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In this paper, we show that encoding operation for the polar codes can be achieved 

without the employment of the generator matrix, and all the polar code bits can be 

generated at the same time using a number of tree-encoding structures running in 

parallel. Since encoding matrix is not used in the implementation of the polar encoders 

in digital electronic devices, hardware space is saved, and low complexity hardware 

applications are achieved. Besides, we also proposed a method for the calculation of split 

channel parameters, such as Bhattacharyya bounds or average-bit-error probabilities of 

the transmitted bits using a tree-based structure. Moreover, the proposed structure 

enables to calculate the probability of bit-error values of all the transmitted bits at the 

same time in a parallel manner and decide the locations of data and frozen bits very 

rapidly. 

 

1. Introduction 

Polar codes are a class of channel codes designed in a non- trivial manner [1]. Polar codes are the first 

mathematically provable channel codes available in the channel coding world, and this can be considered as a 

major breakthrough in coding society. Polar codes have low performance at moderate and low codeword lengths. 

To improve the low performance of polar codes, the list and stack decoding algorithms are proposed [2], [3], [4], 

[5].  

Decoding algorithms show better performance than that of the classical successive cancelation method [6], they 

involve much more computations regarding the classical successive cancelation algorithm. Polar codes can also 

be decoded using a belief propagation algorithm [7]. In A. A. Andi, O. Gazi work [9], polar codes are 

concatenated with CRCs to prevent the performance degrading effect of error propagation.  

One other challenge on the implementation of these algorithms for future communication systems is the 

requirement of comprehensive digital electronic devices where hardware programming such as FPGAs stands as 

a strong candidate. The potential of FPGAs depends on the usage its resources efficiently. The encoding operation 

of the polar codes can be generated as the following formula, 

𝑥 = 𝑢𝐺 

where u is the information word, x is code-word and G is the generator matrix. For N =  1024, and for full rate 

encoding operation, a binary generator matrix of size 1024 × 1024 should be stored in the memory units of the 

FPGA devices. Besides, if different frame lengths are used for the transmissions such as 64, 128, 256, 1024, 2048 

etc., a generator matrix dedicated for each should be stored separately with different sizes in the memory units 

for efficient implementations. In this paper, we propose a method for the encoding of polar codes without the 

need for employment of generator matrix. The proposed method utilizes an n-bit binary counter, where n =
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 log2(N), and a tree structure [9] involving n levels. Since the proposed method avoids the use of generator 

matrix, a smaller memory space in FPGA is required which reduces the hardware complexity of the polar 

encoders. Using the proposed method, it is also possible to calculate the code bits in parallel at the same instant. 

Split channel parameters such as Bhattacharyya bounds or average bit error probabilities are used for the 

determination indices of data and frozen bits. We proposed a tree-based approach for the calculation of split 

channel parameters in an efficient manner. Using the proposed approach, it is possible to calculate the all-split 

channel parameters such as Bhattacharyya parameters of all the bits which can be transmitted at the same time in 

a parallel manner. 

The outline of the manuscript is as follows. In Section II, polar encoding without the use of generator matrix, i.e., 

proposed encoding approach, is explained. Section III describes the proposed technique used for the calculation 

of split channel parameters in a fast and efficient manner. Hardware implementation results are given in Section 

IV, and finally conclusions are drawn in Section V. 

2. Polar Encoding  

2.1. Generator Matrix  

In this section, we review the construction of the generator matrix, and polar encoding operation with generator 

matrix. Let’s denote the N -bit information vector by  

      𝑢0
𝑁−1 = (𝑢0, 𝑢1, ⋯ , 𝑢𝑁−1, )           (1) 

