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Abstract: Swift-Hohenberg equations are frequently used to model the biological, physical and
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This study evaluates the Elzaki Adomian decomposition method (EADM), which integrates a
semi-analytical approach using a novel hybridized fuzzy integral transform and the Adomian
decomposition method. Moreover, we employ this strategy to address the fractional-order
Swift-Hohenberg model (SHM) assuming gH-differentiability by utilizing different initial
requirements. The Elzaki transform is used to illustrate certain characteristics of the fuzzy
Atangana-Baleanu operator in the Caputo framework. Furthermore, we determined the generic
framework and analytical solutions by successfully testing cases in the series form of the systems
under consideration. Using the synthesized strategy, we construct the approximate outcomes of the
SHM with visualizations of the initial value issues by incorporating the fuzzy factor $ ∈ [0, 1] which
encompasses the varying fractional values. Finally, the EADM is predicted to be effective and precise
in generating the analytical results for dynamical fuzzy fractional partial differential equations that
emerge in scientific disciplines.
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1. Introduction

Fractional calculus (FC) is now universally recognized as a critical tool for describing real
events [1–5]. While researchers regard FC as a valuable instrument in systematic inquiry, the presence
of fractional formulations is treated in a variety of contexts [6, 7]. The dynamical characteristics of
fractional differential equations systems are not only consistent with the current stage, but they
generally supply an adequate explanation for previous phases [8, 9]. The conversion of integer-order
Differential equation (DE)-regulated systems to fractional DE-regulated structures should be accurate
due to the distinctiveness of the diversification process such that a simple modification might
culminate in great variability in the output. In addition, the relatively new aspect postulated engages
the generalized Mittag-Leffler function (MLF), which includes the core element, and the properties of
this framework exasperate the completely new regimens to achieve numerous additional intriguing
attributes that have been observed in significant contexts, including mean square deflection
associations and broadening variability. Since its presentation in 2016 by Atangana and Baleanu [10],
the novel fractional derivative operator has been successfully applied in a multitude of disciplines of
research and development [11, 12]. In a swift manner, models applying the Atangana-Baleanu (AB)
fractional derivative culminates in a stochastic process. The MLF has since been revealed to be a
more powerful and critical filtration procedure than the index and exponential law, allowing the
AB-fractional differentiation to be an appropriate computing tool for replicating progressively
complex and crucial difficulties in the Caputo setting [13, 14]. Due to intrinsic non-orientation, these
formulas are generally renowned for providing fractional DEs without any fabricated oddities, as in
the instance of the Riemann-Liouville (RL) and Caputo derivatives [15–17]. We have also witnessed
an increase in interest in numerical modelling among these operators. However, calculating these
derivatives theoretically presents a slew of computational challenges (see [18–20]).

Partial differential equations (PDEs) have been progressively crucial in addressing systematic and
engineering issues, such as electro-osmotic flow [21], heat flux [22], neural networks [23] and thermal
energy [24]. Therefore, the indexing, parameters and parameter settings in PDEs could be unknown,
or a fuzzy approximation of most of them will be revealed by tracking, exploration, competence or
dependability breakdown, among other methods. As a consequence, instead of requiring high accuracy,
characteristics and actual data, the avoidance of uncertainty frameworks can be leveraged to deal with
vagueness and complexity. As a function of such ambiguity, generalized PDEs develop fuzzy PDEs.
Due to the complexity in generating analytical models for imprecise PDEs in construction settings,
a reliable and protracted computational approach for addressing ambiguous PDEs may be requested.
Several studies targeting fractional PDEs and related applications in pattern generation, hypothesis,
bifurcation, chaos, cryptography, advanced robotics, Markov chains, machine learning networks and
management are included in the scheme of research. Few have been assessed and referred [25, 26] to
obtain a comprehensive grasp of the structural factors.

Chang and Zadeh [27] first proposed the concept of fuzzy differentiability, which was then
supported by Dubois and Prade [28], who formulated and applied the extension principle to this
approach. Fuzzy set theory (FST) is a valuable tool for modeling unpredictable phenomena. As a
result, fuzzy conceptions are often leveraged to describe a variety of natural phenomena. For specified
real-life scenarios, fuzzy PDEs are an excellent means of modeling vagueness and misinterpretation in
certain quantities, see [29–32]. Because of its relevance in a wide range of scientific disciplines, FST

AIMS Mathematics Volume 7, Issue 9, 16067–16101.



16069

has a profound correlation with FC [33]. Kandel and Byatt [34] proposed fuzzy DEs in 1978, while
Agarwal et al. [35] were the first to investigate fuzziness and the RL differentiability concept by using
the Hukuhara-differentiability notion. FST and FC both use a variety of computational methodologies
to gain a better understanding of dynamic structures while reducing the unpredictability of their
computation. Identifying precise analytical solutions in the case of FPDEs is a complicated process.
Also, to demonstrate the competence and acceptability of the synthesized trajectory, experimental
investigations incorporating parabolic PDEs were provided. According to Allahviranloo and
Kermani [36], an explicit numerical solution to the fuzzy hyperbolic and parabolic equations is
provided. The validity and resilience of the proposed system were investigated in order to demonstrate
that it is inherently robust. Arqub et al. [37] expounded the fuzzy FDE by using the non-singular
kernel in consideration of the differential formulation of the AB operator. Zhao et al. [38]
contemplated the fuzzy-based strategy to suppress the massive outbreak of the novel coronavirus.

PDEs have been extensively exploited as a tool for evaluating a handful of particular
configurations of impediments in order to determine their intrinsic influence. Among them are the
effects on chaos, patterning determination, stochastic instability and malformation evolution. The
Swift-Hohenberg model (SHM) has been employed to generate structures in relatively
simple (Rayleig-Bénard convection) and complex materials and microbial organisms (for
example-brain cells). Jack Swift and Pierre Hohenberg [39] examined a modified versionof the SHM:

DλŨ = s̄Ũ − (1 + ∇2)2Ũ + N̄(Ũ), (1.1)

where Ũ is scalar, s̄ is a real constant and N̄(Ũ) is a nonlinear component. The suggested approach has a
wide range of applications in science, including in fields related to photonic lenses, electromagnetism,
ecology, biochemistry, and liquid-crystal light-valve operations, see [40–42].

The goal of this study was to evaluate three distinct SHMs using a fuzzy fractional Atangana-
Baleanu-Caputo (ABC) operator and the Elzaki Adomian decomposition method (EADM) described
as follows:

cDδ
λŨ(v, λ) +

∂4

∂v4 Ũ(v, λ) + 2
∂2

∂v2 Ũ(v, λ) + (1 − ℘)Ũ(v, xi) + Ũ3(v, λ) = 0, 0 < δ ≤ 1, ℘ ∈ R, λ > 0. (1.2)

The SHMfeaturing the diffusive component [43] is denoted as

cDδ
λŨ(v, λ) +

∂4

∂v4 Ũ(v, λ) + 2
∂2

∂v2 Ũ(v, λ) − η
∂3

∂v3 Ũ(v, λ) − ρŨ(v, λ) − 2Ũ2(v, λ) + Ũ3(v, λ) = 0, (1.3)

where η and ρ are the diffusive and bifurcation real components, respectively.
The extended version of the SHM is described as follows:

cDδ
λŨ(v, λ) +

∂4

∂v4 Ũ(v, λ) + 2
∂2

∂v2 Ũ(v, λ) + (1 − ℘)Ũ(v, λ) = Ũp(v, λ) −
(∂Ũ(v, λ)

∂v
)p
, p ≥ 0. (1.4)

Khan et al. [44] expounded the numerical findings of the SHM. In [45], Vishal et al. derived the
analytical results configuring the initial conditions, Ũ(v, 0) = 1

10 sin
(πv
%

)
. Moreover, the author of [46]

examined a fractional order SHM that exhibits dispersion. Merdan recently applied the variational
iteration method to achieve a closed form solution for the identical constraint as stated previously
in [47]. The authors of [48] deployed the homotopy analysis method to achieve an analytical solution
for the SHM.
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Tarig Elzaki [49] proposed a remarkable development in 2001 to enable the system of analyzing
ordinary DEs and PDEs in the temporal domain. This novel transformation is an improvement to
earlier versions that really can assist in evaluating the numerical expression of PDEs by using a similar
approach to the Laplace and Sumudu transformations.

The Adomian decomposition method (ADM) is an operational technique for dealing with functional
equations that arise in engineering disciplines; it was first presented by Adomian [50]. The result is
viewed as the summing of an infinite series, which eventually leads to the desired accuracy. This
strategy is exact and inexpensive, so it does not necessitate the utilization of an irreducible matrix,
compound integrals, or infinite series interpretations. There are no drawback scenarios identified for
this technique. A lot of scholars have already used this methodology [51, 52].

Due to the aforementioned inclination, establishing the exact-approximate estimates of fuzzy
fractional PDEs is a challenging task. The goal of this research was to create a trustworthy way of
extracting estimated results for a fuzzy fractional SHM, that is, a generalized SHM with dispersion
elements that are ambiguous in ICs due to the EADM, which models the development pattern under
investigation. Because the EADM and the Elzaki transform are interconnected, the ADM is termed
the fuzzy EADM. Using a new technique, the fractional-order SHM is studied. The effectiveness of
the proposed framework is demonstrated by analyzing the accuracy of an identified research
illustration. The outcomes containing an uncertainty element have been evaluated using contemporary
strategies. The SHM was used to generate synthetic dynamic behavior. In a modelling experiment, we
illustrate the utility and practicality of the offered approximate procedures for producing fuzzy
algorithms. The proposed novel approach can address a huge spectrum of fuzzy fractional orders of
nonlinear PDEs.

