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1. Introduction

In this day and age, fractional calculus is a key area because of its heaps of applications
in engineering science and technology, see for instance [1,2]. Moreover, fractional integral
operators are major part of the mathematical analysis. These operators have been used
to formulate and construct new results in the theory of inequalities. Many of the famil-
iar inequalities and relevant results are generalized and extended via fractional integral
operators [3,4]. Fractional integral operator of order § is defined by

1 f(y)
T, = dy, 1
pf () Zn(P) /R" x—y|" P Y W
where {,(B) = 7”; (/ (2’122(),5;/25) . A fractional integral operator is a smooth operator and has

been applied in several branches such as partial differential equations, harmonic analysis,
non-linear control theory, and potential analysis, see for example [5,6] and references
therein. Over the years, the boundedness properties of Ty has put many researchers in the
spotlight [7-9].

In the last few years. the field of p-adic numbers Q, is wildly used in harmonic
analysis [10-12] and mathematical physics [13,14]. Let p be a prime number. The field of
the p-adic absolute value |y|, is defined by setting [0|, = 0,

. S
|y|p:P Toif J/ZP'Y?

where ,s,t € Z, and p,s and t are coprime. | - |, undergoes many axioms of a real norm
with the below ultrametric inequality

ly +zlp < max{|ylp, |z[p}- €
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In [14], we see that any y # 0 € Q) can be uniquely represented as:

y=p" Yy wp', ©)
i=0
where a;,y € Z,&; € plzp,zxo # 0. The convergent of the series (3) is from |p7a;p'|, = p~ 7.
The space Q) consists all n-tuples of Q, with the following norm

—= . 4
lylp max Yilp 4)

Now, let

By(a)={ycQ,:ly—alp<p’}, Sy(a) ={y € Qy: [y —al, =p"}

be, respectively, the ball and sphere with radius p7 and the center at a.

It is a familiar fact that ), is a locally compact commutative group under addi-
tion; denote by dy, the Haar measure on Q}; normalized by |, By(0) 4y = 1. Additionally,
va(a) dy = p"7 and fsy(a) dy = p""(1—p™"),forany a € Q}.

Suppose L"(Q}) (1 < r < o0) is the space of all complex-valued functions f on Q}
such that

11l @) = </Q If(y)rdy)m < co.

p

In [15], author introduced the fractional integral operator on Q7 as

Pis) — f(y) ;
T = 55 o o OB

where I',(B) = %

The explicit formula of the above operator on the p-adic field is acquired in [16,17]. The
fundamental properties of the fractional integral operator on local fields are given in [15].
Moreover, A central bounded mean oscillations estimate for commutators of fractional
integral operator on p-adic Morrey spaces are reported in [18]. Recently, the boundedness
of the fractional integral operator on Morrey spaces is shown in [12,19]. The current paper
deals with the roughness of an operator which is a key topic in analysis in this day and
age; see for instance [20,21] and the references therein. Motivated by [21], we define the
rough fractional integral operator. Suppose b: Q) — R, f: Q) — Rand Q: S — R are
measurable mappings, then

p o Oy,
Tgaf(x) /@Z Xyl @)
e (b(x) — By lpy)f(y)
b _ X)—0ly YipY)J\Y dy, 6
Faf = [, R y ©)
respectively, whenever
Q(lylpy) f(y)
/‘Qn _p Tl*ﬁ ‘dy < o0 (7)
Pl Ix Y|p
and ( )
| b(y)2lylpy) f(y)
/@n S|y < ®
P |x Y|p
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In this article, we consider the rough fractional integral operator Tg o along with its

commutator Tg g and acquire the boundedness on p-adic central Morrey spaces. In the latter

case, the symbol function is from the A-central bounded mean oscillations(CMO**) (Qp).
The results of the paper can also be implied in locally compact Vilenkin groups and
Heisenberg groups. From here on, the letter C means a constant with a different values at
separate occurrence.

