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Complex Urysohn integral equations and complex Fredholm integral equation of the second kind have intensi�ed the attention of
appreciable researchers to their solution due to their comprehensive applications.  is study is devoted to the existence and
uniqueness of solution to these integral equations in the setting of complete complex double controlled metric spaces via �xed
point theory. For this motive, a �xed point result together with a numerical example for the convergence behavior of operator to
the �xed point is analyzed in the context of the quoted metric spaces.

1. Introduction and Preliminaries

A self-mapping ℘: Ξ⟶ Ξ, where Ξ≠∅, is called a con-
traction if ∃ κ ∈ (0, 1), such that

z(℘a,℘b)≤ κz(a, b),∀a, b ∈ Ξ, (1)

where (Ξ, z) is a metric space. Furthermore, if the metric
space (Ξ, z) is complete and satis�es the inequality (1), then
in such case, ℘ possesses a unique �xed point. Inequality (1)
is often used to de�ne contractivity, which implies the
continuity of ℘ and is known as the Banach contraction
principle.  e generalization of Banach contraction prin-
ciple stated by means of contraction mapping is one of the
active areas of research for the practitioners of nonlinear
phenomenon. Among these generalizations, weakly con-
tractive mappings are one of the eminent results from
scholars, which can be found in the articles [1, 2]. Moreover,
Alqahtani et al. [3] have proved a result which is a gener-
alization of Das and Gupta [4] and Jaggi [5], in which the
rational type contractions were considered.  ose consid-
ered rational type contractions are themselves, in fact,
generalizations of Banach contraction principle. For more
studies, refer to [6–11].

Apart from the generalization of contractive conditions,
researchers have dedicated plentiful time to the solution of
diversi�ed amount of equations via the �xed point method.
Such generalizations include solving linear system of
equations, di�erential equations, fractional di�erential and
integral equations, etc. Abdeljawad et al. generalized the
double controlled metric spaces [12] to a complex double
controlled metric spaces [13], in which a contraction the-
orem was presented. Furthermore, the solutions to complex
Riemann–Liouville fractional operator, Atangana–Baleanu
fractional integral operator, and nonlinear telegraph equa-
tion were obtained via the �xed point method. For further
study, we encourage readers to study [14].

Integral equations play a key role in radioactive heat
transfer problems, electricity and magnetism, kinetic theory
of gases, mathematical economics, mathematical problems
of radioactive equilibrium, quantum mechanics, �uid me-
chanics, optimization, optimal controlled systems, com-
munication theory, radiation, population genetics, potential
theory, queuing theory, geophysics, medicine, the particle
transport problems of astrophysics, nuclear reactor theory,
renewal theory, acoustics, �uid mechanics, hereditary
phenomena in physics and biology, steady-state heat con-
duction, fracture mechanics, and continuum mechanics.
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+erefore, researchers have dedicated a lot of attention
towards solving these equations (for instance, see [15–19]
and references therein). Urysohn integral equations occupy
comparable priority in the diversified area of research in
multiplex subjects like mathematics, biological sciences,
physical sciences, and so on.+e Urysohn integral equations
are defined as

δ(θ) � ρ(θ) + 􏽚
y

x
Δ1(θ, ε, δ(ε))dε,

ζ(θ) � ρ(θ) + 􏽚
y

x
Δ2(θ, ε, ζ(ε))dε,

(2)

where ρ(θ) is a continuous function on the interval [x, y],
Δ1(θ, ε, δ(ε)) and Δ2(θ, ε, ζ(ε)) are kernels defined on the
complex region, and R(x, y) � (θ, ε): x≤ θ≤y, x≤ ε≤y􏼈 􏼉.

+e solution of Urysohn integral equations has been
handled via distinctive approaches such as [20, 21] and
references therein. One of the approaches is the fixed point
approach (several articles can be found on such topic, for
instance, see [22, 23] and references therein).

Likewise, Fredholm integral equation is one of the sig-
nificant integral equations and is given by

Λ(ς) � Z(ς) + α􏽚
d

c
Ω(ς, t,Λ(t))dt, (3)

where Z(ς) is a complex continuous function on the given
interval α≠ 0 and is a complex parameter, the kernel
Ω(ς, t,Λ(t)) � 􏽐

n
j�1 cj(ς)bj(t) is a known continuous sep-

arable kernel function on a complex plane, and
S(c, d) � (ς, t): c≤ ς≤d, c≤ t≤ d{ }. It is always assumed that
functions cj(ς) and dj(t) are complex-valued. In addition,
the sets cj(ς)􏽮 􏽯 and dj(t)􏽮 􏽯 are linearly independent on the
interval [c, d], and c, d are the real limits of the integral.

