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1. Introduction

Fractional differential equations (FDEs) are precision tools to describe many nonlinear phenomena
from porous media to other areas of scientific disciplines. Researchers have used different local and
nonlocal fractional derivatives to model the phenomena around them. For example, Yang et al. [1]
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considered an advection-dispersion equation with the conformable derivative and obtained its
analytical solutions using the Fourier transform. Hosseini et al. [2] studied the BiswasArshed model
involving the beta derivative and derived its soliton waves through the Jacobi and Kudryashov
techniques. In [3], the authors steered an analytical study on a Caputo time-fractional equation using a
capable analytic scheme. In another paper, Sulaiman et al. [4] explored the coupled Burgers system
involving the Mittag-Leffler kernel through the Laplace homotopy perturbation method. Generally,
the most widely used fractional derivatives that have been adopted by many authors are the
conformable derivative [5–8], the beta derivative [9–12], the Caputo derivative [13–16], and the
Atangana-Baleanu derivative [17–20]. For more information about the fractional derivatives,
see [21–30].

The M-fractional derivative is another type of fractional derivatives that lies in the class of the local
fractional derivatives (Compared to the nonlocal fractional derivatives such as the Caputo fractional
derivative). This local fractional derivative is a generalization of other local fractional derivatives like
the conformable fractional derivative. The M-fractional derivative was first proposed by Sousa and
Oliveira in [31] that encompasses a number of ordinary derivative properties such as linearity, product
rule, etc. Sousa and Oliveira [31] also developed a series of classical results from the Rolle’s theorem
to other theorems in the M sense. Such results led to the use of this well-behaved derivative in the
studies of many researchers. In this respect, Yusuf et al. [32] gained solitons of the Ginzburg-Landau
equation involving the M-fractional derivative using the generalized Bernoulli method. Özkan [33]
used the simplest equation approach to derive exact solutions of Biswas-Arshed equation with the M-
fractional derivatives. Tariq et al. [34] found optical solitons of Schrödinger-Hirota equation involving
the M-fractional derivative through the Fan’s method. Zafar et al. [35] tried to acquire optical solitons
of Biswas-Arshed model with the M-fractional derivative using the sinh-Gordon method.

For f : [0,∞)→ R, the M-fractional derivative of f of order α is given by [31]

iD
α,β
M f (x) = lim

ε→0

f
(
xiEβ(εx−α)

)
− f (x)

ε
, (1.1)

where x > 0 and α ∈ (0, 1). Here, iEβ(.), β > 0 is the Mittag-Leffler function [36]. If the M-
fractional derivative of f of order α exists, then it is said that f is α-differentiable. Note that for the
α-differentiable function f , one can define

iD
α,β
M f (0) = lim

x→0+
iD

α,β
M f (x),

provided that
lim
x→0+

iD
α,β
M f (x),

exists.
It can be readily shown that for the α-differentiable functions, the M-fractional derivative satisfies

the following features [31]:

A. iD
α,β
M (a f + bg) = a

(
iD

α,β
M f

)
+ b

(
iD

α,β
M g

)
, a, b ∈ R.

B. iD
α,β
M xp =

p
Γ(β+1) xp−α, p ∈ R.

C. If f (x) = c, then iD
α,β
M f = 0.

D. iD
α,β
M ( f g) = g

(
iD

α,β
M f

)
+ f

(
iD

α,β
M g

)
.
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E. iD
α,β
M

(
f
g

)
=

g
(
iD

α,β
M f

)
− f

(
iD

α,β
M g

)
g2 .

F. iD
α,β
M ( f og) (x) = f ′

(
g(x)

)
iD

α,β
M g(x), where f is differentiable at g(x).

G. iD
α,β
M f (x) = x1−α

Γ(β+1)
d f
dx .

H. If a > 0 and f : [a, b] → R is continuous and α-differentiable for some α ∈ (0, 1), then there is
c ∈ (a, b) such that

iD
α,β
M f (c) = α

(
f (b) − f (a)

bα − aα

)
, β > 0.