Definition 1 ([22]). Suppose 1 < s < co.and A € R. The space BS"\(@’;) is defined as

1 1/s
IFllnap = sop (o [ 1F0Fax) <o

YEZ |B’Y|H

where B, = B, (0). Moreover, BS"\(Q’;) reduces to {0} for A < —1/s.

Definition 2 ([22]). Suppose 1 < s < coand A < 1/n. The space CMOS'A(@Z) is as follows

1/s
1
||f||cMosA(Qg) = sup <|BH)‘S/B |f(x) —fBW|SdX) < oo, 9)
YEZL YlH v

where fp = ﬁ wa f(x)dx.
Remark 1. CMOS')‘(QQ) is a mere CMO®(Q}) for A = 0, (see [23]).

Definition 3 ([18]). Suppose1 < s < coand A € R. The space WBS"\(Q’;,) is as follows

1/s
_ sup,-o O°[{x € By : [f(X)| > o|u
1A lwssr @y = P ( B, L <

where B, = B, (0).

It is noteworthy to illustrate the importance of our main results before stating them.
The following example will do a world of good in this context.

Example 1. The solution u(y, t) of the homogeneous Cauchy problem of linear evolutionary pseudo-
differential equation

{%@‘Wf) +Tu(y,t) =0, (y,t) € Q) xR,
u(y,0) = u’(y)

is given by u(y, t) = (Tg u®) (y). For the regularity of the solution, we consider two function spaces
XandY. Since Tg is linear, then we have

1750 — o) ly = IT5 ) — T2y < Cllu® — ]l

Here, we came across the boundedness inequality
IT5lly < Clfllx.

It is imperative to mention here that our operator is very helpful in finding the
regularity of Cauchy problem of Schrodinger equation.
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2. Boundedness of Rough p-Adic Fractional Integral Operator on Central
Morrey Spaces

The current section deals the boundednesss of Tg o on central Morrey spaces. However,
in order to do this, we need a lemma which can be proved in the same way as [15].

Lemma 1. Suppose1 < q<r <oo,0<p <n,p/n+1/r=1/q,and Q € L7 (S¢(0)).
(i) If f € L9(Qp), q > 1, then

||T£,Qf||U(Qg) < CHfHH(QZ)'

(i) Iff e Ll(QZ), o > 0, then

- C<||f|L1(QZ)>r.
H (4

Now, we turn towards our key result of the section.

Hx cQy: |T§,Qf(x)| > a}

Theorem 1. Suppose0 < p<n 1<g<n/Bu=p/n+A1/9—1/r=8/n A< —B/n,
and Q) € L7 (S9(0)).

(i) Forgqg >1, TEQ satisfies the following inequality:
||T/§,Qf\|3rw(@g) < Cllfllsar -

(ii) Forg=1, TE,Q satisfies the following inequality
IITE,ofllew@;) < CHfHBM(Q;)-

Proof. (i) Suppose f € BW‘(QZ). Now for fixed v € Z, representing B, (0) by B,, we
begin as

L A
|B”’”/37 ﬂ,Qf(x)| X
7IH

(), |T,§’,Q<fm><x>|fdx)l/r

1+
Byl

1 TY "d v

+ B|1+W/BV| 5.0 (faBs) ()] dx
e

=I1+1II

For I, we make use of Lemma 1 together with §/n =1/q—1/rand y = A + /n.

1 1/r
— 4 r

—1/r—u q i
< 1Byl ([, w7
Y
< Hf||3qw\(@g)- (10)

For II, first we have

L@y ay = [ 1000l prax = cp )
v ok

Ix|p=1
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By the application of Holder’s inequality, equality (11) and A < —B/n, we proceed as

aly,yf)
b e !
Oy lpy)f(¥)]

S/B% |x—py|n_ i

- / 1Q(py) f(y)|dy
k= 'y+1

> pen( [ |o<pky>|q’dy) U frray)

k=y+1

5 oo ( [awra) ([ i)

k=vy+1

< Cllf 132 () Z p KB B
k=vy+1

< C|B’Y|VH||f||B'%/\(Qg)’ (12)

Tl )] =

Consequently,

1/r
= (i f, Thots) o)
< Cllf 102 (qp)- (13)

