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Symmetric space σ -model dynamics: Internal metric formalism
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Abstract

For the symmetric space sigma model in the internal metric formalism we explicitly construct the Lagrangian in terms of the axions and the
dilatons of the solvable Lie algebra gauge and then we exactly derive the axion–dilaton field equations.
© 2006 Published by Elsevier B.V.
1. Introduction

It is well known that the sigma model Lagrangian of the Rie-
mannian globally symmetric space G/K can be formulated by
using a definition of an internal metric. The construction can be
referred in [1–6]. The choice of the solvable Lie algebra gauge
[7] for parameterizing the coset representatives brings further
simplicity in the construction. Under a specified trace condi-
tion the field equations of the symmetric space sigma model
are derived and further studied in [3,4] and [1,2] respectively.
However since the Lagrangian is not explicitly constructed in
terms of the coset scalars the formulation of [3,4] is based on
the Lagrange multiplier methods and the field equations are
written in terms of the field strengths of the axions which are
treated as independent fields. It is also mentioned in [3,4] that
if one can express the Lagrangian in terms of the scalar fields
explicitly one can directly vary it to obtain the exact field equa-
tions of the dilatons and the axions. On the other hand in [1,2]
the Cartan-forms in terms of which the symmetric space sigma
model Lagrangian can be expressed are calculated exactly. This
promises an explicit formulation of the symmetric space sigma
model Lagrangian in terms of the coset scalar fields and the
derivation of the field equations for a generic trace convention.

In this Letter we go in the above mentioned direction to ob-
tain the most general form of the field equations of the sigma
model which is based on the Riemannian globally symmetric
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space G/K . By using the exact form of the Cartan-form we
express the SSSM Lagrangian explicitly in terms of the coset
scalars in a generic trace convention then by varying it directly
we obtain the field equations of the theory. We will assume the
solvable Lie algebra gauge to parameterize the coset manifold
G/K and we will classify the scalar fields as axions and the
dilatons referring to the non-perturbative effective string the-
ory and the supergravity literature where the symmetric space
sigma model plays a central role governing the scalar sector
which reveals the global symmetry and the U-duality structure
of the supergravity and string theories respectively [8,9].

In section two leaving some of the details to the references
we will present a concise formulation of the Lagrangian for
the axion–dilaton parametrization. Without choosing a specific
trace convention which generalizes the formalism of [1–4] we
will construct the Lagrangian explicitly in terms of the scalar
fields for a generic trace convention. Then in section three we
will vary the symmetric space sigma model Lagrangian to de-
rive the general field equations of the axion and the dilaton
scalar fields.

2. Lagrangian in the axion–dilaton parameterization

The construction of the symmetric space sigma model is
based on a set of G-valued maps {ν(x)} which are onto C∞-
maps from the D-dimensional spacetime to the coset space
G/K . Thus they parameterize the coset manifold G/K . Here G

is in general a non-compact real form of any other semi-simple
Lie group and K is a maximal compact subgroup of G. The
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coset manifold G/K has a unique analytical structure induced
by the quotient topology of G. The scalar manifold G/K is a
Riemannian globally symmetric space for all the G-invariant
Riemannian structures on G/K [10]. The solvable Lie algebra
gauge is a parametrization of the coset manifold G/K which is
due to the Iwasawa decomposition

g = k ⊕ s

(2.1)= k ⊕ hp ⊕ n,

of the Lie algebra g of G. In (2.1) k is the Lie algebra of K

and s = hp ⊕ n is a solvable Lie subalgebra of g. The Abelian
subalgebra hp is generated by r non-compact Cartan genera-
tors {Hi}. Also the nilpotent Lie subalgebra n is generated by a
subset {Em} of the positive root generators of g where m ∈ Δ+

nc.
The roots in Δ+

nc are the non-compact roots with respect to the
Cartan involution associated with the Iwasawa decomposition
(2.1) [1–3,10]. The map

(2.2)Exp : s → G/K,

from the R
dim s-manifold s into G/K is a local diffeomorphism

[10]. Therefore

(2.3)ν(x) = e
1
2 φi(x)Hi eχm(x)Em,

is a legitimate parametrization of the coset manifold G/K

which is called the solvable Lie algebra gauge [7]. The scalar
fields {φi} are called the dilatons and {χm} are called the ax-
ions. In the internal metric formalism [1–6] of the symmetric
space sigma model the Lagrangian which is invariant under the
right rigid action of G and the left local action of K is con-
structed as

(2.4)L= 1

4
tr
(∗dM−1 ∧ dM

)
,

where the internal metric M is defined as

(2.5)M= ν#ν.

