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A B S T R A C T

The present paper deals with some existence results for the Darboux problem of partial fractional random
differential equations with infinite delay. The arguments are based on a random fixed point theorem with
stochastic domain combined with the measure of noncompactness.
Introduction

The fractional calculus is concerned with noninteger order exten-
sions of derivatives and integrals. Differential and integral equations of
fractional order have a wide range of applications, see e.g. [1–7] for
more information. In recent years, there has been substantial progress
in ordinary and partial fractional differential and integral equations; see
papers of Abbas et al. [8–17], Kilbas et al. [18], Ahmad and Nieto [19],
Salim et al. [20,21], Stanek [22], Vityuk and Golushkov [23], and the
sources within.

The essence of a dynamic system in natural sciences or engineering
is determined by the precision of the knowledge we have about the
system’s characteristics. A deterministic dynamical system emerges
when information about a dynamic system is exact. However, most of
the data obtainable for the modeling and assessment of dynamic system
characteristics is incorrect, imprecise, or unclear. In other terms, find-
ing the parameters of a dynamical system is fraught with uncertainty.
When we have statistical understanding of the parameters of a dynamic
system, that is, when the knowledge is probabilistic, the most popular
strategy in mathematical modeling of such systems is to employ random
differential equations or stochastic differential equations. As natural
extensions of deterministic differential equations, random differential
equations appear in numerous applications and have been studied by
several mathematicians; see [24–26] and references therein.
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Prompted by the aforementioned papers, in this paper, we consider
the following problem:

(𝑐𝐷𝜁
0p)(𝜗, 𝜂, 𝛿) = 𝜓(𝜗, 𝜂, p(𝜗,𝜂), 𝛿), if (𝜗, 𝜂) ∈ 𝛩 ∶= [0, 𝜃1] × [0, 𝜃2], 𝛿 ∈ 𝛹,

(1)
p(𝜗, 𝜂, 𝛿) = 𝜛(𝜗, 𝜂, 𝛿), if

(𝜗, 𝜂) ∈ 𝛩̃ ∶= (−∞, 𝜃1] × (−∞, 𝜃2]∖(0, 𝜃1] × (0, 𝜃2], 𝛿 ∈ 𝛹, (2)

p(𝜗, 0, 𝛿) = 𝜛1(𝜗, 𝛿), 𝜗 ∈ [0, 𝜃1], p(0, 𝜂, 𝛿) = 𝜛2(𝜂, 𝛿), 𝜂 ∈ [0, 𝜃2], 𝛿 ∈ 𝛹,

(3)

where 𝜃1, 𝜃2 > 0, 𝑐𝐷𝜁
0 is the standard Caputo’s fractional derivative of

order 𝜁 = (𝜁1, 𝜁2) ∈ (0, 1]×(0, 1], (𝛹,) is a measurable space, (𝐄, ‖ ⋅‖) is
a Banach space, 𝜓 ∶ 𝛩××𝛹 → 𝐄 is a given function, 𝜛 ∶ 𝛩̃×𝛹 → 𝐄 is a
given continuous function, 𝜛1 ∶ [0, 𝜃1]×𝛹 → 𝐄, 𝜛2 ∶ [0, 𝜃2]×𝛹 → 𝐄 are
absolutely continuous functions where 𝜛1(𝜗, 𝛿) = 𝜛(𝜗, 0, 𝛿), 𝜛2(𝜂, 𝛿) =
𝜛(0, 𝜂, 𝛿) for each 𝜗 ∈ [0, 𝜃1], 𝜂 ∈ [0, 𝜃2], 𝛿 ∈ 𝛹 , R− ∶= R− and  is a
phase space, which will be defined later. Let p(𝜗,𝜂) be the element of 
given by

p(𝜗,𝜂)(𝜚, 𝜅, 𝛿) = p(𝜗 + 𝜚, 𝜂 + 𝜅, 𝛿); (𝜚, 𝜅) ∈ R− × R−.

The following is how this manuscript is structured. Section ‘‘Prelim-
inaries’’ is reserved for introduction. Section ‘‘Main result’’ is dedi-
cated to our primary result. Section ‘‘An example’’ provides a relevant
illustration.
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Preliminaries

First, we introduce and explain the notations and concepts used in
this study.

Consider the space 𝐴𝐶(𝛩) of absolutely continuous functions from
𝛩 into 𝐄.

Denote 𝐿1(𝛩) the space of Bochner-integrable functions p ∶ 𝛩 → 𝐄
with the norm

‖p‖𝐿1 = ∫

𝜃1

0 ∫

𝜃2

0
‖p(𝜗, 𝜂)‖𝐄𝑑𝜂𝑑𝜗.

Let 𝐿∞(𝛩) be the Banach space of functions p ∶ 𝛩 → R which are
essentially bounded.

Consider the 𝜎-algebra D𝐄 of Borel subsets of 𝐄. The map p̄ ∶ 𝛹 → 𝐄
is measurable if for any 𝛺 ∈ D𝐄, we have

p̄−1(𝛺) = {𝛿 ∈ 𝛹 ∶ p̄(𝛿) ∈ 𝛺} ⊂ .

Definition 1. A mapping S ∶ 𝛹 × 𝐄 → 𝐄 is jointly measurable if for
any 𝛺 ∈ D𝐄, we have

S−1(𝛺) = {(𝛿, p̄) ∈ 𝛹 × 𝐄 ∶ S(𝛿, p̄) ∈ 𝛺} ⊂  ×D𝐄,

where  ×D𝐄 is the direct product of the 𝜎-algebras  and D𝐄 those
defined in 𝛹 and 𝐄 respectively.

Lemma 1. Let S ∶ 𝛹 × 𝐄 → 𝐄 be a mapping such that S(⋅, p̄) is
measurable for all p̄ ∈ 𝐄, and S(𝛿, .) is continuous for all 𝛿 ∈ 𝛹 . Then
the map (𝛿, p̄) ↦ S(𝛿, p̄) is jointly measurable.