The Polar code-word for the data vector uN−1 is obtained using  

                 𝑥0
𝑁−1 = 𝑢0

𝑁−1 𝐺          (2) 

where the generator matric GN is calculated via 

                  𝐺𝑁 = 𝐵𝑁𝐹⊗𝑛                                                        (3) 

in which 𝑁 = 2𝑛, 𝐹 = [
1 0
1 1

] and 𝐵𝑁 is found using 

𝐵𝑁 = 𝑅𝑁(𝐼2  ⊗  𝐵𝑁 2⁄ )                                               (4) 

where the initial value of  𝐵𝑁, i.e., 𝐵2 is 𝐼2, and 𝑅𝑁 denotes the 𝑁 × 𝑁 reverse shuffle permutation matrix whose 

operation is explained in 

(𝑠0, 𝑠1, 𝑠2, ⋯ , 𝑠𝑁−1 ) 𝑅𝑁 = (𝑠0, 𝑠2, 𝑠4, ⋯ , 𝑠𝑁−2 )(𝑠3  ⋯ , 𝑠𝑁−1 )                                             (5) 

 

The Kronecker product of two matrices 𝐴 = [∙]𝑚×𝑛 and 𝐵 = [∙]𝑘×𝑙 is obtained as  

 

𝐴 ⊗ 𝐵 =  [
𝐴11𝐵 ⋯ 𝐴1𝑛𝐵

⋮ ⋱ ⋮
𝐴𝑚1𝐵 ⋯ 𝐴𝑚𝑛𝐵

]        (6) 

 

and the Kronecker power is defined as  

𝐴⊗𝑛 = 𝐴 ⊗ 𝐴⊗(𝑛−1).                       (7) 
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2.2. Polar Encoding Without the Employment of Generator Matrix 

The encoding operation for 𝑁 = 4 to obtain the code bit x0 and its tree representation are graphically illustrated in 

Fig. 1. 

 

Figure 1. Encoding path and tree structure of the codeword symbol x0. 

Inspecting the encoding operations in Fig. 1 and its trellis representations, we propose a polar encoding operation 

without the employment of the generator matrix as follows. Pass-nodes in the encoding tree are defined as the 

nodes which only take the right incoming input bit from the lower layer. Sum-nodes in encoding tree are defined 

as the nodes which produce the mod-2 sum of the left and right incoming input bits from the lower layer. An n-

bit counter is used for the encoding operation. The ’1’s in the n-bit counter indicate the levels which include pass 

nodes, and 0’s in the n-bit counter indicates the levels which include sum-nodes. The n-bit counter is initialized 

to all zero tuples, and it is incremented at the calculation of each succeeding code-bit. The least significant bit of 

the counter indicates the top-level in the tree structure, and the most significant bit of the counter indicates the 

bottom level of the tree structure. As an example, for 𝑁 =  8 in Fig. 2, the generation of the code bit x6 is 

illustrated. The counter has the value of 110 and, the ’1’s in the counter indicates the levels 1 and 2 where the 

nodes are pass-nodes. The propagating signals are shown using bold arrows. 

For 𝑁 =  1024, we need an 𝑛 =  𝑙𝑜𝑔2(1024)  →  𝑛 =  10 − 𝑏𝑖𝑡 counter, and there are 10 levels in the tree 

structure, and using the 𝑛 = 10 − 𝑏𝑖𝑡, and tree structure the encoding operation can be performed in a fast manner 

without requiring the generator matrix. The encoding algorithm using tree structure and counter is defined below. 

 

2.3. Proposed Encoding Algorithm: 

Initialize n-bit, where 𝑛 =  𝑙𝑜𝑔2(𝑁) counter to all zeros and set 𝑘 =  0. 

The code-bit xk, 𝑘 =  0 . . . 𝑁 −  1 , is to be generated, and n-bit counter has the binary equivalent of k. 

Decide the levels corresponding to the positions of ’1’s in the counter such that the least significant bit of the 

counter points to the top level, i.e., level-0. The nodes of those levels corresponding to the positions of ’1’s of 

the counter is labeled as the pass-nodes, and the others are labeled as sum-nodes. 

Starting from the lowest level above the ground level, OR the bit pairs coming from the predecessor level if the 

level has label ’0’, otherwise, just pass the right incoming bit to the upper-level and repeat this process till the 

top-most level and obtain the code bit xk. 

