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1.

Introduction

The foundation of fixed point theory is the idea of metric spaces and the Banach contraction

principle. An enormous number of academics are motivated to the axiomatic interpretation of metric
space because of its spaciousness. The metric space has experienced numerous generalizations until
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now. This demonstrates the attraction, enchantment, and development of the idea of metric spaces.

After being given the notion of fuzzy sets (FSs) by Zadeh [1], researchers provided various
generalizations for classical structures [2—5]. In this continuation, Kramosil and Michalek [6]
originated the approach of fuzzy metric spaces, while George and Veeramani [7] introduced the
concept of fuzzy metric spaces. Garbiec [8] gave the fuzzy interpretation of Banach contraction
principle in fuzzy metric spaces.

The idea of fuzzy extended b-metric spaces was first established by Mehmood [9]. Metric-like
spaces (MLSs), which is generalization of the idea of metric spaces, were introduced by Harandi [10].
The notions controlled metric type spaces and controlled metric-like spaces were first introduced by
Mlaiki [11,12]. Recently, Sezen [13] generalized the concept of controlled type metric spaces and
introduced the concept of Controlled fuzzy metric spaces (CFMS). Shukla and Abbas [14]
reformulated the definition of MLSs and introduced the concept of fuzzy metric like spaces
(FMLSs). Later, Javed et al. [15] obtained fixed point results in the context of fuzzy b-metric-like
spaces. The approach of intuitionistic fuzzy metric spaces was tossed by Park [16] that deals with
membership and non-membership functions.

Smarandache [17] established the concept of neutrosophic logic and the concept of
neutrosophic set in 1998. The concept of neutrosophic sets have three functions, which are
membership function, non-membership function and naturalness respectively. Thus, neutrosophic
sets are the more general form of fuzzy sets [1] and intuitionistic fuzzy sets [18]. Hence, researchers
in [19-22] have made studies on the concept of neutrosophic sets. Recently, Aslan et al. [23]
obtained decision making applications for neutrosophic modeling of Talcott Parsons’s Action and
Kargin et al. [24] introduced decision making applications for law based on generalized set valued
neutrosophic quadruple numbers. Sahin et al. [25] studied adequacy of online education using
Hausdorff Measures based on neutrosophic quadruple sets. Also, Researchers in [26,27] studied
types of metric space based on neutrosophic theory. Recently, Sahin and Kargin [28] obtained
neutrosophic triplet metric spaces and neutrosophic triplet normed spaces. Kirisci and Simsek [29]
established the concept of neutrosophic metric spaces (NMSs) that deals with membership, non-
membership and naturalness functions. Sahin and Kargin [30] studied neutrosophic triplet v-
generalized metric spaces and Sahin et al. [31] introduced the concept of neutrosophic triplet bipolar
metric spaces. Simsek and Kirisci [32] derived various fixed point theorems for neutrosophic metric
space. Sahin and Kargin [33] introduced the concept of neutrosophic triplet b—metric space. Sahin
and Kargin [32] established neutrosophic triplet b-metric space and Sowndrarajan et al. [34] studied
contradiction mapping results for neutrosophic metric space. Saleem et al. [35-37] proved various
fixed point results for contraction mappings. Khater [38] did nice work on diverse solitary and
Jacobian solutions in a continually laminated fluid with respect to shear flows through the Ostrovsky
equation and Khater [39] worked on numerical simulations of Zakharov’s (ZK) non-dimensional
equation arising in Langmuir and ion-acoustic waves.

In this manuscript, we introduce the notion of controlled neutrosophic metric-like spaces as a
generalization of a NMSs introduced in [29]. We replaced the following conditions of NMS

P(w,v,T) = 1forallt > 0,ifand only if @ = v,
Q(w,v,t) = 1forallt > 0,ifand only if @ = v,
S(w,v,t) = 1forallt > 0,ifand only if @ = v,

with
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P(w,v,T) = 1limplies@w = v,
Q(w,v,t) = 1impliesw =v,
S(w,v,T) = 1impliesw = v.

Also, we used a controlled function ¢p: £ X £ — [1,0) in the triangle inequalities of NMS.
These both things generalized the defined notions existing in the literature. We also, derived several
fixed-point results for contraction mappings in the context of new introduced space with non-trivial
examples and graphical structure. At the end, we established an application to integral equation to
show the validity of our main result.

In Section 2, we give basic definitions and basic properties for fuzzy metric spaces and
neutrosophic metric spaces from [4,10,12—16,29]. In Section 3, we define controlled neutrosophic
metric-like spaces and definitions of open ball, G-convergent sequence, G-Cauchy sequence, G-
complete space and some examples for controlled neutrosophic metric-like spaces. Also, we give
some fixed point (FP) results and illustrative examples. In Section 4, we give conclusions.

2. Preliminaries

The following definitions are useful in the sequel.
Definition 2.1. [15] A binary operation * : [0, 1] X [0, 1] = [0, 1] is called a continuous triangle
norm (briefly CTN), if it meets the below assertions:

1) Yxe=0+Y,(V)Y,0€[0,1];

2) * is continuous;

3) Y«x1=Y,(V)Y €[0,1];

4) Fxe)xxu=Yx*(@*x),(VM)Y,0x€[0,1];

5 IfY <xandp <d,withY,p,%,d € [0,1],thenY * o < x * d.
Example 2.1. [4,15] Some fundamental examples of t-norms are: ¥ * 0 =Y - 9,Y * o = min {V, o}
andY * o = max{Y' + o — 1,0}.
Definition 2.2. [15] A binary operation © : [0, 1] X [0, 1] — [0, 1] is called a continuous triangle
conorm (briefly CTCN) if it meets the below assertions:

1) Yopg=poY,forallY,p € [0,1];

2) ©is continuous;

3) Yo0=0,forall Y €[0,1];

4) (Yop)ox=Yo(poux)forallY,o,x€[0,1];

5 IfY <xandp <d,withY,p,%,d € [0,1],thenY 0 p < xOd.
Example 2.2. [15]Y © o = max{Y, 0} and Y © ¢ = min{Y" + p, 1} are examples of CTCNs.
Definition 2.3. [10] Suppose & # @ be a set. A mapping @:E X E — [1, ) is known as a metric-
like, if it satisfying the following conditions:

1) O(w,v) = 0impliesw = v;

2) O(w,v) =0, w);

3) O(w,v) <O, A)+04,v);
forall w,v,A € £.