Definition 2. A function 𝜓 ∶ 𝛩 × 𝐄 × 𝛹 → 𝐄 is called random
Carathéodory if the assumptions that follow are verified:

• The map (𝜗, 𝜂, 𝛿) → 𝜓(𝜗, 𝜂, p, 𝛿) is jointly measurable for all p ∈ 𝐄,
and

• p → 𝜓(𝜗, 𝜂, p, 𝛿) is continuous for almost all (𝜗, 𝜂) ∈ 𝛩 and 𝛿 ∈ 𝛹 .

The map S ∶ 𝛹×𝐄 → 𝐄 is a random operator if S(𝛿, p) is measurable
in 𝛿 for all p ∈ 𝐄 and it is given as S(𝛿)p = S(𝛿, p). We also can say
that S(𝛿) is a random operator on 𝐄. A random operator S(𝛿) on 𝐄 is
called continuous if S(𝛿, p) is continuous in p for all 𝛿 ∈ 𝛹 . (See [27]
for more details).

Definition 3 ([28]). Let (W) be the family of all nonempty subsets
of W and F be a mapping from 𝛹 into (W). A mapping S ∶ {(𝛿, 𝜂) ∶
𝛿 ∈ 𝛹, 𝜂 ∈ F(𝛿)} → W is a random operator with stochastic domain
F if F is measurable (i.e., for all closed 𝛺 ⊂ W, {𝛿 ∈ 𝛹,F(𝛿) ∩ 𝛺 ≠ ∅}
is measurable) and for all open 𝛺̃ ⊂ W and all 𝜂 ∈ W, {𝛿 ∈ 𝛹 ∶
𝜂 ∈ F(𝛿),S(𝛿, 𝜂) ∈ 𝛺̃} is measurable. S is continuous if every S(𝛿) is
continuous. A mapping 𝜂 ∶ 𝛹 → W is a random fixed point of S if for
𝑃−almost all 𝛿 ∈ 𝛹, 𝜂(𝛿) ∈ F(𝛿) and S(𝛿)𝜂(𝛿) = 𝜂(𝛿) and for all open
𝛺̃ ⊂W, {𝛿 ∈ 𝛹 ∶ 𝜂(𝛿) ∈ 𝛺̃} is measurable.

Let 𝐄∗ denote the class of all bounded subsets of a metric space
𝐄 ∗.

Definition 4 ([29]). Let 𝐄 ∗ be a complete metric space. A map 𝜇 ∶
𝐄∗ → [0,∞) is called a measure of noncompactness on 𝐄 ∗ if it verifies
the following for all 𝛺,𝛺1, 𝛺2 ∈ 𝐄∗.

(MNC.1) 𝜇(𝛺) = 0 if and only if 𝛺 is precompact (Regularity),
(MNC.2) 𝜇(𝛺) = 𝜇(𝛺) (Invariance under closure),
(MNC.3) 𝜇(𝛺1 ∪𝛺2) = max{𝜇(𝛺1), 𝜇(𝛺2)} (Semi-additivity).

Example 1. In every metric space 𝐄 ∗, the map 𝜛 ∶ 𝐄∗ → [0,∞)
with 𝜛(𝛺) = 0 if 𝛺 is relatively compact and 𝜛(𝛺) = 1 otherwise is a
2

measure of noncompactness ([30], Example1,. . . p. 19).
Let 𝜀 = (0, 0), 𝜁1, 𝜁2 > 0 and 𝜁 = (𝜁1, 𝜁2). For 𝜓 ∈ 𝐿1(𝛩), the left-sided
mixed Riemann–Liouville integral of order 𝜁 is given by:

(𝐼𝜁𝜀𝜓)(𝜗, 𝜂) =
1

𝛤 (𝜁1)𝛤 (𝜁2) ∫

𝜗

0 ∫

𝜂

0
(𝜗 − 𝜚)𝜁1−1(𝜂 − 𝜅)𝜁2−1𝜓(𝜚, 𝜅)𝑑𝜅𝑑𝜚.

In particular,

(𝐼0𝜀 p)(𝜗, 𝜂) = p(𝜗, 𝜂),

(𝐼𝜔𝜀 p)(𝜗, 𝜂) = ∫

𝜗

0 ∫

𝜂

0
p(𝜚, 𝜅)𝑑𝜅𝑑𝜚; for a.a (𝜗, 𝜂) ∈ 𝛩,

where 𝜔 = (1, 1) and 1 − 𝜁 means (1 − 𝜁1, 1 − 𝜁2) ∈ [0, 1) × [0, 1). Denote
by 𝐷2

𝜗𝜂 ∶=
𝜕2

𝜕𝜗𝜕𝜂 , the mixed second order partial derivative.

Definition 5 ([23]). Let 𝜁 ∈ (0, 1] × (0, 1] and p ∈ 𝐴𝐶(𝛩). The Caputo
fractional-order derivative of order 𝜁 of p is given by:

𝑐𝐷𝜁
𝜀p(𝜗, 𝜂) = (𝐼1−𝜁𝜀 𝐷2

𝜗𝜂p)(𝜗, 𝜂).

The case 𝜔 = (1, 1) is included and we have

(𝑐𝐷𝜔
𝜀 p)(𝜗, 𝜂) = (𝐷2

𝜗𝜂p)(𝜗, 𝜂); for a.a (𝜗, 𝜂) ∈ 𝛩.

Lemma 2 ([31]). If W is a bounded subset of Banach space 𝐄 ∗, then for
each 𝛼 > 0, there is a sequence {𝜂𝛽}∞𝛽=1 ⊂W such that

𝜇(W) ≤ 2𝜇({𝜂𝛽}∞𝛽=1) + 𝛼,

where 𝜇 is the Kuratowskii measure of noncompactness on the space 𝐄 ∗.