Abdeljawad [37] introduced the conformable power series and applied such a representaion for a
group of certain functions. The main aim of the current paper is to introduce the power series based on
the M-fractional derivative and prove some new theorems and corollaries regarding it.

The next sections of the present paper are as follows: In Section 2, the power series based on
the M-fractional derivative is introduced. More peciesely, the Taylor and Maclaurin expansions are
generalized for fractional-order differentiable functions in accordance with the M-fractional derivative.
Furthermore, some new definitions, theorems, and corollaries regarding the power series in the M
sense are presented and formally proved, in this section. In Section 3, a number of ODEs with the
M-fractional derivative are solved to examine the validity of the results presented. The paper totalizes
the outcomes in Section 4.

2. New definitions, theorems and corollaries

In the current section, some new definitions, theorems, and corollaries regarding the power series
in the M sense are presented and formally proved.

Definition 2.1. An infinite series

a0 +

∞∑
n=1

anxnα,

is called an α-power series in xα. Additionally, the series

a0 +

∞∑
n=1

an
(
xα − xα0

)n,

is known as an α-power series in xα − xα0 which is more general than the previous one.

Definition 2.2. An infinite α-power series

f (x0) +

∞∑
n=1

(
Γ(β + 1)

α

)n n
i Dα,β

M f (x0)
n!

(
xα − xα0

)n,

is referred to as the α-Taylor expansion of the function f at x0 provided that f is infinitely
α-differentiable at x0.

Definition 2.3. An infinite α-power series

f (0) +

∞∑
n=1

(
Γ(β + 1)

α

)n n
i Dα,β

M f (0)
n!

xnα,
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is known as the α-Maclaurin expansion of the function f provided that f is infinitely α-differentiable
at x0 = 0.

Definition 2.4. A sequence { fn} is called convergent uniformly to f on the set E ⊆ R, if for every ε > 0,
there exists an N ∈ N such that for all n ≥ N and all x ∈ E, | fn(x) − f (x)| < ε.

Theorem 2.5. Assume { fn} converges uniformly to f on the set E ⊆ R. Let x be a limit point of E and
let lim

t→x
fn(t) = ln. Then, {ln} converges and lim

t→x
f (t) = lim

n→∞
ln. Particularly

lim
t→x

lim
n→∞

fn(t) = lim
n→∞

lim
t→x

fn(t).

For the proof, see [38, 39].

Theorem 2.6. (Uniform convergence and the truncated M-fractional derivative) Let 0 < α < 1
and a ≥ 0. Suppose { fn} is M-fractional differentiable on (a, b) such that { fn(x0)} converges for some
point x0 on (a, b). If {iD

α,β
M fn} converges uniformly on (a, b), then { fn} converges uniformly on (a, b) to

a function f and for every x ∈ (a, b), we have

iD
α,β
M f (x) = lim

n→∞
iD

α,β
M fn(x).

Proof. Suppose ε > 0 and consider N1 ∈ N such that m, n ≥ N1. Now, t ∈ (a, b) implies

| fm(x0) − fn(x0)| <
ε

2
,

and ∣∣∣iDα,β
M fm(t) − iD

α,β
M fn(t)

∣∣∣ < αε

2(bα − aα)
. (2.1)

If we apply the mean value theorem (H) to the function fm − fn where m, n ≥ N1, from (2.1), we find

| fm(x) − fn(x) − fm(t) + fn(t)| = |( fm(x) − fn(x)) − ( fm(t) − fn(t))|

≤
1
α

∣∣∣iDα,β
M fm(z) − iD

α,β
M fn(z)

∣∣∣ |xα − tα|

≤
|xα − tα|αε
2α(bα − aα)

≤
ε

2
,

for every x, t ∈ (a, b), where z is a point between x and t. Thus, for every x ∈ (a, b) and m, n ≥ N1, the
following

| fm(x) − fn(x)| = |( fm(x) − fn(x)) − ( fm(x0) − fn(x0)) + ( fm(x0) − fn(x0))|
≤ |( fm(x) − fn(x)) − ( fm(x0) − fn(x0))| + | fm(x0) − fn(x0)|

<
ε

2
+
ε

2
= ε

implies that { fn} converges uniformly on (a, b). Let f (x) = lim
n→∞

fn(x) and x ∈ (a, b).
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Let us fix a point c on (a, b). Suppose that

h(λ) =
(

iEβ

(
λc−α

))α
,

then

h(0) = 1,
dh
dλ

(0) =
α

Γ(β + 1)
c−α.

