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and includes the generalized Henon and Lozi schemes as two excesses and other arrangements as
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1. Introduction

Because the presence of these windows in certain chaotic areas implies that small changes in the
parameters will end the chaos, the resilient chaotic system (map) is defined by the absence of episodic
windows and simultaneous attractors in some parameter space neighborhood. This outcome reflects
the fragile nature of this form of chaos. The chaotic dynamical system has been studied extensively by
many academics because to its wide applications in science and engineering. The first discrete-time
chaotic system [1] was suggested by H’enon. Lozi developed a unique discrete chaotic system utilizing
the quadratic formula in the H’enon map with quasi linear term [2]. To improve the map in [3], it is
advised to use a linear combination (convex type) of H’enon and Lozi maps. The H’enon-Lozi system
has recently been developed using fractional calculus and the Capotu derivative operator in [4] and its
extensions.
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The notion of local fractional calculus (fractal calculus), first introduced by Kolwankar and Gangal
for the regular fractional operators of Riemann-Liouville calculus [5, 6]. It was used to deal with non-
differentiable formulas that appeared in engineering sciences, thermal and heat transforms another
science [6–8]. Various other ideas and specifics of fractal calculus were introduced, such as the
geometric fractal. In the logical extensions of the definitions to the issue of local derivative on fractals,
Yang et al. [6] constructed what is known as the cantor fractal.

Recognition of patterns using the fractal concept has been increased in the last decay. In [9], the
authors joined procedure of altered edge detection techniques with box-counting for fractal feature
extraction. Edge detection of fractal images can be studied as a significant area of investigation
in fractal image processing [10]. License plate recognition is an emerging concept for real-time
applications, is improved by using a new fractal series expansion [11]. Fractal entropy is developed
and used in [12]. Finally, it employed to analyze images [13]. In this note, we use the fractal difference
operator to define a new fractal Hénon-Lozi system (fractal map (FHLS)). Employing the FHLS to
study the image recognition. Other studies are presented in [14–32].

To spread between the asymptotically stable variety and the chaotic array, we analyze bifurcation
diagrams and present new irregular limitations on the fractal order. Utilizing bifurcation maps produced
using forward and backward extension procedures, domains of fractal order spaces are confirmed, and
the existence of simultaneous is demonstrated.

The paper is organized as follows: Section 2 deals with methods that we utilize in the sequel,
Section 3 involves the main conditions for the global stability, Section 4 produces the test of our results
and Section 5 indicates the conclusion.

2. Methodology

In this section, we illustrate our methodology based on the fractal concept.

2.1. Fractal concept

Let Cα(a, b), α ∈ (0, 1] be a fractal set and let f ∈ Cα. For ε > 0 and |χ − χ0| < δ, the limit

f (α)(χ) := ð(α) f (χ) = lim
χ→χ0

Γ(α + 1)( f (χ) − f (χ0))
(χ − χ0)α

is finite and available. It indicates that

f (2α)(χ) = ( f (α))(α)(χ), f (3α)(χ) = (( f (α))(α))(α)(χ)...

The 2D-fractal differential operator is presented for f (x, y) defining on the space of fractal Cα in x-
direction

ð(α)
x f (x, y) = lim

x→x0

Γ(α + 1)( f (x, y) − f (x0, y))
(x − x0)α

,

and in y-direction

ð(α)
y f (x, y) = lim

y→y0

Γ(α + 1)( f (x, y) − f (x, y0))
(y − y0)α

,

For example,
f (xα, yα) = xαnynα

AIMS Mathematics Volume 7, Issue 6, 11399–11416.
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has the following fractal derivatives

ð(α)
x xnαynα =

(
Γ(αn + 1)

Γ(α(n − 1) + 1)
x(n−1)α

)
ynα,

ð(α)
y xnαynα =

(
Γ(αn + 1)

Γ(α(n − 1) + 1)
y(n−1)α

)
xnα,

(2.1)

respectively. The results of Eq (2.1) are two vectors, one represents the fractal derivative of the image
pixel in x-direction and the second one indicates the fractal derivative of the image pixel in y-direction.
Note that the fractal difference term is in p.15 of [6].