Similarly, the applications of Fredholm integral equation can
be found in the aforementioned fields of the research, which
highlight the dominance of integral (3) in the area of re-
search. +erefore, the authors conceive to find the solution
of (3) via variant strategies. Similarly, the solution of
Fredholm integral equation is managed in distinctive
methods. An illustration of some of those methods has been
analyzed in [24–26]. One of the methods to solve integral (3)
is the B-spline wavelet method by Maleknejad and Nosrati
Sahlan [27]. Similarly, He proposed a variational iteration
method [28–30] to solve integral (3). +e Adomian de-
composition method and various numerical methods have
also been applied to obtain the solution to (3). Fixed point
theory is an alternative supporting approach to solve (3).
Numerous researchers have followed this method. For
further study, one can see [31–33].

As mentioned earlier, there are diverse methodologies to
solve an integral equation. +e fixed point technique is
among the various other techniques. In the current study, we
have extended the result proven in [3] to common fixed
point weak contraction in the setting of complete complex
double controlled metric type spaces with a numerical ex-
periment. Moreover, we apply our proven result to obtain
sufficient conditions for the existence and uniqueness of
complex-valued Urysohn integral equations and Fredholm
integral equation.

Theorem 1 (see [3]). Let (Ξ, z) be a complete extended
b-metric space and ℘: Ξ⟶ Ξ be a continuous self-mapping
such that for all a≠ b ∈ Ξ,

z(℘a,℘b)≤ κM(a, b), (4)

where κ ∈ (0, 1) and

M(a, b) � max z(a, b),
z(b,℘b)[1 + z(a,℘a)]

1 + z(a, b)
,
z(a,℘a)[1 + z(b,℘b)]

1 + z(a, b)
,
z(b,℘b)z(a,℘a)

z(a, b)
􏼨 􏼩. (5)

Consider that for each a ∈ Ξ and lim
m,n⟶∞

ϑ(an, am)< 1/κ,
an � ℘na0, where a0 ∈ Ξ for all n ∈ N. +en, ℘ has a fixed
point say h. In addition, for a ∈ Ξ, we have ℘na⟶ h.

In [13], Panda et al. proposed a more generalized structure
of double controlled metric spaces, i.e., complex double con-
trolled metric spaces, where a couple of fixed point results are
proved. In addition, the solutions to a couple of fractional
operators and telegraph equation have been investigated via the
fixed point technique. To achieve the main objectives of this
work, we need to revisit some basic concepts from literature.

Definition 1. Consider the set of complex numbers C and
suppose ζ1, ζ2, ζ3 ∈ C, are complex numbers. A partial order
≺ on C can be defined as

ζ1 < ζ2⇔Re ζ1( 􏼁≤Re ζ2( 􏼁 and Im ζ1( 􏼁≤ Im ζ2( 􏼁. (6)

+erefore, it can be inferred that ζ1 ≺ ζ2, if one of the
given property holds.

(1) Re(ζ1) � Re(ζ2) and Im(ζ1) � Im(ζ2).
(2) Re(ζ1) � Re(ζ2) and Im(ζ1) � Im(ζ2).
(3) Re(ζ1) � Re(ζ2) and Im(ζ1) � Im(ζ2).
(4) Re(ζ1) � Re(ζ2) and Im(ζ1) � Im(ζ2).

+e notation can be listed as ζ1⋩ζ2, if ζ1 ≠ ζ2, along with
property (4) to be satisfied by considering the equivalent
fashion, i.e.,

(1) 0≺ ζ1⋩ζ2⇒|ζ1|< |ζ2|.
(2) ζ1 ≺ ζ2 and ζ2 ≺ ζ3⇒ζ1 ≤ ζ3.
(3) 0≺ ζ1 ≺ ζ2⇒|ζ1|≤ |ζ2|.
(4) If 0≤ a≤ b ∈ R and ζ1 ≺ ζ2⇒aζ1 ≺ bζ2 ∀ ζ1, ζ2 ∈ C.
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Definition 2. Let Ξ be a nonempty set and z: Ξ × Ξ⟶ C be
a distance mapping, where C is a complex-valued set.
Moreover, consider the functions μ, ]: Ξ × Ξ⟶ [1,∞). A
complex-valued double controlled metric can be defined as

(1) z(η, ζ) � 0; ⇔ η � ζ.
(2) z(η, ζ) � z(ζ , η).
(3) z(η, ς)≺ μ(η, ζ)z(η, ζ) + ](ζ , ς)z(ζ , ς).

∀ η, ζ, ς ∈ Ξ. +e pair (Ξ, z) is called a complex-valued
double controlled metric space.

Example 1. Consider a nonempty set Ξ � 0, 1/3, 1{ }, and we
define distances as follows (Table 1).

