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Abstract 

This article mainly focuses on one of the important phenomena in the quantum realm called entanglement. 

It is clear that entanglement created due to the nonlinearity property has been arisen by some different 

methods. This study in contrast uses a unique approach in which a cryogenic low noise amplifier is designed 

and using the transistor nonlinearity effect (third-order nonlinearity) entangled microwave photons are 

created. It is supposed that the low noise amplifier contains two coupled oscillators resonating with different 

frequencies. The mentioned oscillators are coupled to each other through the gate-drain capacitor and 

nonlinear transconductance as an important factor by which the entangled microwave photons are strongly 

manipulated. For entanglement analysis, the Hamiltonian of the system is initially derived, then using the 

dynamic equation of motion of the designed amplifier the oscillator's number of photons and also the phase 

sensitive cross-correlation factor are calculated in Fourier domain to calculate the entanglement metric. As 

a main conclusion, the study shows that the designed low noise amplifier using nonlinearity of the transistor 

has the ability to generate the entangled microwave photons at very low intrinsic transconductance and 

more importantly when the noise figure is strongly minimized. Additionally, a cryogenic low noise 

amplifier is designed and simulated to verify that it is possible to achieve an ultra-low noise figure by which 

the probability of the generation of the entangled microwave photons is increased.   
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Introduction 

Low noise amplifier (LNA) [1-5] is one of the essential parts of the radar receiver [6-7]. The detection of a 

weak signal backscattering from a target needs a subsystem to amplify the level of the signal to increase 

their probability of detection and also undeliberately add a minimum level of noise to the signals. It is clear 

that the inserting noise can easily affect the detecting signals. Therefore, the design of a LNA is very 

challenging. This has contributed to the unusual trade-off among LNA important characteristics such as 

noise figure (NF), linearity, gain, impedance matching, and power consumption [1-5, 8]. However, the 

subject of this study is not to design a LNA to detect backscattering weak signals. In this article, we try to 

use the nonlinearity introduced by the transistor in the LNA circuit to create entanglement between modes. 

Entanglement is a quantum theory phenomenon [9, 10] by which two or more quantum particles share their 



properties (states) to each other. Therefore, by measuring one quantum particle state the other particle state 

is exactly defined. This property isn't affected by the inter-distance between particles. It has been studied 

that two optical photons can be entangled by interaction of a high intensity laser with nonlinear materials 

[9, 10]. Moreover, there are other different methods to create entanglement such as electro-opto-mechanical 

converter [11-13], optoelectronic converter [14,15], Josephson junction parametric amplifier [16], and 

plasmonic properties [17]. But, recently for applications such as quantum computing, the focus was laid on 

the Josephson Junction parametric amplifier to produce entanglement by which a very low noise 

temperature is accessible [20]. However, the amplifier gain is originally low and to attain a high gain, for 

example around 12 dB, it needs to implement a series array of 1000 Josephson Junction. Also, the 

compression gain of the Josephson Junction parametric amplifier is around -100 dB which means that this 

amplifier enters the nonlinear region much earlier than a typical LNA. However, the mutual point among 

the systems discussed above is that the entanglement is created between modes due to the nonlinearity 

property. With knowledge of this point, here in this study, we use the transistor nonlinearity applied by a 

LNA circuit to create entanglement. Nonetheless, the question is: if just a transistor nonlinearity is enough 

to create the entanglement, then what is the role of LNA circuit (or a cryogenic LNA)? The LNA circuit is 

selected due to the fact that it can be designed in such a special way to introduce a very low NF [8]. Recent 

studies have shown that the temperature noise of a cryogenic LNA can be reduced to 1.2 K [21] and 3.2 K 

[22] at an operational temperature of 4.0 K. This finding makes LNA circuit partially comparable with 

Josephson Junction parametric amplifier. In other words, a LNA with a very low temperature noise may be 

operated rather than the Josephson Junction parametric amplifier in the quantum realm. Maybe, it is because 

some critical factors such as high gain and high circuit linearity can be hardly attainable by the Josephson 

Junction parametric amplifier.    

The other important factor is that entanglement as a quantum phenomenon is so fragile, meaning that it can 

easily leak away [14, 15]. Therefore, any system utilized to create the entanglement must contain a low 

level noise to avoid the entanglement leaking away. That is why we have focused on cryogenic LNA in this 

study. Additionally, another important feature of LNA to create the entanglement is that the designed circuit 

in contrast to electro-opto-mechanical converter [11-13] and optoelectronic converter [14,15] contains no 

any external cavities such as the optical cavity and microresonator. In this idea the creation of the 

entanglement just relates to the LNA and the transistor nonlinearity properties. That means that this system 

is a simple one in comparison with other converters, even 1000 series Josephson Junctions in a parametric 

amplifier [20]. As a main and last point, this system has an ability to employ in a quantum radar system, 

and also any other quantum systems such as readout for quantum computing that need to amplify a very 

low level signal with a very low NF beside the entanglement producing.    