The remaining portion of the paper is organized as follows, Section 2 presents definitions and
formulas for the fractional derivatives, the Elzaki transform and FST. Section 3 illustrates the
computational procedure for the suggested EADM scheme. Section 4 is devoted to the
implementation of the fuzzy EADM. Also, numerical simulations have been performed in
consideration of an uncertainty parameter. At the end, Section 5 presents the epilogue.

2. Preliminaries

This part clearly explains certain key facts about the Elzaki transform, as well as several key factors
related to the importance of FST and FC, see [53].

Definition 2.1. ( [54,55]) We say that a mapping Ξ : R 7→ [0, 1] will be a fuzzy number if the following
assumptions holds true:
(1)Ξ is normal (for some v0 ∈ R; Ξ(v0) = 1);
(2) Ξ is upper semi continuous;
(3) Ξ(v1λ + (1 − λ)v2) ≥

(
Ξ(v1) ∧ Ξ(v2)

)
∀λ ∈ [0, 1], v1, v2 ∈ R, i.e Ξ is a convex fuzzy set;

(4) cl
{
v ∈ R,Ξ(v) > 0

}
is compact.

Definition 2.2. ( [54]) A fuzzy number Ξ is said to be a $-level set that can be stated as

[Ξ]$ =
{
U ∈ R : Ξ(U) ≥ $

}
, (2.1)

where $ ∈ [0, 1].
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Definition 2.3. ( [54]) We say that a fuzzy number has the parametric version
[
Ξ($), Ξ̄($)

]
such that

$ ∈ [0, 1] satisfies the subsequent assumptions:
(1) Ξ($) is non-decreasing, left continuous, bounded over (0, 1] and right continuous at 0.
(2) Ξ̄($) is non-increasing, left continuous, bounded over (0, 1] and right continuous at 0.
(3) Ξ($) ≤ Ξ̄($).
Also, Ξ is a crisp number (or singleton) if Ξ($) = Ξ̄($) for every $ ∈ [0, 1].

Definition 2.4. ( [53]) It is established that $ ∈ [0, 1] and Υ is a scalar. Assuming two fuzzy numbers
υ̃1 =

[
υ1, ῡ1

]
and υ̃2 =

[
υ2, ῡ2

]
, then the arithmetic characteristics are explained as follows:

(1) υ̃1 ⊕ υ̃2 =
[
υ1($) ⊕ υ2($), ῡ1($) ⊕ ῡ2($)

]
;

(2) υ̃1 	 υ̃2 =
[
υ1($) 	 υ2($), ῡ1($) 	 ῡ2($)

]
;

(3) Υ � υ̃1 =


[
Υ � υ1,Υ � ῡ1

]
Υ ≥ 0,[

Υ � ῡ1,Υ � υ1
]

Υ < 0.

Definition 2.5. ( [56]) Consider two fuzzy numbers υ̃1 =
[
υ1, ῡ1

]
and υ̃2 =

[
υ2, ῡ2

]
; the Hausdorff

distance d between fuzzy numbers is described as

d(υ̃1, υ̃2) = sup
$∈[0,1]

[
max

{
|υ1($) − υ2($)|, |ῡ1($) − ῡ2($)|

}]
. (2.2)

Specifically, (Ẽ, d) is a metric space.

Definition 2.6. ( [56]) Assume a fuzzy real-valued mapping Θ : R 7→ Ẽ; if for any ε > 0 ∃ β > 0 and
a constant factor of ν0 ∈ R such that we have

d(Θ(ν),Θ(ν0)) < ε; whenever|ν − ν0| < β, (2.3)

then Θ is said to be continuous.

Definition 2.7. ( [57]) Let β1, β2 ∈ Ẽ. The H-difference of β1 and β2 is the fuzzy number β3 = β1	
Hβ2

such that β1 = β2 ⊕ β3. Observe that β1 	
Hβ2 , β1 	 β2.

The gH-difference β3 of two fuzzy numbers β1, β2 ∈ R is defined as:

β1 	 gHβ2 = β3 ⇔


(i) β1 = β2 ⊕ β3

or

(ii) β2 = β1 ⊕ (−1)β3,

The relationship between two cases is defined as

(β1 	 gHβ2)i[$] := 0 	 H(−1)((β1 	 gHβ2)ii[$]).

Definition 2.8. ( [57]) The generalized Hukuhara derivative of a fuzzy-valued function Θ : (b1, b2) →
Ẽ at ζ0 is defined as

Θ′(i)−gH(ζ0) = lim
h→0

Θ(ζ0 + h) 	H Θ(ζ0)
h

,

if (Θ)′(i)−gH(ζ0) ∈ Ẽ, we say that Θ is generalized Hukuhara differentiable (gH-differentiable) at ζ0.
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Moreover, we say that Θ is [(i) − gH]-differentiable at ζ0 if

[Θ′(i)−gH(ζ0)]$ =

[[
lim
h→0

Θ(ζ0 + h) 	H Θ(ζ0)
h

]$
,
[

lim
h→0

Θ̄(ζ0 + h) 	H Θ̄(ζ0)
h

]$]
=

[
(Θ)′(ζ0, $), (Θ̄)′(ζ0, $)

]
, (2.4)

and that Θ is [(ii) − gH]-differentiable at ζ0 if

Θ′(ii)−gH(ζ0) = lim
h→0

	H(−1)Θ(ζ0 + h) ⊕ (−1)Θ(ζ0)
h

.

Also, we have

[Θ′(ii)−gH(ζ0)]$ =

[[
lim
h→0

	H(−1)Θ̄(ζ0 + h) ⊕ (−1)Θ̄(ζ0)
h

]$
,
[

lim
h→0

	H(−1)Θ(ζ0 + h) ⊕ (−1)Θ(ζ0)
h

]$]
=

[
(Θ̄)′(ζ0, $), (Θ)′(ζ0, $)

]
. (2.5)

Throughout this investigation, we symbolize Θ as (1)-differentiable and (2)-differentiable,
respectively, if it is differentiable under the conditions described by Eqs (2.4) and (2.5) given by the
aforementioned concept.

Theorem 2.1. ( [53]) Assume a fuzzy-valued mapping Θ : R 7→ Ẽ such that
Θ(ζ0;$) =

[
Θ(ζ0;$), Θ̄(ζ0;$)

]
and $ ∈ [0, 1]. Then

I. Θ(ζ0;$) and Θ̄(ζ0;$) are differentiable, if Θ is a (1)-differentiable, and[
Θ′(ζ0)

]$
=

[
Θ′(ζ0;$), Θ̄′(ζ0;$)

]
. (2.6)

II. Θ(ζ0;$) and Θ̄(ζ0;$) are differentiable, if Θ is a (2)-differentiable, and[
Θ′(ζ0)

]$
=

[
Θ̄′(ζ0;$),Θ′(ζ0;$)

]
. (2.7)

Let CF[a1, b1] be the space of all continuous fuzzy-valued functions on the interval [a1, b1] and let
there be a space of all Lebesgue integrable fuzzy-valued mapping LF[a1, b1] on [a1, b1] ⊂ R; then, the
subsequent concept is presented follows:

Definition 2.9. ( [52]) Consider a function U ∈ CF[a1, b1]
⋂
LF[a1, b1] represented in parameterized

versions Ũ =
[
U
$

(λ), Ū$(λ)
]
, $ ∈ [0, 1] and λ0 ∈ (a1, b1); then, the fuzzy fractional ABC operator is

defined as

ABCDδ
gHU(λ) =

N(δ)
(1 − δ)

�

λ∫
0

Eδ

(−δ(λ − v)δ

1 − δ

)
� U′gH(v)dv, (2.8)

where q = d$e and

U(q)(v) = lim
~7→0

U(q−1)(v + ~) 	 gHU(q−1)(v)
~

.
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The gH-difference is stated in two ways:
• (i) − gH differentiable:

U(q)
(i)−gH(v) = lim

~7→0

U(q−1)(v + ~) 	 HU(q−1)(v)
~

. (2.9)

ABCDδ
(i)−gHU(λ0;$) =

[
ABCDδ

(i)−gHU(λ0;$), ABCDδ
(i)−gHŪ(λ0;$)

]
.

• (ii) − gH differentiable:

U(q)
(ii)−gH(v) = lim

~7→0

U(q−1)(v) 	 HU(q−1)(v + ~)
~

. (2.10)

ABCDδ
(ii)−gHU(λ0;$) =

[
ABCDδ

(ii)−gHŪ(λ0;$), ABCDδ
(ii)−gHU(λ0;$)

]
.

Both of these are stated as the following formulation for q − 1 < δ < q :

ABCDδ
(i)−gHU(λ;$) =

N(δ)
1 − δ

[ λ∫
0

U′(i)−gH(v)Eδ

(−δ(λ − v)δ

1 − δ

)
dv

]
λ=λ0

,

ABCDδ
(i)−gHŪ(λ;$) =

N(δ)
1 − δ

[ λ∫
0

Ū′(i)−gH(v)Eδ

(−δ(λ − v)δ

1 − δ

)
dv

]
λ=λ0

. (2.11)

Definition 2.10. ( [49]) Suppose there is a continuous fuzzy function U and a collection M with an
exponential function described as

M =
{
U(λ) : ∃z, p1, p2 > 0,

∣∣∣U(λ)
∣∣∣ < ze

|λ|
pi , i f λ ∈ (−1)i × [0,∞)|

}
, (2.12)

where z is assumed to be finite, but p1 and p2 may be finite or infinite; therefore, the fuzzy Elzaki
transform (FET) is described as

E
{
Ũ(λ)

}
(ϕ) = Q(ϕ) = ϕ

∞∫
0

e−
λ
ϕ � Ũ(λ)dλ, λ ≥ 0, ϕ ∈ [p1, p2]. (2.13)

The prescribed parametric expression of Ũ(λ) is defined as

ϕ

∞∫
0

e−
λ
ϕ Ũ(λ)dλ =

[
ϕ

∞∫
0

e−
λ
ϕ U(λ)dλ, ϕ

∞∫
0

e−
λ
ϕ Ū(λ)dλ

]
. (2.14)

Thus,

E
[
U(λ,$)

]
=

[
E(λ,$), Ē(λ,$)

]
. (2.15)

AIMS Mathematics Volume 7, Issue 9, 16067–16101.