Lets define the functions, μ, ]: Ξ⟶ [1,∞) by (Table 2).
From the above data, it can be analyzed that

2 + 3ι � z(η, ζ) � z(0, 1)≻μ 0,
1
3

􏼒 􏼓z 0,
1
3

􏼒 􏼓 + μ
1
3
, 1􏼒 􏼓z

1
3
, 1􏼒 􏼓 �

3
2

􏼒 􏼓(ι) +
5
4

􏼒 􏼓(1 + ι) �
5
4

+ 2.75ι, (7)

which shows that (Ξ, z) is not a complex controlled metric
space and hence nor a complex extended b-metric space. On
the other hand,

2 + 3ι � z(η, ζ) � z(0, 1)≺μ(η, ζ)z(η, ζ) + ](ζ , ς)z(ζ + ς) �
3
2

􏼒 􏼓(ι) +(4)(1 + ι) � 4 + 5.5ι. (8)

Similarly, all the remaining cases can be verified, which
shows that (Ξ, z) is a complex double controlled metric
space.

Definition 3 (see [13]). Let (Ξ, z) be a complex double
controlled metric type space and let ζn􏼈 􏼉∈N ∈ Ξ be a sequence
and ζ ∈ Ξ.

For any κ ∈ C, there exists N ∈ N such that ∀ n>N,

(1) A sequence ζn􏼈 􏼉∈N is said to be convergent to ζ ∈ Ξ if
z(ζn, ζ)≺κ; then, ζn􏼈 􏼉n∈N⟶ ζ as n⟶∞. Math-
ematically, it can be expressed as lim

n⟶∞
ζn � ζ.

(2) A sequence ζn􏼈 􏼉n∈N⟶ ζ, is said to be Cauchy if for
m> n>N, z(ζn, ζ)≺κ.

(3) +emetric space (Ξ, z) is said to be complete if every
Cauchy sequence is convergent in Ξ.

2. Fixed Point Result

In this section, a fixed point result is established which
generalizes the result in [3] to a common weak contraction
in the sense of complete complex double controlled metric
space.

Theorem 2. Let (Ξ, z) be a complete complex double con-
trolled metric space. Furthermore, let ℘,ℵ: Ξ⟶ Ξ be two
self-operators. Now for λ ∈ (0, 1) and L> 0, such that for all
distinct a, b ∈ Ξ, we have

z(℘a,ℵb)≺ λM(a, b) − LN(a, b), (9)

where

M(a, b) � max z(a, b),
z(b,ℵb)[1 + z(a,℘a)]

1 + z(a, b)
,
z(a,℘a)[1 + z(b,ℵb)]

1 + z(a, b)
,
z(b,ℵb)z(a,℘a)

z(a, b)
􏼨 􏼩,

−b ±
�������
b
2

− 4ac
􏽰

2a
,

N(a, b) � min z(a,℘a), z(b,ℵb), z(b,℘a)􏼈 􏼉.

(10)

Moreover, for λ ∈ (0, 1) and for any ai ∈ Ξ, supm≥1 lim
i⟶∞

μ ai+1, ai+2( 􏼁] ai+1, a2m+1( 􏼁

μ ai, ai+1( 􏼁
<
1
λ
. (11)

Table 1: Distance function.

z(η, ζ) 0 1/3 1
0 0 ι 2 + 3ι
1/3 ι 0 1 + ι
1 2 + 3ι 1 + ι 0
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Additionally, for each a ∈ Ξ, suppose that

lim
n⟶∞

μ a, a2n+1( 􏼁 and lim
n⟶∞

μ a2n+1, a( 􏼁 exist and are finite. (12)

+en, ℘,ℵ have a common fixed point.

Proof. Let a0 ∈ Ξ be an arbitrary point. Suppose the se-
quence an � ℘na0 satisfies the conditions of the theorem and
is defined as

a2n+1 � ℘a2n,

a2n+2 � ℵa2n+1.
(13)

Consider

z a2n+1, a2n+2( 􏼁 � z ℘a2n,ℵa2n+1( 􏼁≺ λM a2n, a2n+1( 􏼁 − LN a2n, a2n+1( 􏼁, (14)

together with

M a2n, a2n+1( 􏼁 � max z a2n, a2n+1( 􏼁,
z a2n+1,ℵa2n+1( 􏼁 1 + z a2n,℘a2n( 􏼁􏼂 􏼃

1 + z a2n, a2n+1( 􏼁
,
z a2n,℘a2n( 􏼁 1 + z a2n+1,ℵa2n+1( 􏼁􏼂 􏼃

1 + z a2n, a2n+1( 􏼁
,􏼨

z a2n+1,ℵa2n+1( 􏼁z a2n,℘a2n( 􏼁

z a2n, a2n+1( 􏼁
􏼩,

� max z a2n, a2n+1( 􏼁,
z a2n+1, a2n+2( 􏼁 1 + z a2n, a2n+1( 􏼁􏼂 􏼃

1 + z a2n, a2n+1( 􏼁
,
z a2n, a2n+1( 􏼁 1 + z a2n+1, a2n+2( 􏼁􏼂 􏼃

1 + z a2n, a2n+1( 􏼁
,􏼨

z a2n+1, a2n+2( 􏼁z a2n, a2n+1( 􏼁

z a2n, a2n+1( 􏼁
􏼩,

(15)

from which it is concluded that

M a2n, a2n+1( 􏼁 � max z a2n, a2n+1( 􏼁, z a2n+1, a2n+2( 􏼁,
z a2n, a2n+1( 􏼁 1 + z a2n+1, a2n+2( 􏼁􏼂 􏼃