 



I. THEORY AND BACKGROUNDS 

A simple LNA’s small signal circuit is schematically illustrated in Fig. 1. In this circuit Vrf is an input signal 

operating at RF frequency applied to the circuit. The capacitors created at high frequencies such as Cgs and 

Cgd are regarded and also non-linear elements indicated with ids is a dependent current source controlled by 

the drop voltage across Cgs (Vgs). This current can be expressed in terms of Vgs as ids = Vgs∂ids/∂Vgs + Vgs
2
 

∂2ids/∂Vgs
2
 + Vgs

3
 ∂3ids/∂Vgs

3
 = gmVgs + gm2Vgs

2
 + gm3Vgs

3 [4,5], where gm is a linear term standing for the 

intrinsic transconductance of the transistor and gm2, gm3 are the non-linear quantities used to approximately 

model the transistor as a non-linear element. Additionally, in the equivalent circuit, the current sources 

defined as Īs = Īs0 + √ĪR
2 and Īd = Īd0 + √Īd

2, where Īs0 and Īd0 indicate the DC bias points and ĪR
2= 4KTRs, 

where K and T respectively are the Boltzmann’s constant and operational temperature, stands for the input-

induced noise due to the any resistors appeared in the gate of the transistor [1-5]. Finally, Īd
2 = 4KTγgm is 

the thermal noise with γ = 2/3, where γ is the empirical constant.  

 

Fig. 1. Schematic of a typical simple LNA small signal model and contributed equivalent circuit at RF 

frequencies; in the equivalent circuit ids stands for the non-linear element. The equivalent circuit shows the 

coupling of the two oscillators (OSC_I and OSC_II) to each other through a nonlinear circuit and then 

sharing the states (|Ψ1> and |Ψ2>) of the oscillators and eventually creation of the entangled states; in this 

figure |H> and |V> stand for horizontal and vertical states, respectively.  

Observing the LNA with a different view than a classical view, one can consider the LNA containing two 

simple oscillators (OSC_I and OSC_II) coupling to each other through the nonlinear elements shown with 

a scribble dotted line on the figure. The figure schematically shows that the states of the individual oscillator 

can be linked to each other in such a way that the resulting states become entangled. In fact, this study 



emphasizes on the point that a LNA using nonlinearity of the transistor can create the entangled states with 

no need for any optical cavity and microresonator. To prove this idea, we analyze the illustrated circuit in 

Fig. 1 with the full quantum theory [18, 19] as follows.   

For the circuit analysis with the full quantum theory, the essential nodes fluxes as the coordinates (input 

and output nodes) and also loop charge as the contributed momentum conjugate variable are defined. The 

observable quantities in circuit such as voltage and current relate to the node fluxes (φ1, φ2) and loop charges 

(Q1,Q2). The circuit analysis begins with the definition of the Lagrangian as:   
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where V1=dφ1/dt and V2=dφ2/dt; from the circuit it is clear that V1=Vgs. Using Legendre transformation the 

associated classical Hamiltonian can be obtained as H(φk,Qk) = ∑k (φk.Qk) – Lc, where Qk are the conjugate 

variables of the coordinate variables φk calculated through Qk = ∂Lc/∂(∂φk/∂t). The next step is to apply the 

canonical conjugate quantization procedure to achieve the quantum Hamiltonian as: 

 

2 2
2 2 2 2

1 1 2 2
1 1 2 2

1 2 1 1 2 2 1 2 2 1
1 2 1 1 2 2 1 2 2 1

2
1 2 1 2

1 2 1 2 1 2
1 2

2 3
1

1 1 1 1

2 2 2 2 2 2

1

2 2 2 2 2

2 2 2 2 2

2
2 '

m m

q g p q d p

m m m m

q q q p q p q p q p

m m rf m rf rf rf

p p

rf
m m L

q p

g g
H Q Q

C L C C L C

g g g g
Q Q Q Q Q Q

C C C C C

g Pg V P g V GV G V
Q Q

C

V
g g

C

 

   

   

   
        

   

    

    

  2 2 2
1 2 2 2 1 2 11 2

2 2 2 1 22 ' 2 '

rf m rf
in rf

q p p p

V g V
Q Q C C V

C C
    

 
   

 