Also, (£, 0) is called a metric-like space.
Definition 2.4. [12] Let £ # @, Y:Z X E - [1,0) be a function and @: £ X £ - R*. If the
following properties are satisfied:

1) O(w,v) = 0implies w = v;
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2) O(w,v)=0W,@);

3) O(w,v) <Y(w,1)O(w, i) + Y(4,@)O(A,V);
for all w,v,A € E, then O is said to be a controlled metric-like and (£, ®) is known as a controlled
metric-like space.
Definition 2.5. [13] Suppose £ # @, h: E X E - [1, 0) be a mapping, * is a CTN and A, is a FS on
E X E %X (0,00). Four-tuple (&,4y,% h) is called CFMS if it meets the below assertions for all
w,V,A€ Eandt,¢ > 0:

h1) 4, (w,v,0) = 0;

h2) Ap(@,v,T) =1 & @ =v;

h3) 4, (w,v,T) = 4, (v, @, T);

T ¢ .
h4) Ap(@, 4, (T+¢6)) = Ay (w, v, —h(m)) * A (V' 4 _hm))'

h5) Ap (@, v, +):(0,00) — [0,1] is continuous.
Definition 2.6. [16] Let £ # @, * be a CTN, Pbe aFSs on & X & X (0, o). If triplet (&, O, *) verifies
the following for all @, v,A € £ and ¢, 7 > O:

1) O(w,v,T)>0;

2) O(mv,1)=1w=y

3) O(@,v,t)=0W,@1);

4) 0(w, 4, b(T+¢) = 0(w,v,7)*60(v,4,7);

5 O(w,v,): (0,00) - [0, 1] is a continuous mapping.
then (=, @, *) is called an FMLS.
Definition 2.7. [14] Let £ be a universal set. For Vo € E,0” < T4 (w) + I4(w) + F4(w) < 3T, by
the help of the functions T4:E -] 0,1 [, 14:E -] 0,1% [ and F4: E -] 0, 17[a neutrosophic
set A on £ is defined by

A ={{(w, Ty(w), 1 4(w),Fy(w)):w € E}

Here, T4 (@), [ 4(w) and E4(w) are the degrees of trueness, indeterminacy and falsity of @ €
E respectively.
Definition 2.8. [29] Let = # @, * is a CTN, © be a CTCN and

A = {(w, 0(@),Q(),S(w)): w € £}

be a neutrosophic set such that A: E X E X (0,00) = [0, 1]. If for all @w,v,4 € E, the below
circumstances are satisfying:

1) 0<P(w,v,1)<1,0<Q(w,v,7)<1land0 < S(w,v,T) <1,

2) P(w,v,7) +Q(w,v,T) + S(w,v,T) < 3;

3) P(w,v,T) > 0;

4) P(w,v,T) =1forallt > 0,ifand only if @ = v;

5 P(w,v,T) =P, w,1);

6) P(w,ATt+¢)=P(w,v,T)*P(v,4,);

7) P(w,v, -):(0,0) — [0,1] is continuous and Tli_)rgP(w, v,7) =1;

8) Q(w,v,T) <1;

9) Q(w,v,t) =0forallt > 0,ifand only if @ = v;

10) Q(@,v, 1) = Q(v, @, T);

11) Q(@, 4, t+¢) < Q(@,v,7) © Q(v,4,¢);

12) Q(w,v, -):(0,00) — [0,1] is continuous and li_)rgQ(w, v,7) = 0;
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13) S(w,v, 1) < 1;

14) S(w,v,t) = 0forall T > 0,if and only if w = v;

15) S(w,v, 1) = S(v, @, T);

16) S(w,A,t+¢) < S(w,v,T)° S(v,4,¢);

17) S(w,v, ):(0,) — [0,1] is continuous and }i_)rgS(w, v,7)=0;

18) If T < 0, then P(w,v,7) = 0,Q(w,v,T) = 1 and S(w,v, 1) = 1.
then four-tuple (£, A,*,0) is called an NMS.

Where; P(w, v, T) is degree of nearness, Q(w, v, T) is degree of neutralness and S(w@, v, T) is
degree of non-nearness.

3. Main results

In this section, we introduce the notion of a CNMLS and prove some related FP results.
Definition 3.1. Suppose £ # @, assume a six tuple (£, Py, Q¢, Ry, *, 0) where *is a CTN, o is a
CTCN, ¢:E X E - [1,) be a function and Py, @4, Ry are neutrosophic sets (NSs) on & X E X
(0,00). If (£, Py, Qgp,, Ry, *, 0) meet the below circumstances for all @, v, 4 € £ and ¢, 7 > 0:

1) Py(@,v,7) + Qp(@,v,T) + Ry (w,v,T) < 3,

2) P¢(w, v,T) >0,

3) Py (@,v,t) = 1impliesw = v,

4) Py(w,v,T) = Py (v, @, T),

5) Py(w,4,(t+¢)) >P¢(zzr Vo )) *Py (v e A))

6) Py (w,v, ) is ND function of R and 11_>r£10 Py(w,v,T) =

7) Q¢(m,v,7) <1,

8) Q¢ (@,v,7) = 0 impliesw = v,

9) Qp(@,v,7) =Qp(v,w,7),

10) Q¢(w, A(t+ g‘)) < Qs (w, V'qb(;.v)) Qy (v A, 0 /1))

11) Q4 (@, v,) is NI function of R* and Tll_)rg Qp(@,v,T) =

12) Ry (wm,v,7) <1,

13) Ry (w,v,T) = 0 implies @ = v,

14) Ry (@,v,T) = Ry (v, @, T),

15) R¢(wl(t+c))<R¢(wv¢( )) (v/ld)( ,1))

16) Ry (w,v,’) is NI function of R* and ll_)rg Ry(@,v,T) =

17) If T < 0, then Py (w,v,T) = 0,Q4(w,v,7) = 1 and R¢(w,v, )= 1.

Then five-tuple (E, Ag, ¢,*,O) 1s called a CNMLS.

Where; Py (@, v, T) is degree of nearness, Q4 (@, v, T) is degree of neutralness and Ry (@, v, T)
is degree of non-nearness.

Example 3.1. Let £ = (0, 0), define Py, Qg, Ry: E X £ X (0,00) — [0,1] by

max{w, v}? max{w, v}?
{ ) Ry(w,v,7) = —{ )

P,(w,v,1) = , w,V,T) = ,
o ) T + max{w, v}? 2 ) T + max{w, v}? T

forall w,v € £and t > 0, define CTN "*" by ¥ x o =Y - p and CTCN "0" by Y 0 ¢ = max{Y, 0} and
define "¢" by
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1 ifo=v,
={1+ )
(@) MA@V i,
min{w, v}
Then five-tuple (&, Ay, ¢,%,0) is a CNMS.

Proof. (i) — (iv), (vi) — (ix), (ix) — (xiv), (xvi) and (xvii) are trivial, here we
examine (v), (x) and (xv),

max{w, 1}? < ¢(w,v) max{w,v}*> + ¢(v, 1) max{v, 1}?
Therefore,
t¢max{w, 1}? < ¢(w,v)(t¢ + ¢2) max{w,v}* + ¢ (v, 1) (¢ + 12) max{v, 1}?,
= t¢max{w, 1}? < ¢(w,v)(t + ¢)¢ max{w, v}? + ¢ (v, 1) (t + ¢)T max{v, 1}?,
= 17¢(T + ¢) + T¢ max{w, 1}?,
<t¢(t +¢) + ¢(@,v) (T + ¢)¢ max{w, v}* + (v, 1) (T + ¢)T max{v, 1}?
That is,
t¢[(T + ¢) + max{w, 1}*] < (7 + ¢)[7r¢ + ¢(w, v)¢ max{w, v}? + ¢ (v, )T max{v, 1}?],
= 7¢[(T + ¢) + max{w, 1}?],

< (t + ¢)[t¢ + ¢(w,v)¢max{w,v}? + ¢(v, )T max{v, 1}? +
¢ (@, v)P(v, 1) max{w, v}? max{v, 1}?],

= 1¢[(t + ¢) + max{w, 1}?] < (t + ¢)[t + ¢ (@, v) max{w, v}?][¢ + ¢ (v, 1) max{v, 1}*]
Then,

(t+¢) - ¢
(t+¢) + max{w, 1}?> ~ [t + ¢(w,v) max{w, v}*][¢c + ¢ (v, 1) max{v, A1}?]’