Lemma 3 ([32]). If {p𝛽}∞𝛽=1 ⊂ 𝐿
1(𝛩), then 𝜇({p𝛽}∞𝛽=1) is measurable and

for each (𝜗, 𝜂) ∈ 𝛩,

𝜇

(

{

∫

𝜗

0 ∫

𝜂

0
p𝛽 (𝜚, 𝜅)𝑑𝜅𝑑𝜚

}∞

𝛽=1

)

≤ 2∫

𝜗

0 ∫

𝜂

0
𝜇({p𝛽 (𝜚, 𝜅)}∞𝛽=1)𝑑𝜅𝑑𝜚,

where 𝜇 is the Kuratowskii measure of noncompactness on the space 𝐄 ∗.

Lemma 4 ([33]). Consider the continuous operator S ∶ 𝛬 → 𝛬 where
S(𝛬) is bounded and 𝛬 is a convex and closed subset of a real Banach
space. If there exists a constant 𝛽 ∈ [0, 1) such that for each bounded subset
𝛺 ⊂ 𝛬,

𝜇(S(𝛺)) ≤ 𝛽𝜇(𝛺),

then S has a fixed point in 𝛬.

The phase space 

The phase space  is fundamental in the analysis of functional
differential equations. A semi-normed space meeting acceptable axioms
is an appropriate option, as presented by Hale and Kato (see [34]). For
other examples, check the book [35], and its sources.

For any (𝜗, 𝜂) ∈ 𝛩 denote 𝛾(𝜗,𝜂) ∶= [0, 𝜗]×{0}∪{0}×[0, 𝜂], furthermore
in case 𝜗 = 𝜃1, 𝜂 = 𝜃2, we denote 𝛾. Let ( , ‖(⋅, ⋅)‖ ) be a seminormed
linear space of functions from R− × R− to R𝑛, and verifying:

(𝐴1) If q ∶ (−∞, 𝜃1] × (−∞, 𝜃2] → R𝑛 continuous on 𝛩 and q(𝜗,𝜂) ∈ , for
all (𝜗, 𝜂) ∈ 𝛾, then there are constants 𝜒1, 𝜒2, 𝜒3 > 0 such that for
any (𝜗, 𝜂) ∈ 𝛩 the assumptions that follow are met:

(i) q(𝜗,𝜂) is in ;
(ii) ‖q(𝜗, 𝜂)‖ ≤ 𝜒1‖q(𝜗,𝜂)‖ ,

(iii) ‖q(𝜗,𝜂)‖ ≤ 𝜒2 sup(𝜚,𝜅)∈[0,𝜗]×[0,𝜂] ‖q(𝜚, 𝜅)‖ + 𝜒3 sup(𝜚,𝜅)∈𝛾(𝜗,𝜂) ‖q(𝜚,𝜅)‖ ,
(𝐴2) For the function q(⋅, ⋅) in (𝐴1), q(𝜗,𝜂) is a -valued continuous

function on 𝛩.
(𝐴3) The space  is complete.
Now we will look at some phase space examples [36].
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Example 2. Let  be the set of all functions 𝜛 ∶ R− × R− → R𝑛 that
are continuous on [−𝜃1, 0] × [−𝜃2, 0], 𝜃1, 𝜃2 ≥ 0, with the seminorm

‖𝜛‖ = sup
(𝜚,𝜅)∈[−𝜃1 ,0]×[−𝜃2 ,0]

‖𝜛(𝜚, 𝜅)‖.

Thus we obtain 𝜒1 = 𝜒2 = 𝜒3 = 1. The quotient space ̂ = ∕‖ ⋅ ‖
is isometric to the space 𝐶([−𝜃1, 0] × [−𝜃2, 0],R𝑛) of all continuous
functions from [−𝜃1, 0] × [−𝜃2, 0] into R𝑛 with the supremum norm.

Example 3. Let 𝐶𝜍 be the set of the continuous functions 𝜛 ∶ R− ×
R− → R𝑛 where lim

‖(𝜚,𝜅)‖→∞ 𝑒𝜍(𝜚+𝜅)𝜛(𝜚, 𝜅) exists, with the norm

‖𝜛‖𝐶𝜍 = sup
(𝜚,𝜅)∈R−×R−

𝑒𝜍(𝜚+𝜅)‖𝜛(𝜚, 𝜅)‖.

Then we have 𝜒1 = 1 and 𝜒2 = 𝜒3 = max{𝑒−(𝜃1+𝜃2), 1}.

Example 4. Let 𝜃1, 𝜃2, 𝜍 ≥ 0 and

‖𝜛‖𝐶𝐿𝜍 = sup
(𝜚,𝜅)∈[−𝜃1 ,0]×[−𝜃2 ,0]

‖𝜛(𝜚, 𝜅)‖ + ∫

0

−∞ ∫

0

−∞
𝑒𝜍(𝜚+𝜅)‖𝜛(𝜚, 𝜅)‖𝑑𝜅𝑑𝜚.

be the seminorm for the space 𝐶𝐿𝜍 of all functions 𝜛 ∶ R− × R− → R𝑛

which are continuous on [−𝜃1, 0] × [−𝜃2, 0] measurable on (−∞,−𝜇] ×
R− ∪ R− × (−∞,−𝜃2], and such that ‖𝜛‖𝐶𝐿𝜍 < ∞. Then

𝜒1 = 1, 𝜒2 = ∫

0

−𝜃1
∫

0

−𝜃2
𝑒𝜍(𝜚+𝜅)𝑑𝜅𝑑𝜚, 𝜒3 = 2.

Main result

Let us start by giving the following result.