Thus, there exists a positive number γ such that∣∣∣∣(ciEβ(λc−α)
)α
− cα

∣∣∣∣ = cα
∣∣∣iEβ(λc−α)α − 1

∣∣∣ = cα |h(λ) − h(0)| < cα
2α|λ|

Γ(β + 1)
c−α =

2α|λ|
Γ(β + 1)

,

for 0 < |λ| < γ. Furthermore, there exists N2 ∈ N such that m, n ≥ N2. Now, x ∈ (a, b) implies∣∣∣iDα,β
M fm(x) − iD

α,β
M fn(x)

∣∣∣ < Γ(β + 1)
2

ε.

Now, for 0 < |λ| < γ, one can define

gn(λ) =
fn

(
ciEβ (λc−α)

)
− fn(c)

λ
,

g(λ) =
f
(
ciEβ (λc−α)

)
− f (c)

λ
.

Since lim
n→∞

gn(λ) = g(λ) and lim
λ→0

gn(λ) = iD
α,β
M fn(c), for m, n ≥ N2, we have

|gm(λ) − gn(λ)| =

∣∣∣∣∣∣∣∣
fm

(
ciEβ(λc−α)

)
− fm(c)

λ
−

fn

(
ciEβ(λc−α)

)
− fn(c)

λ

∣∣∣∣∣∣∣∣
=

1
|λ|

∣∣∣∣( fm

(
ciEβ(λc−α)

)
− fn

(
ciEβ(λc−α)

))
− ( fm(c) − fn(c))

∣∣∣∣
=

1
α|λ|

∣∣∣∣(ciEβ(λc−α)
)α
− cα

∣∣∣∣ ∣∣∣iDα,β
M ( fm − fn) (z)

∣∣∣
<

1
α|λ|

2α|λ|
Γ(β + 1)

Γ(β + 1)
2

ε

= ε,

where z is a point between 0 and λ. This shows {gn} converges uniformly to g on 0 < |λ| < γ. Theorem 1
implies that lim

λ→0
g(λ) exists and lim

λ→0
g(λ) = lim

n→∞
lim
λ→0

gn(λ). This means that iD
α,β
M f (c) exists and

iD
α,β
M f (c) = lim

λ→0
g(λ) = lim

λ→0
lim
n→∞

gn(λ) = lim
n→∞

lim
λ→0

gn(λ) = lim
n→∞

iD
α,β
M fn(c).

�
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Corollary 2.7. In Theorem 2, if for every n ∈ N, fn is differentiable in the usual context, then property
(G) implies

iD
α,β
M f (x) =

x1−α

Γ(β + 1)
lim
n→∞

f ′n(x),

for all x ∈ (a, b).

Theorem 2.8. Suppose that 0 < α < 1, 0 < R ≤ xα0 and the α-power series

∞∑
n=0

an
(
xα − xα0

)n,

converges on I =
((

xα0 − R
) 1
α
,
(
xα0 + R

) 1
α
)
, and f (x) =

∞∑
n=0

an(xα − xα0 )n for x ∈ I. Then the series

∞∑
n=0

an
(
xα − xα0

)n,

converges uniformly on every closed interval of I. The function f is continuous and α-differentiable in
I, and

iD
α,β
M f (x) =

α

Γ(β + 1)

∞∑
n=1

nan
(
xα − xα0

)n−1.

Proof. Suppose [a, b] ⊆ I and p is a point in [a, b] such that for every x ∈ [a, b], |xα − xα0 | ≤ |p
α − xα0 |.