(t+¢) - T S
(t+¢) + max{w, A}? ~ T+ ¢(w,v) max{w,v}? ¢+ ¢(v, ) max{v, A}?’

Tt _9
(t+¢) - ¢ (w,v) o(v, 1)

= (t +¢) + max{w, 4}* ~ m + max{w, v}? . m + max{v, 1}2

Hence,

Py(w,4,(t+¢)) = Py (w' v ﬁ) “Po (V’ 4 m>

(v) is satisfied.
max{w, A}? = max{w, A} max{1,1}

Therefore,
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v} ,A)?
max{w, A}? = max{w, 1}2 max {max{w v}* max{v, i} }

max{w, v}? max{v, 1}2
max{w, v}? max{v, /1}2}

max{w, v}? max{v, 1}?

max{w, 1}? < [(t + ¢) + max{w, 1}?] max{

2 2
max{w, 4}* < [(7 + ¢) + max{w, 4}*] max {d) (@, v) maxim, v}" $(v,4) maxiv, 4} }

¢ (w,v) max{w, v}?’ ¢ (v, 2) max{v, 1}?

Then,
max{w, A} < ma ¢ (@, v) max{w, v} ¢ (v, 1) max{v, 1}?
(T + ¢) + max{w, 1}2 T + ¢(w,v) max{w,v}?* ¢ + ¢ (v, 1) max{v, 1}2
That is,
max{w, A}? max{w, v}? max{v, A}?
@ +¢) + max(ew, A2 = ") T 2% "
¢ ) @) + max{w, v} FIOW)) + max{v, 1}
Hence,

T

(@4, (T+9) < Qy (w' Vo (o, v)) "0 (V' 4 m>

(x) is satisfied.
It is easy to see that

max{w, A}? {(,b (@, v) max{w,v}? ¢(v, ) max{y, /1}2}
———— < max )
T+¢ T C
That is,
max{w, A} max{w,v}? max{v, 1}?
—————— < max )
(T+¢) L ¢
¢(@,v) d(v, 1)
Hence,

R¢(w' AT+ C)) <Ry (w, v, m) *Ry (v, A, ﬁ)

(xv) is satisfied.
Remark 3.1. If we let, Y * ¢ = min{Y, 0} and Y © p = max{Y, o}, then above example is also a
CNMLS.

Example 3.2. Suppose £ = (0, ), define Py, Q¢, Ry: E X E X (0,00) - [0,1] by

T
P ) ) =
p(@7,7) T + max{w, v}
max{w, v}
Q¢ (ZD', v, T) =

T + max{w, v}

AIMS Mathematics Volume 7, Issue 12, 20711-20739.



20718

and

max{w, v}
Ry(@,v, 1) = ———

for all @, v € Eand t > 0, define CTN "*" by ¥ x o =Y - p and CTCN "0" by ¥ 0 o = max{Y, ¢} and
define "¢" by

¢(w,v)=1+w+v

Then (&, Py, Qp, Rg,*,0) be a CNMLS.
Remark 3.2. The above Examples 3.1 and 3.2 are not neutrosophic metric spaces.

Definition 3.2. Let (E, Py, Q¢,R¢,,*,O) is a CNMLS, then we define an open ball B(@, r, T) with
centre w, radius r,0 < r < 1 and T > 0 as follows:

B(w,r,t) ={vE€E:P(w,v,T)>1—1,Q(w,v,T) <1, R(w,v,T) <1}

Definition 3.3. Let (&, Py, Qp, Rg,*,0) be a CNMLS. Then

1) asequence {w,} in & is named to be G-Cauchy sequence (GCS) if and only if for all ¢ >
Oand T > 0,

lim Py (@, Bp1q T), lim Qg (@, @n4q, T)and lim Ry (@, @n1q T) exists and finite

2) asequence {@w,} in & is named to be G-convergent (GC) to @ in £, if and only if for all T >
0,

Al_)l’glo Py(w,, w,T) = Py(w, @, T), 1%1_1)1010 Qp(@n, @, T) = Qp(w, @, T)
and lim Ry (@, @, T) = R¢,(zzr, W, T).
n—oo

3) a CNMLS is named to be complete if each GCS is convergent i.e.,

rlll_l)‘lc‘)lo P¢(wn, zzrn+q,r) = rlll_r}go Py (@, @, T) = Py (w, @, 1),

lim Qg4 (wn,wn+q,r) = rlll_r}go Qs (@, @, T) = Q¢,(zzr, w,T),

n—-oo

rlll_l)‘lc‘)lo Ry (wn,wn+q,r) = rlll_r)lgo Ry (@, @, T) = R¢,(zzr, w,T)

Theorem 3.1. Suppose (E, P¢,Q¢,R¢,*,O) be a G-complete CNMLS with ¢: £ X & - [1, ) and
assume that

lim Py (@, v, T) = 1,Tli_)rg Q4 (@, v,7) =0 and ll_fg) Ry(@,v,T) =0 (1)

T—00
for all @, v € £ and T > 0. Suppose : E — E be a mapping verifying
Py(§w, &v,£T) = Py (w, v, T),
Qp (@, &v,£7) < Qp(w,v,T) and Ry (§w, v, £T) < Ry (@, v, T) (2)

forall w,v € £,0 < £ < 1 and T > 0. Also assume that for every @ € Z,

AIMS Mathematics Volume 7, Issue 12, 20711-20739.
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lim ¢(w,, v) and lim ¢ (v, @,,) 3)
n—oo n—oo

exists and finite. Then ¢ has a unique fixed point in Z. Then ¢ has a unique FP.
Proof. Let w, be an arbitrary point of £ and define a sequence @, by @, = {"w, = {w,_1,n € N.
By utilizing (2) for all T > 0, we get

T
P¢ (wnr Wnt1, ET) = P¢> (fwn—li Ewn’ £T) = P¢> (wn—ll W, T) = P¢> (wn—ZJ Wn—1, E)

= Py (wn—3»wn—2' é) =2 Py (wo’wl’En 1)’

¢(wn: Wnt1, ET) - ¢>(€wn 1 Ewn’ET) < Q(p(wn 1, Wn, T) < Q¢> (wn 20 Wn-1, )

T
< Q(l) (ZD'n_3,ZD'n_2, £2) = Qd) (wO'wl' £n— 1)
and
T
Rd) (wnr Wnt1, ET) = Rd) (Ewn—li Ewnf ET) = Rd) (wn—l' Wn, 7:) = Rd) (wn—z' Wn—-1, E)
T T
<Ry (wn—3:wn—z»£_2) < <Ry (wo,wbm)
We obtain

T
Py (@, Wni1,£T) = Py (wo,wl,m),

Q¢ (wnr Wy41) ET) < Qd) (wO' W4, £n— 1) and R(,b (wn' Wy+1) ET) < R(Z) (w0' w3, EnT 1) (4)

for any g € N, using (v), (x) and (xv) , we deduce

T T
* Py | @1, @ntg,
2(¢(wn,wn+1))> L R (¢(@ns1, Tusa))