Lemma 5 ([9,12]). Let 𝜉 ∈ 𝐿1(𝛩). The linear problem

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑐𝐷𝜁
𝜀p(𝜗, 𝜂) = 𝜉(𝜗, 𝜂); for a.a. (𝜗, 𝜂) ∈ 𝛩 ∶= [0, 𝑎] × [0, 𝜃2],

p(𝜗, 0) = 𝜛1(𝜗); 𝜗 ∈ [0, 𝜃1],
p(0, 𝜂) = 𝜛2(𝜂); 𝜂 ∈ [0, 𝜃2],
𝜛1(0) = 𝜛2(0).

has the following unique solution:

p(𝜗, 𝜂) = 𝜘(𝜗, 𝜂) + 𝐼𝜁𝜀 𝜉(𝜗, 𝜂); for a.a. (𝜗, 𝜂) ∈ 𝛩,

where

𝜘(𝜗, 𝜂) = 𝜛1(𝜗) +𝜛2(𝜂) −𝜛1(0).

Suppose that 𝜓 is random Carathéodory on 𝛩××𝛹 . The following
Lemma 6 is derived from the preceding Lemma 5. Let the space

𝛶 = {p ∶ (−∞, 𝜃1] × (−∞, 𝜃2] → 𝐄 ∶ p(𝜗,𝜂) ∈  for (𝜗, 𝜂) ∈ 𝛾 and
p|𝛩 is continuous}.

Lemma 6. Let 0 < 𝜁1, 𝜁2 ≤ 1,𝜘(𝜗, 𝜂, 𝛿) = 𝜛1(𝜗, 𝛿) +𝜛2(𝜂, 𝛿) −𝜛1(0, 𝛿).
A function p ∈ 𝛹 × 𝛶 is a solution of (1)–(3) if p verifies (2) for (𝜗, 𝜂) ∈
𝛩̃, 𝛿 ∈ 𝛹 and p is a solution of the equation

p(𝜗, 𝜂, 𝛿) = 𝜘(𝜗, 𝜂, 𝛿) + ∫

𝜗

0 ∫

𝜂

0

(𝜗 − 𝜚)𝜁1−1(𝜂 − 𝜅)𝜁2−1

𝛤 (𝜁1)𝛤 (𝜁2)
𝜓(𝜗, 𝜂, p(𝜚,𝜅), 𝛿)𝑑𝜅𝑑𝜚

for (𝜗, 𝜂) ∈ 𝛩, 𝛿 ∈ 𝛹 .

The hypotheses:

(𝐻1) The functions 𝛿 ↦ 𝜛1(𝜗, 0, 𝛿) 𝑎𝑛𝑑 𝛿 ↦ 𝜛2(0, 𝜂, 𝛿) are measurable
and bounded for (𝜗, 𝜂) ∈ 𝛩.

(𝐻2) The function 𝜛 is measurable for (𝜗, 𝜂) ∈ 𝛩̃.
(𝐻 ) The function 𝜓 is random Carathéodory on 𝛩 ×  × 𝛹 .
3
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(𝐻4) There exist functions 𝜎1, 𝜎2 ∶ 𝛩 × 𝛹 → [0,∞) with

𝜎𝑗 (⋅, 𝛿) ∈ 𝐿∞(𝛩, [0,∞)); 𝑗 = 1, 2,

such that for each 𝛿 ∈ 𝛹 ,

‖𝜓(𝜗, 𝜂, p, 𝛿)‖𝐄 ≤ 𝜎1(𝜗, 𝜂, 𝛿) + 𝜎2(𝜗, 𝜂, 𝛿)‖p‖ ,

for all p ∈  and a.e. (𝜗, 𝜂) ∈ 𝛩.
(𝐻5) For any bounded 𝛺 ⊂ 𝐄

𝜇(𝜓(𝜗, 𝜂,𝛺, 𝛿)) ≤ 𝜎2(𝜗, 𝜂, 𝛿)𝜇(𝛺), 𝑓𝑜𝑟 𝑎.𝑒. (𝜗, 𝜂) ∈ 𝛩,

where

𝜎∗𝑖 (𝛿) = sup 𝑒𝑠𝑠(𝜗,𝜂)∈𝛩𝜎𝑖(𝜗, 𝜂, 𝛿); 𝑖 = 1, 2.

heorem 1. Suppose that (𝐻1) − (𝐻5) are met. If

∶=
4𝜎∗2 (𝛿)𝜃1

𝜁1𝜃2𝜁2

𝛤 (1 + 𝜁1)𝛤 (1 + 𝜁2)
< 1,

then (1)–(3) has a random solution.

roof. Define the operator T ∶ 𝛹 × 𝛶 → 𝛶 by

T(𝛿)p)(𝜗, 𝜂) =

⎧

⎪

⎨

⎪

⎩

𝜛(𝜗, 𝜂, 𝛿), (𝜗, 𝜂) ∈ 𝛩̃,𝛿 ∈ 𝛹
𝜘(𝜗, 𝜂, 𝛿) + 1

𝛤 (𝜁1)𝛤 (𝜁2)
∫ 𝜗0 ∫ 𝜂0 (𝜗 − 𝜚)

𝜁1−1(𝜂 − 𝜅)𝜁2−1

×𝜓(𝜚, 𝜅, p(𝜚,𝜅), 𝛿)𝑑𝜅𝑑𝜚, (𝜗, 𝜂) ∈ 𝛩, 𝛿 ∈ 𝛹.

(4)

Since the functions 𝜛1, 𝜛2 and 𝜓 are absolutely continuous, then
T(𝛿) defines a mapping T ∶ 𝛹 × 𝛶 → 𝛶 . Hence p is a solution for the
problem (1)–(3) if and only if p = (T(𝛿))p.

Let p̄(⋅, ⋅, ⋅) ∶ (−∞, 𝜃1] × (−∞, 𝜃2] × 𝛹 → 𝐄 be a function defined by,

p̄(𝜗, 𝜂, 𝛿) =
{

𝜛(𝜗, 𝜂, 𝛿), (𝜗, 𝜂) ∈ 𝛩̃′, 𝛿 ∈ 𝛹,
𝜘(𝜗, 𝜂, 𝛿), (𝜗, 𝜂) ∈ 𝛩, 𝛿 ∈ 𝛹.