Then, ∣∣∣an(xα − xα0 )n
∣∣∣ < ∣∣∣an(pα − xα0 )n

∣∣∣ ,
for all x ∈ [a, b]. Since

∞∑
n=0

an
(
pα − xα0

)n,

converges absolutely, the Weierstrass M-test yields the uniform convergence of the series

∞∑
n=0

an
(
xα − xα0

)n,

on [a, b]. Since

lim
n→∞

sup n

√
α

Γ(β + 1)
n|an| = lim

n→∞
sup n

√
|an|,

the series
∞∑

n=0

an
(
xα − xα0

)n

and
α

Γ(β + 1)

∞∑
n=1

nan
(
xα − xα0

)n−1

AIMS Mathematics Volume 7, Issue 6, 10977–10993.
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have a similar interval of convergence. Accordingly

α

Γ(β + 1)

∞∑
n=1

nan
(
xα − xα0

)n−1,

converges uniformly on every [a, b] ⊆ I. Now, if

sn(x) =

n∑
k=0

ak
(
xα − xα0

)k,

then

iD
α,β
M sn(x) =

α

Γ(β + 1)

n∑
k=1

kak
(
xα − xα0

)k−1.

Since the sequences {sn} and {iD
α,β
M sn} converge uniformly on [a, b], they also converge uniformly on

(a, b). Therefore, Theorem 2 and its corollary imply that iD
α,β
M f (x) exists on (a, b) and

iD
α,β
M f (x) = lim

n→∞
iD

α,β
M sn(x) =

α

Γ(β + 1)

∞∑
n=1

nan
(
xα − xα0

)n−1.

But, for any x which x ∈ I, there exists a closed interval [a, b] such that x ∈ (a, b) ⊆ [a, b] ⊆ I. This
reveals that iD

α,β
M f (x) exists for any x ∈ I and

iD
α,β
M f (x) =

α

Γ(β + 1)

∞∑
n=1

nan
(
xα − xα0

)n−1.

The continuity of f is yielded from the existence of iD
α,β
M f . �

Corollary 2.9. Under the hypotheses of Theorem 3, f has M-fractional derivatives of all orders in((
xα0 − R

) 1
α ,

(
xα0 + R

) 1
α

)
,

which are given by

k
i Dα,β

M f (x) =

(
α

Γ(β + 1)

)k ∞∑
n=k

n(n − 1) × · · · × (n − k + 1) an
(
xα − xα0

)n−k.

In particular

k
i Dα,β

M f (x0) =

(
α

Γ(β + 1)

)k

k!ak.

Corollary 2.10. Suppose 0 < α < 1, R > 0, and the α-power series

∞∑
n=0

anxnα,

AIMS Mathematics Volume 7, Issue 6, 10977–10993.



10984

converges on
(
0,R

1
α

)
, and f (x) =

∞∑
n=0

anxnα, where 0 < x < R
1
α . Then, the series

∞∑
n=0

anxnα,

converges uniformly on every closed interval of
(
0,R

1
α

)
. The function f is continuous and

α-differentiable in
(
0,R

1
α

)
, and

iD
α,β
M f (x) =

α

Γ(β + 1)

∞∑
n=1

nan(xα)n−1.

It is easy to show that

k
i Dα,β

M f (x) =

(
α

Γ(β + 1)

)k ∞∑
n=k

n(n − 1) × · · · × (n − k + 1)an(xα)n−k.

Since lim
x→0+

k
i Dα,β

M f (x) exists for k = 0, 1, · · · ,

k
i Dα,β

M f (0) =

(
α

Γ(β + 1)

)k

k!ak.

Corollary 2.11. If two α-power series
∞∑

n=0

an
(
xα − xα0

)n, and
∞∑

n=0

bn
(
xα − xα0

)n,

represent the same function in a neighborhood, then an = bn for all n. This means that the α-power
series expansion of a function about a given point is uniquely determined.

3. Applications

In this section, by using the α-power series method, several linear and nonlinear ODEs with the
M-fractional derivative are solved to examine the validity of the results presented in the current study.