Py (wn' wn+q'f) = Py <wn' W+

T T

* Py | @ni1, D2
2(¢(wn'wn+1))> ¢ ' i (2)? (¢(wn+1'wn+q)¢(wn+1'wn+2))

= Pd) ( Wy, Wni1,

T

(2)2 (¢(wn+1’ wn+q)¢(wn+2' wn+q))

* P¢ Wn42, Wntq)

T

2(¢(ZD'n, ZD-n+1))

T

(2)2 (¢(mn+1' ZD-n+q)¢)(w'n+1r zD'n+2))

= P¢ (wnl Wn+1, ) * Pd) Wn+1) Wn+2)

T

(2)3 (¢ (wn+1' ZD-n+q)¢(w-n+2: ZD-n+q)¢(w-n+2: ZD-n+3))

* qu Wni2, Wnys,
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T
* Py | Wiz Ongs
¢ < ’ ! (2)3 (¢(wn+1» wn+q)¢(wn+2, zUn+q)§1-')(wn+3' zzrn+q))>

T

T
=P nw “n+1ls * P n+1 “n+2,
¢ (ZU Fn 2(¢(wn'wn+1))) ¢ (ZU o (2)? (¢(wn+1:wn+q)¢(wn+1'wn+2))>

T
* P Wny2, W43,
v ( ’ ’ (2)3 (¢(wn+1’wn+q)¢(wn+2: ZD'n+q)¢)(w'n+21 wn+3))>

T
*P¢ Wn+3, Wnt4, K eee %
< " " (2)* (¢(wn+1'wn+q)¢(wn+2:wn+q)¢(wn+3rwn+q)¢(wn+3'wn+4))>

T
qu Wn+q-2) Wn+q-1s
( e e (Z)q_l (¢(wn+1:wn+q)¢(wn+2fwn+q)¢(wn+3'wn+q) "'¢(wn+q—2'wn+q—1))>

T
* P¢ Wntq-1 On+q» ’
( e e (2)q_1 (¢(wn+1:wn+q)¢(wn+2'wn+q)¢(wn+3'wn+q)"'¢(wn+q—1:wn+q))>

T T
Q¢ (wn, wn+q' T) = Q¢ <wn‘ Pt 2((]5(@}1, wn+1))> ’ Qd) (wn+1' wn+q' 2 (¢(wn+1r ZD-n+CI))>

T

T
< nw “n+1y © b e
Qo (w Pt 2(¢(wn,wn+1))> % (w v (2)? <¢(wn+1'wn+q)¢(wn+1'w""’Z)))

T
0 Q¢ | Tntz Dntg
v ( ’ ! (2)2 (¢(wn+1'wn+q)¢(wn+2' ZD'n+q))>

T

T
< nr n+1» o n+1» “’n+2»
=0 (Gf “r 2(¢(wn'wn+1))> % <w e (2)? (¢(wn+1rwn+q)¢(wn+bwn+2))>

T
Q¢ | Dn+2 DTns3
¢ ( ’ ’ (2)3 (¢(wn+1: ZD-n+q)¢(w-n+2: ZD-n+q)q-')(w-n+2rw'n+3))>

T
© Q¢ | Dn+3 Tntg
’ ( ’ ! (2)3 (¢(wn+1: zD-n+q)§b(w-n+2'ZD—n+q)q-’)(w-n+3rw'n+q))>

T

T
< n» n+1» o n+1» Yn+2»
=0 (Gf “n 2(¢(wn'wn+1))) % <w e (2)? (¢(wn+1'wn+q)¢(wn+1lwn+2))>
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T
0 Q¢ | Dnt2, Wn+as
¢ < : ’ (2)3 (¢(wn+1» wn+q)¢(wn+2' wn+q)¢(wn+2rwn+3))>

T
OQ Wn+3, Wnta, O ...0
¢ ( ’ ! (2)4 (¢(wn+1’ ZD'n+q)¢)(w'n+2f ZD'n+q)¢)(w'n+3' ZD'n+q)(]5(w'n+3' ZD'n+4))>

T
Q¢ | Tntg-20Dntg-1s
¢< e (2)a-1 (¢(wn+1,wn+q)¢(wn+2,wn+q)¢(wn+3,wn+q)“'¢(?Dn+q—2:wn+q—1))>

T
© Q¢ | Tn+g-1, Pn+q)
¢< e (2)a-1 (¢(wn+1:wn+q)¢(wn+2'wn+q)¢(wn+3'wn+£1) "'¢(wn+q1’w"+q))>

and

T

T
Rylw,, @10, T) < Ry | @0, @41, OR, | @yov,@Wnaig,
(@ Tnsa 7) ¢< ot z(¢<wn,wn+1))> "’( e 2(¢(wn+1,wn+q))>

T

T
<R nw Yn+ls OR n+1 “n+2»
® (w Wyt 2(¢(wn, wn+1))> ¢ <Ef e (2)? (¢(wn+lrwn+q)¢(wn+1:wn+2))>

T
O Ry | Dn+2) Tntgr
¢ ( ’ ! (2)? (¢(wn+1' wn+q)¢(wn+2'wn+q))>

T

T
<R n Yn+1l» OR n+1 “n+2
¢ (Gf “n 2(¢(wn' wn+1))> v (Gf b (2)2 (¢(wn+lrwn+q)¢(wn+1rwn+2))>

T
O Ry | @n+2) @ness
v ( ’ ’ (2)3 (¢(wn+1:wn+q)¢(wn+21wn+q)¢(wn+2; ZD-n+3))>

T
ORy | @n+3 Tn+gr
¢ ( ’ ! (2)3 (¢(wn+1'wn+q)¢(wn+2'wn+q)¢(wn+3'wn+q))>

T

T
<R n “n+1ls OR n+1 “n+2
¢ (w Fn 2(¢(wn’wn+1))) ¢ (w v (2)2 (¢(wn+1'wn+q)¢(wn+1'wn+2))>

T
O Ry | T2 @ntas
v ( : ’ (2)3 (¢(wn+1'wn+q)¢(wn+2’wn+q)¢(wn+2; ZD-n+3))>
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OR¢ Wn+3, Ont4, O ...0O
< " " (2)* (¢(wn+1»wn+q)¢(wn+2'wn+q)¢(wn+3rwn+q)¢(wn+3rwn+4))>

T
Ry | BTnig—2 Bntg-1,
< e e (Z)q_l (¢(wn+1'wn+q)¢(wn+2'wn+q)¢(wn+3:wn+q) "'¢(wn+q—2'wn+q—1))>

T
ORy | Bntg—1 Bntq
( e e (Z)q_l (¢(wn+1'wn+q)¢(wn+2'wn+q)¢(wn+3'wn+q)"'¢(wn+q—1'wn+q))>

Using (4) in the above inequalities, we deduce

T

T
) * P, , @y,
@ Z(E)n_l(‘l’(wn' wn+1))> ¢ (wo i (2)2(E)" (¢(wn+lrwn+q)¢(wn+1'wn+2))>

