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Abstract: In this article, we extend the generalized invexity
and duality results for multiobjective variational problems
with fractional derivative pertaining to an exponential
kernel by using the concept of weak minima. Multio-
bjective variational problems find their applications in eco-
nomic planning, flight control design, industrial process
control, control of space structures, control of production
and inventory, advertising investment, impulsive control
problems, mechanics, and several other engineering and
scientific problems. The proposed work considers the newly
derived Caputo—Fabrizio (CF) fractional derivative operator.
It is actually a convolution of the exponential function and
the first-order derivative. The significant characteristic of
this fractional derivative operator is that it provides a non-
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singular exponential kernel, which describes the dynamics
of a system in a better way. Moreover, the proposed work
also presents various weak, strong, and converse duality
theorems under the diverse generalized invexity conditions
in view of the CF fractional derivative operator.

Keywords: Multiobjective variational problem, weak minima,
Caputo-Fabrizio fractional derivative, generalized invexity,
duality

1 Introduction

The present scenario indicates that the fractional differ-
ential equations (FDEs) and fractional variational pro-
blems (FVPs) are being used to delineate the physical
models and engineering processes in a better way. The
clear reason is that the standard mathematical models of
integer-order derivatives incorporating models of non-
linear nature do not perform efficiently in many instances
according to desired results. Recently, the field of frac-
tional calculus has portrayed a significant part in various
areas of knowledge such as chemistry [1], biology [2,3],
mechanics [4,5], and finance [6]. The application area of
fractional modelling and fractional operators encom-
passes anomalous diffusion [7], physics [8], heat conduc-
tion [9], geophysics [10], epidemiology [11], fractals and
fractional derivative [12], computational fractional deri-
vative equations [13], fractional predator-prey system
[14], and porous media [15]. The models related to these
fields utilize fractional derivative operators frequently.
There are various types of fractional derivative opera-
tors in the literature of fractional calculus founded by
so many famous mathematicians. But the most popular
definitions of them are Riemann-Liouville (RL) fractional
derivative and Riesz fractional derivative described in
the studies of Samko et al. [16] and Podlubny [17],
Caputo fractional derivative in refs. [18,19], Weyl frac-
tional derivative [20], Hadamard fractional derivative
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[16,17], Jumarie’s fractional derivative propounded in
works of Jumarie [21,22], Atangana—Baleanu derivative
proposed in ref. [23], and Liouville-Caputo derivative
described in ref. [24]. The interesting fact is that these
definitions of fractional derivative operators have their
own significance and their uses vary according to the
structure and behaviour of particular models along with
initial conditions. A wide literature is available on dif-
ferent perceptions of fractional derivatives. But the most
celebrated fractional calculi are the Caputo fractional
derivative and the RL derivative. The Caputo fractional
derivative handles initial value problems efficiently in
comparison to the RL derivative. The newly introduced
Caputo-Fabrizio (CF) fractional derivative operator pro-
pounded by Caputo and Fabrizio in ref. [25] is actually a
convolution of an exponential function and the first-
order derivative. In this definition, the derivative of a
constant is equal to zero like the usual Liouville-Caputo
definition but it also provides the non-singular kernel
which was not a characteristic of the Liouville-Caputo
fractional derivative. The main purpose of the CF defini-
tion was to introduce a new fractional derivative with an
exponential kernel to describe even better the dynamics
of systems with memory effect.

Recently, some authors presented a new analysis on
fractional modelling of real-world problems and applica-
tion of fractional order Lagrangian approach towards
study of problems arising in physical sciences and engi-
neering. Some recent works related to these fields are
necessary to be cited here. Jajarmi et al. [26] suggested
a general fractional formulation for immunogenic tumour
dynamics. Baleanu et al. [27] presented a new study on
the general fractional model of COVID-19 with isolation
and quarantine effects. Erturk et al. [28] utilized a new
fractional-order Lagrangian to describe the dynamics of a
beam on nanowire. Jajarmi et al. [29] implemented a new
fractional Lagrangian approach to study the case of capa-
citor microphone. Dubey et al. [30] solved the fractional
model of Phytoplankton—Toxic Phytoplankton-Zooplankton
system with convergence analysis. Moreover, a fractional
model of atmospheric dynamics of carbon dioxide gas [31]
and a fractional-order hepatitis E virus model [32] were also
recently investigated with efficient computational methods.