Example 3.1. Firstly, we deal with a problem involving the M-fractional derivative as [40]

iD
α,β
M y(t) = y(t) + 1, lim

t→0+
y(t) = 0, (3.1)

where the exact solution of Eq (3.1) is

y(t) = exp
(
Γ(β + 1)

α
tα
)
− 1.

According to Section 2, we adopt a solution for Eq (3.1) as

y(t) =

∞∑
n=0

an(tα)n. (3.2)

AIMS Mathematics Volume 7, Issue 6, 10977–10993.
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By substituting Eq (3.2) into (3.1) and simplifying the resulting expression, we get

α

Γ(β + 1)

∞∑
n=1

nant(n−1)α =

∞∑
n=0

antnα + 1,

and so (
α

Γ(β + 1)
a1 − a0 − 1

)
+

∞∑
n=2

(
α(n + 1)
Γ(β + 1)

an+1 − an

)
tnα = 0.

By performing some simple operations, we achieve

lim
t→0+

y(t) = 0→ a0 = 0,

α

Γ(β + 1)
a1 − 1 = 0→ a1 =

Γ(β + 1)
α

,

α(n + 1)
Γ(β + 1)

an+1 − an = 0→ an+1 =
Γ(β + 1)
α(n + 1)

an, n = 1, 2, · · · . (3.3)

From (3.3), it is clear that

a2 =
Γ(β + 1)

2α
a1 =

1
2

(
Γ(β + 1)

α

)2

,

a3 =
Γ(β + 1)

3α
a2 =

1
3!

(
Γ(β + 1)

α

)3

,

...

an =
1
n!

(
Γ(β + 1)

α

)n

, n = 2, 3, · · · .

By applying the above coefficients in Eq (3.2), the solution of Eq (3.1) is derived as

y(t) =

∞∑
n=1

1
n!

(
Γ(β + 1)

α

)n

tnα,

or

y(t) =

∞∑
n=0

1
n!

(
Γ(β + 1)

α

)n

tnα − 1, t > 0,

converging to

y(t) = exp
(
Γ(β + 1)

α
tα
)
− 1.

The exact solution of Eq (3.1) for different sets of α and β has been plotted in Figure 1.

AIMS Mathematics Volume 7, Issue 6, 10977–10993.
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(a) Gold (α = 0.7, β = 0.85), Red (α = 0.8, β = 0.9), Green
(α = 0.9, β = 0.95), and Blue (α = 1, β = 1),

(b) Gold (α = 0.85, β = 0.7), Red (α = 0.9, β = 0.8), Green
(α = 0.95, β = 0.9), and Blue (α = 1, β = 1),

Figure 1. The exact solution of Example 1 for different sets of α and β.

Example 3.2. Secondly, we want to deal with a problem with the M-fractional derivative as

iD
0.5,β
M y(t) = y(t) + t

1
2 , y(2) = 0, (3.4)

where the exact solution of Eq (3.4) is

y(t) =

(
2

1
2 +

1
2Γ(β + 1)

)
e2Γ(β+1)

(
t

1
2 −2

1
2
)
− t

1
2 −

1
2Γ(β + 1)

.

Based on Section 2, the solution of Eq (3.4) is assumed to be

y(t) =

∞∑
n=0

an

(
t

1
2 − 2

1
2
)n
. (3.5)

By setting Eq (3.5) in (3.4) and simplifying the resulting expression, we find

1
2Γ(β + 1)

∞∑
n=1

nan

(
t

1
2 − 2

1
2
)n−1

=

∞∑
n=0

an

(
t

1
2 − 2

1
2
)n

+
(
t

1
2 − 2

1
2
)

+ 2
1
2 ,

or (
1

2Γ(β + 1)
a1 − a0 − 2

1
2

)
+

(
1

Γ(β + 1)
a2 − a1 − 1

) (
t

1
2 − 2

1
2
)

+

∞∑
n=2

(
(n + 1)

2Γ(β + 1)
an+1 − an

) (
t

1
2 − 2

1
2
)n

= 0.

