nonlinear induction motor model; 

Genetic algorithm; Statistical measures; Active-set technique. 

1. Introduction 

The induction motor nonlinear model together with two rotors circuits is indicated by a fifth-

order of the differential system. The nonlinear fifth-order induction motor model (FO-IMM) is 

dependent upon two variables, one is the shaft speed and the second is the rotor state. In general, 

the two more variables are added using the second rotor circuit effects, which validate deep bars, 

starting cage and rotor distributed limits. To avoid the supplementary state of computational load 

variables with the mandatory routes of the additional rotor, the system is normally limited to the 

FO and rotor resistance is algebraically shifting as a rotor promptness function. This occurred 

due to the possibility when the frequency of rotor current depends on the speed of the rotor. This 

technique is operative for the steady-state response along with the sinusoidal energy [1]. 



The FO differential systems have been studied in the viscoelastic fluid systems [2-3]. Caglar et 

al. [4] implemented a sixth-degree B-spline to solve the linear/non-linear FO boundary value 

problems (BVPs). Agarwal studied the uniqueness and existence conditions of the results of such 

systems [5]. Noor et al [6] implemented a decomposition method to find the solutions of the FO-

BVPs using the convergent series. Siddiqi et al [7–8] investigated the results of 6
th

, 10
th

, 12
th

 and 

8
th

 order BVPs using the 6
th

, 8
th

, 10
th

 and 12
th

 spline degree, respectively. Siddiqi et al solved the 

special form of FO-BVPs using the non-polynomial spline and sextic methods [9-10]. 

Viswanadham et al. [11] solved a collocation method with B-splines of sixth order in terms of 

basis function to solve the special case of FO-BVPs. Akram et al [12] executed reproducing 

kernel space scheme to find the approximate solutions to FO-BVPs. Sabir et al [13] investigated 

the singular FO-BVPs using the variational iteration scheme. Viswanadham et al [14] provided a 

finite element approach, including the collocation method and quartic B-splines. Siddiqi et al. 

[15] implemented the non-polynomial spline approach to solve the singularly perturbed FO-

BVPs. The generic form of the nonlinear FO-IMM is shown as [16]: 
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Where c0, c1, c2, d0 and d1 are the real and finite constants, ( )f   and ( )u   are continuous on 

[ , ]p q . The above-stated schemes for the higher-order BVPs have their precise accuracy, 

capability and performance, as well as, confines over one another. However, the stochastic 

numerical solvers instigated by the Gudermannian neural networks (GNNs) along with the 

optimization procedures of global search as genetic algorithm together with the quick local 

search process as an active-set technique (GNN-GA-AST). The designed measures of GNN-GA-

AST have never been implemented nor applied to solve the nonlinear FO-IMM. Few current 

proposals of the stochastic solvers are doubly singular models [17], biological prey-predator 

network [18], mosquito release system [19], singular Thomas-Fermi system [20], a nonlinear 

functional form of the singular systems [21-22], COVID-19 SITR system [23], SIR nonlinear 

dengue fever model [24], three-point differential model [25], heat conduction model [26], 

periodic boundary value singular problems [27] and infection HIV model [28]. The motive of the 

current work is to solve numerically the nonlinear FO-IMM using the stochastic procedures of 

GNN-GA-AST. Few novel characteristics of the GNN-GA-AST are briefly provided as: 

 The design of GNN is accessible successfully to calculate the numerical outcomes of the 
nonlinear FO-IMM using the computing legacy of GA-AST. 

 A consistent, consistent and precise overlapping of the outcomes is obtained by the 
stochastic procedures of GNN-GA-AST and the Adams results for solving the nonlinear 

FO-IMM. 

 Certification of the stochastic GNN-GA-AST through the performance procedures based 

on the Theil’s inequality coefficient (T.I.C), mean absolute deviation (MAD) and 

variance account for (VAF). 

 The advantages and merits of the stochastic GNN-GA-AST are to accomplish a 
comprehensive framework for the nonlinear FO-IMM and to handle capably such 

nonlinear, stiff nature and complex higher-order models. 



The remaining sections are organized as. Sec 2 shows the GNN-GA-AST methodology. Sec 3 

provides the performance of statistical indices. Sec 4 shows the detailed discussions of the 

results, whereas, the concluding notes and reports based on future research are provided in the 

last Sec. 

2. Methodology: GNN-GA-AST 

This section is related to the design of the GNN-GA-AST to find the numerical measures of the 

nonlinear FO-IMM along with the fitness construction and the optimization procedures of GA-

AST. 