Then p̄(𝜗,𝜂) = 𝜛 for all (𝜗, 𝜂) ∈ 𝛾. For each continuous function 𝐼 defined
on 𝛩 with 𝐼(𝜗, 𝜂, 𝛿) = 0 for each (𝜗, 𝜂) ∈ 𝛾 we denote by 𝐼 the function
efined by

𝐼(𝜗, 𝜂, 𝛿) =
{

0, (𝜗, 𝜂) ∈ 𝛩̃′, 𝛿 ∈ 𝛹,
𝐼(𝜗, 𝜂, 𝛿) (𝜗, 𝜂) ∈ 𝛩, 𝛿 ∈ 𝛹.

f p(⋅, ⋅, ⋅) verifies the equation:

(𝜗, 𝜂, 𝛿) = 𝜘(𝜗, 𝜂, 𝛿) + 1
𝛤 (𝜁1)𝛤 (𝜁2) ∫

𝜗

0 ∫

𝜂

0
(𝜗 − 𝜚)𝜁1−1(𝜂 − 𝜅)𝜁2−1

× 𝜓(𝜚, 𝜅, p(𝜚,𝜅), 𝛿)𝑑𝜅𝑑𝜚,

e can decompose p(⋅, ⋅, ⋅) as p(𝜗, 𝜂, 𝛿) = 𝐼(𝜗, 𝜂, 𝛿) + p̄(𝜗, 𝜂, 𝛿); (𝜗, 𝜂) ∈ 𝛩,
hich implies p(𝜗,𝜂) = 𝐼 (𝜗,𝜂)+ p̄(𝜗,𝜂), for every (𝜗, 𝜂) ∈ 𝛩, and the function

𝐼(⋅, ⋅, ⋅) satisfies

𝐼(𝜗, 𝜂, 𝛿) = 1
𝛤 (𝜁1)𝛤 (𝜁2) ∫

𝜗

0 ∫

𝜂

0
(𝜗 − 𝜚)𝜁1−1(𝜂 − 𝜅)𝜁2−1

× 𝜓(𝜚, 𝜅, 𝐼 (𝜚,𝜅) + p̄(𝜚,𝜅), 𝛿)𝑑𝜅𝑑𝜚.

Set

𝛺0 = {𝐼 ∈ 𝐶(𝛩,𝐄) ∶ 𝐼(𝜗, 𝜂) = 0 for (𝜗, 𝜂) ∈ 𝛾},

and let ‖ ⋅ ‖(𝜃1 ,𝜃2) be the norm in 𝛺0 given by

‖𝐼‖(𝜃1 ,𝜃2) = sup
(𝜗,𝜂)∈𝛾

‖𝐼(𝜗,𝜂)‖ + sup
(𝜗,𝜂)∈𝛩

‖𝐼(𝜗, 𝜂)‖ = sup
(𝜗,𝜂)∈𝛩

‖𝐼(𝜗, 𝜂)‖, 𝐼 ∈ 𝛺0.

𝛺0 is a Banach space with norm ‖ ⋅ ‖(𝜃1 ,𝜃2). Let H ∶ 𝛹 × 𝛺0 → 𝛺0 be
defined by:

(H(𝛿)𝐼)(𝜗, 𝜂) = 1
𝛤 (𝜁1)𝛤 (𝜁2) ∫

𝜗

0 ∫

𝜂

0
(𝜗 − 𝜚)𝜁1−1(𝜂 − 𝜅)𝜁2−1

× 𝜓(𝜚, 𝜅, 𝐼 (𝜚,𝜅) + p̄(𝜚,𝜅), 𝛿)𝑑𝜅𝑑𝜚, (5)

for each (𝜗, 𝜂) ∈ 𝛩. Then T has a fixed point is equivalent to H

as a fixed point. Now, we will demonstrate that H verifies all the

equirements of Lemma 4.
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Claim 1. H(𝛿) is a random operator with stochastic domain on 𝛺0.
Since 𝜓(𝜗, 𝜂, p, 𝛿) is random Carathéodory, the map 𝛿 → 𝜓(𝜗, 𝜂, p, 𝛿)

is measurable in view of Definition 1. Also, the product (𝜗 − 𝜚)𝜁1−1(𝜂 −
𝜅)𝜁2−1𝜓(𝜚, 𝜅, p(𝜚,𝜅), 𝛿) is measurable. Then

↦
1

𝛤 (𝜁1)𝛤 (𝜁2) ∫

𝜗

0 ∫

𝜂

0
(𝜗− 𝜚)𝜁1−1(𝜂 − 𝜅)𝜁2−1𝜓(𝜚, 𝜅, 𝐼 (𝜚,𝜅) + p̄(𝜚,𝜅), 𝛿)𝑑𝜅𝑑𝜚,

s measurable. Consequently, H is a random operator on 𝛹 ×𝛺0 into 𝛺0.
Let X ∶ 𝛹 → (𝛺0) be given by

(𝛿) = {𝐼 ∈ 𝛺0 ∶ ‖𝐼‖(𝜃1 ,𝜃2) ≤ 𝜌(𝛿)},

here

(𝛿) ≥
((𝜒2‖𝜛(0, 0)‖ + 𝜒3‖𝜛‖)𝜎∗2 (𝛿) + 𝜎

∗
1 (𝛿))

𝜃1𝜁1 𝜃2𝜁2
𝛤 (1+𝜁1)𝛤 (1+𝜁2)

1 − 𝜒2𝜎∗2 (𝛿)
𝜃1𝜁1 𝜃2𝜁2

𝛤 (1+𝜁1)𝛤 (1+𝜁2)

.

