
* Corresponding Author: o.gazi@cankaya.edu.tr

Received: August 22, 2021, Accepted: October 06, 2021

125

e-ISSN: 2564-7954 CUSJE 18(2): 125-132 (2021) Research Article

Çankaya University

Journal of Science and Engineering

https://dergipark.org.tr/cankujse

Fast Calculation of Polar Code Bits and Frozen-Bit Locations

Fatih Genç1 , Orhan Gazi1*

1 Department of Electronics and Communication Engineering, Çankaya University, Ankara, Turkey

Keywords Abstract

Polar Codes,

Encoding Algorithm,

Tree Structure,

Generator matrix

transformation,

FPGA.

In this paper, we show that encoding operation for the polar codes can be achieved

without the employment of the generator matrix, and all the polar code bits can be

generated at the same time using a number of tree-encoding structures running in

parallel. Since encoding matrix is not used in the implementation of the polar encoders

in digital electronic devices, hardware space is saved, and low complexity hardware

applications are achieved. Besides, we also proposed a method for the calculation of split

channel parameters, such as Bhattacharyya bounds or average-bit-error probabilities of

the transmitted bits using a tree-based structure. Moreover, the proposed structure

enables to calculate the probability of bit-error values of all the transmitted bits at the

same time in a parallel manner and decide the locations of data and frozen bits very

rapidly.

1. Introduction

Polar codes are a class of channel codes designed in a non- trivial manner [1]. Polar codes are the first

mathematically provable channel codes available in the channel coding world, and this can be considered as a

major breakthrough in coding society. Polar codes have low performance at moderate and low codeword lengths.

To improve the low performance of polar codes, the list and stack decoding algorithms are proposed [2], [3], [4],

[5].

Decoding algorithms show better performance than that of the classical successive cancelation method [6], they

involve much more computations regarding the classical successive cancelation algorithm. Polar codes can also

be decoded using a belief propagation algorithm [7]. In A. A. Andi, O. Gazi work [9], polar codes are

concatenated with CRCs to prevent the performance degrading effect of error propagation.

One other challenge on the implementation of these algorithms for future communication systems is the

requirement of comprehensive digital electronic devices where hardware programming such as FPGAs stands as

a strong candidate. The potential of FPGAs depends on the usage its resources efficiently. The encoding operation

of the polar codes can be generated as the following formula,

𝑥 = 𝑢𝐺

where u is the information word, x is code-word and G is the generator matrix. For N = 1024, and for full rate

encoding operation, a binary generator matrix of size 1024 × 1024 should be stored in the memory units of the

FPGA devices. Besides, if different frame lengths are used for the transmissions such as 64, 128, 256, 1024, 2048

etc., a generator matrix dedicated for each should be stored separately with different sizes in the memory units

for efficient implementations. In this paper, we propose a method for the encoding of polar codes without the

need for employment of generator matrix. The proposed method utilizes an n-bit binary counter, where n =

Genç and Gazi CUJSE 18(2): 125-132 (2021)

126

 log2(N), and a tree structure [9] involving n levels. Since the proposed method avoids the use of generator

matrix, a smaller memory space in FPGA is required which reduces the hardware complexity of the polar

encoders. Using the proposed method, it is also possible to calculate the code bits in parallel at the same instant.

Split channel parameters such as Bhattacharyya bounds or average bit error probabilities are used for the

determination indices of data and frozen bits. We proposed a tree-based approach for the calculation of split

channel parameters in an efficient manner. Using the proposed approach, it is possible to calculate the all-split

channel parameters such as Bhattacharyya parameters of all the bits which can be transmitted at the same time in

a parallel manner.

The outline of the manuscript is as follows. In Section II, polar encoding without the use of generator matrix, i.e.,

proposed encoding approach, is explained. Section III describes the proposed technique used for the calculation

of split channel parameters in a fast and efficient manner. Hardware implementation results are given in Section

IV, and finally conclusions are drawn in Section V.