16074

Yuvaz and Abdeljawad [58] proposed the ABC operator form of the Elzaki transform. Following
this tendency, the fuzzified version of the ABC-fractional derivative associated with the Elzaki
transform will be described as follows,

Definition 2.11. ( [52]) For δ ∈ (0, 1], surmise that U ∈ CF[0, d̄1]
⋂
LF[0, d̄1] such that Ũ(λ) =[

U(λ,$), Ū(λ,$)
]
, $ ∈ [0, 1]; then, the Elzaki transform of the ABC-gH operator is defined as

E
[

ABCDδ
gHŨ(λ)

]
= ϕ

∞∫
0

e−
λ
ϕ � ABCDδ

gHU(λ)dλ

and

E
[

ABCDδ
gHŨ(λ;$)

]
=

[
E
[

ABCDδ
gHU(λ;$)

]
,E

[
ABCDδ

gHŪ(λ;$)
]]

= ϕ

∞∫
0

e−
λ
ϕ

[
ABCDδ

gHU(λ;$), ABCDδ
gHŪ(λ;$)

]
dλ

=

[
ϕ

∞∫
0

e−
λ
ϕ ABCDδ

gHU(λ;$)dλ, ϕ

∞∫
0

e−
λ
ϕ ABCDδ

gHŪ(λ;$)dλ
]
.

Thus, we have

E
[

ABCDδ
gHU(λ;$)

]
= ϕ

∞∫
0

e−
λ
ϕ ABCDδ

gHU(λ;$)dλ,

E
[

ABCDδ
gHŪ(λ;$)

]
= ϕ

∞∫
0

e−
λ
ϕ ABCDδ

gHŪ(λ;$)dλ. (2.16)

• (i) − gH differentiability:

ABCDδ
(i)−gHU(v;$) =

[
ABCDδQ(v;$), ABCDδQ̄(v;$)

]
,

E
(

ABCDδ
(i)−gHU(v;$)

)
=

N(δ)
δϕδ + 1 − δ

�
E[U(λ,$)]

ϕ
	 ϕ2 �

N(δ)
δϕδ + 1 − δ

� U(0). (2.17)

• (ii) − gH differentiability:

ABCDδ
(ii)−gHU(v;$) =

[
ABCDδQ̄(v;$), ABCDδQ(v;$)

]
,

E
(

ABCDδ
(ii)−gHU(v;$)

)
= (−1)ϕ2 �

N(δ)
δϕδ + 1 − δ

� U(0) 	 H(−1)
N(δ)

δϕδ + 1 − δ
�

E[U(λ,$)]
ϕ

.

(2.18)

3. Road map for proposed strategy

The underlying process for generating the estimated findings of a fractional-order SHM employing
the fuzzy fractional ABC operator in the FET is described and evaluated.
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The following descriptive framework of (1.1) is as follows:
∂δ

∂λδ
U(v, λ;$) = (℘ − 1)U(v, λ;$) − ∂4

∂v4 U(v, λ;$) − 2 ∂2

∂v2 U(v, λ;$) − U3(v, λ;$),
U(v, 0) = Q(v;$),
∂δ

∂λδ
Ū(v, λ;$) = (℘ − 1)Ū(v, λ;$) − ∂4

∂v4 Ū(v, λ;$) − 2 ∂2

∂v2 Ū(v, λ;$) − Ū3(v, λ;$),
Ū(v, 0) = Q̄(v;$).

(3.1)

Applying the FET to the first case in Eq (3.1), we have

E
[
U(v, λ;$)

]
= E

[
(℘ − 1)U(v, λ;$) −

∂4

∂v4 U(v, λ;$) − 2
∂2

∂v2 U(v, λ;$) − U3(v, λ;$)
]
.

Given the IC U(v, 0) = Q(v), we have

N(δ)
1 − δ + δϕδ

E
[
U(v, λ;$)

]
−

ϕ2N(δ)
1 − δ + δϕδ

U(κ)(v;$)

= E
[
(℘ − 1)U(v, λ;$) −

∂4

∂v4 U(v, λ;$) − 2
∂2

∂v2 U(v, λ;$) − U3(v, λ;$)
]
.

Alternatively, we get

E
[
U(v, λ;$)

]
= ϕ2Q(v;$)

+
1 − δ + δϕδ

N(δ)
E
[
(℘ − 1)U(v, λ;$) −

∂4

∂v4 U(v, λ;$) − 2
∂2

∂v2 U(v, λ;$)

−U3(v, λ;$)
]
. (3.2)

The result for the undetermined series is defined as

U(v, λ;$) =

∞∑
q=0

U(v, λ;$). (3.3)

Ultimately, the nonlinear factors are discarded as

N(v, λ;$) =

∞∑
q=0

Aq(v, λ;$), (3.4)

where Aq is expressed in the form of an Adomian polynomial, which is defined as

Aq =
1
q!

dq

dρq

[
N

( ∞∑
q=0

ρqUq(v, λ;$)
)]
ρ=0
. (3.5)

Further, Eq (3.2) can be specified as

E
[ ∞∑

q=0

U(v, λ;$)
]

= ϕ2Q(v;$) +
1 − δ + δϕδ

N(δ)
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×E
[
(℘ − 1)

∞∑
q=0

U(v, λ;$) −
∂4

∂v4

∞∑
q=0

U(v, λ;$) − 2
∂2

∂v2

∞∑
q=0

U(v, λ;$)

−

∞∑
q=0

A(v, λ;$)
]
.

(3.6)

In view of the inverse FET, we attain

U0(v, λ;$) = E−1
[
ϕ2Q(v;$)

]
,

U1(v, λ;$) = E−1
[1 − δ + δϕδ

N(δ)
E
[
(℘ − 1)U0(v, λ;$) −

∂4

∂v4 U0(v, λ;$) − 2
∂2

∂v2 U0(v, λ;$)

−A0(v, λ;$)
]]
,

U2(v, λ;$) = E−1
[1 − δ + δϕδ

N(δ)
E
[
(℘ − 1)U1(v, λ;$) −

∂4

∂v4 U1(v, λ;$) − 2
∂2

∂v2 U1(v, λ;$)

−A1(v, λ;$)
]]
,

...

Uq+1(v, λ;$) = E−1
[1 − δ + δϕδ

N(δ)
E
[
(℘ − 1)Uq(v, λ;$) −

∂4

∂v4 Uq(v, λ;$) − 2
∂2

∂v2 Uq(v, λ;$)

−Aq(v, λ;$)
]]
.

(3.7)

U(v, λ;$) = U0(v, λ;$) + U1(v, λ;$) + ... . (3.8)

As a result, the upper version of Eq (3.1) is viewed in the identical manner. Furthermore, we provide
the solution’s parameterized version, which is characterized as follows:U(v, λ;$) = U0(v, λ;$) + U1(v, λ;$) + ... ,

Ū(v, λ;$) = Ū0(v, λ;$) + Ū1(v, λ;$) + ... .
(3.9)

4. Mathematical analysis of analytical results

In the following sections, we will employ the EADM to determine the approximate findings for the
SHMusing the fuzzy fractionalABC operatorunder various initial assumptions.

To commence, we evaluate the SHM given by Eq (1.1) consideringthe EADM.

Example 4.1. Suppose that the fuzzy fractional-order SHM has fuzzy ICs

∂δ

∂λδ
Ũ(v, λ;$) = (℘ − 1) � Ũ(v, λ;$) 	

∂4

∂v4 Ũ(v, λ;$) 	 2 �
∂2

∂v2 Ũ(v, λ;$) − Ũ3(v, λ;$),

Ũ(v, 0) = Υ̃($) � exp(v), (4.1)

where Υ̃($) = [Υ($), Ῡ($)] = [$ − 1, 1 −$] and there is a fuzzy number $ ∈ [0, 1].
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The parametric form of Eq (4.1) presents as:
∂δ

∂λδ
U(v, λ;$) = (℘ − 1)U(v, λ;$) − ∂4

∂v4 U(v, λ;$) − 2 ∂2

∂v2 U(v, λ;$) − U3(v, λ;$),
U(v, 0) = Υ($) exp(v),
∂δ

∂λδ
Ū(v, λ;$) = (℘ − 1)Ū(v, λ;$) − ∂4

∂v4 Ū(v, λ;$) − 2 ∂2

∂v2 Ū(v, λ;$) − Ū3(v, λ;$),
Ū(v, 0) = Ῡ($) exp(v).

(4.2)

We examine the first instance of Eq (4.2) in an attempt to determine the EADM solution.
In view of the procedure outlined in Section 3, we have

N(δ)
1 − δ + δϕδ

E
[
U(v, λ;$)

]
−

ϕ2N(δ)
1 − δ + δϕδ

U(κ)(v;$)

= E
[
(℘ − 1)U(v, λ;$) −

∂4

∂v4 U(v, λ;$) − 2
∂2

∂v2 U(v, λ;$) − U3(v, λ;$)
]
.