Mα f (x) = Γ(1 + α)[ f (x) − f (x0)].

Moreover, the definition of fractal integral is in p.38 of [6], as follows:

=α f (x) =
1

Γ(1 + α)

n∑
j=0

lim
δ(x j)→0

(
f (x j)δα(x j)

)
,

where δ(x j) is a small number that indicates the difference between the modeled map and the real data.
More knowledge about fractal trigonometric functions is the fractal sine function

sinα(χα) =

∞∑
m=0

(−1)mχ(2m+1)α

Γ (1 + (2m + 1)α)
, α ∈ (0, 1),

and the fractal cosine function

cosα(χα) =

∞∑
m=0

(−1)mχ2mα

Γ (1 + 2mα)
, α ∈ (0, 1).

2.2. Fractal Hénon-Lozi system (FHLS)

The Hénon system formulates a point (xn, yn) in the plane and translates it to a new position
(point) [1] xn+1 = 1 − ℘ x2

n + yn,

yn+1 = ` xn,

while the Lozi system indicates the following formula [2]xn+1 = 1 − ℘ |x|n + yn,

yn+1 = ` xn.

Considering the function
}k(x) = k|x| + (1 − k)x2, k ∈ [0, 1],

the following Hénon-Lozi system is recognized by [3]xn+1 = 1 − ℘ }k(xn) + yn,

yn+1 = ` xn.

AIMS Mathematics Volume 7, Issue 6, 11399–11416.
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Assuming the difference operator ∆xn = xn+1 − xn, we obtain the difference system∆xn = (1 − ℘ }k(xn) + yn − xn) ,
∆yn = (` xn − yn) .

(2.2)

Utilizing the fractal difference operator ∆α, we have FHLS∆αxn = (1 − ℘ }k(xn) + yn − xn) Γ(1 + α),
∆αyn = (` xn − yn) Γ(1 + α).

(2.3)

We present the next outcome.

Proposition 1. Consider FHLS in (2.3). Then

• the solution is determined by the fractal integral system
xn =

1
Γ(1 + α)

∑n−1
j=0

(
1 − ℘ }k(x j) + y j − x j

)
,

yn =
1

Γ(1 + α)
∑n−1

j=0

(
` x j − y j

)
;

• the critical points are

xn = −

√
(` − 1 − ℘k)2

− 4 (℘(1 − k)) + (` − 1 − ℘k)

2 (℘(1 − k))
, ℘(1 − k) , 0, yn = `xn

and

xn =

√
(` − 1 − ℘k)2

− 4 (℘(1 − k)) − (` − 1 − ℘k)

2 (℘(1 − k))
, ℘(1 − k) , 0, yn = `xn

• the eigenvalues and eigenvectors of the Jacobian matrix of (2.3) are

λ1 =
Γ(1 + α)

2
×(

−
√

(℘(2(1 − k)xn + k)2 + 2℘(2(1 − k)xn + k) + 4` + 1) + ℘(2(1 − k)xn + k) − 1
)

λ2 =
Γ(1 + α)

2( √
(℘(2(1 − k)xn + k)2 + 2℘(2(1 − k)xn + k) + 4` + 1) + ℘(2(1 − k)xn + k) − 1

)
v1 = Γ(1 + α)×− (−1 − ℘(k + 2(1 − k)xn) +

√
(1 + 4` + 2℘(k + 2(1 − k)xn) + ℘(k + 2(1 − k)xn)2))

2`
, 1


v2 = Γ(1 + α)×− (−1 − ℘(k + 2(1 − k)xn) −

√
(1 + 4` + 2℘(k + 2(1 − k)xn) + ℘(k + 2(1 − k)xn)2))

2`
, 1
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• the values of λ1,2 can be approximated in terms of xn as follows:

λ1,2 =
Γ(1 + α)

2

±
(√√

(℘

 ((1 − k)(
√

(a2 − 4b) ± a))
b

+ k

2

+

√√
2℘

 ((1 − k)(
√

(a2 − 4b) ± a))
b

+ k

 + 4` + 1)
)

+
Γ(1 + α)

2

℘  ((1 − k)(
√

(a2 − 4b) ± a))
b

+ k

 − 1

 ,
where a = ` − 1 − ℘k and b = ℘(1 − k).