2. Polar Encoding

2.1. Generator Matrix

In this section, we review the construction of the generator matrix, and polar encoding operation with generator

matrix. Let’s denote the N -bit information vector by

 𝑢0
𝑁−1 = (𝑢0, 𝑢1, ⋯ , 𝑢𝑁−1,) (1)

The Polar code-word for the data vector uN−1 is obtained using

 𝑥0
𝑁−1 = 𝑢0

𝑁−1 𝐺 (2)

where the generator matric GN is calculated via

 𝐺𝑁 = 𝐵𝑁𝐹⊗𝑛 (3)

in which 𝑁 = 2𝑛, 𝐹 = [
1 0
1 1

] and 𝐵𝑁 is found using

𝐵𝑁 = 𝑅𝑁(𝐼2 ⊗ 𝐵𝑁 2⁄) (4)

where the initial value of 𝐵𝑁, i.e., 𝐵2 is 𝐼2, and 𝑅𝑁 denotes the 𝑁 × 𝑁 reverse shuffle permutation matrix whose

operation is explained in

(𝑠0, 𝑠1, 𝑠2, ⋯ , 𝑠𝑁−1) 𝑅𝑁 = (𝑠0, 𝑠2, 𝑠4, ⋯ , 𝑠𝑁−2)(𝑠3 ⋯ , 𝑠𝑁−1) (5)

The Kronecker product of two matrices 𝐴 = [∙]𝑚×𝑛 and 𝐵 = [∙]𝑘×𝑙 is obtained as

𝐴 ⊗ 𝐵 = [
𝐴11𝐵 ⋯ 𝐴1𝑛𝐵

⋮ ⋱ ⋮
𝐴𝑚1𝐵 ⋯ 𝐴𝑚𝑛𝐵

] (6)

and the Kronecker power is defined as

𝐴⊗𝑛 = 𝐴 ⊗ 𝐴⊗(𝑛−1). (7)

Genç and Gazi CUJSE 18(2): 125-132 (2021)

127

2.2. Polar Encoding Without the Employment of Generator Matrix

The encoding operation for 𝑁 = 4 to obtain the code bit x0 and its tree representation are graphically illustrated in

Fig. 1.

Figure 1. Encoding path and tree structure of the codeword symbol x0.

Inspecting the encoding operations in Fig. 1 and its trellis representations, we propose a polar encoding operation

without the employment of the generator matrix as follows. Pass-nodes in the encoding tree are defined as the

nodes which only take the right incoming input bit from the lower layer. Sum-nodes in encoding tree are defined

as the nodes which produce the mod-2 sum of the left and right incoming input bits from the lower layer. An n-

bit counter is used for the encoding operation. The ’1’s in the n-bit counter indicate the levels which include pass

nodes, and 0’s in the n-bit counter indicates the levels which include sum-nodes. The n-bit counter is initialized

to all zero tuples, and it is incremented at the calculation of each succeeding code-bit. The least significant bit of

the counter indicates the top-level in the tree structure, and the most significant bit of the counter indicates the

bottom level of the tree structure. As an example, for 𝑁 = 8 in Fig. 2, the generation of the code bit x6 is

illustrated. The counter has the value of 110 and, the ’1’s in the counter indicates the levels 1 and 2 where the

nodes are pass-nodes. The propagating signals are shown using bold arrows.

For 𝑁 = 1024, we need an 𝑛 = 𝑙𝑜𝑔2(1024) → 𝑛 = 10 − 𝑏𝑖𝑡 counter, and there are 10 levels in the tree

structure, and using the 𝑛 = 10 − 𝑏𝑖𝑡, and tree structure the encoding operation can be performed in a fast manner

without requiring the generator matrix. The encoding algorithm using tree structure and counter is defined below.

2.3. Proposed Encoding Algorithm:

Initialize n-bit, where 𝑛 = 𝑙𝑜𝑔2(𝑁) counter to all zeros and set 𝑘 = 0.

The code-bit xk, 𝑘 = 0 . . . 𝑁 − 1 , is to be generated, and n-bit counter has the binary equivalent of k.

Decide the levels corresponding to the positions of ’1’s in the counter such that the least significant bit of the

counter points to the top level, i.e., level-0. The nodes of those levels corresponding to the positions of ’1’s of

the counter is labeled as the pass-nodes, and the others are labeled as sum-nodes.

Starting from the lowest level above the ground level, OR the bit pairs coming from the predecessor level if the

level has label ’0’, otherwise, just pass the right incoming bit to the upper-level and repeat this process till the

top-most level and obtain the code bit xk.

If 𝑘 = 𝑁 − 1 terminate, otherwise, increment the k value and go to step-1.

Genç and Gazi CUJSE 18(2): 125-132 (2021)

128

Figure 2. Proposed method encoding structure of x6.

Example: For 𝑁 = 16, the generation of the code bit x13 is illustrated in Fig. 3, where the 4-bit binary counter

has the binary value 1101 whose decimal equivalent is 13.

As it is seen from Fig. 3 that for code bits with odd indices, only the right-hand side of the tree can be used, and

this further decreases the complexity of hardware implementation.

Figure 3. Example for tree-encoding operation.