Simple calculations yield

U(v, λ;$) = ($ − 1) exp(v) + E−1
[
1 − δ + δϕδ

N(δ)

×E
[
(℘ − 1)U(v, λ;$) −

∂4

∂v4 U(v, λ;$) − 2
∂2

∂v2 U(v, λ;$) − U3(v, λ;$)
]]
. (4.3)

We assume the infinite sum U(v, λ;$) =
∞∑

q=0
Uq(v, λ;$) incorporates Eq (3.5) and validates the

non-linearity. As a result, Eq (4.3) leads to the formation

∞∑
q=0

Uq(v, λ;$) = ($ − 1) exp(v) + E−1
[
1 − δ + δϕδ

N(δ)

×E
[
(℘ − 1)

∞∑
q=0

Uq(v, λ;$) −
∂4

∂v4

∞∑
q=0

Uq(v, λ;$) − 2
∂2

∂v2

∞∑
q=0

Uq(v, λ;$)

−

∞∑
q=0

Aq(v, λ;$)
]]
.

(4.4)

By virtue of Eq (3.4), we obtain

Aq(U3) =


U3

0, q = 0
3U2

0U1, q = 1
3U2

0U2
1 + 3U2

0U2, q = 2
U3

1 + 4U0U2 + 2U0U1U2 + 3U0U3 q = 3.

(4.5)

Then, Eq (4.4) diminishes to

U0(v, λ;$) = ($ − 1) exp(v),
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U1(v, λ;$) = E−1
[1 − δ + δϕδ

N(δ)
E
[
(℘ − 1)U0(v, λ;$) −

∂4

∂v4 U0(v, λ;$) − 2
∂2

∂v2 U0(v, λ;$)

−A0(v, λ;$)
]]

=
($ − 1)(℘ − 4) exp(v) − ($ − 1)3 exp(3v)

N(δ)

{
δλδ

Γ(δ + 1)
+ (1 − δ)

}
,

U2(v, λ;$) = E−1
[1 − δ + δϕδ

N(δ)
E
[
(℘ − 1)U1(v, λ;$) −

∂4

∂v4 U1(v, λ;$) − 2
∂2

∂v2 U1(v, λ;$)

−A1(v, λ;$)
]]

=
($ − 1)(℘ − 4)2 exp(v) − (112 − 4℘)($ − 1)3 exp(3v) + 30($ − 1)5 exp(5v)

N2(δ)

×

{
δ2λ2δ

Γ(2δ + 1)
+ 2δ(1 − δ)

λδ

Γ(δ + 1)
+ (1 − δ)2

}
,

... .

In a similar way, the further elements of the EADM system Uq (q ≥ 3) can be identified.
Furthermore, as the iterative technique develops, the attained result’s trustworthiness improves
significantly, and the established result appears progressively comparable to the expressive context.
As a result, we have formulated a set of solutions that are structured in a series of formulations; that is,

Ũ(v, λ,$) = Ũ0(v, λ,$) + Ũ1(v, λ,$) + Ũ1(v, λ,$) + ...

such that

U(v, λ,$) = U0(v, λ,$) + U1(v, λ,$) + U1(v, λ,$) + ... ,

Ū(v, λ,$) = Ū0(v, λ,$) + Ū1(v, λ,$) + Ū1(v, λ,$) + ... .

Eventually, we get

U(v, λ,$)

= ($ − 1) exp(v) +
($ − 1)(℘ − 4) exp(v) − ($ − 1)3 exp(3v)

N(δ)

{
δλδ

Γ(δ + 1)
+ (1 − δ)

}
+

($ − 1)(℘ − 4)2 exp(v) − (112 − 4℘)($ − 1)3 exp(3v) + 30($ − 1)5 exp(5v)
N2(δ)

×

{
δ2λ2δ

Γ(2δ + 1)
+ 2δ(1 − δ)

λδ

Γ(δ + 1)
+ (1 − δ)2

}
+ ... ,

Ū(v, λ,$)

= (1 −$) exp(v) +
(1 −$)(℘ − 4) exp(v) − (1 −$)3 exp(3v)

N(δ)

{
δλδ

Γ(δ + 1)
+ (1 − δ)

}
+

($ − 1)(℘ − 4)2 exp(v) − (112 − 4℘)(1 −$)3 exp(3v) + 30($ − 1)5 exp(5v)
N2(δ)

×

{
δ2λ2δ

Γ(2δ + 1)
+ 2δ(1 − δ)

λδ

Γ(δ + 1)
+ (1 − δ)2

}
+ ... . (4.6)
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Figure 1 illustrates the influence of 2D and various 3D visualizations for Example 4.1, which is
connected to the ABC and Elzaki transform via a fuzzy system in this evaluation. The variability in
Ũ(v, λ;$) on the space coordinate v with respect to λ and the ambiguity factor $ ∈ [0, 1] is
impressively revealed by the explanation.
• The study reveals that the depiction of Ũ(v, λ;$) will become highly complicated as time
progresses.
• Figure 2 illustrates the mapping performance of the proposed technique, Ũ(v, λ;$), using the fixed
variable ℘ = 5. The report demonstrates that the reduction in Ū(v, λ;$) correlates with a small boost
in U(v, λ;$).
• Figure 2 depicts the performance of the provided fuzzy fractional mapping under the conditions of
multiple ambiguity factors for the mappings U(v, λ;$) and Ū(v, λ;$).
• Figures 1 and 2 demonstrate how to interpret the probabilistic patterns of spatial and temporal
variability. Additionally, by employing a inferential statistical assessment, leading scientists in
research image generation hypotheses, optics engineering, and stochastic interplay will be able to
evaluate effectiveness. Consequently, as the convergence rate increases, the ambiguity factor can help
to enhance the findings.

(a) (b)

Figure 1. (a) Fuzzy EADM-provided 3D-illustrations of Example 4.1 when δ = 1; (b) Fuzzy
EADM-provided 3D-illustrations of multiple profiles of Example 4.1 given ℘ = 5, v, and
$ ∈ [0, 1].
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Figure 2. (a) Fuzzy EADM-provided 2D-illustrations of multiple profiles of Example 4.1
when $ = 0.5 and ℘ = 5; (b) Fuzzy EADM-provided 2D-illustrations of multiple profiles of
Example 4.1 when δ = 0.7 and λ = 0.5.

Remark 4.1. If $ − 1 = 1 −$ = 1 and δ = 1, then Eq (4.6) converges to the exact solution proposed
in [39, 40].

Example 4.2. Suppose that the fuzzy fractional-order SHM has fuzzy ICs

∂δ

∂λδ
Ũ(v, λ;$) = (℘ − 1) � Ũ(v, λ;$) 	

∂4

∂v4 Ũ(v, λ;$) 	 2 �
∂2

∂v2 Ũ(v, λ;$) 	 Ũ3(v, λ;$),

Ũ(v, 0) = Υ̃($) � sin v, (4.7)

where Υ̃($) = [Υ($), Ῡ($)] = [$ − 1, 1 −$] and there is a fuzzy number $ ∈ [0, 1].

The parametric form of Eq (4.7) is presented as:
∂δ

∂λδ
U(v, λ;$) = (℘ − 1)U(v, λ;$) − ∂4

∂v4 U(v, λ;$) − 2 ∂2

∂v2 U(v, λ;$) − U3(v, λ;$),
U(v, 0) = Υ($) sin v,
∂δ

∂λδ
Ū(v, λ;$) = (℘ − 1)Ū(v, λ;$) − ∂4

∂v4 Ū(v, λ;$) − 2 ∂2

∂v2 Ū(v, λ;$) − Ū3(v, λ;$),
Ū(v, 0) = Ῡ($) sin v.

(4.8)

We examine the first instance of Eq (4.8) in an attempt to determine the EADM solution. In view
of the procedure outlined in Section 3, we have

N(δ)
1 − δ + δϕδ

E
[
U(v, λ;$)

]
−

ϕ2N(δ)
1 − δ + δϕδ

U(κ)(v;$)

= E
[
(℘ − 1)U(v, λ;$) −

∂4

∂v4 U(v, λ;$) − 2
∂2

∂v2 U(v, λ;$) − U3(v, λ;$)
]
,

Simple calculations show

U(v, λ;$) = ($ − 1) sin v + E−1
[
1 − δ + δϕδ

N(δ)
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×E
[
(℘ − 1)U(v, λ;$) −

∂4

∂v4 U(v, λ;$) − 2
∂2

∂v2 U(v, λ;$) − U3(v, λ;$)
]]
. (4.9)

We assume the infinite sum U(v, λ;$) =
∞∑

q=0
Uq(v, λ;$) incorporates Eq (3.5) and validates the

non-linearity. As a result, Eq (4.9) leads to the formation

∞∑
q=0

Uq(v, λ;$) = ($ − 1) exp(v) + E−1
[
1 − δ + δϕδ

N(δ)

×E
[
(℘ − 1)

∞∑
q=0

Uq(v, λ;$) −
∂4

∂v4

∞∑
q=0

Uq(v, λ;$) − 2
∂2

∂v2

∞∑
q=0

Uq(v, λ;$)

−

∞∑
q=0

Aq(v, λ;$)
]]
.

(4.10)

By virtue of Eq (4.5), then (4.10) diminishes to

U0(v, λ;$) = ($ − 1) sin v,

U1(v, λ;$) = E−1
[1 − δ + δϕδ

N(δ)
E
[
(℘ − 1)U0(v, λ;$) −

∂4

∂v4 U0(v, λ;$) − 2
∂2

∂v2 U0(v, λ;$)

−A0(v, λ;$)
]]

=
℘($ − 1) sin v − ($ − 1)3 sin3 v

N(δ)

{
δλδ

Γ(δ + 1)
+ (1 − δ)

}
,

U2(v, λ;$) = E−1
[1 − δ + δϕδ

N(δ)
E
[
(℘ − 1)U1(v, λ;$) −

∂4

∂v4 U1(v, λ;$) − 2
∂2

∂v2 U1(v, λ;$)

−A1(v, λ;$)
]]

=
℘2($ − 1) sin v − 2(2℘ + 7)($ − 1)3 sin3 v − 48($ − 1)3 cos2 v sin v + 3($ − 1)5 sin5 v

N2(δ)

×

{
δ2λ2δ

Γ(2δ + 1)
+ 2δ(1 − δ)

λδ

Γ(δ + 1)
+ (1 − δ)2

}
,

... .