Proof. Applying the definition of fractal integral on the system FHLS in (2.3), we directly obtain the
desired result, when δαj = 1. For the second part, substitute y = `x in the first equation, we have

1 + x(` − 1 − ℘k) + ℘(1 − k)x2 = 0,

which has two solutions when ℘(1 − k) , 0. The third assertion is a direct application of the Jacobian
matrix, while the last is a substitution of the values of the critical points in the values of the eigenvalues.

�

Example 1. We illustrate our example, as follow:

• Consider the following data ℘ = 1, k = 0.5, ` = 0.3 then we have a = −1.2 and b = 0.5. A
computation yields λ1,2 = Γ(1 + α)(±1.04).
• Consider the following data ℘ = 1, k = 0.3, ` = 0.3 then we have a = −1.0 and b = 0.7. A

computation yields λ1,2 = Γ(1 + α)(±1.00).
• Consider the following data ℘ = 2, k = 0.3, ` = 0.3 then we have a = −1.0 and b = 0.7. A

computation yields λ1,2 = Γ(1 + α)(±1.09).
• Consider the following data ℘ = 3, k = 0.3, ` = 0.3 then we have a = −1.0 and b = 0.7. A

computation yields λ1,2 = Γ(1 + α)(±1.095).

From the above example, for ` = 0.3, k ∈ [0, 1] and for a positive constant ℘ < ∞, we conclude that
λ1,2 ≈ ±Γ(1 + α). That is the eigenvalues depend on the fractal number α ∈ [0, 1]. Also, around α = 0,
we have

λ1,2 ≈ ±
(
1 − γα + 1/12(6γ2 + π2)α2 + 1/6α3(−γ3 − (γπ2)/2 + ψ(2, 1))

+ 1/24α4(γ4 + γ2π2 + (3π4)/20 − 4γψ(2, 1)) + O(α5)
)
,

where γ = 0.577 presents the Euler constant and ψ indicates the digamma function. Figure 1 shows
the behavior of λ1,2 with the arch curve length∫ 1

0

√
(1 + Γ(1 + α)2ψ(0, 1 + α)2)dα ≈ 1.03513728337393...

Some examples are illustrated in Figure 2.

AIMS Mathematics Volume 7, Issue 6, 11399–11416.
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Figure 1. The plot of λ1,2 respectively, where α = 0.461632 is the value of the extreme point
of λ1,2.

Figure 2. The behavior of System (2.3), when ℘ = 1.4, ` = 0.3, α = 0.4616 and initial
values (0.0) in the first column and (1/2,1/2) in the second column respectively; the fractional
power is taken when its value at the extreme point of λ1,2.

AIMS Mathematics Volume 7, Issue 6, 11399–11416.
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2.3. Chaotic system that involves FHLS

Because the presence of cyclic windows (periodic) in various chaotic indicators implies that even
minor modifications in the parameters will destroy the chaos, robust chaos is defined by the absence of
cycling values and coexisting attractors in a particular region of the parameter space. This impact hints
at the vulnerability of this kind of disorder. Despite this, there are numerous functional applications
where trustworthy chaotic mode operation is essential, such as connections and spreading the spectrum
of switch-mode power supplies to avert electromagnetic interference. There are different methods
to investigate robust chaos such as using polynomials, one parametric system, multi-parametric
system [14, 15].

There are two considerations of the chaotic system with robust chaos in [0, 1] corresponding to
FHLS (C-FHLS): 1D-parameter C-FHLS, which presents by letting α = k ∈ [0, 1], and 2D-parameter
C-FHLS, which indicates two different values of α , k ∈ [0, 1].

We shall study the two cases.

2.3.1. 1D-parameter C-FHLS

In this case, the C-FHLS is given by the formula

Υα(x, y) =

(
(1 − ℘ }α(x) + y − x) Γ(1 + α)

(` x − y) Γ(1 + α)

)
α ∈ [0, 1], (2.4)

where α indicates the bifurcation parameter achieving the functional }α(x) = α|x|+ (1−α)x2. It is clear
that when α = 0, ℘ = 1.4 and ` = 0.3, we have the difference Henon map and for α = 1, we get the
difference Lozi map. It’s worth noting that we get the chaotic map satisfying various forms of attractors
for α ∈ (0, 1). Figure 2 shows the Lyapunov exponents and bifurcation diagram. The structure (see
Figure 3) can be used to express the Lyapunov exponents.