It is also possible to generate all the code bits at the same time using the proposed tree-encoding structures in

parallel. Since, the counter values are known and many of the tree- encoding structures can run in parallel,

encoding operation can be completed by all parallel units at the same time. This approach reduces the encoding

latency significantly, however, the hardware complexity increases.

3. Calculation of Maximum/Average Bit-Error Probability Using Three Structure

In polar codes, the location of the frozen bits, i.e., parity bits, are decided using the split channel capacities which

are calculated before the encoding operation. Large capacity channels are used for the transmission of data bits

whereas low-capacity channels are used for frozen bits. Location of frozen and data bits should be written into

memory units to be used during the transmission and if the environment changes such as in the wireless

communication, these split channel capacities should be re-calculated and written into memory locations again.

For binary erasure channels, it is possible to calculate the split channel capacities exactly. However, for other

channels, especially for wireless channels, the calculation of channel capacities is not a straightforward process

and for most of them, explicit methods are not defined in the literature. The capacity of a split channel is closely

related to the average- bit-error probability of the transmission performed through the channel under concern,

Genç and Gazi CUJSE 18(2): 125-132 (2021)

129

and Bhattacharyya parameters corresponding to bounds of maximum probability of bit errors can be used for this

purpose. For polar codes, the Bhattacharyya parameters corresponding to maximum probability of bit errors are

calculated in a recursive manner as in

𝑍(𝑊2𝑁
2𝑖−1) ≤ 2𝑍(𝑊𝑁

𝑖) − 𝑍2(𝑊𝑁
𝑖) 𝑖 = 0, … , 𝑁 − 1

 𝑍(𝑊2𝑁
2𝑖) = 𝑍2(𝑊𝑁

𝑖). (8)

The locations corresponding to large and small Bhattacharyya values are chosen for frozen and information bits,

respectively. It is seen from (8) that Bhattacharyya parameters are calculated in a serial manner. Considering the

fact that reprogrammable hardware devices such as FPGAs will be idly used in the future communication

technologies, split channel capacities or Bhattacharyya parameters can be calculated by such digital devices.

In this part, we propose a method to calculate Bhattacharyya parameters or maximum/average bit-error

probabilities of the transmitted bits using tree structure in a parallel manner. With the proposed method,

Bhattacharyya parameters or maximum/average bit-error probabilities can be calculated in an efficiently and a

decision can be made whether the bit corresponds to a frozen or data bit.

Using the proposed method, the calculation of the maximum or average bit error probabilities for all split channels

can also be performed at the same time in a parallel manner, and defining a threshold 𝑝𝑡𝑒 for the transmission

error probabilities, those bits having maximum/average transmission error probabilities below a threshold value

can be transmitted which can provide an uninterrupted transmission. For instance, if we take the threshold value

𝑝𝑡𝑒 = 0.4 then for a new channel, the information bit 𝑢𝑖 is transmitted if its calculated maximum/average bit

error probability, related to the split channel capacity, is smaller than 𝑝𝑡𝑒, i.e., if 𝑝𝑒 < 𝑝𝑡𝑒.

3.1. Proposed Method

In this subsection we explain the proposed method with an algorithm for the determination of bit error

probabilities of split channels:

Initialize the counter to all zeros and set 𝑘 = 0.

The maximum or average bit-error probability is to be calculated for the bit 𝑢𝑘, 𝑘 = 0 … 𝑁 − 1 and n-bit

counter has the binary equivalent of k.

Decide the levels corresponding to the positions of ’0’s and ’1’s in the counter and assign the counter bits to the

tree levels such that the least significant bit of the counter points to the top level, i.e., level-0.

Starting from the level above the ground level, combine the 𝛼 terms where 𝛼 terms can be Bhattacharyya

parameters or they can be average bit-error probabilities, and use 𝑓 (𝑥) = 2𝑥 − 𝑥2 if the level label is zero or

use 𝑔(𝑥) = 𝑥2 is the level label is 1, and repeat this till the top most level and obtain the maximum/average

probability of error bit uk.

If 𝑘 = 𝑁 – 1 terminate, otherwise, increment the k value and go to step-3.

The graphical illustration of the proposed approach for the calculation of maximum/average bit error probability

for u13 is depicted in Fig. 4 where g(·) function is employed for the nodes belonging to the levels whose bit label

is ’1’, whereas f(·) function is employed for the nodes belonging to the levels whose bit label is ’0’. In Fig. 4,

except for the nodes in level-1, g(·) function is utilized for all the other nodes. A numerical example for the

calculation of Bhattacharyya value for u13 for binary erasure channels with erasure probability 𝛼 = 0.5 is

depicted in Fig. 5 where it is seen that the output of the top node is 0.015 defined as the maximum probability of

bit error for the bit u13. Here, due to such a small maximum bit error probability, the bit u13 can be chosen as

information bit, i.e., bit location 13 can be reserved for information bits.