If 𝑘 =  𝑁 −  1  terminate, otherwise, increment the k value and go to step-1. 
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Figure 2.   Proposed method encoding structure of x6. 

Example: For 𝑁 =  16, the generation of the code bit x13 is illustrated in Fig. 3, where the 4-bit binary counter 

has the binary value 1101 whose decimal equivalent is 13. 

As it is seen from Fig. 3 that for code bits with odd indices, only the right-hand side of the tree can be used, and 

this further decreases the complexity of hardware implementation. 

 

Figure 3.  Example for tree-encoding operation. 

It is also possible to generate all the code bits at the same time using the proposed tree-encoding structures in 

parallel. Since, the counter values are known and many of the tree- encoding structures can run in parallel, 

encoding operation can be completed by all parallel units at the same time. This approach reduces the encoding 

latency significantly, however, the hardware complexity increases. 

 

3. Calculation of Maximum/Average Bit-Error Probability Using Three Structure 

In polar codes, the location of the frozen bits, i.e., parity bits, are decided using the split channel capacities which 

are calculated before the encoding operation. Large capacity channels are used for the transmission of data bits 

whereas low-capacity channels are used for frozen bits. Location of frozen and data bits should be written into 

memory units to be used during the transmission and if the environment changes such as in the wireless 

communication, these split channel capacities should be re-calculated and written into memory locations again. 

For binary erasure channels, it is possible to calculate the split channel capacities exactly. However, for other 

channels, especially for wireless channels, the calculation of channel capacities is not a straightforward process 

and for most of them, explicit methods are not defined in the literature. The capacity of a split channel is closely 

related to the average- bit-error probability of the transmission performed through the channel under concern, 
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and Bhattacharyya parameters corresponding to bounds of maximum probability of bit errors can be used for this 

purpose. For polar codes, the Bhattacharyya parameters corresponding to maximum probability of bit errors are 

calculated in a recursive manner as in 

 

𝑍(𝑊2𝑁
2𝑖−1) ≤ 2𝑍(𝑊𝑁

𝑖 ) − 𝑍2(𝑊𝑁
𝑖 )    𝑖 = 0, … , 𝑁 − 1 

                                                                    𝑍(𝑊2𝑁
2𝑖 ) = 𝑍2(𝑊𝑁

𝑖 ).       (8) 

 

The locations corresponding to large and small Bhattacharyya values are chosen for frozen and information bits, 

respectively. It is seen from (8) that Bhattacharyya parameters are calculated in a serial manner. Considering the 

fact that reprogrammable hardware devices such as FPGAs will be idly used in the future communication 

technologies, split channel capacities or Bhattacharyya parameters can be calculated by such digital devices. 

In this part, we propose a method to calculate Bhattacharyya parameters or maximum/average bit-error 

probabilities of the transmitted bits using tree structure in a parallel manner. With the proposed method, 

Bhattacharyya parameters or maximum/average bit-error probabilities can be calculated in an efficiently and a 

decision can be made whether the bit corresponds to a frozen or data bit. 

Using the proposed method, the calculation of the maximum or average bit error probabilities for all split channels 

can also be performed at the same time in a parallel manner, and defining a threshold 𝑝𝑡𝑒 for the transmission 

error probabilities, those bits having maximum/average transmission error probabilities below a threshold value 

can be transmitted which can provide an uninterrupted transmission. For instance, if we take the threshold value 

𝑝𝑡𝑒 =  0.4 then for a new channel, the information bit 𝑢𝑖 is transmitted if its calculated maximum/average bit 

error probability, related to the split channel capacity, is smaller than 𝑝𝑡𝑒, i.e., if 𝑝𝑒 <  𝑝𝑡𝑒. 

 

3.1. Proposed Method 

In this subsection we explain the proposed method with an algorithm for the determination of bit error 

probabilities of split channels: 

Initialize the counter to all zeros and set 𝑘 =  0. 