From (10) and (13), we have the desired result.
(ii) For g = 1weset f, = f — f1 and f1 = fxp,. Then by Lemma 1, we have

|{x € By :|T§’Qf1(x)| > 0|y

n r
- C(||f1||Ll(@p)>
(o

—co ([ 1wiax)

— 1+A)r
<C r|B'Y|( ”fHBIA Qn

- 1+
=Co r|B’Y| VerHBlA Qn
Now, from the similar estimate as in (12), we have
ITEa 2001 < CIBy [l f2llja gy

Making use of Chebyshev’s inequality, we obtain
[{x € By :|Tga o(x)| > ol
<o / T8 o fo ()"
_ 1+
< Co r|B’)’| yr||f2||BlA (@)
1+pr

< Co-_r|B’Y| HfHB“‘(QZ)



Fractal Fract. 2022, 6,117 6 of 10

Since
Ty of ()] < [Tpa i)+ [TEf2(0)],
we obtain
{x € By : [TL0f(x)] > olu < [{x € By £ [TV o fi(x)] > 0/2]
+|{x€B,: |Tp,0f2(x)| >0 /2|y
< Co B | £ Iy s 14
o "Byl ||fHBLA(Qp) (14)
Ultimately,
0" [{x € By : |Tg o f(x)| > o\ /" -
( g |1+'” )< OB U s gy (15)
v

for some y € Z and o > 0. Hence proof is completed. O

3. A-Central Bounded Mean Oscillation Estimates of Tg’g on Central Morrey Spaces

The following section discusses the A-central bounded mean oscillation estimates of
Tg ’g on p-adic central Morrey spaces. We need an important result before proving this.

Lemma 2 ([22]). Suppose b € CMOT')‘(Q’;), A>0andi,je Z. Then
b5, — b, | < p"1i = j111bllcatora o) max{[Bilf, |Bjlis}-
Now are are firmly in a position to prove our key result.

Theorem 2. Suppose B e R,0< B <n1<q <n/B,q) <qga<oo,B/n=1/q1+1/q,—
1/qg.Letalso0 < Ay <1/n, M +B/n <A <0, A=A+ A+ B/nand Q) € L‘ill(Sg(O)).

Then TE’Q is bounded from BTM (Qp) to B4 (Qp) and satisfies

p,b
”Tﬁ,ngBlM(@g) < C”b”CMOWZAz(Qg)”f”B'hr}‘l Q)

Proof. Suppose f € B"'A(QZ). Now for fixed y € Z, represent B, (0) with B,

(7, 1Tparor dx)”"

(e ) o)
+ (Bim A (b( ) - b37>( Qfch) qu)w

(o f [Tha( (b0 =19, ) 15, ) 0 )

(o . [Tho( (b0 =15, ) 5 ) 0 qu>1/q

=L+DL+1;+ 14

In order to evaluate I;, weset1/r = B/n—1/q1,1/9 =1/g2 + 1/, then by Lemma 1
along with Holder’s inequality to have
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h= (o o | (00 =0, ) (B, ) 0

1/q2
q2
< B'y|H1/q</B b(x) —bg, dx)
v

([, [ratxs o ax)

1/r+A
< CIBy [ " bl catonaa g

: < [, ‘“dx) o

< C\Bv|/1\4||b||cMoqerz(@;)||f||BqM1 @) (16)

q 1/9
dx)

In a similar fashion, we estimate I3, for thisrepresent1/q1 +1/q, = 1/r,/n =1/r—1/3,
with Lemma 1; together with Holder’s inequality, we are down to

Iz = <|3th /37 TEQ(<Z7(X) - bBW>fXBy> (x) qu>1/‘i
< cly A (000~ ba, )7 rdx)m

1/92
_ q
SCB7|H1/’1</B }b(x)—b% 2dx)
Y

~ (/éJf(x)Wldx)l/ql

A
< CIBy 4118l cronsos i 1 mos - a7
To evaluate I, we use Holder’s inequality, equality (11) and A1 + 8/n < —Ay <0,
we obtain
Qlylpy)f(y)
’TE,Q(fXBg)(X) = /C pin_ﬁdy
Ix — Y|p