= P¢ <ZD'0,

T
* P, | @, @4,
v ( ’ ' (2)3(£)n+1 (¢(wn+1'wn+q)¢(wn+2'wn+q)¢(wn+2' ZD-n+3))>

* Py | @o, @1, !
(2)4(£)n+2 (¢(wn+1: ZD'n+q)¢(w-n+2' wn+q)¢(wn+3f ZD'n+q)(/-')(w-n+3: ZD'n+4))

Kk eee 3k

Py | @y, @y, ’
(2)a-1(g)nta-2 (¢(wn+1' wn+q)¢(wn+21 wn+q)¢(wn+3' wn+q) ¢(wn+q_2, w’”‘q‘l))

* P¢ wq, W1, i )
(2)q—1(£)n+q—1 (¢(wn+1' ZD-n+q)¢(w-n+2f ZD-n+q)q>(w-n+3f ZD-n+q) ¢(wn+q—1' ZD'n+q))

T
< Q¢ <ZD'0,TD'1f Z(E)n—1(¢(mn,wn+1))>

T
0 Q¢ | @, @y,
’ ( ’ (2)2(£)" (¢(wn+1'mn+q)¢(mn+1'wn+2))>

T
0 Q¢ | o, @y,
¢ < ° ' (2)3(£)n+1 (¢ (wn+1» ZD-n+q)¢)(w-n+2' zD-n+q)¢(w-n+21 wn+3))>

T
© Q¢ | Wy, Wy,
v ( ° ' (2)4(£)n+2 (¢(wn+1'wn+q)¢(wn+2fwn+q)¢(wn+3'wn+q)¢(wn+3' ZD-n+4-))>

0..-0
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T

v (2)q—1(£)11+q—2 (¢ (wn+1' ZD-n+q)(,i')(w-n+2' ZD-1‘L+q)¢(w-n+3' ZD-n+q) ¢(wn+q—2r zz)-n+q—1))

Qp | Wo, @

T

v (2)q—1(£)ﬂ+q—1 (¢ (wn+1» ZD'n+q)¢)(w'n+2' ZD'n+q)¢(w'n+3' ZD'n+q) ¢(wn+q—1: wn+q))

O0Q¢p | Wo, @

and

T
< R¢ (ZD'O» Wy, Z(E)n_l(d)(le' ZD'n+1))>

T

Wy,
(@2 (@11, Tnsg ) @nss, na2) )

o Rd’ Wy,

T

' (2)3(£)n+1 (¢(wn+1' ZD'n+q)¢)(w'n+2f ZD'n+q)¢)(w'n+2: ZD-n+3))

© R¢ wWp, W1

T

(2)*(E)n+2 ((l’ (wn+1r zD'1‘L+q)(§b(wn+2' zD'n+q)(§b(wn+3' zD'n+q)¢('wn+3: wn+4))

o) R¢ W , W1,

O +..0

T

(2)a-1(g)nt+a-2 (¢(wn+1: wn+q)¢(wn+21 wn+q)¢(wn+3' wn+q) ¢(wn+q_2, w”‘“q‘l))

R¢ W, W1,

T

(2)q—1(£)n+q—1 (¢(wn+1' ZD-n+q)¢)(w'n+2: ZD-n+q)q>(w'n+3: ZD'n+q) ¢(wn+q—1' ZD'n+q))

o Rd) wOr wll

Using (1), for n — oo, we deduce

lim Py(wy, @pygT) =1x1x--x1=1,
lim Qyp (@, @y4q,T) =0000:-00=0,
and

A%R¢(wn,wn+q,r) =0000--00=0

i.e., {w,} is a GCS. Therefore, (E, Py, Q¢p, R¢,*,O) be a G-complete CNMS, there exists @ € E.

Now investigate that @ is a FP of &, using (v), (x), (xv) and (1), we obtain

T T
Py (@, 5@, 7) 2 Py (w' 26 (@, wn+1))> *Fo <w"“'fw’ z(¢(wn+1,€w>)>
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T

T
* P - ,
2(¢><w,wn+1))> "’(Ew i 2(¢(wn+1,fw))>

T T
Pol@ s ) = Py (w’ 2 (¢, wn+1>)> "Fe <w’“ w’ 2£(¢>(wn+1,fw))> Citied

Py(w,éw,T) = Py (w, Wit

asn — oo,

. T
Qg (@,{@,7) < Qg <w' Pne 2(¢(w, wn+1))> >0 <wn+1,€w, 2(¢(wn+1'€w))>

T T
Qp(@,$@,7) < Qg (w' Ot 2(¢(w, wn+1))> > Qs (Eww s 2(¢(wn+1'€w))>

T T
Qo (@, {m,T) < Qg (w’ S (p(w, wn+1))> >0 (w”’w’ 2£(¢(mn+1,fw))) —000=0

asn — oo, and

T

T
o R n+1» )
2(¢(a, wn+1>)> ¢ (“ ‘@ 2(¢(wn+1,fw))>

T
2(¢(w, wn+1))> © Ry <&Un, ¢w,

Ry(w,éw,T) < Ry (w, Wt

Ry(@,¢w,T) < Ry <w; Wni1, 2((],')(1:)' - fZD')))
n+1»

T T
Ry(@:6m.7) < Ry <w’ T (6 (@, wn+1))> > o (w"’w’ 26(p (@ e, Ew))> 7 0e0=0

asn — oo. This implies that {w = @, a FP. Now we show the uniqueness, suppose ¢ = ¢ for some
c € E, then

1= Py(c,@,t) = Py(éc,éw,T) = Py (c,w,g) = Py (fC, fw,%)

= Py (c,w,;—z) =2 Py (c,w,Eln) - lasn — oo,

0 < Qyp(c,@, 1) =Qp(éc,éw,T) < Qy (C' w%) = Q¢ (fc' Ew'g)

< Q¢ (C,w,ET—Z) << Qyp (C,m,fln) - 0asn — oo,

and

0 < Ryl(e.@,7) = Ry(§c,§m,7) < Ry (c,,2) = Ry (6,60.7)

T T
< R¢ (c,w,E—z) < < R¢ (c,w,E—n) — 0asn — oo,
by using (iii), (viii) and (xii), @ = c.

Definition 3.4. Let (E, Py, Q¢,R¢,*,O) be a CNMLS. A map : E — £ is CNL-contraction if there

exists 0 < £ < 1, such that
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1 1
Py (Ew,év,7) —1=s¢£ [P¢(w,v,‘t) B 1] )
and
Q¢ (fw; Evr T) < £Q¢ (ZD', v, T)r R¢ (Ewl Evl 1:) < £R¢ (wr v, T) (6)

forall w,v € £and T > 0.
Theorem 3.2. Let (&, Py, Qg Rp,%0) be a G-complete CNMLS with ¢:Z x & - [1,00) and
suppose that

TlLrg Py(w,v,T) = 1,}1_)r(r)1o Q4(@,v,7) =0 and il_)rg Ry(@,v,T) =0 (7

for allw,v € Eand t > 0. Let £: £ - E be a CN-contraction. Further, assume that for an arbitrary

@, € E,and n, q € N, where w,, = {"w, = {w,_; also lim ¢(@,,Vv) and lim ¢ (v, ®w,) exists and
n—>00 n—-oo

finite. Then ¢ has a unique FP.