In a similar way, additional elements of the EADM system Uq (q ≥ 3) can be identified.
Furthermore, as the iterative technique develops, the attained result’s trustworthiness improves
significantly and the established result appears progressively comparable to the expressive context. As
a result, we have formulated a set of solutions that are structured in a series of formulations; that is,

Ũ(v, λ,$) = Ũ0(v, λ,$) + Ũ1(v, λ,$) + Ũ1(v, λ,$) + ...

such that

U(v, λ,$) = U0(v, λ,$) + U1(v, λ,$) + U1(v, λ,$) + ... ,
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Ū(v, λ,$) = Ū0(v, λ,$) + Ū1(v, λ,$) + Ū1(v, λ,$) + ... .

Eventually, we get

U(v, λ,$) = ($ − 1) sin v +
1

N(δ)

[
℘($ − 1) sin v − ($ − 1)3 sin3 v

]{ δλδ

Γ(δ + 1)
+ (1 − δ)

}
+

1
N2(δ)

[
℘2($ − 1) sin v − 2(2℘ + 7)($ − 1)3 sin3 v

−48($ − 1)3 cos2 v sin v + 3($ − 1)5 sin5 v
]

×

{
δ2λ2δ

Γ(2δ + 1)
+ 2δ(1 − δ)

λδ

Γ(δ + 1)
+ (1 − δ)2

}
+ ... ,

Ū(v, λ,$) = (1 −$) sin v +
1

N(δ)

[
℘(1 −$) sin v − (1 −$)3 sin3 v

]{ δλδ

Γ(δ + 1)
+ (1 − δ)

}
+

1
N2(δ)

[
℘2(1 −$) sin v − 2(2℘ + 7)(1 −$)3 sin3 v

−48(1 −$)3 cos2 v sin v + 3(1 −$)5 sin5 v
]

×

{
δ2λ2δ

Γ(2δ + 1)
+ 2δ(1 − δ)

λδ

Γ(δ + 1)
+ (1 − δ)2

}
+ ... . (4.11)

Figure 3 highlights the implication of two (a) and numerous (b) 3D reconstructions for Example 4.2,
which are correlated using the fuzzy fractional ABC and Elzaki transform via fuzzy system in this
evaluation. The variability in Ũ(v, λ;$) on the space coordinate v with respect to λ and the ambiguity
factor $ ∈ [0, 1] is curiously revealed by the analysis.

(a) (b)

Figure 3. (a) Fuzzy EADM-provided 3D-illustrations of Example 4.2 when δ = 1; (b)
Fuzzy EADM-provided 3D-illustrations of multiple profiles of Example 4.2 when ℘ = 5 and
$ ∈ [0, 1].
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Figure 4. (a) Fuzzy EADM-provided 2D-illustrations of multiple profiles of Example 4.2
when $ = 0.5, λ = 0.5 and ℘ = 5; (b) Fuzzy EADM-provided 2D-illustrations of multiple
profiles of Example 4.2 when δ = 0.9 and λ = 0.5.

The investigation revealed that the graphical representation of Ũ(v, λ;$) will become extremely
complicated as time passes.
• Figure 4 displays the mapping accuracy of the proposed technique, Ũ(v, λ;$), using the consistent
parameterization ℘ = 5. The research has revealed that the reduction in Ū(v, λ;$) correlates with a
modest boost in U(v, λ;$).
• In Figure 4, the ambiguity factors of the transformations U(v, λ;$) and Ū(v, λ;$) are illustrated; the
results specify the performance of prescribed fuzzy fractional mapping for multiple ambiguity factors.
• Figures 3 and 4 exhibit the aforementioned plots, which allow us to explain the probabilistic nature
of spatial and temporal variability. Additionally, by employing an inferential statistical assessment,
leading researchers in patterning creation research, optical engineering, and probabilistic dynamics will
be able to evaluate effectiveness. As a consequence, as the convergence rate increases, the ambiguity
component can help to enhance the findings.

Remark 4.2. If $− 1 = 1−$ = 1 and δ = 1, then Eq (4.11) converges to the exact solution proposed
in [39, 40].

The intention of the following outcome is to leverage Definition 2.11 to establish an
analytical solution for the SHM given by Eq (1.2) with propagation.

Example 4.3. Suppose that the fuzzy fractional-order SHM is subject to fuzzy ICs

∂δ

∂λδ
Ũ(v, λ;$) = ε � Ũ(v, λ;$) ⊕ 2Ũ2(v, λ;$) 	 Ũ3(v, λ;$) 	

∂4

∂v4 Ũ(v, λ;$)

	2 �
∂2

∂v2 Ũ(v, λ;$) ⊕ η �
∂3

∂v3 Ũ(v, λ;$),

Ũ(v, 0) = Υ̃($) � exp(v), (4.12)

where Υ̃($) = [Υ($), Ῡ($)] = [$ − 1, 1 −$] and there is a fuzzy number $ ∈ [0, 1].
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The parameteric form of Eq (4.12) is presented as

∂δ

∂λδ
U(v, λ;$) = εU(v, λ;$) + 2U2(v, λ;$) − U3(v, λ;$) − ∂4

∂v4 U(v, λ;$)
−2 ∂2

∂v2 U(v, λ;$) + η ∂3

∂v3 U(v, λ;$),
U(v, 0) = Υ($) exp(v),
∂δ

∂λδ
Ū(v, λ;$) = εŪ(v, λ;$) + 2Ū2(v, λ;$) − Ū3(v, λ;$) − ∂4

∂v4 Ū(v, λ;$)
−2 ∂2

∂v2 Ū(v, λ;$) + η ∂3

∂v3 Ū(v, λ;$),
Ū(v, 0) = Ῡ($) exp(v).

We examine the first instance of Eq (4.13) in an attempt to determine the EADM solution. In view
of the process outlined in Section 3, we have

N(δ)
1 − δ + δϕδ

E
[
U(v, λ;$)

]
−

ϕ2N(δ)
1 − δ + δϕδ

U(κ)(v;$)

= E
[
εU(v, λ;$) + 2U2(v, λ;$) − U3(v, λ;$) −

∂4

∂v4 U(v, λ;$) − 2
∂2

∂v2 U(v, λ;$)

+η
∂3

∂v3 U(v, λ;$)
]
.

Simple calculations show that

U(v, λ;$) = ($ − 1) exp(v)

+E−1

1 − δ + δϕδ

N(δ)
E

εU(v, λ;$) + 2U2(v, λ;$) − U3(v, λ;$)
− ∂4

∂v4 U(v, λ;$) − 2 ∂2

∂v2 U(v, λ;$) + η ∂3

∂v3 U(v, λ;$)

 .
(4.13)

We assume the infinite sum U(v, λ;$) =
∞∑

q=0
Uq(v, λ;$) incorporates Eq (3.5) and validates the

non-linearity. As a result, Eq (4.13) leads to the formation

∞∑
q=0

Uq(v, λ;$) = ($ − 1) exp(v) + E−1 1 − δ + δϕδ

N(δ)

×E


ε
∞∑

q=0
U(v, λ;$) + 2

∞∑
q=0

Bq(v, λ;$) −
∞∑

q=0
Aq(v, λ;$)

− ∂4

∂v4

∞∑
q=0

U(v, λ;$) − 2 ∂2

∂v2

∞∑
q=0

U(v, λ;$) + η ∂3

∂v3

∞∑
q=0

U(v, λ;$).
(4.14)

The foregoing formulae have two non linear factors including U3 =
∞∑

q=0
Aq and U2 =

∞∑
q=0

Bq, which

can be examined by using the Adomian polynomial Eq (3.4). Thus, in view of Eq (4.5), Adomian

polynomials for U2 =
∞∑

q=0
Bq are determined as

Bq(U2) =


U2

0, q = 0,
2U0U1, q = 1,
2U0U2 + U2

1, q = 2.

(4.15)
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Then, Eq (4.14) diminishes to

U0(v, λ;$) = ($ − 1) exp(v),

U1(v, λ;$) = E−1

1 − δ + δϕδ

N(δ)
E

εU0(v, λ;$) + 2B0(v, λ;$) − A0(v, λ;$)
− ∂4

∂v4 U0(v, λ;$) − 2 ∂2

∂v2 U0(v, λ;$) + η ∂3

∂v3 U0(v, λ;$)


=

($ − 1)(ε + η − 3) exp(v) + 2($ − 1)2 exp(2v) − ($ − 1)3 exp(3v)
N(δ)

×

{
δλδ

Γ(δ + 1)
+ (1 − δ)

}
,

U2(v, λ;$) = E−1

1 − δ + δϕδ

N(δ)
E

εU1(v, λ;$) + 2B1(v, λ;$) − A1(v, λ;$)
− ∂4

∂v4 U1(v, λ;$) − 2 ∂2

∂v2 U1(v, λ;$) + η ∂3

∂v3 U1(v, λ;$)


=

1
N2(δ)

{
δ2λ2δ

Γ(2δ + 1)
+ 2δ(1 − δ)

λδ

Γ(δ + 1)
+ (1 − δ)2

}

×


(
ε2 + η2 − 6(ε + η) + 2εη + 9

)
($ − 1) exp(v) + ($ − 1)2 exp(2v)

×
(
20η + 6ε − 60

)
+ ($ − 1)3 exp(3v)

(
116 − 4ε − 30η

)
−10($ − 1)4 exp(4v) + 3($ − 1)5 exp(5v),

... .