Applying some simple operations, we obtain

y(2) = 0→ a0 = 0,
1

2Γ(β + 1)
a1 − a0 − 2

1
2 = 0→ a1 = 2

3
2 Γ(β + 1),

AIMS Mathematics Volume 7, Issue 6, 10977–10993.
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1
Γ(β + 1)

a2 − a1 − 1 = 0→ a2 = Γ(β + 1)
(
2

3
2 Γ(β + 1) + 1

)
,

(n + 1)
2Γ(β + 1)

an+1 − an = 0→ an+1 =
2Γ(β + 1)

n + 1
an, n = 2, 3, · · · . (3.6)

From (3.6), it is found that

a3 =
2Γ(β + 1)

3
a2 =

(
2

1
2 +

1
2Γ(β + 1)

)
23Γ3(β + 1)

3!
,

a4 =
2Γ(β + 1)

4
a3 =

(
2

1
2 +

1
2Γ(β + 1)

)
24Γ4(β + 1)

4!
,

...

an =

(
2

1
2 +

1
2Γ(β + 1)

)
2nΓn(β + 1)

n!
, n = 3, 4, · · · .

Inserting the above coefficients into Eq (3.5) leads to

y(t) = 2
3
2 Γ (β + 1)

(
t

1
2 − 2

1
2
)

+

(
2

1
2 +

1
2Γ(β + 1)

) ∞∑
n=2

2n(Γ(β + 1))n

n!

(
t

1
2 − 2

1
2
)n
, t > 0,

or

y(t) =

(
2

1
2 +

1
2Γ(β + 1)

)
e2Γ(β+1)

(
t

1
2 −2

1
2
)
− t

1
2 −

1
2Γ(β + 1)

.

The exact solution of Eq (3.4) for different values of β has been portrayed in Figure 2.

Figure 2. The exact solution of Example 2 for different values of β.

Example 3.3. Thirdly, we deal with a problem involving the M-fractional derivative as

iD
α,β
M y(t) = 1 + (y(t))2, lim

t→0+
y(0) = 0, (3.7)

which has the following exact solution

y(t) = tan
(
Γ(β + 1)

α
tα
)
.
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According to Section 2, we adopt a solution for Eq (3.7) as

y(t) =

∞∑
n=0

an(tα)n. (3.8)

By substituting Eq (3.8) into (3.7) and simplifying the resulting expression, we get

α

Γ(β + 1)

∞∑
n=1

nant(n−1)α = 1 +

 ∞∑
n=0

antnα

2

,

or (
αa1

Γ(β + 1)
− a2

0 − 1
)

+

∞∑
n=1

 (n + 1)α
Γ(β + 1)

an+1 −

n∑
i=0

aian−i

 tnα = 0.

By performing some simple operations, we achieve

lim
t→0+

y(0) = 0→ a0 = 0,

α

Γ(β + 1)
a1 − a2

0 − 1 = 0→ a1 =
Γ(β + 1)

α
,

(n + 1)α
Γ(β + 1)

an+1 −

n∑
i=0

aian−i = 0→ an+1 =
Γ(β + 1)
(n + 1)α

n∑
i=0

aian−i. (3.9)

From (3.9), it is clear that

n = 1→ a2 =
Γ(β + 1)

2α
a0a1 = 0,

n = 2→ a3 =
Γ(β + 1)

3α

(
2a0a2 + a2

1

)
=

1
3

(
Γ(β + 1)

α

)3

,

n = 3→ a4 =
Γ(β + 1)

4α
(2a0a3 + 2a1a2) = 0,

n = 4→ a5 =
Γ(β + 1)

5α

(
2a0a4 + 2a2

2 + 2a1a3

)
=

2
15

(
Γ(β + 1)

α

)5

,

...

By applying the above coefficients in Eq (3.8), the solution of Eq (3.7) is derived as

y(t) =
Γ(β + 1)

α
tα +

1
3

(
Γ(β + 1)

α

)3

t3α +
2

15

(
Γ(β + 1)

α

)5

t5α + · · · , 0 < t <
(

απ

2Γ(β + 1)

)2

,

converging to

y(t) = tan
(
Γ(β + 1)

α
tα
)
.