Multiobjective variational problems proficiently handle
the problems of science, engineering, logistics, and eco-
nomics where optimal decisions have to be decided between
two or more clashing objectives. To derive the optimality
conditions it is necessary to study the behaviour of functions
and their derivatives at that point. In the theory of mathe-
matical optimization, the duality principle indicates two
perspectives of optimization problems: the primal problem
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and the dual problem. If the primal is a minimization pro-
blem, then the dual is a maximization problem, and if the
primal is a maximization problem, then the dual is a
minimization problem. The concept of duality considers
a problem with less number of variables and constraints
and so it is much advantageous regarding computational
procedure. Duality results play a major role in construc-
tion of numerical algorithms for solving some specific
types of optimization problems. The duality theory is
applied mainly in economics, management, physics, etc.
On the other hand, calculus of variations significantly deals
with the solution of several problems arising in theory of
variations, optimization of orhits, dynamics of rigid bodies,
etc. It is closely related to optimization of functional and is
expressed in terms of definite integrals pertaining to func-
tions and their derivatives. In the past few years, a number
of contributions have been made towards the duality
results for multiobjective variational problems. For the
first time, Hanson [33] established and developed the
linkage between classical calculus of variation and math-
ematical programming. After that, Mond and Hanson [34]
derived optimality and duality results for scalar valued
variational problems in view of convexity assumptions.
Chandra et al. [35] studied optimality and duality for a
class of non-differentiable variational problems. In this
sequence, Bector and Husain [36] investigated duality for
multiobjective variational problems. Nahak and Nanda
[37] and Chen [38] constructed duality results for multi-
objective variational problems with invexity. Some years
later, Bhatia and Mehra [39] extended further the results
of Mond et al. [40] and explored the optimality conditions
and duality results for multiobjective variational pro-
blems with generalized B-invexity.

The concept of invexity is of great significance in
variational problems and mathematical programming.
Hanson [41] introduced the notion of invexity to mathema-
tical programming. Mishra and Mukherjee [42] presented
duality results for multiobjective FVPs. Furthermore, Mond
and Husain [43] also investigated sufficient optimality
criteria and duality for variational problems with gener-
alized invexity. It is clearly observed that the duality
results derived for variational problems presented in
refs. [40,42,43] that hold for convex functions are also
well-fitted for the wide range of invex functions. Weir
and Mond [44] considered the concept of weak minima
to derive the duality results for multiobjective program-
ming problems. Different scalar duality results have
also been extended for multiobjective programming pro-
blems by Weir and Mond [44]. Mukherjee and Mishra [45]
have considered the concept of weak minima in the con-
tinuous case and have delivered a complete generalization
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of the results of Weir and Mond [44] to multiobjective varia-
tional problems. Moreover, they also relaxed the generalized
convexity conditions to generalized invexity conditions.