1 + z a2n, a2n+1( 􏼁
􏼨 􏼩. (16)

Now

N a2n, a2n+1( 􏼁 � min z a2n,℘a2n( 􏼁, z a2n+1,ℵa2n+1( 􏼁, z a2n+1,℘a2n( 􏼁􏼈 􏼉,

� min z a2n, a2n+1( 􏼁, z a2n+1, a2n+2( 􏼁, z a2n+1, a2n+1( 􏼁􏼈 􏼉.
(17)

Table 2: Controlled functions.

μ(η, ζ) 0 1/3 1
0 1 3/2 2
1/3 3/2 1 7/6
1 2 7/6 1
υ(η, ζ) 0 1/3 1
0 1 2 3
1/3 2 1 4
1 3 4 1
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From (17), we get that N(a2n, a2n+1) � z(a2n+1,

a2n+1) � 0.
In order to proceed, consider the following cases from

(16). □

Case 1. Case1: If M(a2n, a2n+1) � z(a2n+1, a2n+2), using (9)
implies z(a2n+1, a2n+2)≺ λ z(a2n+1, a2n+2) − LN(a2n, a2n+1);

as L> 0 and N(a2n, a2n+1) � 0, we get z(a2n+1, a2n+2)

≺ λ z(a2n+1, a2n+2), which is an obvious contradiction as
λ ∈ (0, 1).

Case2: If M(a2n, a2n+1) � z(a2n, a2n+1)[1 + z(a2n+1, a2n+2)]

/1 + z(a2n, a2n+1), then

max z a2n, a2n+1( 􏼁, z a2n+1, a2n+2( 􏼁􏼈 􏼉≺
z a2n, a2n+1( 􏼁 1 + z a2n+1, a2n+2( 􏼁􏼂 􏼃

1 + z a2n, a2n+1( 􏼁
. (18)

In order to conclude, consider the following subcases.
(Case2)i: if max z(a2n, a2n+1), z(a2n+1, a2n+2)􏼈 􏼉 � z(a2n,

a2n+1), which follows
z a2n+1, a2n+2( 􏼁≺ z a2n, a2n+2( 􏼁, (19)

while from (18), we have

z a2n, a2n+1( 􏼁≺
z a2n, a2n+1( 􏼁 1 + z a2n+1, a2n+2( 􏼁􏼂 􏼃

1 + z a2n, a2n+1( 􏼁
. (20)

By simple calculation from (20), we get

z a2n, a2n+1( 􏼁≺ z a2n+1, a2n+2( 􏼁, (21)

which is a contradiction to inequality (19).
(Case 2)ii: if max z(a2n, a2n+1), z(a2n+1, a2n+2)􏼈 􏼉

� z(a2n+1, a2n+2), then

z a2n, a2n+1( 􏼁≺ z a2n+1, a2n+2( 􏼁. (22)

Moreover, from (18), it follows that

z a2n+1, a2n+2( 􏼁≺
z a2n, a2n+1( 􏼁 1 + z a2n+1, a2n+2( 􏼁􏼂 􏼃

1 + z a2n, a2n+1( 􏼁
. (23)

From inequality (23), it can be deduced that
z a2n+1, a2n+2( 􏼁≺ z a2n, a2n+1( 􏼁, (24)

which is a contradiction to (22). Consequently, Case 2
cannot be true.

Case3: If M(a2n, a2n+1) � z(a2n, a2n+1), then using (9), we
have

z a2n+1, a2n+2( 􏼁≺ λM a2n, a2n+1( 􏼁 − LN a2n, a2n+1( 􏼁,

z a2n+1, a2n+2( 􏼁≺ λz a2n, a2n+1( 􏼁 − LN a2n, a2n+1( 􏼁.
(25)

Since L> 0 and N(an, an+1) � 0, then from (25),
z a2n+1, a2n+2( 􏼁≺ λ z a2n, a2n+1( 􏼁,

≺ λn
z a0, a1( 􏼁.