In a similar way, additional elements of the EADM system Uq (q ≥ 3) can be identified.
Furthermore, as the iterative technique develops, the attained result’s trustworthiness improves
significantly and the established result appears progressively comparable to the expressive context. As
a result, we have formulated a set of solutions that are structured in a series of formulations; that is,

Ũ(v, λ,$) = Ũ0(v, λ,$) + Ũ1(v, λ,$) + Ũ1(v, λ,$) + ...

such that

U(v, λ,$) = U0(v, λ,$) + U1(v, λ,$) + U1(v, λ,$) + ... ,

Ū(v, λ,$) = Ū0(v, λ,$) + Ū1(v, λ,$) + Ū1(v, λ,$) + ... .

Eventually, we get

U(v, λ,$) = ($ − 1) exp(v)

+
1

N(δ)

[
($ − 1)(ε + η − 3) exp(v) + 2($ − 1)2 exp(2v) − ($ − 1)3 exp(3v)

]
×

{
δλδ

Γ(δ + 1)
+ (1 − δ)

}
+

1
N2(δ)

{
δ2λ2δ

Γ(2δ + 1)
+ 2δ(1 − δ)

λδ

Γ(δ + 1)
+ (1 − δ)2

}
×


(
ε2 + η2 − 6(ε + η) + 2εη + 9

)
($ − 1) exp(v) + ($ − 1)2 exp(2v)

(
20η + 6ε − 60

)
+($ − 1)3 exp(3v)

(
116 − 4ε − 30η

)
− 10($ − 1)4 exp(4v) + 3($ − 1)5 exp(5v)
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+... ,

Ū(v, λ,$) = (1 −$) exp(v)

+
1

N(δ)

[
(1 −$)(ε + η − 3) exp(v) + 2(1 −$)2 exp(2v) − (1 −$)3 exp(3v)

]
×

{
δλδ

Γ(δ + 1)
+ (1 − δ)

}
+

1
N2(δ)

{
δ2λ2δ

Γ(2δ + 1)
+ 2δ(1 − δ)

λδ

Γ(δ + 1)
+ (1 − δ)2

}
×


(
ε2 + η2 − 6(ε + η) + 2εη + 9

)
(1 −$) exp(v) + (1 −$)2 exp(2v)

(
20η + 6ε − 60

)
+(1 −$)3 exp(3v)

(
116 − 4ε − 30η

)
− 10(1 −$)4 exp(4v) + 3(1 −$)5 exp(5v)

+... . (4.16)

Figure 5 shows the effects of two (a) and various (b) 3D illustrations for Example 4.3 under the
conditions of applying the fractional ABC and Elzaki transform via fuzzy system in this evaluation.
The deviations in Ũ(v, λ;$) on the space coordinate v with respect to λ and the ambiguity factor $ ∈
[0, 1] are impressively highlighted by the discussion. The exploration illustrates that the representation
of Ũ(v, λ;$) will emerge to be progressively intricate as time passes.

(a) (b)

Figure 5. (a) Fuzzy EADM-provided 3D-illustrations of Example 4.3 when δ = 1, ε = 5
and η = 10 (b) Fuzzy EADM-provided 3D-illustrations of multiple profiles of Example 4.3
when ε = 5, η = 10 and $ ∈ [0, 1].
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Figure 6. (a) Fuzzy EADM-provided 2D-illustrations of multiple profiles of Example 4.3
when $ = 0.9, ε = 10 and η = 3 with λ = 0.5; (b) Fuzzy EADM-provided 2D-illustrations
of multiple profiles of Example 4.3 when δ = 0.9 and λ = 0.5 with varying fractional-order.

• Figure 6 depicts the mapping performance of the proposed methodology, Ũ(v, λ;$), with the control
variables η = 10 and ε = 5. The study indicates that the reduction in Ū(v, λ;$) translates to a slight
increase in U(v, λ;$).
• In Figure 6, the ambiguity components of the transformations U(v, λ;$) and Ū(v, λ;$) are exhibited;
the results demonstrate the conduct of the prescribed fuzzy fractional-order of the mapping for multiple
ambiguity factors.
• Figures 5 and 6 depict the preceding plots, which allow us to explain the probabilistic nature of spatial
and temporal fluctuations. However, by employing the appropriate statistical analysis, researchers
specializing in pattern development hypotheses, optical engineering and probabilistic kinetics will be
able to evaluate productivity. As a consequence, improved simulations of fluid mechanics instability
with bifurcated and diffraction characteristics are achievable.

Remark 4.3. If $− 1 = 1−$ = 1 and δ = 1, then Eq (4.16) converges to the exact solution proposed
in [39, 40].

Example 4.4. Suppose that the fuzzy fractional-order SHM is subject to fuzzy ICs

∂δ

∂λδ
Ũ(v, λ;$) = ε � Ũ(v, λ;$) ⊕ 2 � Ũ2(v, λ;$) 	 Ũ3(v, λ;$) 	

∂4

∂v4 Ũ(v, λ;$)

	2 �
∂2

∂v2 Ũ(v, λ;$) ⊕ η �
∂3

∂v3 Ũ(v, λ;$),

Ũ(v, 0) = Υ̃($) � cos v, (4.17)

where Υ̃($) = [Υ($), Ῡ($)] = [$ − 1, 1 −$] and there is a fuzzy number $ ∈ [0, 1].
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The parametric form of Eq (4.17) is presented as

∂δ

∂λδ
U(v, λ;$) = εU(v, λ;$) + 2U2(v, λ;$) − U3(v, λ;$) − ∂4

∂v4 U(v, λ;$)
−2 ∂2

∂v2 U(v, λ;$) + η ∂3

∂v3 U(v, λ;$),
U(v, 0) = Υ($) cos v,
∂δ

∂λδ
Ū(v, λ;$) = εŪ(v, λ;$) + 2Ū2(v, λ;$) − Ū3(v, λ;$) − ∂4

∂v4 Ū(v, λ;$)
−2 ∂2

∂v2 Ū(v, λ;$) + η ∂3

∂v3 Ū(v, λ;$),
Ū(v, 0) = Ῡ($) cos v.

We examine the first instance of Eq (4.18) in an attempt to determine the EADM solution. In view
of the procedure outlined in Section 3, we have

N(δ)
1 − δ + δϕδ

E
[
U(v, λ;$)

]
−

ϕ2N(δ)
1 − δ + δϕδ

U(κ)(v;$)

= E
[
εU(v, λ;$) + 2U2(v, λ;$) − U3(v, λ;$) −

∂4

∂v4 U(v, λ;$) − 2
∂2

∂v2 U(v, λ;$)

+η
∂3

∂v3 U(v, λ;$)
]
.

Simple calculations show that

U(v, λ;$) = ($ − 1) cos v + E−1
[
1 − δ + δϕδ

N(δ)

×E


εU(v, λ;$) + 2U2(v, λ;$) − U3(v, λ;$) − ∂4

∂v4 U(v, λ;$)

−2 ∂2

∂v2 U(v, λ;$) + η ∂3

∂v3 U(v, λ;$)
]
.

(4.18)

We assume the infinite sum U(v, λ;$) =
∞∑

q=0
Uq(v, λ;$) incorporates Eq (3.5) and validates the

non-linearity. As a result, Eq (4.18) leads to the formation

∞∑
q=0

Uq(v, λ;$) = ($ − 1) cos v

+E−1


1 − δ + δϕδ

N(δ)
E



ε
∞∑

q=0
U(v, λ;$) + 2

∞∑
q=0

Bq(v, λ;$) −
∞∑

q=0
Aq(v, λ;$)

− ∂4

∂v4

∞∑
q=0

U(v, λ;$) − 2 ∂2

∂v2

∞∑
q=0

U(v, λ;$)

+η ∂3

∂v3

∞∑
q=0

U(v, λ;$)


.

The foregoing formulae have two non linear factors including U3 =
∞∑

q=0
Aq and U2 =

∞∑
q=0

Bq which

can be examined by using the Adomian polynomial defined by Eq (3.4). Thus, in view of Eq (4.5),
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some Adomian polynomials for U2 =
∞∑

q=0
Bq are determined as

Bq(U2) =


U2

0, q = 0,
2U0U1, q = 1,
2U0U2 + U2

1, q = 2.

(4.19)

Then, (4.19) diminishes to

U0(v, λ;$) = ($ − 1) cos v,

U1(v, λ;$) = E−1

1 − δ + δϕδ

N(δ)
E

εU0(v, λ;$) + 2B0(v, λ;$) − A0(v, λ;$)
− ∂4

∂v4 U0(v, λ;$) − 2 ∂2

∂v2 U0(v, λ;$) + η ∂3

∂v3 U0(v, λ;$)


=

1
N(δ)

[
($ − 1)

(
(ε + 1) cos v + η sin v

)
+ 2($ − 1)2 cos2 v − ($ − 1)3 cos3 v

]
×

{
δλδ

Γ(δ + 1)
+ (1 − δ)

}
,

U2(v, λ;$) = E−1

1 − δ + δϕδ

N(δ)
E

εU1(v, λ;$) + 2B1(v, λ;$) − A1(v, λ;$)
− ∂4

∂v4 U1(v, λ;$) − 2 ∂2

∂v2 U1(v, λ;$) + η ∂3

∂v3 U1(v, λ;$)


=

1
N2(δ)

{
δ2λ2δ

Γ(2δ + 1)
+ 2δ(1 − δ)

λδ

Γ(δ + 1)
+ (1 − δ)2

}

×



ε
(
($ − 1)

(
(ε + 1) cos v + η sin v

)
+ 2($ − 1)2 cos2 v − ($ − 1)3 cos3 v

)
+4($ − 1) cos v

(
($ − 1)

(
(ε + 1) cos v + η sin v

)
+ 2($ − 1)2 cos2 v

× − ($ − 1)3 cos3 v
)
− 3($ − 1) cos2 v

(
($ − 1)

(
(ε + 1) cos v + η sin v

)
× + 2($ − 1)2 cos2 v − ($ − 1)3 cos3 v

)
− ($ − 1)

(
(ε + 1) cos v + η sin v

)
+24($ − 1)2(cos2 v − sin2 v) + 3($ − 1)3(20 cos v sin2 v − 7 cos3 v)
+2($ − 1)((ε + 1) cos v + η sin v) − 6($ − 1)3(cos3 v − 2 cos v sin2 v)
+η($ − 1)((ε + 1) sin v − η cos v) + 16($ − 1)2 cos v sin v + 3($ − 1)3

×(2 sin3 v − 7 cos2 v sin v)
... .