The exact solution of Eq (3.7) for different sets of α and β has been plotted in Figure 3.
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(a) Gold (α = 0.7, β = 0.85), Red (α = 0.8, β = 0.9), Green
(α = 0.9, β = 0.95), and Blue (α = 1, β = 1),

(b) Gold (α = 0.85, β = 0.7), Red (α = 0.9, β = 0.8),
Green (α = 0.95, β = 0.9), and Blue (α = 1, β = 1),

Figure 3. The exact solution of Example 3 for different sets of α and β.

Example 3.4. In the end, we will deal with a problem with the M-fractional derivative as

iD
α,β
M y(t) = 1 − (y(t))2, lim

t→0+
y(0) = 0, (3.10)

which has the following exact solution

y(t) = tanh
(
Γ(β + 1)

α
tα
)
.

Based on Section 2, the solution of Eq (3.10) is supposed to be

y(t) =

∞∑
n=0

an(tα)n. (3.11)

By setting Eq (3.11) in (3.10) and simplifying the resulting expression, we find

α

Γ(β + 1)

∞∑
n=1

nant(n−1)α = 1 −

 ∞∑
n=0

antnα

2

,

or (
αa1

Γ(β + 1)
+ a2

0 − 1
)

+

∞∑
n=1

 (n + 1)α
Γ(β + 1)

an+1 +

n∑
i=0

aian−i

 tnα = 0.

Through applying some simple operations, we obtain

lim
t→0+

y(0) = 0→ a0 = 0,

α

Γ(β + 1)
a1 + a2

0 − 1 = 0→ a1 =
Γ(β + 1)

α
,

(n + 1)α
Γ(β + 1)

an+1 +

n∑
i=0

aian−i = 0→ an+1 = −
Γ(β + 1)
(n + 1)α

n∑
i=0

aian−i. (3.12)
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From (3.12), it is found that

n = 1→ a2 = −
Γ(β + 1)

2α
a0a1 = 0,

n = 2→ a3 = −
Γ(β + 1)

3α

(
2a0a2 + a2

1

)
= −

1
3

(
Γ(β + 1)

α

)3

,

n = 3→ a4 = −
Γ(β + 1)

4α
(2a0a3 + 2a1a2) = 0,

n = 4→ a5 = −
Γ(β + 1)

5α

(
2a0a4 + 2a2

2 + 2a1a3

)
=

2
15

(
Γ(β + 1)

α

)5

,

...

Inserting the above coefficients into Eq (3.11) leads to

y(t) =
Γ(β + 1)

α
tα −

1
3

(
Γ(β + 1)

α

)3

t3α +
2

15

(
Γ(β + 1)

α

)5

t5α − · · · ,

or

y(t) = tanh
(
Γ(β + 1)

α
tα
)
.

The exact solution of Eq (3.10) for different sets of α and β has been portrayed in Figure 4.

(a) Gold (α = 0.7, β = 0.85), Red (α = 0.8, β = 0.9), Green
(α = 0.9, β = 0.95), and Blue (α = 1, β = 1),

(b) Gold (α = 0.85, β = 0.7), Red (α = 0.9, β = 0.8),
Green (α = 0.95, β = 0.9), and Blue (α = 1, β = 1),

Figure 4. The exact solution of Example 4 for different sets of α and β.

4. Conclusions

The key goal of the current paper was to conduct a new investigation on ordinary differential
equations involving the M-fractional derivative. In this respect, first, the α-Taylor expansion and the
α-Maclaurin expansion were established based on the M-fractional derivative. Then, several
definitions, theorems, and corollaries regarding the power series in the M sense were given and
successfully proved. To examine the effectiveness of the results provided in the present work, some
ordinary differential equations involving the M-fractional derivative were solved. The Maple package
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as a worthwhile tool was formally adopted to deal with symbolic computations. As a possible future
work, the authors will apply the power series in the M sense to solve other well-known ODEs
involving the M-fractional derivative.
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