                  (2) 

where Cq1, Cq2, Cp1, Cp2, Cq1q2, Cq1p1, Cq1p2, Cq2p1, Cq2p2, P1, P2, G1, G2, C’q1p2, C’p1p2, and C’q2p2 are constants 

and are defined in Appendix A. In this equation, two definitions as 1/2Lg’ ≡ (1/2Lg + gm
2/2Cp1) and 1/2Ld’ 

≡ (1/2Ld + gm
2/2Cp2) are defined in which the second term in the definitions indicates the gate and drain 

connected inductors affected by the intrinsic transconductance and coupling capacitors. In other words, 

using the coupling effect one can manipulate the inductors connected to the transistor. Additionally, the 

other important point using the Hamiltonian expressed in Eq. 2 is that the circuit contains two oscillators; 

the first oscillator connected to the gate and the other connect to the drain of the transistor and oscillate 

respectively with ω1 = 1/√(Lg’Cq1) and ω2 = 1/√(Ld’Cq2). Other terms in Eq.2 as Q1Q2, Q1φ1, Q2φ1, Q1φ2 show 

the coupling between oscillators in the circuit design. Also, the terms including Q1, φ1, Q2, φ2 in the equation 

declare the RF source coupling to the contributed oscillators.  

In the following, it needs to define the Hamiltonian in terms of the creation and annihilation operators to 

study the entanglement created by LNA. For this reason, the coordinate parameters (φ1, φ2) and the related 



momentum conjugate (Q1,Q2) are expressed in terms of the creation and annihilation operators. Using the 

quantization procedure leads Q1 = -i(a1-a1
+)√(ħ/2Z1), φ1 = (a1+a1

+)√(ħZ1/2) and Q2 = -i(a2-a2
+)√(ħ/2Z2), φ2 

= (a2+a2
+)√(ħZ2/2), where (ai,ai

+) i = 1,2 are the first and second oscillator’s annihilation and creation 

operators. In definitions above the contributed impedance for each oscillator can be expressed as Z1 = 

√(Lg’/Cq1) and Z2 = √(Ld’/Cq2). Using the above mentioned definitions, the LNA contributed Hamiltonian is 

introduced as: 
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where subscripts L and NL stand for the linear and nonlinear parts, respectively. Using the Hamiltonian, 

the dynamic equation of motion of the coupled oscillators in LNA circuit are calculated as:    
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where κ1,κ2,a1in and a2in are the decay rate of the oscillators interacting with the environment embedded into 

it, and the input thermal noises that affect the oscillators. The constants in the equation such as A1, A2, A3, 

B1, B2, B3, E1ω, and E2ω are defined in Appendix A. Fortunately, Eq. 4 is a linear equation and there is no 

need for any linearization. In the following, Eq. 4 will be used to analyze the entanglement generated due 

to the nonlinearity of the transistor. For this reason, it is necessary to calculate the number of photons of 

the oscillators coupled to each other <a1
+a1> and < a2

+a2> and also the phase sensitivity factor (phase 

sensitive cross correlation) <a1a2>. To do so, we take the Fourier transform for each side of Eq. 4 to express 

the equations in terms of a1 and a2. Taking the Fourier transform of Eq. 4 leads: 
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where ω is the RF source angular frequency. Using Eq. 5, one can calculate the number of oscillators 

photons number as: 
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where n1ph, n2ph and n12ph are the first, second oscillators photon number, and the phase sensitive cross 

correlation, respectively. Also, n1in and n2in are the number of photons created due to the thermally excited 

photons. Using Eq. 6, one can easily calculate the number of photons for each oscillator. All of the constants 

used in Eq. 6 including A01, A02, A03, A04, B01, B02, B03, B04, N0, N1, N2, M0, M1, and M2 are calculated and 

presented in Appendix A. After calculation of the oscillators photon number and also the phase sensitive 

cross correlation factor one can utilize entanglement metric [12] to analyze the entanglement between 

modes using:    
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From the criterion expressed in Eq. 7, if εe>1, then two modes become entangled [12]. Eq. 7 shows that the 

phase sensitive factor has a critical role to create the entanglement between oscillators mode. In Eq. 7 <a1a2> 

is the phase sensitive cross correlation arising due to the amplifier mode interaction of the two oscillator’s 

fields. This is beside the beam-splitter-like interaction of the oscillators as <a1
+a2>. The criterion expressed 

in Eq. 7 emphasizes that increasing the oscillator's coupling modes leads to creating the entanglement 

between modes. In other words, the modes of oscillators become entangled just by increasing the phase 

sensitive cross correlation.  