In a similar way, additional elements of the EADM system Uq (q ≥ 3) can be identified.
Furthermore, as the iterative technique develops, the attained result’s trustworthiness improves
significantly, and the established result appears progressively comparable to the expressive context.
As a result, we have formulated a set of solutions that are structured in a series of formulations; that is,

Ũ(v, λ,$) = Ũ0(v, λ,$) + Ũ1(v, λ,$) + Ũ1(v, λ,$) + ...

such that

U(v, λ,$) = U0(v, λ,$) + U1(v, λ,$) + U1(v, λ,$) + ... ,
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Ū(v, λ,$) = Ū0(v, λ,$) + Ū1(v, λ,$) + Ū1(v, λ,$) + ... .

Eventually, we get

U(v, λ,$) = ($ − 1) cos v +
1

N(δ)

[
($ − 1)

(
(ε + 1) cos v + η sin v

)
+ 2($ − 1)2 cos2 v

−($ − 1)3 cos3 v
]{ δλδ

Γ(δ + 1)
+ (1 − δ)

}
+

1
N2(δ)

{
δ2λ2δ

Γ(2δ + 1)
+ 2δ(1 − δ)

λδ

Γ(δ + 1)
+ (1 − δ)2

}

×



ε
(
($ − 1)

(
(ε + 1) cos v + η sin v

)
+ 2($ − 1)2 cos2 v

−($ − 1)3 cos3 v
)

+ 4($ − 1) cos v
(
($ − 1)

(
(ε + 1) cos v + η sin v

)
+2($ − 1)2 cos2 v − ($ − 1)3 cos3 v

)
−3($ − 1) cos2 v

(
($ − 1)

(
(ε + 1) cos v + η sin v

)
+2($ − 1)2 cos2 v − ($ − 1)3 cos3 v

)
−($ − 1)

(
(ε + 1) cos v + η sin v

)
+ 24($ − 1)2(cos2 v − sin2 v)

+3($ − 1)3(20 cos v sin2 v − 7 cos3 v) + 2($ − 1)((ε + 1) cos v + η sin v)
−6($ − 1)3(cos3 v − 2 cos v sin2 v) + η($ − 1)((ε + 1) sin v − η cos v)
+16($ − 1)2 cos v sin v + 3($ − 1)3(2 sin3 v − 7 cos2 v sin v)

+... ,

Ū(v, λ,$) = (1 −$) cos v +
1

N(δ)

[
(1 −$)

(
(ε + 1) cos v + η sin v

)
+ 2(1 −$)2 cos2 v

−(1 −$)3 cos3 v
]

×

{
δλδ

Γ(δ + 1)
+ (1 − δ)

}
+

1
N2(δ)

{
δ2λ2δ

Γ(2δ + 1)
+ 2δ(1 − δ)

λδ

Γ(δ + 1)
+ (1 − δ)2

}

×



ε
(
(1 −$)

(
(ε + 1) cos v + η sin v

)
+ 2(1 −$)2 cos2 v − (1 −$)3 cos3 v

)
+4(1 −$) cos v

(
(1 −$)

(
(ε + 1) cos v + η sin v

)
+ 2(1 −$)2 cos2 v

−(1 −$)3 cos3 v
)
− 3(1 −$) cos2 v

(
(1 −$)

(
(ε + 1) cos v + η sin v

)
+2(1 −$)2 cos2 v − (1 −$)3 cos3 v

)
− (1 −$)

(
(ε + 1) cos v + η sin v

)
+24(1 −$)2(cos2 v − sin2 v) + 3(1 −$)3(20 cos v sin2 v − 7 cos3 v)
+2(1 −$)((ε + 1) cos v + η sin v) − 6(1 −$)3(cos3 v − 2 cos v sin2 v)
+η(1 −$)((ε + 1) sin v − η cos v) + 16(1 −$)2 cos v sin v
+3(1 −$)3(2 sin3 v − 7 cos2 v sin v)

+... .

(4.20)
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Figure 7 shows the effects of the two (a) and various (b) 3D depictions for Example 4.4, as coupled
with the ABCand Elzaki transform via the fuzzy system in this research. The discrepancy in
Ũ(v, λ;$) on the space coordinate v with respect to λ and the ambiguity component $ ∈ [0, 1] is
notably highlighted by the characteristic.

(a) (b)

Figure 7. (a) Fuzzy EADM-provided 3D-illustrations of Example 4.4 when δ = 1, ε = 10
and η = 100. (b) Fuzzy EADM-provided 3D-illustrations of multiple profiles of Example 4.4
when ε = 10, η = 100 and $ ∈ [0, 1].
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(b)

Figure 8. (a) Fuzzy EADM-provided 2D-illustrations of multiple profiles of Example 4.4
when $ = 0.7, η = ε = 100 and λ = 0.5; (b) Fuzzy EADM-provided 2D-illustrations of
multiple profiles of Example 4.4 when δ = 0.7 and λ = 0.5 with varying fractional order.

The research has shown that the graphical representation of Ũ(v, λ;$) will progress to become
increasingly complicated as time passes.
• Figure 8 exhibits the mapping accuracy of the recommended approach, Ũ(v, λ;$), with the control
variables η = 100 and ε = 10. The research has revealed that the improvement in Ū(v, λ;$) translates
to a slight increase in U(v, λ;$).
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• In Figure 8, the ambiguity factors of the transformations U(v, λ;$) and Ū(v, λ;$) are depicted; the
results show the performance of the prescribed fractional-order at multiple ambiguity factors.
• Figures 7 and 8 illustrate the aforementioned plots, which allow us to clarify the probabilistic nature
of spatial and temporal fluctuations. Secondly, by employing an inferential probabilistic assessment,
researchers involved in fields related to pattern generation, optical engineering, and probabilistic
kinetics will be able to evaluate success. Finally, improved illustrations of the fluid dynamics
robustness with bifurcated and scattering characteristics are conceivable.

Remark 4.4. If $− 1 = 1−$ = 1 and δ = 1, then Eq (4.20) converges to the exact solution proposed
in [39, 40].

Example 4.5. Suppose that the fuzzy fractional-order SHM is subject to fuzzy ICs

∂δ

∂λδ
Ũ(v, λ;$) = (℘ − 1) � Ũ(v, λ;$) 	 Ũ3(v, λ;$) 	

∂4

∂v4 Ũ(v, λ;$) 	 2 �
∂2

∂v2 Ũ(v, λ;$),

Ũ(v, 0) = Υ̃($) �
1

10
sin

(πv
%

)
, (4.21)

where Υ̃($) = [Υ($), Ῡ($)] = [$ − 1, 1 −$] and there is a fuzzy number $ ∈ [0, 1].

The parametric form of Eq (4.21) is presented as:
∂δ

∂λδ
U(v, λ;$) = (℘ − 1)U(v, λ;$) − U3(v, λ;$) − ∂4

∂v4 U(v, λ;$) − 2 ∂2

∂v2 U(v, λ;$),
U(v, 0) = (Υ($)) 1

10 sin
(πv
%

)
,

∂δ

∂λδ
Ū(v, λ;$) = (℘ − 1)Ū(v, λ;$) − Ū3(v, λ;$) − ∂4

∂v4 Ū(v, λ;$) − 2 ∂2

∂v2 Ū(v, λ;$),
Ū(v, 0) = Ῡ($) 1

10 sin
(πv
%

)
.

(4.22)

Here, we examine the first instance of Eq (4.22) in an attempt to determine the EADM solution. In
view of the procedure outlined in Section 3, we have

N(δ)
1 − δ + δϕδ

E
[
U(v, λ;$)

]
−

ϕ2N(δ)
1 − δ + δϕδ

U(κ)(v;$)

= E
[
(℘ − 1)U(v, λ;$) − U3(v, λ;$) −

∂4

∂v4 U(v, λ;$) − 2
∂2

∂v2 U(v, λ;$)
]
.

Simple calculations show that

U(v, λ;$) = ($ − 1)
1

10
sin

(πv
ϕ

)
+E−1

[
1 − δ + δϕδ

N(δ)
E
[
(℘ − 1)U(v, λ;$) − U3(v, λ;$) −

∂4

∂v4 U(v, λ;$)

−2
∂2

∂v2 U(v, λ;$)
]]
.