Genç and Gazi CUJSE 18(2): 125-132 (2021)

130

Figure 4. Maximum/average bit error probability calculation for 𝑢13.

The tree structure shown in Figure 5 can be constructed for all the data bits, since the counter values can be

known enabling parallel calculation of all the split channel parameters.

Figure 5. Calculation of Bhattacharyya value for u13 for BEC with α= 0.5.

4. Implementation Results

In this section, we provide information about the hardware space consumption of the proposed techniques and

make a comparison with the classical approaches. The polar encoding using the generator matrix and proposed

algorithm are compared in Table-1 in terms of the digital resources used. For the classical polar encoding, we

used the formula 𝑥 = 𝑢𝐺, and the rows of 𝐺 matrix corresponding to the positions of ’1’s in u vector are XORed.

Both algorithms are implemented by using an Nexys-3 spartan-6 FPGA board. It is seen from the table that as

the frame length increases the hardware requirement of the proposed method favors significantly over the

classical one where for frame length N = 1024, the proposed approach uses three times less hardware resources.

Table 1. Hardware Consumption (Number of Slice registers- NOSR)

 Frame Length
 Generic Method-

NOSR

Proposed Method -

NOSR

 N=8 11 10

 N=16 23 19

 N=32 46 36

 N=64

N=128

N=256

N=512

N=1024

 112

261

586

1312

3136

69

135

266

524

1038

Genç and Gazi CUJSE 18(2): 125-132 (2021)

131

The consumed hardware space gain of the proposed approach is depicted in Fig. 6 where it is seen that for frame

length 𝑁 = 1024 the proposed method gains 70% hardware space, i.e., if the classical approach consumes 100

hardware resources, the proposed method consumes only 30 hardware resources.

Figure 6. Comparison of hardware space consumption gain for the proposed and classical encoding approaches.

5. Conclusions

In this manuscript, we proposed tree-based structures for the encoding of polar codes without the use of a

generator matrix, and for the calculation of split channel parameters which are used for the classification of bits

to be transmitted as data or frozen bits. The suggested structures are suitable for sequential and parallel processing

operations. It is also shown that using the proposed methods, it is possible to calculate the polar code bits, and

split channel parameters at the same instant in a parallel manner. When the suggested structures are implemented

in hardware using digital electronic devices, they consume less hardware space and work faster.

Declaration of Competing Interest

The authors declare that there is no competing financial interests or personal relationships that influence the work

in this paper.

Authorship Contribution Statement

Fatih GENÇ: Data Preparation, Simulations, Reviewing, Methodology

Orhan GAZI: Writing, Reviewing, Methodology, Supervision

References

[1] O. Gazi, Polar Codes: A Non-Trivial Approach to Channel Coding, Springer Verlag, 2019.

[2] I. Tal and A. Vardy, “ List decoding of polar codes,” IEEE International Symposium on Information Theory -

Proceedings, pp. 15, 2011.

Gain

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

N=8 N=16 N=32 N=64 N=128 N=256 N=512 N=1024

Proposed Method Generic Method

Genç and Gazi CUJSE 18(2): 125-132 (2021)

132

[3] K. Niu and K. Chen, “Stack decoding of polar codes,” Electronics Letters, vol. 48, no. 12, pp. 695697, 2012.

[4] K. Chen, K. Niu, and J. Lin, “Improved successive cancellation decoding of polar codes,” IEEE Transactions on

Communications, vol. 61, no. 8, pp. 31003107, 2013.

[5] B. Li, H. Shen, and D. Tse, “ An adaptive successive cancellation list decoder for polar codes with cyclic redundancy

check,” IEEE Communications Letters, vol. 16, no. 12, 2012.

[6] E. Arikan, “ Channel polarization: A method for constructing capacity achieving codes for symmetric binary-input

memoryless channels,” IEEE Transactions on Information Theory, vol. 55, no. 7, pp. 30513073, 2009.

[7] A. Çağrı Arlı, O. Gazi, “ Noise-aided Belief Propagation List Decoding of Polar Codes,” IEEE Communications

Letters, pp: 1285-288, 2019.

[8] K. Niu and K. Chen, “ CRC-aided decoding of polar codes,” IEEE Communications Letters, vol. 16, no. 10, pp.

16681671, 2012.

[9] A. A. Andi, O. Gazi, “ Fast Decoding of Polar Codes Using Tree Structure,” IET Communications, vol. 13, no. 14,

pp. 2063-2068, 2019.