Proof. Suppose @, be an arbitrary point of & and define a sequence w,, by @w,, = {"w, = {w,,_1,
n € N. By utilizing (5) and (6) for all T > 0, n > g, we get

1 1
1 = -1
P(l) (wnl ZD-n+1l‘t) Pd)(fwn—l'wnﬂr)
1 £
<f -1 = —£
Py (wn—1, @, T) Py (wn—1, @y, T)
1
+(1-£)

<
P¢(wn' ZD-n+1'7'-) Pd)(wn—l'wn' T)

2

< +£1-£)4+1—-£
P¢ (wn—ZI Wn-1, T) ( ) ( )

Continuing in this way, we get
1 £"

<
Py (@, D41, T) Py (@o, @1, T)

+E£TA-E)+HE2(1-E)+ -+ EQ-£)+ (1 —£)

n n
< b (ET 424 D) < ———+ (1 — £Y)
P(l)(wO) wllr) P¢ (w01 wllr)

‘We obtain

1

£ = Pd) (wn' Wnt1, T) (8)

e —f£n
P¢(wo.W1.r)+(1 £

and

Q¢ (wm ZD-n+117'-) = Qd) (Ewn—lfwn' T) < £Q¢ (mn—lﬂwn' T) = Qd) (Ewn—zrwn—lrt)
< £2Q¢ (wn—Z:wn—lfT) <= £nQ¢(ZU0,ZU1,T) ©
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R¢ (wm Wn+1) T) = ch (S;wn—lﬂ wWp, T) = £R¢ (wn—1; Wy, T) = R(l) (’Ewn—Z' Wn-1, T)

< £2Ry(@p_z, Wy, T) < -+ < £"Ry(wp, @1, T) (10)
for any q € N, using (v), (x) and (xv) , we deduce

T

T
Pylw,, W10, T) = Py | @, @y11, * Pl @01, Whig,
(@ @nsa T) “”( S z(¢<wn,wn+1))> 4’( n+q2(¢(wn+1,wn+q))>

T

T
= P, nw Yn+1l» * P n+1» “n+2
¢ (Gf Pn+1 2(¢(?Un, wn+1))> ¢ <w b Ons2 (2)? (¢(wn+1'wn+q)¢(wn+1:wn+2))>

T
* Py | Wiz Onsgs
¢ < : ! (2)2 (¢(wn+lrwn+q)¢(wn+2:wn+q))>

T

T
= P, n Wn+1) * P, n+1 Wn+2,
¢ <w Ot Z(d)(wn'wnﬂ))) ¢ (w b (2)2 (¢(wn+1:wn+q)¢(wn+1'wn+2))>

T
* Py | Wiz @nys)
v ( i ’ (2)3 (¢(wn+1: zD-n+q)¢(w-n+2' zD-n+q)¢)(w-n+2; ZD-n+3))>

T
* Py | Wiz Ongs
¢ ( ’ ! (2)3 (¢(wn+1' zD-n+q)¢(w-n+2' zD-n+q)¢(w-n+3; ZD-n+q))>

T

T
= P, w Yn+1ls * P n+1» *n+2»
¢ (”(U Ot 2(¢(wn'wn+1))> ¢ <w o (2)2 (¢(wn+1'wn+q)¢(wn+1'wn+2))>

T
* Py | Wiz @nys)
v < i ’ (2)3 (¢(wn+1'wn+q)¢(wn+2'wn+q)¢(wn+2; ZD-n+3))>

T
*Pd) Wn+3, Wnta, % eee %
( " " (2)4 (¢(wn+1»wn+q)¢(wn+2'wn+q)¢(wn+3’wn+q)¢(wn+3;wn+4))>

T

P¢) (wn+q—2' Wntq-1

T
* P¢ Wntag—1 On+gr
( e e (z)q—l (¢(wn+1fwn+q)¢(wn+2'wn+q)¢(wn+3’wn+q) "'¢(wn+q—1;wn+q))>
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and

T

T
yOntqg T) = nwEntl ° e
(@1 n10%) S 0 (0 s 55 ) Q¢<w “w”2(¢(wn+1,wn+q))>

T

T
< n Yn+1s ° nrb T
Q¢ (w Pl 2(¢(wn;wn+1))> % (w v (2)? (¢(wn+1'wn+q)¢(wn+1’w"”)))

T
0 Q¢ | Tnt2, Tntg
v < ’ ! (2)? (¢(wn+1'wn+q)¢(wn+2' zUn+q))>

T

T
< n n+1» n+1» n+2»
=0 <w Fr Z(d)(wn'wnﬂ))) ° Qs <w o2 (2)? (¢(wn+1fwn+q)¢(wn+1'wn+2))>

T
0 Q¢ | Dnt2, Wntas
¢ < ’ ’ (2)3 (¢(wn+1: ZD'1‘L+q)(§b(wn+2' zD'n+q)(.b(w'n+2:'(D'n+3))>

T
© Q¢ | Dn+3 Tntg
¢ < ’ ! (2)3 (¢(wn+1: zD'n+q)(.b(w'n+2:zD—n+q)¢(zD'n+3:'(D'n+q))>

T

T
< nw Yn+1y © b e
Qg (w Pn1 2(¢(wn,wn+1))> v (w e (2)? <¢(wn+1'wn+q)¢(wn+1'w""’Z)))

T
0 Q¢ | Dnt2, Wntas
¢ < ’ ’ (2)3 (¢(wn+1' zD-n+q)¢)(w-n+2' ZD-n+q)¢(w-n+2r wn+3))>

T
OQ Wn+3 Wn+gs O ...0
i < ’ * (2)4 (¢(wn+1: zD-n+q)q>(w-n+21 zD-n+q)¢(w-n+3' ZD-n+q)¢(w-n+3r wn+4))>

T

Q(I) <wn+q—2: Wniqg-1r

(2)a-1 (¢ (wn+1: ZD-n+q)q>(w-n+2: ZD-n+q)¢)(w-n+3: ZD-n+q) ¢(wn+q—2' zD'n+q—1))

T
O Q Wntg-1 On+gr ’
¢< e (2)a-1 (¢(wn+1’wn+q)¢(wn+2'wn+q)¢(wn+3'wn+q) "'¢(wn+q—1'w”+Q))>

T

T
Ryl®,, @Wni0,T) < Ry | @, @0y, OR, | @yq, @Wnag,
(@ Tnsq 7) "’( i z(¢<wn,wn+1))> ¢< e 2(¢(wn+1,wn+q))>
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T

T
<R nw Yn+1l» OR n+1» “n+2
¢ (w Pt 2(¢(wmwn+1))> ¢ (w b2 (2)? (¢(wn+1:wn+q)¢(wn+1rwn+2))>

T
OR Wn42, Wniq)
¢ ( ’ ! (2)2 (¢(wn+1: ZD'n+q)¢(w'n+2fzn'n+q))>

T

T
<R nw “n+ls OR n+1 “n+2
¢ (w Fn 2(¢(wn’wn+1))) v (w o2 (2)2 (¢(wn+1'wn+q)¢(wn+1'wn+2))>

T
O Ry | @n+2, @ne3,
< " " (2)3 (¢(wn+1rwn+q)¢(wn+2:wn+q)¢(wn+2'wn+3))