(4.23)
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We assume the infinite sum U(v, λ;$) =
∞∑

q=0
Uq(v, λ;$) incorporates Eq (3.5) and validate the

non-linearity. As a result, Eq (4.23) leads to the formation

∞∑
q=0

Uq(v, λ;$) = ($ − 1)
1

10
sin

(πv
%

)
+ E−1

[
1 − δ + δϕδ

N(δ)

×E
[
(℘ − 1)

∞∑
q=0

Uq(v, λ;$) −
∞∑

q=0

Aq(v, λ;$) −
∂4

∂v4

∞∑
q=0

Uq(v, λ;$)

−2
∂2

∂v2

∞∑
q=0

Uq(v, λ;$)
]]
. (4.24)

The foregoing formulae have two non-linear terms such as U3 =
∞∑

q=0
Aq and U2 =

∞∑
q=0

Bq which can

be examined by using the Adomian polynomial defined by Eq (3.4); then, the Eq (4.24) diminishes to

U0(v, λ;$) = ($ − 1)
1
10

sin
(πv
%

)
,

U1(v, λ;$) = E−1
[
1 − δ + δϕδ

N(δ)
E
[
(℘ − 1)U0(v, λ;$) −

∂4

∂v4 U0(v, λ;$) − 2
∂2

∂v2 U0(v, λ;$)

−A0(v, λ;$)
]]

=
1

1000%4N(δ)

[
($ − 1) sin

(πv
%

)(
100%4(℘ − 1) − 100π4 + 200π2%2

)
−%4($ − 1)3 sin3 (πv

%

)]{ δλδ

Γ(δ + 1)
+ (1 − δ)

}
,

U2(v, λ;$) = E−1
[
1 − δ + δϕδ

N(δ)
E
[
(℘ − 1)U1(v, λ;$) −

∂4

∂v4 U1(v, λ;$) − 2
∂2

∂v2 U1(v, λ;$)

−A1(v, λ;$)
]]

=
1

N2(δ)

{
δ2λ2δ

Γ(2δ + 1)
+ 2δ(1 − δ)

λδ

Γ(δ + 1)
+ (1 − δ)2

}

×



(100%4(℘ − 1) − 100π4 + 2000π2%2)
[

(℘−1)($−1)π
1000%5 cos

(πv
%

)
− π4

1000%8 ($ − 1) sin
(πv
%

)
+ 2π2

1000%6 ($ − 1) sin
(πv
%

)
− 3

100000%4 ($ − 1)3 sin4 (πv
%

)]
− sin2 (πv

%

)
cos

(πv
%

)(3π(℘−1)
1000% ($ − 1)3 + 42π3

1000%3 ($ − 1)3
)

− 60π4

1000%4 ($ − 1)3 sin
(πv
%

)
cos2 (πv

%

)
+ 21π4

1000%4 ($ − 1)3sin3(πv
%

)
+ 12π3

1000%3 ($ − 1)3 cos3 (πv
%

)
+ 3

100000 ($ − 1)5 sin6 (πv
%

)
,

... .
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In a similar way, additional elements of the EADM system Uq (q ≥ 3) can be identified.
Furthermore, as the iterative technique develops, the attained result’s trustworthiness improves
significantly and the established result appears progressively comparable to the expressive context. As
a result, we have formulated a set of solutions that are structured in a series of formulations; that is,

Ũ(v, λ,$) = Ũ0(v, λ,$) + Ũ1(v, λ,$) + Ũ1(v, λ,$) + ...

such that

U(v, λ,$) = U0(v, λ,$) + U1(v, λ,$) + U1(v, λ,$) + ... ,

Ū(v, λ,$) = Ū0(v, λ,$) + Ū1(v, λ,$) + Ū1(v, λ,$) + ... .

Eventually, we have

U(v, λ,$) = ($ − 1)
1
10

sin
(πv
%

)
+

1
1000%4N(δ)

[
($ − 1) sin

(πv
%

)(
100%4(℘ − 1) − 100π4 + 200π2%2

)
−%4($ − 1)3 sin3 (πv

%

)]{ δλδ

Γ(δ + 1)
+ (1 − δ)

}
+

1
N2(δ)

{
δ2λ2δ

Γ(2δ + 1)
+ 2δ(1 − δ)

λδ

Γ(δ + 1)
+ (1 − δ)2

}

×



(100%4(℘ − 1) − 100π4 + 2000π2%2)
[

(℘−1)($−1)π
1000%5 cos

(πv
%

)
− π4

1000%8 ($ − 1) sin
(πv
%

)
+ 2π2

1000%6 ($ − 1) sin
(πv
%

)
− 3

100000%4 ($ − 1)3 sin4 (πv
%

)]
− sin2 (πv

%

)
cos

(πv
%

)(3π(℘−1)
1000% ($ − 1)3 + 42π3

1000%3 ($ − 1)3
)

− 60π4

1000%4 ($ − 1)3 sin
(πv
%

)
cos2 (πv

%

)
+ 21π4

1000%4 ($ − 1)3sin3(πv
%

)
+ 12π3

1000%3 ($ − 1)3 cos3 (πv
%

)
+ 3

100000 ($ − 1)5 sin6 (πv
%

)
+... ,

Ū(v, λ,$) = (1 −$)
1
10

sin
(πv
%

)
+

1
1000%4N(δ)

[
(1 −$) sin

(πv
%

)(
100%4(℘ − 1) − 100π4 + 200π2%2

)
−%4(1 −$)3 sin3 (πv

%

)]{ δλδ

Γ(δ + 1)
+ (1 − δ)

}
+

1
N2(δ)

{
δ2λ2δ

Γ(2δ + 1)
+ 2δ(1 − δ)

λδ

Γ(δ + 1)
+ (1 − δ)2

}
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×



(100%4(℘ − 1) − 100π4 + 2000π2%2)
[

(℘−1)(1−$)π
1000%5 cos

(πv
%

)
− π4

1000%8 (1 −$) sin
(πv
%

)
+ 2π2

1000%6 (1 −$) sin
(πv
%

)
− 3

100000%4 (1 −$)3 sin4 (πv
%

)]
− sin2 (πv

%

)
cos

(πv
%

)(3π(℘−1)
1000% (1 −$)3 + 42π3

1000%3 (1 −$)3
)

− 60π4

1000%4 (1 −$)3 sin
(πv
%

)
cos2 (πv

%

)
+ 21π4

1000%4 (1 −$)3sin3(πv
%

)
+ 12π3

1000%3 (1 −$)3 cos3 (πv
%

)
+ 3

100000 (1 −$)5 sin6 (πv
%

)
+... .

(4.25)

Figure 9 demonstrates the implications of two (a) and numerous (b) 3D depictions for
Example 4.5, which correspond with the ABCand Elzaki transform via the fuzzy system in this
research. The deviations in Ũ(v, λ;$) on the space coordinate v with respect to λ and the ambiguity
component $ ∈ [0, 1] are delightfully exhibited by the analysis.

The investigation has revealed that the depiction of Ũ(v, λ;$) will develop extremely complicated
as time passes.
• Figure 10 displays the mapping capability of the proposed technique, Ũ(v, λ;$), with the control
variables ℘ = 5 and % = 5. The study indicates that the reduction in Ū(v, λ;$) results in a slight boost
in U(v, λ;$).
• In Figure 10, the ambiguity components of the mappings U(v, λ;$) and Ū(v, λ;$) are represented;
the results demonstrate the action of the prescribed fuzzy fractional-order of the mapping for distinct
ambiguity factors.
• Figures 9 and 10 depict the preceding plots, which allow us to understand the probabilistic patterns of
spatial and temporal variability. In addition, the inferential statistical analysis of the proposed method
will assist researchers engaged in research on pattern generation, optical engineering and probabilistic
kinetics in analyzing efficacy. As a consequence, as the repetitive procedure is intensified, superior
estimations can be developed.

(a) (b)

Figure 9. (a) Fuzzy EADM-provided 3D-illustrations of Example 4.5 when δ = 1, ℘ = 5
and % = 100. (b) Fuzzy EADM-provided 3D-illustrations of multiple profiles of Example 4.5
when ℘ = 10, % = 100 and $ ∈ [0, 1].

AIMS Mathematics Volume 7, Issue 9, 16067–16101.



16096

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

(b)

Figure 10. (a) Fuzzy EADM-provided 2D-illustrations of multiple profiles of Example 4.3
when $ = 0.7, % = 0.8, ℘ = 0.5 and λ = 0.5; (b) Fuzzy EADM-provided 2D-illustrations of
multiple profiles of Example 4.3 when δ = 0.7 and λ = 0.9 with varying fractional-order.

Remark 4.5. If $− 1 = 1−$ = 1 and δ = 1, then Eq (4.25) converges to the exact solution proposed
in [39, 40].

5. Conclusions

The SHM is concerned with pattern formation, it is considered a nonlinear PDE. This connection
involves noise in bifurcations, pattern determination, spacetime chaos and imperfection mechanisms,
all of which were explored in this study. The succinct formulation, on the other hand, is incapable of
conveying any complex mechanism in an unknown setting. In this scenario, ambiguous variables
provide an effective direction to depict the analytical method. We employed a fuzzy technique to
investigate the SHM, compensating for IC unpredictability. In this study, we extended the fractional
SHM to the fuzzy fractional SHM in the ABC framework. We next implemented the EADM to
generate an estimated description of the projected scheme in its generic version. We developed a
generic approach for every instance after considering various instances to verify the proposed
technique. The numerical simulation results for 2D and 3D representations featuring different
fractional-order and ambiguity factors were also analyzed. Because the consequence patterns fulfill
the fuzzified constraints, we can see that they reflect the imprecise repercussions in the
representations. The stability and inaccuracy of the offered technique have been examined. By relying
on computations, we demonstrated that the fractional-order system shapes reflect integer-order
solution trajectories. Consequently, the incorrect reasoning allows a system to function effectively in a
fuzzy context. We shall explore an analogous topic in future research by introducing the Henstock
integrals (i.e., fuzzy integrals in the Lebesgue sense) at infinite spacing [59, 60].
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