X(𝛿) is a bounded, closed, convex and solid for all 𝛿 ∈ 𝛹 . Then X is
measurable by Lemma 17 of [28]. Let 𝛿 ∈ 𝛹 be fixed, then by (𝐻4), for
ny p ∈ 𝛿(𝛿), we obtain

(H(𝛿)𝐼)(𝜗, 𝜂)‖

∫

𝜗

0 ∫

𝜂

0

(𝜗 − 𝜚)𝜁1−1(𝜂 − 𝜅)𝜁2−1

𝛤 (𝜁1)𝛤 (𝜁2)
‖𝜓(𝜚, 𝜅, 𝐼 (𝜚,𝜅) + p̄(𝜚,𝜅), 𝛿)‖𝑑𝜅𝑑𝜚

𝜎∗1 (𝛿)
𝛤 (𝜁1)𝛤 (𝜁2) ∫

𝜗

0 ∫

𝜂

0
(𝜗 − 𝜚)𝜁1−1(𝜂 − 𝜅)𝜁2−1𝑑𝜅𝑑𝜚

+
𝜎∗2 (𝛿)𝜌

∗(𝛿)
𝛤 (𝜁1)𝛤 (𝜁2) ∫

𝜗

0 ∫

𝜂

0
(𝜗 − 𝜚)𝜁1−1(𝜂 − 𝜅)𝜁2−1𝑑𝜅𝑑𝜚

≤
(𝜎∗1 (𝛿) + 𝜎

∗
2 (𝛿)𝜌

∗(𝛿))𝜃1𝜁1𝜃2𝜁2

𝛤 (1 + 𝜁1)𝛤 (1 + 𝜁2)
≤ 𝜌(𝛿),

where

‖𝐼 (𝜚,𝜅) + p̄(𝜚,𝜅)‖ ≤ ‖𝐼 (𝜚,𝜅)‖ + ‖p̄(𝜚,𝜅)‖

≤ 𝜒2𝜌(𝛿) + 𝜒2‖𝜛(0, 0)‖ + 𝜒3‖𝜛‖

∶= 𝜌∗(𝛿).

hus, H is a random operator with stochastic domain X and H(𝛿) ∶ X(𝛿) →
(𝛿). Moreover, H(𝛿) maps bounded sets into bounded sets in 𝛺0.

Claim 2. H(𝛿) is continuous.
Let {𝐼𝑛} be a sequence such that 𝐼𝑛 → p in 𝛺0. Hence, for each

(𝜗, 𝜂) ∈ 𝛩 and 𝛿 ∈ 𝛹 , we get

(H(𝛿)𝐼𝑛)(𝜗, 𝜂) − (H(𝛿)𝐼)(𝜗, 𝜂)‖𝐄
1

𝛤 (𝜁1)𝛤 (𝜁2) ∫

𝜗

0 ∫

𝜂

0
(𝜗 − 𝜚)𝜁1−1(𝜂 − 𝜅)𝜁2−1

× ‖𝜓(𝜚, 𝜅, 𝐼𝑛(𝜚,𝜅) + p̄𝑛(𝜚,𝜅), 𝛿) − 𝜓(𝜚, 𝜅, 𝐼 (𝜚,𝜅) + p̄(𝜚,𝜅), 𝛿)‖𝐹 𝑑𝜅𝑑𝜚.

Thus

‖H(𝛿)𝐼𝑛 − H(𝛿)𝐼‖∞ → 0 as 𝑛→ ∞.

As a result, we can deduce that H(𝛿) ∶ X(𝛿) → X(𝛿) is a continuous random
operator with stochastic domain X, and H(𝛿)(X(𝛿)) is bounded.

Claim 3. For each bounded subset 𝛺 of X(𝛿) we obtain

𝜇𝐶 (H(𝛿)𝛺) ≤ L𝜇𝐶 (𝛺),

where 𝜇𝐶 is a measure of noncompactness defined on 𝐶(𝛩,𝐄) by

𝜇𝐶 (𝛺) = sup
(𝜗,𝜂)∈𝛩

𝜇(𝛺(𝜗, 𝜂)).

Let 𝛿 ∈ 𝛹 be fixed. From Lemmas 2 and 3, for any 𝛺 ⊂ X and any
𝛼 > 0, there exists a sequence {𝐼𝑛}∞𝑛=0 ⊂ 𝛺, such that for all (𝜗, 𝜂) ∈ 𝛩,
we have
4

𝜇(H(𝛿)𝛺)(𝜗, 𝜂)
= 𝜇
({

∫

𝜗

0 ∫

𝜂

0

(𝜗 − 𝜚)𝜁1−1(𝜂 − 𝜅)𝜁2−1

𝛤 (𝜁1)𝛤 (𝜁2)
𝜓(𝜚, 𝜅, 𝐼 (𝜚,𝜅) + p̄(𝜚,𝜅), 𝛿)𝑑𝜅𝑑𝜚; 𝐼 ∈ 𝛺

})

≤ 2𝜇

(

{

∫

𝜗

0 ∫

𝜂

0

(𝜗 − 𝜚)𝜁1−1(𝜂 − 𝜅)𝜁2−1

𝛤 (𝜁1)𝛤 (𝜁2)
𝜓(𝜚, 𝜅, 𝐼𝑛(𝜚,𝜅) + p̄𝑛(𝜚,𝜅), 𝛿)𝑑𝜅𝑑𝜚

}∞

𝑛=1

)

+ 𝛼

≤ 4∫

𝜗

0 ∫

𝜂

0
𝜇
({

(𝜗 − 𝜚)𝜁1−1(𝜂 − 𝜅)𝜁2−1

𝛤 (𝜁1)𝛤 (𝜁2)
𝜓(𝜚, 𝜅, 𝐼𝑛(𝜚,𝜅) + p̄𝑛(𝜚,𝜅), 𝛿)