(26)

Since λ ∈ (0, 1), letting n⟶∞, it is obvious that

lim
n⟶∞

z a2n+1, a2n+2( 􏼁 � 0. (27)

Further, we prove that the given sequence is a Cauchy
sequence. Let n, m, N ∈ N be integers such that m> n>N,
and we have

z a2n+1, a2n+2( 􏼁≺z a2n, a2n+2( 􏼁. (28)

Here μ(a, b)> 1 is used. Define

Sp � 􏽘

p

i�0
􏽑

i

j�0
] aj, a2m+1􏼐 􏼑⎛⎝ ⎞⎠μ ai, ai+1( 􏼁λi

. (29)

Hence,

z a2n+1, a2m+1( 􏼁≺ z a0, a1( 􏼁 λnμ a2n+1, a2n+2( 􏼁 + S2m − S2n+1( 􏼁􏼂 􏼃. (30)

+e ratio test together with (10) implies that the limit of
real number sequence Sn􏼈 􏼉

∞
n�1 exists, and so Sn􏼈 􏼉

∞
n�1 is a

Cauchy sequence. In fact, the ratio test is applied to the term
xi � (􏽑

i
j�0 ](aj, a2m+1))μ(aj, ai+1) and using (30), we have

lim
m,n⟶∞

z a2m+1, a2n+1( 􏼁 � 0, ∀ i, j≥ 1, (31)

which follows that the sequence an􏼈 􏼉
∞
n�1 is a Cauchy se-

quence. Now, it is known that the double controlled metric
space is a complete space. So, the sequence an􏼈 􏼉

∞
n�1 converges

to some point say f ∈ Ξ. We claim that f is the common
fixed point for ℘,ℵ. Using triangle inequality, it follows that

z f, a2n+2( 􏼁≺ μ f, a2n+1( 􏼁z f, a2n+1( 􏼁

+ ] a2n+1, a2n+2( 􏼁z a2n+1, a2n+2( 􏼁.
(32)

Now it is claimed that ℘f � f. Using triangle inequality,
continuity of ℘, and (9), it follows that

z(f,℘f)≺ μ f, a2n+1( 􏼁z f, a2n+1( 􏼁 + ] a2n+1,℘f( 􏼁z a2n+1,℘f( 􏼁,

� μ f, a2n+1( 􏼁z f, a2n+1( 􏼁 + ] a2n+1,℘f( 􏼁z ℘a2n+1,℘f( 􏼁,

≺ μ f, a2n+1( 􏼁z f, a2n+1( 􏼁 + ] a2n+1,℘f( 􏼁z ℘a2n+1,℘f( 􏼁,

≺ μ f, a2n+1( 􏼁z f, a2n+1( 􏼁 + ] a2n+1,℘f( 􏼁 λM a2n, f( 􏼁􏼂

−LN a2n, f( 􏼁􏼃.

(33)

From (27) and (32) and letting n⟶∞, we get
z(f,℘f) � 0 which implies f � ℘f. Similarly, it can be
checked that f � ℵf. +us, ℘,ℵ have a common fixed point
say f. Now we show that the given point is unique; for this,
consider f≠g ∈ Ξ, such that ℘f � f and ℘g � g. From (4),
it follows that

z(℘f,℘g) � z(f, g),≺ λM(f, g) − LN(f, g),≺ λn
z(f, g).

(34)
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It can be deduced that f � g. Similarly, the uniqueness
of fixed point forℵ can also be checked.+erefore, ℘,ℵ have
a unique common fixed point.

+is completes the proof.
If in +eorem 2, N(a, b) � 0. +en, we get the following

corollary.

Corollary 1. Let (Ξ, z) be a complete complex double con-
trolled metric space. Furthermore, suppose that
℘,ℵ: Ξ⟶ Ξ are two self-operators, such that ∀ distinct
a, b ∈ Ξ,

z(℘a,ℵb)≺ κM(a, b), (35)

where M(a, b) � max z(a, b), z(b,ℵb)[1 + (a,℘a)]/1 + z􏼈

(a, b), z(a,℘a)[1 + z(b,ℵb)] /1 + z(a, b), z(b,ℵb)z(a,℘a)/
z(a, b)} and 0< κ< 1. With the additional assumption for
κ ∈ (0, 1) and any ai ∈ Ξ,

supm≥1 lim
i⟶∞

μ ai+1, ai+2( 􏼁] ai+1, a2m+1( 􏼁

μ ai, ai+1( 􏼁
<
1
κ
. (36)

Moreover, for each a ∈ Ξ, suppose that

lim
n⟶∞

μ a, a2n+1( 􏼁 and lim
n⟶∞

μ a2n+1, a( 􏼁 exist and are finite.

(37)

+en, ℘,ℵ have a common unique fixed point.

Corollary 2. Let (Ξ, z) be a complete complex double con-
trolled metric space. Furthermore, suppose that
℘,ℵ: Ξ⟶ Ξ are two self-operators, such that ∀ distinct
a, b ∈ Ξ, we have

z(℘a,ℵb)≺∇(a, b), (38)

where ∇(a, b) � κ1z(a, b) + κ2z(b,ℵb)[1 + z(a,℘a)]/1 + z

(a, b) + κ3z(a,℘a)[1 + z(b,ℵb)]/1 + z(a, b) + κ4z(b,ℵb)

z(a,℘a)/z(a, b) such that each κn > 0 for n � 1, 2, 3, 4 such
that 􏽐

4
n�1 κn < 1. With the additional assumption for

κ ∈ (0, 1) and for any ai ∈ Ξ,

supm≥1 lim
i⟶∞

μ ai+1, ai+2( 􏼁] ai+1, a2m+1( 􏼁

μ ai, ai+1( 􏼁
<
1
κ
. (39)

Moreover, for each a ∈ Ξ, suppose that

lim
n⟶∞

μ a, a2n+1( 􏼁 and lim
n⟶∞

μ a2n+1, a( 􏼁 exist and are finite.