V = lim
n→∞

1
n

ln
∣∣∣∣λn

1,2

∣∣∣∣,
where λ1,2 are the eigenvalues of the Jacobi matrix of (2.4),

Jα =

((
−℘ }′α(x) − 1

)
Γ(1 + α) Γ(1 + α)

`Γ(1 + α) −Γ(1 + α)

)
.

There are two different eigenvalues

λ1,2 =
Γ(α + 1)

10

(
±
√

196α2x2 + 196α2x + 49α2 − 336αx − 168α + 174 − 14αx − 7α + 2
)
. (2.5)

We note that the chaotic map Υα is a piecewise smooth map, and that α ∈ [0, 1] will be partitioned
into two domains in accordance with the shape of the chaotic map Υα.

R1 :=
{
(x, y) ∈ R2 : α − 1 , 0, x =

√
7
√

28α2 − 52α + 87 + 14α + 7
28(α − 1)

< 0,

y =
3(
√

7
√

28α2 − 52α + 87 + 14α + 7)
280(α − 1)

< 0
}

AIMS Mathematics Volume 7, Issue 6, 11399–11416.
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R2 :=
{
(x, y) ∈ R2 : α − 1 , 0, x =

−
√

7
√

28α2 − 52α + 87 + 14α + 7
28(α − 1)

> 0,

y =
3(−
√

7
√

28α2 − 52α + 87 + 14α + 7)
280(α − 1)

> 0
}
,

where x = 0 is a line equation that divides the phase plane into two domains R1 and R2. Note that, for

α = 1, we have the solution (x =
10
21
, y =

1
7

).
When α ∈ [0, 1], System (2.4) is obviously chaotic. Furthermore, in System (2.4), the control

parameter α reveals the transition of dynamical performances from the Henon to the Lozi attractors.
Lastly, System (2.4) indicates the robust chaotic attractors for α ∈ [0.4616, 1) and absent when α = 1
and α = 0.

Figure 3. Maximum Lyapunov exponents ð = 0.418 ' α. The left graph is (℘, ð) for fixed
` = 0.3 and the right graph is (`, ð) for fixed ℘ = 1.4.

2.3.2. 2D-parameter C-FHLS

In this part, we consider 2D-parameter C-FHLS (α, k), where α , k in [0, 1]. The system becomes

Υα,k(x, y) =

(
(1 − ℘ }k(x) + y − x) Γ(1 + α)

(` x − y) Γ(1 + α)

)
α, k ∈ [0, 1], (2.6)

where α and k present the bifurcation parameters satisfying the functional

}k(x) = k|x| + (1 − k)x2, k ∈ [0, 1].

AIMS Mathematics Volume 7, Issue 6, 11399–11416.
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Eventually, for all α ∈ [0, 1], The vector field of the chaotic map Υα,k owns two domains symbolized
by:

D1 :=
{
(x, y) ∈ R2 : k − 1 , 0, x =

√
7
√

28k2 − 52k + 87 + 14k + 7
28(k − 1)

< 0,

y =
3(
√

7
√

28k2 − 52k + 87 + 14k + 7)
280(k − 1)

< 0
}

D2 :=
{
(x, y) ∈ R2 : k − 1 , 0, x =

−
√

7
√

28k2 − 52k + 87 + 14k + 7
28(k − 1)

> 0,

y =
3(−
√

7
√

28k2 − 52k + 87 + 14k + 7)
280(k − 1)

> 0
}

where x = 0 is separated the plane into tow domains defining by D1 and D2. Putting α = 0.4616 then
Γ(1.4616) = 0.88 and hence we obtain }k ≈ 1 if and only if

x =
5k ±

√
5
√

5k2 − 22k + 22
10(k − 1)

, k , 1.