2.1 Construction of GNN 

The procedures based on neural networks are prominent to find reliable, consistent and stable 

solutions in various fields. The mathematical representations of the nonlinear FO-IMM given in 

Eq (1) is stated with feed-forward neural networks in the form of approximate results together 

with their derivatives are written as: 
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In the above Eqs lm , lw  and lb  shows the l
th

 components of the ,m w and b vectors, 

respectively, while û  shows the form of approximate solutions. The Gudermannian activation 

function (GAF) i.e.,  1 1
( ) 2 tan exp( )

2
T      together with its FO derivative is used as an 

activation function. The updated form of the above system using the GAF is given as: 
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The FO form of the derivative is written as: 
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where the weight vector values are 1 2 3[ , , ,... ],lm m m mm 1 2 3[ , , ,..., ]lw w w ww  and 

1 2 3[ , , ,..., ]lb b b bb , respectively. To solve the nonlinear FO-IMM, an error-based merit function 

is indicated as: 

,Fit Fit I Fit II     (6) 

where 
1Fit

 
and 2Fit

 
 are the merit functions based on the mean square error sense, which is 

associated to the differential model and its BCs, respectively. An error function based on the 

nonlinear FO-IMM is given as: 
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2.2 Optimization process 

The training of neural networks-based weight vectors is accomplished to function the 

computational strength procedure based on the GA-AST. The graphical representations of the 

stochastic procedures of GNN-GA-AST to solve the nonlinear FO-IMM are depicted in Fig. 1. 

GA is known as an efficient global search process presented by Holand in the last century [29] 

and is operated to get the weight vectors (W) in neural networks modeling. The design of 

population with applicant explanations of GA is capable based on the values of real bounds. 

Though, each candidate result has some basics, which are equal to anonymous weights in the 

systems of neural networks. GA works over its dynamic operators as, elitism, crossover, 

mutation and selection. Recently, GA is implemented in recurrent optimization proposals like the 

heterogeneous bin storing [30], humanitarian logistics in emergency arrangement [31], lessen the 

cost in multi-energy building source [32], traveling salesman systems [33], design of residential 

buildings for building envelope [34], optimum set of identical clusters [35], glass transitions 

[36], Queen's problems [37] and prediction differential models [38]. 

The slowness of GA is reduced by using the process of hybridization with the appropriate local 

search approach by taking GA best values as an initial input. Subsequently, a well-ordered local 

search AST is implemented to adjust the parameters. AST is implemented in many recent 

applications, e.g., American better pricing choice on two assets [39], optimization with 

polyhedral constraints [40], pressure-dependent systems of water circulation based flow controls 

[41], numerical performances of the optimal control systems governed by the partial differential 

model [42], general constraints of the quadratic semidefinite program [43] and electrodynamic 

frictional contact models [44]. The detail of the implementation procedures of GA-AST is 

provided in the pseudocode-based Table 1. 



Table 1: Pseudocode based on the optimization procedures using GA-ASA to solve the 

nonlinear FO-IMM 
GA process starts 

 Inputs: 

 The constraints with the same number of system’s elements 

as 

 [ ]W m,w,b , where m= [ ],1 2 3 km ,m ,m ,...m  
1 2[ , ,..., ]pw w ww  and 

 1 2 3[ , , ,..., ]kb b b bS  

 Population: The chromosomes set is shown as: 

 
1 2[ , ,..., ]t

lP W W W . 

 Output: WGA- Best is the global Best weight value.  

 Initialization 

 Form W that shows the weights of real bounded numbers. 

The  vectors set is to design a population P. Normalize the 

 [GA] generations. 

 Fitness ( Fit ) structure 

 Attained Fit  in the population P for W based on Eq (7) 

 Termination Values 

 Procedure can terminate, if any condition is accomplished 

 like as Fit  = 10-22, Population Size =180, 

StallGenLimit=120 

 Generations=70, TolFun= TolCon =10-21, Other values: 

default  

 Go to [storage], to achieve the above-mentioned values.  

 Ranking 

 Well-organised dissimilar W in P population for Fit . 

 Storage 

 Save WGA- Best, generation, Fit , time and count of function 

GA Process Ends 

 

Start of AST 

 Inputs 

 Inputs: WGA-Best 

 Output 

 Best GA-AST weights are designated as WGA-AST 

 Initialize 

 Assignments, iterations, Limited constraints and other 

 specified values. 

 Terminate 

 The method stops to achieve any of the condition as: 

 Fit ≤10-20,TolCon= TolFun=10-22, Iterations = 510, TolX=10-21 

 And MaxFunEvals=239000 

 While (Dismiss) 

 Assessment of Fit  

 Compute Fit  of the weight vector values W for Eq (7). 

 Adaptations 

 Invoke {fmincon} in AST. Control W for each AST



 generation. Calculate 
Fit  to shorten W for Eq 7 

 Store 

 Store WGA-AST, Fit , count of function, time, iterations and 

 AST current runs. 