T

(2)3 (¢ (wn+1' ZD-n+q)¢)(w'n+2f ZD'n+q)¢)(w'n+3: ZD-n+q))

O Ry ((D'n+3, Wn+q

T

T
R n+1» *“n+2»
Z(d)(wn'wnﬂ))) e (w o (2)? (¢(wn+1'wn+q)¢(wn+1'wn+2))>

< R¢ (?D'n, Wnt1,

T
O Ry | @n+2) @na3,
v ( ’ ’ (2)3 (¢(wn+1:wn+q)¢(wn+21wn+q)¢(wn+2; ZD-n+3))>

T
ORp | Wnt3 Tnia 0-..-0
( " " (2)4 (¢(wn+1'wn+q)¢(wn+2:wn+q)¢(wn+3'wn+q)¢(wn+3'wn+4))>

R(j) (wn+q—21 Wntq-1

o

T

T

(Z)q_l (¢(wn+1' ZD-n+q)¢)(w-n+2f ZD-n+q)q>(w'n+3: ZD'n+q) ¢(wn+q—2' ZD'n+q—1))

Ry | Tntg—1, Tntq
< e e (z)q—l (¢(wn+1'wn+q)¢(wn+2’wn+q)¢(wn+3'wn+q)"'¢(wn+q—1vwn+q))

Py (@, @psq, T)

=

£Tl

P, | @, @ r
P\ 2(p (@0 e))

+(1-£m)
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1
* £‘I‘L+1
+ (1 — £741)
P¢ ZD-OJ wl; L
(2)? (¢ (wn+1' wn+q)¢(wn+1: zzrn+2))
1
* fn+z Kok
+ (1 — £1%2)
P¢ ZD-OJ wl; L
(2)3 ((p (wn+1' ZD-n+q)¢)(w-n+2' ZD'n+q)qb(w-n+2; ZD-n+3))
1
£n+q-2 N (1 ~ £n+q—2)

Py | @o, @, L
(2)a-1 (¢(wn+1' wn+q)¢(wn+2' wn+q)¢(wn+3' ZD'n+q) ¢(wn+q—zi zDn+q—1))
1

n+q-1
£ + (1 — £nta-1)

Py | @wo, @, u
(2)a-1 (¢(wn+1: zz7n+q)(;b(wn+2: zz7n+q)(;b(wn+3' ZD'n+q) ¢(wn+q—1: ZD'n+q))

and

Q¢ (wn' Wn+q T)

T T
< £"Qy <w0, @1, ) © £n+1Q¢ Wy, W1y,
2((]5(@'11, w""'l)) (2)2 (¢(wn+1' ZD-n+q)(;b(w-n+1rZD-n+2))
T
O£n+2Q¢ Wy, Ty O ...0

’ (2)3 (¢(wn+1' ZD-n+q)q>(w-n+2f ZD-n+q)q>(w-n+2: ZD-n+3))

T

’ (Z)q_l (¢(wn+1: ZD-n+q)§b(w-n+2f ZD-n+q)§l')(w-n+3f ZD-n+q) ¢(wn+q—2: ZD-n+q—1))

n+q-2
£nra Q¢ | @o, @1

T

, (z)q—l (¢(wn+1'wn+q)¢(wn+2'wn+q)¢(wn+3’wn+q) ¢(wn+q—1' wn+q)) '

+q-1
O £MI72Qy | @o, @y

R¢ (wn, (O r)

T

2(¢)(ZD'n, ZD-n+1))

T

(2)2 (¢(wn+1' ZD-n+q)¢)(w-n+1: ZD-n+2))

< £"Ry (wo,wl, > o £"* 1Ry | @y, w1y,
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o £"2R . | w,, @ ‘ 0.0
¢) 0 1

(2)3 (¢ (wn+1» wn+q)¢(wn+2' zUn+q)§’-')(wn+2» wn+3))

T

(Z)q_l (¢(wn+1» ZD'n+q)¢(w'n+2' ZD'n+q)¢(w'n+3f ZD'n+q) ¢(wn+q—21 wn+q—1))

+q-2
gnta Ry | @y, @y,

T

(e} £n+q_1R¢ Wy, Wq,
(2)a-t (¢(wn+1» Bn1q) D (Fns2 Tnsg)(@nss, Dnvg) = (@nsq-1, w"“I))

Therefore,

lim P¢(wn,wn+q,t) =1x1 % n=1,

n—-oo

and

lim Qp (@, @y4q,T) =0000:-00 =0,

lim Ry (@, @,4q,7) =0000:-00=0,

n—-oo

i.e., {w,} is a GCS. Therefore, (E, Py, Qg R¢,*,O) be a G-complete CNMS, there exists w € £.

Now, we show that @ is a FP of ¢, utilizing (v), (x) and (xv), we get

! —1SE[——1l=#—
Py (¢, $w, T) Py (@, @, T) Py (@, @, T)
> ! < Py((wy, ¢, T)

£
———+ (1-£
Py (@, @, T) ( )

£

Using above inequality, we obtain

T T
Po(@,,7) 2 Py (@, @, z¢<w,'wn+1>) Py (@i £ z¢<wn+1.€w>>

. 1
> P¢ <wn; Whp+1, 2¢(2¢(w, wn+1))) " =

Py (wn, @, m)

->1x1=1

+(1-£)

asn — oo, and

Q¢) (w, fw, T) < P¢ (w, ZD-n+1i;> o Qd) (wn+1’ fw' ;>
2¢(ZD', ZD-n+1) 2¢(wn+1r fZD')
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T

m> © Q¢ (&Un, ¢w,

< Q¢> (ZD', Wn+1)

Tt
2¢(wn+1' SZD')

< Q¢ (wn,wnﬂ,;) o £Q¢, (wn,w,;) —->000=0asn — oo,
2‘{[’((3' @Wpt1) 2¢(wn+1; $w)

T
Ry(w,éw,T) < Ry (zzr, [

2¢(w, wn+1>> e <” 5@, 2¢(w;, &D)>

)69 552

<R ( T,
AN 2 (@na, E0)

T
2¢ (w0, Wy41)
<R ( i )OER ( L — ) 000=0
= w;,, W. T ———< Wy, W, - =yvasn — oo,
AN 2¢(w, wp41) o\n 2¢(@p41, @)

Hence, {w = w, a FP.
Uniqueness: Assume ¢c = ¢ for some ¢ € Z, then

1 1
_ 1=—— 1
Py(w,c, ) Py(§w, &c, )

1 1
<fl——1|<———1
a [P¢(wl c, T) l P¢)(wl c, T)

a contradiction, and
Q¢(@,¢,7) = Qp(§w,$c,T) < £Qy(w, ¢, T) < Qg (@, ¢, T),
Ry(@,c,T) = Ry(§w,éc,T) < £Ry(w, ¢, T) < Ry (@, ¢, T),

are contradictions.
Therefore, we must have Py (@, c,7) = 1,Q4(w,c, ) = 0and Ry (@, ¢, T) = 0, thatis w = c.

Example 3.3. Suppose & = [0,1]. Define ¢ by

1 ifo=v,
¢ (w,v) = {1+ max{w, v}
min{w, v}

ifom#=v+0.