}∞

𝑛=1

)

𝑑𝜅𝑑𝜚 + 𝛼

≤ 4∫

𝜗

0 ∫

𝜂

0

(𝜗 − 𝜚)𝜁1−1(𝜂 − 𝜅)𝜁2−1

𝛤 (𝜁1)𝛤 (𝜁2)
𝜇
(

{𝜓(𝜚, 𝜅, 𝐼𝑛(𝜚,𝜅) + p̄𝑛(𝜚,𝜅), 𝛿)}∞𝑛=1
)

𝑑𝜅𝑑𝜚 + 𝛼

≤ 4∫

𝜗

0 ∫

𝜂

0

(𝜗 − 𝜚)𝜁1−1(𝜂 − 𝜅)𝜁2−1

𝛤 (𝜁1)𝛤 (𝜁2)
𝜎2(𝜚, 𝜅, 𝛿)𝜇

(

{𝐼𝑛(𝜚,𝜅) + p̄𝑛(𝜚,𝜅)}∞𝑛=1
)

𝑑𝜅𝑑𝜚 + 𝛼

≤
(

4∫

𝜗

0 ∫

𝜂

0

(𝜗 − 𝜚)𝜁1−1(𝜂 − 𝜅)𝜁2−1

𝛤 (𝜁1)𝛤 (𝜁2)
𝜎2(𝜚, 𝜅, 𝛿)𝑑𝜚𝑑𝜅

)

𝜇
(

{𝐼𝑛(𝜚,𝜅)}∞𝑛=1
)

+ 𝛼

≤
(

4∫

𝜗

0 ∫

𝜂

0

(𝜗 − 𝜚)𝜁1−1(𝜂 − 𝜅)𝜁2−1

𝛤 (𝜁1)𝛤 (𝜁2)
𝜎2(𝜚, 𝜅, 𝛿)𝑑𝜚𝑑𝜅

)

𝜇𝐶
(

{𝐼𝑛}∞𝑛=1
)

+ 𝛼

≤
(

4∫

𝜗

0 ∫

𝜂

0

(𝜗 − 𝜚)𝜁1−1(𝜂 − 𝜅)𝜁2−1

𝛤 (𝜁1)𝛤 (𝜁2)
𝜎2(𝜚, 𝜅, 𝛿)𝑑𝜚𝑑𝜅

)

𝜇𝐶
(

{𝐼𝑛}∞𝑛=1
)

+ 𝛼

≤
(

4∫

𝜗

0 ∫

𝜂

0

(𝜗 − 𝜚)𝜁1−1(𝜂 − 𝜅)𝜁2−1

𝛤 (𝜁1)𝛤 (𝜁2)
𝜎2(𝜚, 𝜅, 𝛿)𝑑𝜅𝑑𝜚

)

𝜇𝐶 (𝛺) + 𝛼

≤
4𝜎∗2 (𝛿)𝜃1

𝜁1𝜃2
𝜁2

𝛤 (1 + 𝜁1)𝛤 (1 + 𝜁2)
𝜇𝐶 (𝛺) + 𝛼

= L𝜇𝐶 (𝛺) + 𝛼.

Since 𝛼 > 0, we get

𝜇(H(𝛿)𝛺)(𝜗, 𝜂) ≤ L𝜇𝐶 (𝛺).

Then

𝜇𝐶 (H(𝛿)𝛺) ≤ L𝜇𝐶 (𝛺).

Lemma 4 implies that for each 𝛿 ∈ 𝛹 , H has at least one fixed point in
X. Since ⋂

𝛿∈𝛹 𝑖𝑛𝑡X(𝛿) ≠ ∅ and a measurable selector of 𝑖𝑛𝑡X exists, By
emma 4, T has a stochastic fixed point, hence the existence of at least
ne random solution of (1)–(3).

n example

Let 𝐄 = R, 𝛹 = (−∞, 0) be equipped with the usual 𝜎-algebra
onsisting of Lebesgue measurable subsets of (−∞, 0). Consider the
ollowing problem:
𝑐𝐷𝜁

𝜀p)(𝜗, 𝜂, 𝛿)

=
𝑐𝑒𝜗+𝜂−𝜍(𝜗+𝜂)‖p(𝜗,𝜂)‖

(𝑒𝜗+𝜂 + 𝑒−𝜗−𝜂)(1 + 𝛿2 + ‖p(𝜗,𝜂))‖
;

a.a. (𝜗, 𝜂) ∈ 𝛩 = [0, 1] × [0, 1], 𝛿 ∈ 𝛹, (6)

p(𝜗, 𝜂, 𝛿) = 𝜗 sin 𝛿+𝜂2 cos 𝛿, (𝜗, 𝜂) ∈ (−∞, 1]×(−∞, 1]∖(0, 1]×(0, 1], 𝛿 ∈ 𝛹, (7)

p(𝜗, 0, 𝛿) = 𝜗 sin 𝛿; 𝜗 ∈ [0, 1], p(0, 𝜂, 𝛿) = 𝜂2 cos 𝛿; 𝜂 ∈ [0, 1], 𝛿 ∈ 𝛹, (8)

where 𝜈 = 8
𝛤 (𝜁1+1)𝛤 (𝜁2+1)

and 𝜍 > 0.
Let

𝜍 = {p ∈ 𝐶(R− × R−,R) ∶ lim
‖(𝜀,𝜆)‖→∞

𝑒𝜍(𝜀+𝜆)p(𝜀, 𝜆) exists in R},

with the norm

‖p‖𝜍 = sup
(𝜀,𝜆)∈R−×R−

𝑒𝜍(𝜀+𝜆)|p(𝜀, 𝜆)|.