The generalized transpose # over the Lie group G is such that
(exp(g))# = exp(g#). It is defined by using the Cartan involu-
tion θ over g that is associated with (2.1) as g# = −θ(g) [10].
If the subgroup of G generated by the compact generators is
an orthogonal group then in the fundamental representation of
g we have g# = gT . Also it is always possible to find a ma-
trix representation of g in which # coincides with the matrix
transpose operator [3]. In spite of the fact that the generalized
transpose # shares the usual properties of the matrix transpose
in our formulation we will assume a matrix representation in
which g# = gT . From the definition of the coset parametriza-
tion in (2.3) we have the identities

(2.6)ν−1 dν = −dν−1 ν, dν ν−1 = −ν dν−1.

Also

(2.7)tr(dν1 ∧ ∗dν2) = (−1)(D−1) tr(∗dν2 ∧ dν1),

for two matrix-valued functions ν1 and ν2. Now if we define the
Cartan–Maurer form G as

(2.8)G = dν ν−1,
in the light of the above mentioned identities, the properties
of the coset representatives and the generalized transpose we
can express the Lagrangian (2.4) in terms of the Cartan–Maurer
form G as

(2.9)L= −1

2
tr
(∗G ∧ G# + ∗G ∧ G

)
.

The Cartan–Maurer form G is explicitly calculated in terms of
the axions and the dilatons in [1,2]

(2.10)G = 1

2
dφi Hi + ⇀

E′� ⇀
dχ .

The row vector
⇀
E′ is

(2.11)(
⇀
E′)α = e

1
2 αiφ

i

Eα.

Also
⇀

dχ is a column vector of the field strengths of the axions
{dχi}. In (2.10) � is a dim n × dim n matrix

(2.12)� = (
eω − I

)
ω−1.

The dim n × dim n matrix ω is also defined as

(2.13)ω
γ
β = χαK

γ
αβ.

The structure constants K
γ
αβ and the root vector components αi

are defined as

(2.14)[Eα,Eβ ] = K
γ
αβEγ , [Hi,Eα] = αiEα.

Since now we have the exact form of the Cartan–Maurer form
G we can express the Lagrangian (2.4) explicitly in terms of the
axions and the dilatons. Inserting (2.10) in (2.9) we obtain

L= −1

8
Aij ∗ dφi ∧ dφj − 1

4
Biα ∗ dφi ∧ e

1
2 αiφ

i

Uα

(2.15)− 1

2
Cαβe

1
2 αiφ

i ∗ Uα ∧ e
1
2 βiφ

i

Uβ,

in which we slightly change the notation introduced above and
use

(2.16)Uα = �α
β dχβ.

For the sake of generality in (2.15) we have not specified any
trace convention and we have defined the generic trace coeffi-
cients as

Aij = tr
(
HiH

#
j

) + tr(HiHj ),

Biα = tr
(
HiE

#
α

) + tr
(
EαH #

i

) + tr(HiEα) + tr(EαHi),

(2.17)Cαβ = tr
(
EαE#

β

) + tr(EαEβ).

By using the properties of the generalized transpose # Biα can
further be expressed as

(2.18)Biα = 2
(
tr
(
EαH #

i

) + tr(EαHi)
)
.
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3. Field equations for the axions and the dilatons

Now that we have obtained the Lagrangian (2.15) explicitly
in terms of the axions and the dilatons we can derive the field
equations. We should first observe that

(3.1)ω = ω(χm), � = �(χm).

Thus we see that while the variation of (2.15) with respect to
the dilatons {φi} is a straightforward task we should examine
the variation of � with respect to the axions {χm} from a closer
look. When we vary the Lagrangian (2.15) with respect to the
dilaton φk we obtain the dilatonic field equations as

(−1)(D−1)d

(
1

2
(Aik +Aki) ∗ dφi +Bkαe

1
2 αiφ

i

�α
β ∗ dχβ

)

= 1

2
Biααk ∗ dφi ∧ e

1
2 αiφ

i

�α
β dχβ

(3.2)+ Cαβ(αk + βk)e
1
2 αiφ

i

�α
τ ∗ dχτ ∧ e

1
2 βiφ

i

�β
γ dχγ .

Before writing down the axion field equations we will mention
about the variation of �. Firstly from (2.13) we have

(3.3)ω′ ≡ ∂ω

∂χm
= Km,

where the components of the matrix Km are defined as

(3.4)(Km)
γ
β = K

γ
mβ.