By the above analysis, together with ℘ = 1.4 and ` = 0.3, we obtain the traditional Heno-Lozi
system. This is true for all α ∈ [0.4616, 1]. The Jacobian matrix is given by the formula

Jα,k =

(−℘ }′k(x) − 1
)
Γ(1 + α) Γ(1 + α)

`Γ(1 + α) −Γ(1 + α)

 .
with two different eigenvalues (see Figures 4 and 5)

λ1,2 =
Γ(α + 1)

10

(
±
√

196k2x2 + 196k2x + 49k2 − 336kx − 168k + 174 − 14kx − 7k + 2
)
. (2.7)

Figure 4. The plot of λ1,2 respectively of Jα.

AIMS Mathematics Volume 7, Issue 6, 11399–11416.
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Figure 5. The plot of λ1,2 respectively of J0.4616,k.

3. Global stability

In this section, we investigate the stability of the suggested system. To study this fact, we check the
solution under the existing of the fixed points.

3.1. The set of the fixed points

For 1D-parameter C-FHLS, we have two fixed points when α = 0.4616, as follows:

Fα =
{
P1(x = −3.8406, y = −0.541139), P2(x = 0.345436, y = 0.0486719)

}
,

where P1 ∈ R1 and P2 ∈ R2. Then Eq (2.5) yields

λ1,2(P1) =
√

196(−3.8)2 ∗ 0.46162 + 196 ∗ (−3.8) ∗ 0.46162

+
√

49 ∗ 0.46162 − 336(−3.8 ∗ 0.4616) − 168 ∗ 0.4616 + 174
− 14(−3.8 ∗ 0.4616) − 7 ∗ 0.4616 + 2
≈ 0.0843658415(±57.0989...),

where in λ(P1) = −57 ∈ R1. Similarly, we calculate the eigenvalues in R2 to obtain

λ1,2(P2) =
√

196(0.3)2 ∗ 0.46162 + 196 ∗ (0.3) ∗ 0.46162

+
√

49 ∗ 0.46162 − 336(0.3 ∗ 0.4616) − 168 ∗ 0.4616 + 174
− 14(0.3 ∗ 0.4616) − 7 ∗ 0.4616 + 2
≈ 0.0843658415(±5.58508...),

AIMS Mathematics Volume 7, Issue 6, 11399–11416.
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thus, we have λ(P2) = 5.68 ∈ R2.

Obviously, the true solutions of the system are the fixed points of the unified chaotic map (2.4)(
x
y

)
=

(
(1 − ℘ }α(x) + y − x) Γ(1 + α)

(` x − y) Γ(1 + α)

)
, α ∈ [0, 1]. (3.1)

For the 2D-parameter C-FHLS, we have the following set of fixed points

Fα,k =
{
Q1(x = 0.295136, y = 0.0415845),

Q2(x =
1
k − 1

(0.5k + 0.7), y =
1
k − 1

(0.07k + 0.1))
}
, k ∈ (0, 1),

where Q1 ∈ D2 and Q2 ∈ D1. Consequently, we get

λ1,2(Q1) =
Γ(α + 1)

10
±
√

125.44k2 − 268.8k + 174 − 11.2k + 2 ∈ D2, ∀α ∈ (0, 1),

which indicates the root k =
85

112
.

Moreover, for the second fixed point, we have

λ1,2(Q2) =
Γ(α + 1)

10
±
√

2

√
(98k4 − 168k3 + 255k2 − 174k + 87)

(k − 1)2)
− 14k −

14
(k − 1)

− 12.

It is clear that 0 < k < 1, implies

λ(Q2) = 0.1 −
√

2

√
(98k4 − 168k3 + 255k2 − 174k + 87)

(k − 1)2 − 14k −
14

(k − 1)
− 12 < 0,

which leads to λ(Q2) ∈ D1. Clearly, the true solutions of the system are the fixed points of the unified
chaotic map (2.6) (

x
y

)
=

(
(1 − ℘ }k(x) + y − x) Γ(1 + α)

(` x − y) Γ(1 + α)

)
α, k ∈ [0, 1], (3.2)

The next section deals with the stability conditions and global stability using the set of fixed points.

3.2. Stability

The goal of this section is to look into the stability of the suggested systems.