AST End 

Data Generations 

The process is repeated 30 times using the GA-AST to enhance a 

massive GNN dataset via the optimization variables to solve the 

nonlinear FO-IMM 

3. Statistical measures 

The performance soundings using different statistical performances based on the MAD, T.I.C 

and V.A.F to validate the constancy and reliability are provided for solving the nonlinear FO-

IMM. The mathematical depictions of these operatives are written as: 
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4. Simulations of the Results 

In this section, the detail of the numerical solutions to solve three dissimilar problems of the 

nonlinear FO-IMM are provided along with the illustrations of the suitable graphs and tables. 

Problem I: Consider the nonlinear FO-IMM having trigonometric ratios 
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The exact solution of the above nonlinear FO-IMM is sin( ) cos( )   , whereas the Fit  is 

given as: 
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Problem II: Consider a nonlinear FO-IMM having trigonometric ratios and exponential 

functions are given as: 
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The exact solution of the above nonlinear FO-IMM is  sin( ) 1e   , whereas the Fit  is 

given as: 
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Problem III: Consider a nonlinear FO-IMM having exponential terms is shown as: 
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The exact solution of the above nonlinear FO-IMM is  1e  , whereas the Fit  is given 

as: 
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The obtained form of the GNN using the process of GA-AST optimization is implemented to 

solve three dissimilar problems of the nonlinear FO-IMM. The performances of the best weights 

are authenticated to attain the numerical procedures of the nonlinear FO-IMM. The mathematical 
notations of the unidentified weight vectors are given as: 
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(18) 

The graphical presentations of the GNN-GA-AST are illustrated to solve all three problems of 

the nonlinear FO-IMM in Figs 1 to 4. The performance of the GNN-GA-AST using the 

optimization measures is implemented for thirty independent runs. Fig. 1 illustrates the weights 

vector plots using the Eqs 16 to 18 along with the outcome’s comparisons based on best, mean 

and exact solutions of the nonlinear FO-IMM using the GNN-GA-AST. It is observed that the 

calculated results using GNN-GA-AST overlapped with mean and exact solutions for each 

problem of the nonlinear FO-IMM. The values of the AE are illustrated in Fig. 2(a) and one can 

observe that the best AE values lie around 10
-06

 to 10
-08

, 10
-03

 to 10
-05

 and 10
-04

 to 10
-05

 for 

problems I, II and III of the nonlinear FO-IMM. Fig 2(b) represents the performance trials for 

problems I, II and III of the nonlinear FO-IMM. The performances of the best FIT found around 

10
-08

 to 10
-10

, 10
-06

 to 10
-07

 and 10
-04

-10
-05

 for problems I, II and III. The best values of the MAD 

operator lie in the ranges of 10
-06

-10
-07

, 10
-05

-10
-06

 and 10
-03

 to 10
-04

 for problems I, II and III. 

The best values of the T.I.C operator lie in the ranges of 10
-09

-10
-10

, 10
-08

-10
-09

 and 10
-06

 to 10
-07

 

for problems I, II and III. The best values of the EVAF operator lie in the ranges of 10
-11

-10
-12

, 

10
-09

-10
-10

 and 10
-04

 to 10
-05

 for problems I, II and III. It is proved the accuracy of the proposed 

GNN-GA-AST through these statistical soundings to solve the problems I, II and III of the 

nonlinear FO-IMM. 

The graphical depictions of the statistical processes and histograms are plotted in Figs. 3 and 4 

for the problems I, II and III of the nonlinear FO-IMM. The convergence plots of FIT, MAD, 



T.I.C and E.VAF are derived for thirty runs based on the nonlinear FO-IMM. The obtained 

results demonstrated the suitable routines that are about 80% trials based on the FIT, E.VAF, 

T.I.C and MAD. 

To get more satisfaction of the GNN-GA-AST, the performance of the statistical measures is 

investigated for thirty runs using mean, minimum (Min) and semi interquartile range (S.I.R) to 

solve the FO-IMM. The Min values indicate the best runs and the S.I.R is the  3 1

1
,

2
Q Q where 

1Q and 3Q  are the 1
st
 and 3

rd
 quartiles. The statistical Mean, S.I.R and Min procedures are 

tabulated in Table 2 that validates very good performances to solve all problems of the FO-IMM. 

Table 3 shows the computational capability of the stochastic GNN-GA-AST based on the 

completed generations, timely execution and functions count to perceive the decision variables 

of the system. 