Also, define

T

P VY, T) =
p(@7,7) T + max{w, v}

max{w, v}

Qp(@,v,7) = T + max{w, v}

and

max{w, v}
Ry (w,v,7) = —

with Y *p =Y.pandY © o = max{Y,p}. Then (E, Py, Q¢,R¢,*,O) is a G-complete CNMLS.
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Observe that lim Py (w,v,7) = 1, lim Qy(w,v,t) = 0and lim Ry (w,v,T) = 0, satisfied. Define
T 00 T

T—00
& E - Eby
@

f(w)=§

Then,
Py (@, §v,£7) = Py(w,v,7),
Q¢ (§w,$v,£7) < Qy (@, v, T) and Ry (§w, v, £T) < Ry (@, v, T)
are satisfied for £ € E, 1), as we can see that Figure 1 shows that Py (¢, Ev,£T) = Py(w, v, T),

Figure 2 shows that Qu(§w,¢v,£T) < Qy(w,v,T) and Figure 3 shows that Ry({w,$v,£7) <
R¢(w, v, T).

Figure 1. Shows the graphical behavior of Py (@, {v,£T) = Py (@, v, T), when T = 10
and £ = 0.5.

Figure 2. Shows the graphical behavior of Qy (§w, {v, £T) < Qy (@, v, T), when T = 10
and £ = 0.5.
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0.08

0.02

Figure 3. Shows the graphical behavior of Ry (¢w,év, 1) < Ry (w,v,T), whenTt = 10
and £ = 0.5.

Also,

1 1
Poovn L =E [P¢(w.v,r) - 1] and

Qp (@, év,7) < £Q4(®@,v,7T), and Ry (@, $v, T) < £Ry (@, v, T),

are satisfied for £ € [l, 1), as we can see that Figure 4 shows that ——————- 1< £ [ L — 1],
2 Py (§w,év,T) Py(@,v,7)

Figure 5 shows that Qy(¢w,$v,T) < £Q4(w,v,T) and Figure 6 shows that Ry({w,$v,T) <

£R¢ ((D', v, T).
[_JR.H.S
| R
0.06
0.05
0.04 |
0.03
0.02
0.01 4
0
10
0 o
. . . 1 1 _
Figure 4. Shows the graphical behavior of PoGaive) 1<£ [P¢ oD 1], when T =
10 and £ = 0.5.
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0.05 -

0.04

0.03

0.02

0.01

[=]

Figure 5. Shows the graphical behavior of Qg (§w, §v, T) < £Q4 (@, v, T), when T = 10
and £ = 0.5.

Figure 6 . Shows the graphical behavior of R¢,(Ezzr, &v, 1) < £R¢(zzr, v,T), when T =

10 and £ = 0.5.

We can easily see that lim ¢(@,,v) and lim ¢(v,@,) exists and finite. Observe that all
n—->oo n—->0oo

circumstances of Theorems 3.1 and 3.2 are fulfilled, and 0 is a unique FP of £ as we can see in the
Figure 7.
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Tx
09 r —

Figure 7. Shows that the fixed point of £ is 0 and is unique.
4. Application

Suppose £ = C([c,a], R) be the set of real valued continuous functions defined on [c, a].
Suppose the integral equation:

w(®) = A(T) + 6fcaﬂ(r,v)w(r)dv for 7,v € [, a] (11)

where § > 0, A(v) is a function of v:v € [¢,a] and JI: C([c,a] X R) - R* . Define P and Q by

P(w(t),v(r),T) = sup forallw,v € €Cand > 0,

] t+|w (1) -v(7)|?

T€[ca
N1 P .
Qw(r),v(r),t) =1 Tsel[lcg] Py ———T forall w,v € €and t > 0,

and

_ 2
R(w(t),v(1),t) = sup M forall w,v € Cand t > 0,
T€[cal

with continuous t-norm and continuous t-conorm define by é *a = é.aand é © 2 = max{é, a}.
Define §,T: € X € — [1,) as

1 ifo=v
—11+ ma Vv .
{@,v) : x@ }ifzzrqtv;tO’
min{w, v}

Then (£, P, Q, R,*,0) be a complete controlled neutrosophic metric-like space.
Suppose that
[Ji(t,v)w(t) — JA(t,v)v(7)| < |w(r) —v(r)| forw,v e E, 0 € (0,1) and V 7,v € [c,a]. Also, let

N v)(8 [ du)2 < 6 < 1. Then integral Eq (11) has a unique solution.
Proof. Define £: € - € by
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¢w(t) =A(T) +6 fcaﬂ(r, v)c(t)dv for all T,v € [, a]

Now for all @, v € €, we deduce

o or
PEw(7),év(1),0F) = Tsel[lcg] 0t + |Ew (1) — v(7)|?

or
= su

TE[CI;] Ot + [A(x) + 6 f:]l(‘r,v)c(‘r)dv —A() -6 fj]l(r,v)c(r)dv|2

or
= sup 3 a 2
relcal BF + |5fC J(z,v)c()dv — 6 | J(r,v)c(r)dv|

or
= sup 2 2
weleal 9 + |J1(z, v)w (t) — (7, v)v(7)|2(6 [ dv)
r
> sup -
TE[};] t+ |o(r) —v(D)|?
= P(w(7),v(1),1),
QGw(1),év(r),01) =1 =
w(1),&v(1),01) =1 — sup —
Te[fa] 0t + |Ew (1) — Ev(T) |2
or

=1-— sup a a 2

weleal 67 + |A() + 6 [ J1(z, v)c(D)dv — A(z) = § [ J1(z, v)c(z)dy|
or

=1-— sup " a 2

relcal BF + |5fC J(z,v)c()dv =6 |, Ji(z,v)c(t)dv|
or

=1-— sup a 2

veleal 6F + |J1(z, v)aw (1) — (7, v)v(D)[>(8 [ dv)
r
<1-— sup ¢

r€cal T T+ lw(t) — V(‘L’)|2

< Q@ (1), v(1),D),

and

R(éw(1),év(7),0 £) = sup |éw (1) —AfV(T)|2

T€[c,a) or

|[A(@) + 6 fcaﬂ(‘[, V)c(@)dv — A(r) — 6 fcaﬂ(r, v)c(r)dv|2
= sup

T€[ca] or

|5fcajl(r, v)c(t)dv — 5[:]1(1, v)c(r)du|2
= sup o
T€[c,a) r
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W1z, v)@ (@) — (5, v)v(E)2(6 [ dv)”
= sup

T€[ca] or

< sup |w (1) - v(D)|?

T€[c,a) r

< R(w(1),v(7),1).

As a result, all of the conditions of Theorem 3.1 are satisfied and operator ¢ has a unique fixed
point. This indicates that an integral Eq (11) has a unique solution.

5. Conclusions

In this manuscript, we introduced the notion of controlled neutrosophic metric-like spaces as a
generalization of a neutrosophic metric space and established some new type of fixed point theorems
for contraction mappings in this new setting. Moreover, we provided the non-trivial examples with
graphical analysis to demonstrate the viability of the proposed methods. Also, our structure is more
general than the controlled fuzzy metric space and fuzzy metric like space and neutrosophic metric
space. Also, our results and notions expand and generalize a number of previously published results.
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