(40)

+en, ℘,ℵ have a common unique fixed point.
If M(a, b) � z(a, b) and ℘ � ℵ, then Corollary 1 reduces

to the following corollary.

Corollary 3. Let (Ξ, z) be a complete complex double con-
trolled metric space. Furthermore, suppose that ℘: Ξ⟶ Ξ is
a self-operator, such that

z(℘a,℘b)≺ κz(a, b). (41)

With the additional assumption for κ ∈ (0, 1) and for
any ai ∈ E,

supm≥1 lim
i⟶∞

μ ai+1, ai+2( 􏼁] ai+1, am( 􏼁

μ ai, ai+1( 􏼁
<
1
κ
. (42)

Moreover, for each a ∈ Ξ, suppose that

lim
n⟶∞

μ a, an( 􏼁 and lim
n⟶∞

] an, a( 􏼁 exist and are finite.

(43)

+en, ℘ has a unique fixed point.

Example 2. Let Ξ � [0, 1] and define a distance function
z: Ξ × Ξ⟶ C by z(a, b) � |a − b|

�����
1 + b2

√
eιcot

−1(b), where
b � 1 and a≠ b ∈ Ξ. Consider the functions
μ, ]: Ξ × Ξ⟶ [1,∞) by μ(a, b) � 2a + 1/3b + 1 and
](a, b) � a + 4b + 3, respectively. +en, it is easy to verify
that (Ξ, z) is a complete complex double controlled type
metric space. Now consider the operators ℘,ℵ: Ξ⟶ Ξ by
℘a � 1/75a, and ℵa � 2/91a ∀ a ∈ [0, 1]. +en, the left hand
side of the inequality (9) implies that

z(℘a,ℵb) �
1
75

a −
2
91

b

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

�
2

√
e
ιcot−1(1)

. (44)

Now to calculate right hand side of the inequality (9),
consider

M(a, b) � max |a − b|
�
2

√
e
ιcot−1(1)

,􏼚
|b − 2/91b|

�
2

√
e
ιcot−1(1) 1 +|a − 1/75a|

�
2

√
e
ιcot−1(1)

􏼔 􏼕

1 +|a − b|
�
2

√
e
ιcot−1(1)

,

|a − 1/75a|
�
2

√
e
ιcot−1(1) 1 +|b − 2/91b|

�
2

√
e
ιcot−1(1)

􏼔 􏼕

1 +|a − b|
�
2

√
e
ιcot−1(1)

,

|a − 1/75a|
�
2

√
e
ιcot−1(1)

|b − 2/91b|
�
2

√
e
ιcot−1(1)

|a − b|
�
2

√
e
ιcot−1(1)

⎫⎬

⎭,

N(a, b) � a −
1
75

a

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

�
2

√
e
ιcot−1(1)

, |b − 2/91b|
�
2

√
e
ιcot−1(1)

, b −
1
75

a

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

�
2

√
e
ιcot−1(1)

􏼚 􏼛.

(45)
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With simple calculations, it can be analyzed that
M(a, b) � |a − b|

�
2

√
eιcot

−1(1) and N(a, b) � |a − 1/75a|�
2

√
eιcot

−1(1). +en, for λ � 0.9 and L � 0.001, inequality (9) is
satisfied. Furthermore for each a ∈ Ξ, conditions (11) and
(12) are also satisfied, respectively. Hence, by +eorem 2, ℘
and ℵ possess a common unique fixed point, i.e., 0. For
visualizing the co-relation of left and right hand side of the
inequality (9), consider Figure 1.

+e real and imaginary parts can be separately visualized
in Figures 2 and 3, respectively.

It can be seen that Figures 2 and 3 provide the same
visuals. +is is because of the equal values of real and
complex parts as can be observed in Table 3. Furthermore,
the numerical comparison of some values of left hand side
and right hand side of inequality (9) is given in Table 3.

To visualize the convergence behavior of ℘a and ℵb

graphically, consider Figures 4 and 5, respectively.
For checking the convergence behavior of ℘a and ℵb

numerically, consider Tables 4 and 5, respectively.