Definition 1. Let χ be a solution of the fractal equation

∆αχ(t) = ϕ(t, χ), t ∈ [t0,∞)

such that ‖χ‖ < t0. Then χ is called stable solution if there occurs a positive constant % > 0 for all
solution χ1 satisfying ‖χ1 − χ0‖ < % and given ρ > 0 there occurs 0 < δ ≤ % such that

‖χ1 − χ0‖ < δ⇒

AIMS Mathematics Volume 7, Issue 6, 11399–11416.
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‖χ(t, t0, χ1) − χ(t, t0, χ0)‖ ≤ ρ, t0 ≤ t < ∞.

Moreover, if
lim
t→∞
‖χ(t, t0, χ1) − χ(t, t0, χ0)‖ = 0

then χ is asymptotically stable.

The following are the outcomes:

Theorem 2. All solutions of the continuous linear system corresponding to (2.4) (similarly for (2.6))

ð(α)
(
x(t)
y(t)

)
= Λ2×2(t)

(
x(t)
y(t)

)
(3.3)

are stable if and only if they are bounded. In addition, if the characteristic polynomial of Λ is stable
then the solutions are asymptotically stable.

Proof. Let’s start by defining a two-variable matrix-valued function, which we’ll call Θ as follows:

Θ(t, t0) = I + =αΛ(t) + =αΛ(δα1 ) + ... + =αΛ(δαn−1),

where I is the identity matrix. By the formula of =α, we obtain

Θ(t, t0) = I.

If all solutions of System (3.3) are bounded, then there is a constant σ > 0 such that the fundamental
matrix of (3.3) satisfies ‖Θ‖ < σ, where ‖.‖ indicates the max norm. That is

‖x(t) − x0(t)‖ <
ρ

2σ
, ‖y(t) − y0(t)‖ <

ρ

2σ
, ρ > 0.

Since the solution of (3.3) achieves

X(t) = Θ(t, t0)X0(t), X = (x y)>.

Then a computation implies

‖X(t) − X0(t)‖ ≤ ‖Θ (X(t) − X0(t)) ‖
≤ σ‖X(t) − X0(t)‖

< σ(
ρ

2σ
+

ρ

2σ
)

= ρ.

Therefore, all the outcomes are stable.
Conversely, the stability of the solutions brings that there occurs η > 0 corresponding to a given

κ > 0 such that
‖X(t)‖ < η⇒ ‖Θ(t)X0(t)‖ < κ‖X0(t)‖.

That is all solutions are bounded.
The second part of the theorem, can be realized by the conclusion, which is an extended of Eq (1.9)

in [6],

‖X(t) − X0(t)‖ ≤ σ exp(−ρ(tα))‖X(t) − X0(t)‖
= 0, t → ∞,

which leads to asymptotically stable solutions. �

AIMS Mathematics Volume 7, Issue 6, 11399–11416.
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In the similar manner of Theorem 2, we have the following result

Theorem 3. All solutions of the continuous nonlinear system corresponding to (2.4) (similarly
for (2.6))

ð(α)
(
x(t)
y(t)

)
= Λ2×2(t)

(
x(t)
y(t)

)
+

(
Σ1(t)
Σ2(t)

)
(3.4)

are stable if and only if they are bounded and

‖Σ‖ < ς, ς ∈ (0,∞),Σ = (Σ1,Σ2)>.

In addition, if the characteristic polynomial of Λ is stable then the solutions are asymptotically stable.

3.3. Stabilization control

In this section, we’ll discuss how to use control laws to stabilize the fractal map seen above.

Theorem 4. Under the 1D-control law, the 1D-parameter fractal map∆αx(t) = (1 − ℘ }α(x(t)) + y(t) − x(t)) Γ(1 + α),
∆αy(t) = (` x(t) − y(t)) Γ(1 + α).

(3.5)

can be controlled by

Ux(t) = (℘}α(x) − y − 1) Γ(1 + α), α ∈ [0, 1] (3.6)

Proof. The time-varying control parameter Ux(t) is utilized in the controlled fractional order Henon-
Lozi map, which is defined as∆αx(t) = (1 − ℘ }α(x(t)) + y(t) − x(t)) Γ(1 + α) + Ux(t),

∆αy(t) = (` x(t) − y(t)) Γ(1 + α).
(3.7)

This yields the system ∆αx(t) = (−x(t)) Γ(1 + α),
∆αy(t) = (` x(t) − y(t)) Γ(1 + α).