The maximum or average bit-error probability is to be calculated for the bit 𝑢𝑘, 𝑘 =  0 …  𝑁 −  1  and n-bit 

counter has the binary equivalent of k. 

Decide the levels corresponding to the positions of ’0’s and ’1’s in the counter and assign the counter bits to the 

tree levels such that the least significant bit of the counter points to the top level, i.e., level-0. 

Starting from the level above the ground level, combine the 𝛼 terms where 𝛼 terms can be Bhattacharyya 

parameters or they can be average bit-error probabilities, and use 𝑓 (𝑥)  =  2𝑥 − 𝑥2 if the level label is zero or 

use 𝑔(𝑥)  =  𝑥2  is the level label is 1, and repeat this till the top most level and obtain the maximum/average 

probability of error bit uk. 

If 𝑘 =  𝑁 –  1 terminate, otherwise, increment the k value and go to step-3. 

The graphical illustration of the proposed approach for the calculation of maximum/average bit error probability 

for u13 is depicted in Fig. 4 where g(·) function is employed for the nodes belonging to the levels whose bit label 

is ’1’, whereas f(·) function is employed for the nodes belonging to the levels whose bit label is ’0’. In Fig. 4, 

except for the nodes in level-1, g(·)  function is utilized for all the other nodes. A numerical example for the 

calculation of Bhattacharyya value for u13 for binary erasure channels with erasure probability 𝛼 =  0.5 is 

depicted in Fig. 5 where it is seen that the output of the top node is 0.015 defined as the maximum probability of 

bit error for the bit u13. Here, due to such a small maximum bit error probability, the bit u13 can be chosen as 

information bit, i.e., bit location 13 can be reserved for information bits. 
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Figure 4. Maximum/average bit error probability calculation for 𝑢13. 

 

The tree structure shown in Figure 5 can be constructed for all the data bits, since the counter values can be 

known enabling parallel calculation of all the split channel parameters. 

 
Figure 5. Calculation of Bhattacharyya value for u13 for BEC with α= 0.5. 

 

4. Implementation Results 

In this section, we provide information about the hardware space consumption of the proposed techniques and 

make a comparison with the classical approaches. The polar encoding using the generator matrix and proposed 

algorithm are compared in Table-1 in terms of the digital resources used. For the classical polar encoding, we 

used the formula  𝑥 =  𝑢𝐺, and the rows of 𝐺 matrix corresponding to the positions of ’1’s in u vector are XORed. 

Both algorithms are implemented by using an Nexys-3 spartan-6 FPGA board. It is seen from the table that as 

the frame length increases the hardware requirement of the proposed method favors significantly over the 

classical one where for frame length N = 1024, the proposed approach uses three times less hardware resources. 

Table 1. Hardware Consumption (Number of Slice registers- NOSR) 

 Frame Length 
 Generic Method- 

NOSR 

Proposed Method - 

NOSR 

 N=8                 11 10 

 N=16                 23 19 

 N=32  46 36 

 N=64 

N=128 

N=256 

N=512 

N=1024 

 112 

261 

586 

1312 

3136 

69 

135 

266 

524 

1038 
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The consumed hardware space gain of the proposed approach is depicted in Fig. 6 where it is seen that for frame 

length 𝑁 =  1024 the proposed method gains 70% hardware space, i.e., if the classical approach consumes 100 

hardware resources, the proposed method consumes only 30 hardware resources. 

 

 

Figure 6.  Comparison of hardware space consumption gain for the proposed and classical encoding approaches. 

 

5. Conclusions 

In this manuscript, we proposed tree-based structures for the encoding of polar codes without the use of a 

generator matrix, and for the calculation of split channel parameters which are used for the classification of bits 

to be transmitted as data or frozen bits. The suggested structures are suitable for sequential and parallel processing 

operations. It is also shown that using the proposed methods, it is possible to calculate the polar code bits, and 

split channel parameters at the same instant in a parallel manner. When the suggested structures are implemented 

in hardware using digital electronic devices, they consume less hardware space and work faster. 
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