Q(lylpy)f(y)l
“ W”

= / Q(py) f(y)|dy

k= 7+1
k e\ /¢
L (e Y>|q1dY> ([, 1rmay)
k=vy+1 Sk Sk
0o ‘ . ' , 1/q/1 . 1/q1
< X e ( [ oo Y>|‘“dy) ([, 1ronmay)
k=v+1 JS§ B,
<C||f||BqM1 @) Z p |B[
k=v+1
:C”fHB'h,M(Qn Z p n(A+p/n)
k=y+1

A
= CIB, I P 1l (18)

M(Qp)

Now, we are well and truly in a position to estimate I;. From (18) and Hoélder’s
inequality, we acquire
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R= (g o | (00 =05, ) (Thoras ) 00

MA+B/n=1/
< CIB P Ll s

9
. (/BW b(x) —va‘quy/q

M+B/n—-1/
< CB PV £l gy

p)
q 1/q2
v

< C‘B’Y|/\H”b”cMoﬂzﬂz(Q;)”f”B'hr’ll (@) (19)

q 1/9
dx)

b(X) — bB7

Finally, we turn our attention towards estimating I;. For this we need to give the fol-

lowing estimates. Making use of Hlder’s inequality, equality (11), inequality (18), Lemma 2
and of the fact that v + 1 < k, we have

Ty o < <b(X) - an,>fXB%> (x)

(b(y) - b37)0<|ypy>f<y>

= — dy
B, x=ylp "

1b(y) — bp, ||y lpy) f(¥)]
- /Bf |x—y|”*'3 v

= "D [, 10) = b, 0Py f )y

k= 7+1

) 1/4;
Y p’“"ﬂ)( [ 100y
k

k=y+1

. (/Sk If(y)y%dy)l/ql(/Sk |b(y—b37)|‘72dy>l/q2

00 RN
-y B ( [ oty
k

k=y+1

(o) (f o)

1-1/g+A
< C||f||Bq1/\1 (@) Z P ﬁ)|Bk’H =
k=y+1

1/q2
: (/ Ib(y—bsy)‘“dy>
By

1-1/g2+A
< C”f”B‘h/}‘l(Q” Z p ﬁ)|Bk|H ot
k=7+1

10wty v may) ( [ o)

1-1/g2+A
< C”bHCMOQzAz (@) Hf”th M( (@) Z P ﬁ)|Bk|H i
k=y+1

1/ A 1/ A
~ [|Bk|H‘”+ 4 (k= ) B ]
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< C”b”CMOWz:/\z(Q;;) Hf”BLn,M (@)

[e9)

Y (e=m)p OB
k=v+1
< CHbHcMoqz/Az(Qg)Hf”BLh/M (@) Z (k - 'Y)PknA
k=vy+1

= C|BW‘)ﬁ’|bHcMoqz%z(@g)||fHBqM1 (@) (20)
Now, it follows from (20) that

= (e i | (s =00, ) g )0 qu)w

< C‘B'y|/1¥||b||cMor72,Az(Qg)||f||BqM1 (@) (21)

From (16), (17), (19) and (21), we obtain
b
||T£,Qf”BM(Qg) < C”b”cMoqzﬂz(Q;)||f||3q1r?~1 Q)
Hence Tg,’g is bounded from Bf1-M (Qp) to B’V‘(Qz). This completes the proof. [

4. Conclusions

The boundedness of rough p-adic fractional integral operator on central Morrey spaces
and weak central Morrey spaces in the p-adic field is studied. In addition, the boundedness
for commutators of rough p-adic fractional integral operator on central Morrey spaces is
also obtained when the symbol function is from A-central bounded mean oscillations. It is
noteworthy here that rough p-adic fractional integral operator and its commutator can be
further considered in locally compact Vilenkin groups, Heisenberg groups, and variable
exponent in the p-adic field, which will appear elsewhere.
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