3. Existence of a Unique Solution of Complex
Urysohn Integral Equations

Let Ξ � C([p, q],C) be the set of all continuous functions
from the closed and bounded interval [p, q] toC. Consider a
distance function z: Ξ × Ξ⟶ C defined by

z(ϑ, σ) � |ϑ − σ| + ι|ϑ − σ|, (46)

where ϑ, σ ∈ Ξ. Furthermore, consider the functions
μ, ]: Ξ × Ξ⟶ [1,∞) defined by μ(ϑ, σ) � ϑ + 5σ + 2 and
](ϑ, σ) � ϑ + 3σ + 1, respectively. +en, (Ξ, z) is a complete
complex double controlled metric space.

In this section, we propose the existence and uniqueness
of solution via the fixed point method for the complex-
valued Urysohn integral equations.

ϑ(ς) � θ(ς) + 􏽚
q

p
Γ1(ς, ϑ, ϑ(ϑ))dϑ,

σ(ς) � θ(ς) + 􏽚
q

p
Γ2(ς, ϑ, σ(〉 ))dϑ,

(47)

where Γ1(ς, 〉 , ϑ(〉 )) and Γ2(ς, 〉 , σ(〉 )) are continuous
complex-valued kernels on the given interval and θ(ς) is
continuous and complex-valued on the interval [p, q].

Consider the operators ℘,ℵ: Ξ⟶ Ξ defined by

℘ϑ(ς) � θ(ς) + 􏽚
q

p
Γ1(ς, 〉 , ϑ(〉 ))dϑ,

ℵσ(ς) � θ(ς) + 􏽚
q

p
Γ2(ς, 〉 , σ(〉 ))dϑ.

(48)

Urysohn integral (47) would have a unique common
solution if the following conditions:

|Γ1(ς, 〉 , ϑ(〉 )) − Γ2(ς, 〉 , σ(〉 ))| ≺
1

(p − q)exp(ιpq)
[M(ϑ, σ) − LN(ϑ, σ)],

1
exp(ιpq)

≺ κ where 0< κ< 1,

(49)

hold, where M(ϑ, σ), N(ϑ, σ), and L are defined in (9).
Consider

0

0.5

1

0

0.5

1
0

0.5

1

1.5

x axis
y axis

z a
xi

s

LHS
RHS

0

0.2

0.4

0.6

0.8

1

1.2

Figure 1: Comparison of left hand side and right hand side of (9).
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Figure 2: Real parts of (9).
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Figure 3: Imaginary parts of (9).

Table 3: Numerical comparison of left hand side and right hand side of inequality (9).

a b z(℘a,ℵb) λM(a, b) − ZN(a, b) where λ � 0.9 and Z � 0.001> 0
0.0 0.1 0.0022 + 0.0022ι 0.0699 + 0.1083ι
0.0 0.5 0.0110 + 0.0110ι 0.3343 + 0.5415ι
0.0 0.9 0.0198 + 0.0198ι 0.6018 + 0.9747ι
0.1 1.0 0.0206 + 0.0206ι 0.6018 + 0.9747ι
0.1 0.9 0.0184 + 0.0184ι 0.5349 + 0.8664ι
0.1 0.5 0.0097 + 0.0097ι 0.2675 + 0.4321ι
0.5 1.0 0.0153 + 0.0153ι 0.3343 + 0.5415ι
0.5 0.9 0.0131 + 0.0131ι 0.2675 + 0.4332ι
0.5 0.1 0.0152 + 0.0153ι 0.3343 + 0.5415ι

Convergence behavior

WIth initial point a0=0.1
With initial point a0=0.4
With initial point a0=0.75
With initial point a0=0.99
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Figure 4: Convergence behavior of ℘a.
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Figure 5: Convergence behavior of ℵb.
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|℘ϑ − ℵσ| + ι|℘ϑ − ℵσ| � θ(ς) + 􏽚
q

p
Γ1(ς, 〉 , ϑ(〉 ))d〉 − θ(ς) + 􏽚

q

p
Γ2(ς, 〉 , σ(〉 ))d〉􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

ι θ(ς) + 􏽚
q

p
Γ1(ς, 〉 , ϑ(〉 ))d〉 − θ(ς) + 􏽚

q

p
Γ2(ς, 〉 , σ(〉 ))d〉􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

≺ 􏽚
q

p
|Γ1(ς, 〉 , ϑ(〉 )) − Γ2(ς, 〉 , σ(〉 ))|d〉 + ι| 􏽚

q

p
Γ1(ς, 〉 , ϑ(〉 )) − Γ2(ς, 〉 , σ(〉 ))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dϑ,

≺􏽚
q

p

1
(p − q)exp(ιpq)

[M(ϑ, σ) − N(ϑ, σ)]dϑ,

�
1

(p − q)exp(ιpq)
[M(ϑ, σ) − N(ϑ, σ)] 􏽚

q

p
dϑ,

�
1

exp(ιpq)
[M(ϑ, σ) − N(ϑ, σ)].