Recently, Kumar [46] extended the invexity for con-
tinuous functions to invexity of order m. They further
generalized the invexity of order m to p-pseudoinvexity
type-I of order m, p-pseudoinvexity type-II of order m, as
well as p-quasi-invexity type-I and type-II of order m. In
2016, Kumar et al. [47] also analysed the multiobjective
FVP under F-Kuhn-Tucker (KT) pseudoinvexity condi-
tions. Hachimi and Aghezzaf [48] established the mixed
duality results and the sufficient optimality conditions
concerning multiobjective variational problems under
generalized (F,a,p,d)-type I functions which assimilate
the several concepts of generalized type-I functions suc-
cessfully. Later on, Mishra et al. [49] extended the gen-
eralized type-I invexity and duality for non-differentiable
multiobjective variational problems. In 2014, Wolfe-type
and Mond-Weir-type duality results were formulated for
multiobjective variational control models under (¢,p)-
invexity conditions by Antczak [50]. More recently, Upad-
hyay et al. [51] presented optimality conditions and duality
for multiobjective semi-infinite programming problems on
Hadamard manifolds utilizing generalized geodesic con-
vexity. Moreover, Upadhyay et al. [52] also investigated
Minty’s variational principle for non-smooth multiobjec-
tive optimization problems on Hadamard manifolds. Guo
et al. [53] showed applications of symmetric gH-derivative
to dual interval-valued optimization problems in a very
efficient way. Furthermore, optimality conditions and dua-
lity for a class of generalized convex interval-valued opti-
mization problems are recently investigated in works of
Guo et al. [54].

The main purpose of this study is to derive the weak
and strong duality results for multiobjective variational
problems pertaining to a CF fractional derivative operator
with exponential kernel. The CF fractional derivative pos-
sesses the non-singular kernel and so is better than the
Caputo and RL fractional derivative operators. The pro-
posed work presents the derivation of duality as well as
strict converse duality theorems for variational problems
with CF fractional derivative by employing some proposi-
tions and theorems of fractional calculus. In this article,
we propounded first the optimality conditions for the
variational problem. Furthermore, we present Theorem
1 which proves that a minimizer of the variational pro-
blem is a solution of the fractional Euler-Lagrange equa-
tion containing the CF fractional derivative. Now, we
derived the formula for integration by parts for the CF
fractional derivative in Proposition 1. The extended
invexity definitions in view of CF fractional derivative
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operator along with Proposition 1 and Theorem 1 have
been the key motivation behind the study of the variational
problems with fractional calculus approach. Theorem 2
proves the fact that if a function is convex, the solution of
the fractional Euler-Lagrange equation containing the CF
fractional derivative will be a minimizer of the variational
problem. Theorems 3 and 4 present the results for primal
variational problems having a weak minimum. Furthermore,
Theorems 5-10 are concerned with weak and strong duality
results depending on the CF fractional derivative. Finally,
Theorems 11 and 12 provide the strict converse duality results
in view of the CF fractional derivative.

In the present work, the concept of weak minima has
been considered and the generalizations of weak, strong,
and strict converse duality results of Mukherjee and
Mishra [45] have been extended to multiobjective varia-
tional problems pertaining to the CF fractional derivative
operator. The remaining part of the article is organized as
follows: In Section 2, we present the elemental defini-
tions, formulae, and theorems regarding invexity and
fractional derivative operators. Section 3 derives weak
and strong duality results. Section 4 presents a strict con-
verse duality result. Finally, Section 5 records the epi-
logue for the proposed work.

2 Basic definitions, theorems, and
symbols

We follow these definitions and symbols in the present
article.

Definition 1. [55]: The left and the right RL fractional
derivatives of order a are defined by

DY) = j & - T y(o)dr,

T(1 - a) d§

b
. 1 d a
Dpy(§) = —md—f'!‘(‘f =&y %y(ndr, ae< (0, 1).

Definition 2. [56]: The Caputo fractional derivative of
y(&) : [a, b] — R of order a € (0, 1) is stated as:

DLy (&) = —[y(1) - y(@)ldr

- a) dfj(f

Ify € C!, then
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DLy (&) = y'(T)dr.

1 J 1
rA-a)J (§-1)
a
As a — 1, °D%y (¢) approaches to y'(¢).

Definition 3. [25]: The new CF fractional derivative operator
is described as follows:

CFD3+ — K(a) J- ( a(é’ T))y (T)dT

a € (0, 1),

where K(a) signifies the normalization function with the
property K(0) = K(1) = 1. Clearly, “D%,y (¢) = 0 if y(&) is a
constant function, i.e. the CF derivative of a constant
function vanishes to zero same as the Caputo derivative
but kernel of CF derivative does not have singularity for
¢ = 1 like the Caputo fractional derivative. It is remark-
able that the CF fractional derivative has an exponential
kernel.