(3.8)

In matrix form, we get

∆α

(
x(t)
y(t)

)
=

(
−Γ(1 + α) 0
`Γ(1 + α) −Γ(1 + α)

) (
x(t)
y(t)

)
. (3.9)

The eigenvalues corresponding to (3.9) are λ1 = λ2 = −Γ(1 + α). Thus, the zero solution of (3.9) is
bounded. According to Theorem 2, the zero solution is asymptotically stable, and so the system is
stabilized. �

We get the following outcome from the same conclusion.

Theorem 5. The 2D- parameter fractal map∆αx(t) = (1 − ℘ }k(x(t)) + y(t) − x(t)) Γ(1 + α),
∆αy(t) = (` x(t) − y(t)) Γ(1 + α),

(3.10)

can be governed by the 1D-control legislation

Wx(t) = (℘}k(x) − y − 1) Γ(1 + α), α, k ∈ [0, 1]. (3.11)
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4. Generalized testing

In this section, we generalize the zero-one test by using the fractal trigonometric functions to
analyze our results. The zero-one test is formulated by proposing by Gottwald and Melbourne [33–35].
In view of Proposition 1, we select the solution

xn =
1

Γ(1 + α)

n−1∑
j=0

(
1 − ℘ }k(x j) + y j − x j

)
,

yn =
1

Γ(1 + α)

n−1∑
j=0

(
` x j − y j

)
.

Define two translation terms

ρn =

n−1∑
j=0

xn cosα( jτα),

%n =

n−1∑
j=0

xn sinα( jτα).

Next, we formulate the fractal square displacement for xn, where the control law is defined µτ(n) by:

µτ(n) = lim
N→∞

1
N

N−1∑
j=0

(
ρn+ j − ρ j

)2
+

(
%n+ j − % j

)2
.

Hence, the asymptotic growth is formulated by

Gτ := lim
n→∞

∣∣∣∣ log µτ(n)
log(n)

∣∣∣∣.
Obviously, the asymptotic growth ratio approaches to zero in the ordinary case, while heads for one in
the chaotic case. For α = 1 (the ordinary case), we have the generalized Puiseux series by

Gτ ≈
log(2 − 2 cos(1))

log(n)
+ O((

1
n

)2) ≈ 0.

For all α ∈ (0, 1), the gamma function can be approximated by

Γ(χ) =
1
χ
− γ + 1

2

(
γ2 +

π2

6

)
χ − 1

6

(
γ3 +

γπ2

2
+ 2ζ(3)

)
χ2 + O(χ3),

where γ is the Euler number and ζ is the zeta function. Thus we obtain the (see Figure 6)

Gτ =
∣∣∣∣ log(1/n)

log(n)

∣∣∣∣ = 1.

AIMS Mathematics Volume 7, Issue 6, 11399–11416.
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Figure 6. The plot of Gµ, the red one is the ordinary case, which tends to zero, the blue one
is for the fractal case which tends to one.

5. Conclusions

A new fractal-order chaotic map has been devised, displaying a variety of marvels such as chaos
and synchronized attractions. The Yong-like difference operator was used to analyze the FHLS map.
Bifurcation graphs have been provided for both α and k parameters. The FHLS map rests chaotic
across a wide range of parameter space, as a result of the consequences. The existence of solutions is
discussed using the system’s fixed points; the necessary requirements for stability are shown; and lastly,
the system was tested for convergence. As a result, it has a lot of applications in the engineering field,
such as transistors, resistors, conductors, capacitors, and diodes in an electrical circuit. Furthermore,
a spectacular 1D-control legislation for stabilizing the conditions of the recommended map was
established. The fixed point theory indicates that there is global stability. The generalized zero-one test
is used to assess the stability of solutions and provides testing. As future works, we aim to consider
two different four parameters dimensional dynamical systems with Caputo fractional derivative or its
modifications. In this case, the control system will be studied as 2D-system.
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