Let

𝐄 ∶= [0, 1] × {0} ∪ {0} × [0, 1],

and p ∶ (−∞, 1] × (−∞, 1] → R where p(𝜗,𝜂) ∈ 𝜍 for (𝜗, 𝜂) ∈ 𝐄, thus

lim
‖(𝜀,𝜆)‖→∞

𝑒𝜍(𝜀+𝜆)p(𝜗,𝜂)(𝜀, 𝜆) = lim
‖(𝜀,𝜆)‖→∞

𝑒𝜍(𝜀−𝜗+𝜆−𝜂)p(𝜀, 𝜆)

= 𝑒−𝜍(𝜗+𝜂) lim 𝑒𝜍(𝜀+𝜆)p(𝜀, 𝜆) < ∞.

‖(𝜀,𝜆)‖→∞
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Thus, p(𝜗,𝜂) ∈ 𝜍 . We demonstrate that

‖p(𝜗,𝜂)‖𝜍 = 𝜒2 sup{|p(𝜚, 𝜅)| ∶ (𝜚, 𝜅) ∈ [0, 𝜗] × [0, 𝜂]}

+ 𝜒3 sup{‖p(𝜚,𝜅)‖𝜍 ∶ (𝜚, 𝜅) ∈ 𝐸(𝜗,𝜂)},

here 𝜒2 = 𝜒3 = 1 and 𝜒1 = 1.
If 𝜗 + 𝜀 ≤ 0, 𝜂 + 𝜆 ≤ 0 we obtain

p(𝜗,𝜂)‖𝜍 = sup{|p(𝜚, 𝜅)| ∶ (𝜚, 𝜅) ∈ R− × R−},

nd if 𝜗 + 𝜀 ≥ 0, 𝜂 + 𝜆 ≥ 0 then we get

p(𝜗,𝜂)‖𝜍 = sup{|p(𝜚, 𝜅)| ∶ (𝜚, 𝜅) ∈ [0, 𝜗] × [0, 𝜂]}.

hen for all (𝜗 + 𝜀, 𝜂 + 𝜆) ∈ [0, 1] × [0, 1], we have

p(𝜗,𝜂)‖𝜍 = sup{|p(𝜚, 𝜅)| ∶ (𝜚, 𝜅) ∈ R− × R−} + sup{|p(𝜚, 𝜅)| ∶ (𝜚, 𝜅) ∈ [0, 𝜗] × [0, 𝜂]}.

hen

p(𝜗,𝜂)‖𝜍 = sup{‖p(𝜚,𝜅)‖𝜍 ∶ (𝜚, 𝜅) ∈ 𝐄} + sup{|p(𝜚, 𝜅)| ∶ (𝜚, 𝜅) ∈ [0, 𝜗] × [0, 𝜂]}.

𝜍 , ‖ ⋅ ‖𝜍 ) is a Banach space. We conclude that 𝜍 is a phase space. Set

(𝜗, 𝜂, p(𝜗,𝜂)) =
𝑐𝑒𝜗+𝜂−𝜍(𝜗+𝜂)‖p(𝜗,𝜂)‖

(𝑒𝜗+𝜂 + 𝑒−𝜗−𝜂)(1 + ‖p(𝜗,𝜂))‖
, (𝜗, 𝜂) ∈ [0, 1] × [0, 1].

The functions 𝛿 ↦ 𝜛1(𝜗, 0, 𝛿) = 𝜗 sin 𝛿, 𝛿 ↦ 𝜛2(0, 𝜂, 𝛿) = 𝜂2 cos 𝛿 and
𝛿 ↦ 𝜛(𝜗, 𝜂, 𝛿) = 𝜗 sin 𝛿 + 𝜂2 cos 𝛿 are measurable and bounded with

|𝜛1(𝜗, 0, 𝛿)| ≤ 1, |𝜛2(0, 𝜂, 𝛿)| ≤ 1,

Thus, (𝐻1) is verified.
Obviously, (𝜗, 𝜂, 𝛿) ↦ 𝜓(𝜗, 𝜂, p, 𝛿) is jointly continuous for all p ∈ 𝜍 ,

thus jointly measurable for all p ∈ 𝜍 . p ↦ 𝜓(𝜗, 𝜂, p, 𝛿) is continuous
for all (𝜗, 𝜂) ∈ 𝛩 and 𝛿 ∈ 𝛹 . So the function 𝜓 is Carathéodory on
[0, 1] × [0, 1] × 𝜍 × 𝛹 .

For each p ∈ 𝜍 , (𝜗, 𝜂) ∈ [0, 1] × [0, 1] and 𝛿 ∈ 𝛹 , we have

|𝜓(𝜗, 𝜂, p(𝜗,𝜂))| ≤ 1 + 1
𝜈
‖p‖ .

Thus (𝐻4) is verified with

𝜎1(𝜗, 𝜂, 𝛿) = 𝜎∗1 = 1, 𝜎2(𝜗, 𝜂, 𝛿) = 𝜎∗2 = 1
𝜈
.

Also, (𝐻5) is met.
We will prove that L < 1 with 𝜃1 = 𝜃2 = 1. For each (𝜁1, 𝜁2) ∈

(0, 1] × (0, 1] we get

L =
4𝜎∗2𝜃1

𝜁1𝜃2𝜁2

𝛤 (1 + 𝜁1)𝛤 (1 + 𝜁2)

= 4
𝜈𝛤 (1 + 𝜁1)𝛤 (1 + 𝜁2)

< 1
2

< 1.

onsequently, Theorem 1 implies that the problem (6)-(8) has a random
olution defined on (−∞, 1] × (−∞, 1].

Conclusion

In this paper, we demonstrated certain existence results for the
Darboux problem of partial fractional random differential equations
with infinite delay using a random fixed point theorem with stochastic
domain paired with the measure of noncompactness. Finally, we have
provided a clear example to highlight the applicability of our main
result. As a result, we expect that our work will pave the way for us
to pursue new applications and broader problems, such as generalizing
the problem using newly defined fractional derivatives.
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