II. Results and discussions 

In the following, the focus is laid on the critical parameters engineering to create the entanglement between 

modes using cryogenic LNA and also enhance it. The circuit shown in Fig. 1 is simulated in which the 

ATF54143 transistor derived model [23] is used and the data related to it, is listed in Table. 1. For 

entanglement analysis, concentrating on Eq. 7 indicates that it is necessary to increase the phase sensitive 

factor to create the entanglement. The phase sensitive cross correlation or the phase sensitive factor is the 



amplifier mode coupling between the oscillators. We simply define it with the expectation value of <a1a2> 

which means that the annihilation of one photon of the first oscillator leads to annihilation of one photon 

of the second oscillator. The oscillator's photon number (for example just the first oscillator is depicted) 

and also the phase sensitive factor simulation results are illustrated in Fig. 2. The figures show that 

increasing gm generally leads to increase of the oscillator's photons number and also the phase sensitive 

factor. The results show that the peak of the graphs occurred around a specific frequency with a typical 

bandwidth. This frequency relates to the first or the second oscillator’s resonant frequency. 

Table 1. ATP3475 transistor model [23] data used to simulate the LNA using quantum theory 

 Stands for  

Tc Operational temperature 4 K 

γ Empirical constant 2/3 

Cf Feedback capacitor 0.04 pF 

Cin Input capacitance 0.1 pF 

Rg Gate resistance 1.2 Ω 

Lg Gate inductance 0.25 nH 

Ld Drain inductance 1.0 nH 

Cgs Gate-Source capacitance 2.0 pF 

Cds Drain-Source capacitance 0.08 pF 

 

Fig. 2 Oscillators Number of photon; (a) OSC_I number of photons, (b) phase sensitive factor; Vrf = 10-3 

v; Cf = 0.04 pF, gm3 = 600*10-3 A/V3. 

However, the criterion expressed in Eq. 7 declares that the phase sensitive factor should be comparable 

with the number of photons of the contributed oscillators. This is a critical factor that we have to care about 

in the design of the circuit and more importantly this factor is strongly affected by the noise induced in the 

system. It has been discussed that the noise induced in the system can distort the creation of the 



entanglement and its preservation [14-16]. In other words, the noise induced and entanglement in the system 

are strongly related to each other. For this reason, in Fig. 3, we try to clearly compare the entanglement 

profile with NF and discuss the relationship between them for the designed cryogenic LNA. In this figure, 

each quantity is depicted versus incident frequency (ωin) and the transistor intrinsic transconductance (gm). 

If one compares Fig. 3a with Fig. 3b with an especial concentrating on the areas indicated with the dashed 

rectangle (white), it is clear that the probability of the entanglement creation is increased at an area where 

NF is minimized. This means that trying to minimize the noise temperature in LNA leads to the creation of 

the entanglement by the circuit. Additionally, the circuit analysis reveals that NF inversely relates to the 

LNA’s circuit transconductance Gm = <Iout>2/<Vin>2, where <Iout>2 and <Vin>2 are the LNA output current 

and input voltage fluctuations, respectively. Gm shown in Fig. 3c explains that at some specific frequencies 

coincident with the phase sensitive factor profile illustrated in Fig. 2, the circuit transconductance becomes 

maximized and this leads to minimize NF. In other words, minimizing NF in the designed LNA needs to 

increase the output current fluctuation with respect to the input voltage variations.  

 

Fig. 3 a) Entanglement profile b) Noise figure (dB), c) Circuit transconductance (A/v), d) Noise 

temperature (K) vs. RF source angular frequency (GHz) and transistor intrinsic transconductance gm 

(mS), Vrf = 10-3 v; Cf = 0.04 pF, gm3 = 600*10-3 A/V3. 



Finally, the LNA’s noise temperature is depicted in Fig. 3d. This parameter relates to NF. In Fig. 3a and 

Fig. 3b, some area is indicated with the red dashed rectangles. These areas are actually important because 

for the quantum applications the designed LNA should operate with a very low gm. Clearly, a low gm leads 

to a low NF; this is why the designed LNA should operate with a very low gm. However, the problem is 

that at the areas indicating there is no entanglement between modes. To solve the problem, the RF incident 

field can slightly increase to enhance the phase sensitive factor at some area with low gm. 

 

Fig. 4 Entanglement profile b) Noise figure (dB), c) Noise temperature (K) vs. RF source angular 

frequency (GHz) and transistor intrinsic transconductance gm (mS), Vrf = 20*10-3 v; Cf = 0.04 pF, gm3 = 

600*10-3 A/V3. 