(50)

If exp(ιpq)1/≺ κ, then

z(℘ϑ,ℵσ)≺ κ[M(ϑ, σ) − N(ϑ, σ)]. (51)

It can be concluded that inequality (9) is satisfied. Ad-
ditionally, for any ϑ ∈ Ξ, conditions (11) and (12) are also
satisfied. Consequently, all hypotheses of +eorem 2 are
satisfied. +erefore, system (47) possesses a common unique
solution.

4. Existence of a Unique Solution of Complex
Fredholm Integral Equation

Let Ξ � C([p, q],C) be the set of all continuous functions
from the closed and bounded interval [p, q] toC. Consider a
distance function z: Ξ × Ξ⟶ C defined by

z(ϑ, σ) � |ϑ − σ| + ι|ϑ − σ|, (52)

where ϑ, σ ∈ Ξ. Furthermore, consider the functions
μ, ]: Ξ × Ξ⟶ [1,∞), defined by μ(ϑ, σ) � ϑ + 2σ + 5 and
](ϑ, σ) � 3ϑ + σ + 1, respectively. +en, (Ξ, z) is a complete
complex double controlled metric space.

In this section, we inspect the existence and uniqueness
of solution via the fixed point method for complex Fredholm
integral equation.

ϑ(ς) � Z(ς) + α􏽚
q

p
Ω(ς, t, ϑ(t))dt, (53)

where each of the component of (53) is defined in Section 1.
Consider the operator ℘: Ξ⟶ Ξ defined by

℘ϑ(ς) � Z(ς) + α􏽚
q

p
Ω(ς, t, ϑ(t))dt. (54)

+e Fredholm integral equation would have a unique
solution if the following condition:

Table 4: Convergence behavior of ℘a.

a0 a0 � 0.1 a0 � 0.4 a0 � 0.75 a0 � 0.99

a1 0.00133 0.0053 0.0100 0.0132
a2 0.000017 0.000070 0.000013 0.00017
a3 0.0000002 0.000000009 0.0000073 0.0000023
a4 0.000000003 0.00000000001 0.000000022 0.000000036
a5 0.00000000004 0.00000000000120 0.0000000000266 0.000000000483
a6 0.0000000000000 0.00000000000000 0.0000000000000000 0.0000000000000000
⋮ ⋮ ⋮ ⋮ ⋮

Table 5: Convergence behavior of ℵb.

b0 b0 � 0.1 b0 � 0.4 b0 � 0.75 b0 � 0.99

b1 0.0022 0.0088 0.0165 0.0218
b2 0.000048 0.000193 0.00036 0.00047
b3 0.0000010 0.0000041 0.0000079 0.000010
b4 0.0000000219 0.0000000900 0.0000001700 0.00000028
b5 0.000000000461 0.000000001978 0.000000003900 0.0000000061
b6 0.0000000000000 0.0000000000000000 0.0000000000000000 0.0000000000000000
⋮ ⋮ ⋮ ⋮ ⋮
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|Ω(ς, t, ϑ(t)) −Ω(ς, t, σ(t))|≤
κ

α(q − p)
|ϑ(t) − σ(t)| where 0< κ< 1, (55)

holds. Consider

|℘ϑ − ℘σ| + ι|℘ϑ − ℘σ| � Z(ς) + α􏽚
q

p
Ω(ς, t)ϑ(t)dt − Z(ς) + α􏽚

q

p
Ω(ς, t)σ(t)dt􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+ ι Z(ς) + α􏽚
q

p
Ω(ς, t)ϑ(t)dt − Z(ς) + α􏽚

q

p
Ω(ς, t)σ(t)dt􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

≺ α􏽚
q

p
|Ω(ς, t, ϑ(t)) −Ω(ς, t, σ(t))|dt + ι α􏽚

q

p
|Ω(ς, t, ϑ(t)) −Ω(σ, t, σ(t))|dt􏼢 􏼣,

≺ κ[|ϑ − σ| + ι|ϑ − σ|],

(56)

which implies

z(℘ϑ,℘σ)≺ κ[z(ϑ, σ)]. (57)

Consequently, all hypotheses of the Corollary 3 are
satisfied. +erefore, integral (53) has a unique solution.

5. Conclusion

In this study, we have proved an extended rational weak
contraction for common fixed point in the setting of
complex double controlled type metric spaces. Our results
are validated by a numerical example and existence and
uniqueness for complex Urysohn integral equations and
complex Fredholm integral equation. +e existence and
uniqueness of a solution for certain type of equation hold
remarkable applications towards applied sciences, like ap-
plied mathematics, physics, biology, engineering, and so on.
It helps the researchers to know about the nature, specific
conditions involved, exact range, and domain of a solution
to any under discussion problem and thus saves a lot of
efforts, time, and energy. To contribute to the worldly
problems, we have also considered complex Urysohn and
Fredholm integral equations for existence and uniqueness of
a solution. +e Urysohn and Fredholm integral equations
have remarkable applications towards geophysics, me-
chanics, quantum mechanics, population genetics, fluid
mechanics, etc.
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