Before going further we should define the adjoint representa-
tion of g. The set of endomorphisms namely the linear maps
on g form a vector space with the addition and the scalar prod-
uct induced from g. They also form a Lie algebra denoted as
gl(g) under the product [α,β] = α ·β −β ·α. The non-singular
(invertible) endomorphisms of g form an analytical Lie group
which we will refer as GL(g). Naturally gl(g) is isomorphic to
the Lie algebra of GL(g). Now if we assign the map

(3.5)adX = [X, ], ∀X ∈ g,

such that

(3.6)adX(Y ) = [X,Y ], ∀Y ∈ g,

then adX is an endomorphism. The map

(3.7)adg(g) ≡ adX :X → adX,

is an algebra homomorphism from g into gl(g) and it is called
the adjoint representation of the Lie algebra g. The image of
adg(g) in gl(g) is a subalgebra and we will denote it as ad(g).
Now after introducing the elements of the adjoint representation
we can write down the partial derivative of eω as [11,12]

∂eω

∂χm
= eω

(
I − e−adω

adω

)
(ω′)

(3.8)= eω

(
ω′ − 1

2! [ω,ω′] + 1

3!
[
ω, [ω,ω′]] − · · ·

)
.

We should observe that the commutation series in (3.8) will ter-
minate after a finite number of terms since from their definitions
in (2.13) and (3.3) both ω and ω′ lie in the adjoint representa-
tion of n which is a nilpotent Lie algebra so is its image ad(n)

which is composed of nilpotent endomorphisms [10]. We may
see this fact as follows; if we define the ideals

(3.9)ϕp+1ad(n) = [
ad(n), ϕpad(n)

]
,

where ϕ0ad(n) = ad(n) then the series

(3.10)ϕ0ad(n) ⊃ ϕ1ad(n) ⊃ ϕ2ad(n) ⊃ · · · ,
is called the central descending series and we observe that the
growing terms of the series (3.8) belong to the growing ideals
of (3.10). Due to the nilpotency of ad(n) (3.10) terminates with
ϕmad(n) = {0} for some m � dim(ad(n)) [10,13,14]. This jus-
tifies the termination of (3.8) after a finite number of terms. The
expansion of eω which is eω = I + ω + 1/2!ω2 + · · · also ter-
minates after a finite number of terms since the matrix ω as an
element of ad(n) is the representative of a nilpotent endomor-
phism and for any nilpotent endomorphism N Nk = 0 for some
k ∈ Z. This fact also brings termination following a finite num-
ber of terms in the expansion of � in (2.12). If we vary � with
respect to the axion χm we find that

(3.11)Dm ≡ ∂�

∂χm
= eω

(
I − e−adω

adω

)
(ω′)ω−1 − �ω′ω−1,

where we have also used

(3.12)
∂ω−1

∂χm
= −ω−1ω′ω−1.

Now we are ready to vary the Lagrangian (2.15) with re-
spect to the axion χm. Performing the variation while keeping
in mind the definitions we have introduced we obtain the ax-
ionic field equations

(−1)(D−1)d

(
1

2
Biαe

1
2 αiφ

i

�α
m ∗ dφi

+ Cαβe
1
2 αiφ

i

e
1
2 βiφ

i (
�α

γ �β
m + �α

m�β
γ

) ∗ dχγ

)

= 1

2
BiαDα

mβe
1
2 αiφ

i ∗ dφi ∧ dχβ

(3.13)

+ Cαβe
1
2 αiφ

i

e
1
2 βiφ

i (Dα
mτ�

β
γ + �α

τDβ
mγ

) ∗ dχτ ∧ dχγ .

4. Conclusion

By using the exact form of the Cartan-form in the symmet-
ric space sigma model Lagrangian we have expressed the La-
grangian explicitly in terms of the dilatons and the axions which
parameterize the coset manifold of the SSSM in the solvable
Lie algebra gauge. In this formulation we have kept the coef-
ficients of a generic trace convention. Then we have directly
varied this basic form of the Lagrangian to obtain the dilatonic
and the axionic field equations.

Our formulation generalizes the one in [3,4] which is based
on a special trace convention. In [3,4] the Lagrangian is not
derived exactly, however as we have mentioned before a duali-
sation method is used to find the first-order field equations for
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the undetermined field strengths of the axions which take part
in the Cartan–Maurer form. Since the Cartan–Maurer form is
derived in [1,2] by using the results of [1,2] in this work we
exactly construct the Lagrangian and obtain the field equations
directly for the coset scalars namely the dilatons and the axions.
The formulation presented in this work is purely in algebraic
terms. Our derivation expresses both the Lagrangian and the
field equations in terms of the unspecified structure constants
of a generic global symmetry group G without assigning a rep-
resentation. Thus the results are powerful in applying to any
specific symmetric space sigma model example. As we men-
tioned in the introduction due to the special role of the SSSM in
the low energy effective string theory the construction presented
here also serves as a direct and an exact method of calculation
in the non-perturbative string dynamics.

We are also working on a similar formulation for the vielbein
formalism of the symmetric space sigma model whose con-
struction differs from the one presented here. Different coset
parametrizations can further be studied. Finally starting from
the field equations obtained here one can work on the first-order
formulation of the theory.
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