C
ase 1

 

  

C
ase 2

 

 
 



C
ase 3

 

 
 

Figure 1: Best weights, comparison of best, exact and mean results to solve the FO-IMM 

 

 
(a) AE values for problems I, II and III to solve the FO-IMM 

 
(b) Performance soundings  for problems I, II and III to solve the FO-IMM 

Figure 2: AE values and performance investigations based on FIT, MAD, T.I.C and E.VAF 

operators for problems I, II and III to solve the FO-IMM  
 

 

 

 

 



 

 

 

 

 
Performance of FIT values in convergence studies to solve FO-IMM 

 
  

(a) Hist: Problem I  (b) Hist: Problem II  (c) Hist: Problem III 

 

Performance of RMSE values in convergence studies to solve FO-IMM 

   



(d) Hist: Problem I  (e) Hist: Problem II  (f) Hist: Problem III 
Figure 3: FIT and MAD Convergences plots along with Hist values using the optimization process of GA-AST to 

solve the FO-IMM 

 
Performance of T.I.C values in convergence studies to solve FO-IMM 

 
  

(a) Hist: Problem I  (b) Hist: Problem II  (c) Hist: Problem III 

 
Performance of EVAF values in convergence studies to solve FO-IMM 

   
(d) Hist: Problem I  (e) Hist: Problem II  (f) Hist: Problem III 

Figure 4: T.I.C and EVAF Convergences plots along with Hist values using the optimization process of GA-AST to 

solve the FO-IMM 



 

 

Table 2: Statistics inquiries to solve each problem of the nonlinear FO-IMM 

  Problem I Problem II Problem III 

Min Mean S.I.R Min Mean S.I.R Min Mean S.I.R 

0 1.148E-06 1.075E-03 1.770E-03 1.918E-05 3.390E-02 2.413E-02 1.832E-04 4.748E-02 9.449E-02 
0.1 1.155E-06 1.397E-03 2.083E-03 2.024E-05 2.386E-02 2.192E-02 8.921E-05 5.830E-02 9.326E-02 
0.2 1.105E-06 1.405E-03 1.100E-03 2.036E-05 2.471E-02 2.151E-02 8.745E-05 5.890E-02 9.989E-02 
0.3 9.654E-07 1.044E-03 1.838E-03 1.886E-05 2.281E-02 1.996E-02 3.480E-04 5.396E-02 8.219E-02 
0.4 7.204E-07 1.062E-03 1.599E-03 1.545E-05 2.761E-02 1.617E-02 6.799E-04 4.518E-02 3.421E-02 
0.5 3.764E-07 6.915E-04 1.055E-03 1.014E-05 1.905E-02 1.594E-02 8.725E-04 3.055E-02 4.605E-02 
0.6 4.071E-08 2.169E-04 3.564E-04 3.333E-06 5.438E-03 5.101E-03 3.227E-04 1.235E-02 1.746E-02 
0.7 4.851E-07 3.024E-04 3.835E-04 4.234E-06 9.739E-03 1.695E-02 1.437E-04 1.699E-02 2.391E-02 
0.8 7.851E-07 8.149E-04 1.162E-03 1.147E-05 2.306E-02 1.622E-02 8.042E-04 3.202E-02 5.927E-02 
0.9 3.747E-07 1.195E-03 1.083E-03 1.694E-05 3.100E-02 2.170E-02 1.229E-03 4.813E-02 8.827E-02 

1 2.688E-07 1.327E-03 2.037E-03 1.884E-05 2.380E-02 1.895E-02 1.377E-03 5.386E-02 9.750E-02 

 

Table 3: Complexity measures to solve each problem of the nonlinear FO-IMM 

Problem Generations Implementation of time Functions count 

Mean STD Mean STD Mean STD 

I 105.5662 8.0787 305.0000 21.2872 19570.5000 786.6982 

II 104.7645 6.8842 305.0000 24.8973 19661.6667 584.8162 

III 104.5080 5.4628 305.0000 20.8765 19579.9667 85.9155 

4. Concluding remarks 

The present investigations are related to solve the nonlinear FO-IMM by exploiting the GNNs 

together with the hybridization techniques of global and local search schemes, GNN-GA-AST. 

An error function using the differential system and its corresponding initial conditions is 

considered and then optimized using the computational process of GA-AST. The correctness and 

exactness of the stochastic GNN-GA-AST are pragmatic to compare the obtained results with the 

true solutions. The values of the AE are observed in good measures and found around 10
-06

 to 10
-

08
 for solving the nonlinear FO-IMM. The performance of the GA-AST using different statistical 

measures is calculated to solve the nonlinear FO-IMM. To validate the stability, capability and 

reliability of the GNN-GA-AST, dissimilar statistical performances using the EVAF, MAD and 

T.I.C operatives have been available to find the precise and accurate results of the nonlinear FO-

IMM. Moreover, the statistical measures for thirty independent trials are also measured and most 

of the trials showed the highest level of accuracy to solve the nonlinear FO-IMM. 

In the future, the stochastic GNN-GA-AST can be used to solve the prediction models, fluid 

dynamic models and biological systems. 
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