To enhance the phase sensitive factor, the incident RF field is increased from Vrf = 1 mv to Vrf = 20 mv and 

the results are depicted in Fig. 4. In the same way with Fig. 3, Fig. 4 shows that at the area where NF is 



minimized the entanglement metric is increased. However, at low gm, the probability of the generation of 

the entangled microwave photons is increased. This is contributed to the RF field coupling to the system 

through Cin. This factor, as one can trace mathematically in Eq.3, strongly manipulates the system nonlinear 

Hamiltonian through the terms Q1φ2 and φ1φ2. These terms strongly manipulate the connection between 

two oscillators by which the phase sensitive factor is dramatically changed. Also, for better understanding, 

some data are given on figures inside the dashed circles. It shows that in the area with a very low NF, the 

probability of the creation of the entanglement is strongly increased. 

 

Fig. 5a) PCB layout of the designed LNA (distributed elements), b) Noise figure (dB) vs. Frequency 

(GHz), c) Gain (dB) vs. Frequency (GHz). 

However, the critical point here is that is it really possible to achieve such an order of noise temperature by 

engineering a typical cryogenic LNA? To answer this important question, a cryogenic LNA operating at L-

band is designed and simulated at 10 K. This range is deliberately selected to be the same with the 

theoretical simulations in which the incident frequency is in the range of 8.1 GHz < ωin < 9.8 GHz, at which 

the minimum NF is attained (Fig. 4b). In the same way with the theoretical analysis, in the cryogenic LNA 

design, HEMT ATP13454 transistor is used because of appropriate parameters (listed in Table. 1) at 

cryogenic temperature [23]. At cryogenic temperature, the HEMT transistor produces a strong improvement 

in mobility of electrons and NF. Using this factor helps to easily engineer the LNA circuit to strongly 

confine the NF. Regarding the points mentioned, a typical cryogenic LNA is designed and its PCB (printed 

circuit board) layout is illustrated in Fig. 5a. This schematic just shows the distributed elements 

implemented on a typical substrate. In the design, to minimize the gm to be coincident with the quantum 



theoretical analysis, Vdd = Vgg = 0.4 v is selected to bias the circuit. Also, RF_in and RF_out on the 

schematic stand for input and output of the circuit, respectively.   

The main goal is to design a professional LNA with a very low NF, high gain and high linearity to be 

partially comparable with the Josephson Junction parametric amplifier [20]. The result depicted in Fig. 5b 

shows that by engineering the LNA and focusing specifically on the impedance matching (reflection 

coefficient) engineering, the LNA’s NF is minimized to 0.04 dB around 1.392 GHz meaning that the 

designed LNA introduces the minimum noise temperature around 2.68 K. Indeed, this is not comparable 

with the noise temperature of 0.4 K that has been achieved by 1000 series arrays of Josephson Junction 

parametric amplifier [20], however it is a fair one. In other words, using a cryogenic Ultra-LNA in which 

the noise figure can be strongly minimized can lead to enhancing the probability of the generation of the 

entangled microwave photons that the quantum theory predicted.  Additionally, the gain of the designed 

LNA is illustrated in Fig. 5c in which the average gain is reached to 22 dB in the considered bandwidth. 

The gain attained by the LNA in this work is higher than the Josephson Junction parametric amplifier’s 

gain which was around 12 dB [20]. 

Conclusions 

In this article, we tried to create entanglement between modes using a unique method. To do so, a cryogenic 

LAN was designed and analyzed using quantum theory and its dynamic equation of motion was analyzed 

by Heisenberg-Langevin equations. It was found that the designed LNA contained two coupling oscillators 

to each other. The mentioned coupling could be manipulated through the transistor third-order nonlinearity 

to create the entanglement between oscillators. To examine the entanglement between modes, we calculated 

the number of photons of the oscillators and compared them with the phase sensitive cross-correlation 

factor. The transistor third-order nonlinearity was the first degree of freedom that we focused on to engineer 

the LNA to produce the entanglement. One of the other effective factors to affect the coupling between 

oscillators was the incident field amplitude (Vrf). Through changing the input amplitude, it was shown that 

the coupling between oscillators was changed and this effect strongly altered the entanglement 

property. The results show that there is a strict connection between NF and entanglement; at where the NF 

becomes minimized the probability of the generation of the entangled microwave photons is increased. 

Also, we found that coupling of the RF incident field to the system plays an important role specifically 

when the LNA is designed to operate with a very low gm. As an interesting conclusion of this work, it can 

be clearly indicated that using nonlinearity of the transistor in a cryogenic LNA could generate the entangled 

microwave photons. Finally, the cryogenic LNA was designed and simulated to reach an ultra-noise figure 

around 0.04 dB which can be partially accepted in quantum applications. In the design, we just concentrated 

on the input and output reflection coefficients to minimize the NF. 
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