Remark 1. Here we consider the value of K(a) as (1 — a) +
a
@

Remark 2. Asa — 1, CFDZ‘J (&) approaches to y’(¢) and as

CFDD(

a — 0, " Dg,y (§) approaches to y(§) — y(a).

Definition 4. Abdeljawad and Baleanu [57] have defined
the right CF fractional derivative as

“Diy (&) =- —a(l%_j))y’(r)dr,

b
K(a)
1-w : exp(

ae€ (0, 1).

Definition 5. The first-order Sobolev space defined in the
interval (a, b) is stated as H'(a, b) = {x € L¥a, b) |x’ €
L?(a, b)}, where x’ denotes the weak derivative of x.

Definition 6. [25]: Let y € H'(a, b), b > a, 0 < a < 1, then
the CF fractional derivative is stated as in Definition (3),
where K(a) specifies the normalization function with
characteristic K(0) = K(1) = 1. If the function y ¢ H'(a, b),
then the derivative is formulated as follows:

a(é’

CFa

y ()=

3
a K@ ex( )y(e) y (0)ldr.
1—0{

Here, the CF fractional derivative has an exponential
kernel.
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Definition 7. [57]: Let x be a function in such a way that
x € H'(a, b) a < b. The left Riemann fractional derivative of
order a in the CF sense is given by
K(a) d a
DL Y(E) = exp[——(€ -0lyar,
d.{ 1-a

where a < &, a(0 < a < 1) is a real number and K(a) is a
normalization function depending on a with K(0) = K(1) = 1.

Similarly, the right Riemann fractional derivative of
order a in the CF sense can be written as follows:

b
CRDE (&) = K(a) d exp[

(14
Haae] ol (- &) o,

where & < b.

Remark 3. When a — 0, hm CFRDE y(&) = dé’.[ y(t)dr =
y ().

Proposition 1. Leta € (0, 1) andy, z : [a, b] — R be two
continuous functions of class C'[a, b]. Then the following
formula for integration by parts holds:

b
[MGREIG

b

- O 1Y O + [20 gy © e,

a

Proof. We define the left and right auxiliary fractional
integrals as

I5%(8) = ’“"‘)

j (-1 € - D, @

b
K(a)

Now in view of Definition (3) and Eq. (1), it is con-
cluded that

%) =

« (r—f))Z(r)dT- @
- Q

“Diz (&) =1I; “—z ©. 3)

d¢

b
In the next step, we evaluate the integral J y (&)
a

Fp z(¢)d¢ as follows.

Using Eq. (3) along with further utilization of
Theorem 1 of ref. [57] and integration by parts for clas-
sical derivatives, we obtain
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b b
jy(s)CFD;*J @) ds = j y(f){wd—{z(s)}df

b

- j (32@) “y(£)dE

jl& “y(€)(—2(€))d€

b

— O Y@L - jz({)

a

[t

(S

1- a
-T) y(T)dT

Now in view of Definition 7, we obtain

b
[rerezoag

b

~ OB 1+ j 2EPRDE y(@)de. O

a

Definition 8. (Optimality conditions for variational
problems):

The following variational problem with the CF frac-
tional derivative is considered here for given y € Cl(a, b),

b
minV(y) = jo(& ¥(©), D y(@)de, (4)

with y(a) = y, and y(b) = y,, where y(a), y(b) € R. The

assumptions are as follows:

1. Q: [a, b] x R? — R is continuously differentiable w.r.t.
the second and third arguments.

2. Given any x, the map & — “™®DZ (35Q(¢, y(¢), F DY,
y (£))) = 0 is continuous.

Here, we denote 9;g(y;, V5, ... ¥,) = .y fora

(YP Y2 .-
function g : T € R" — A.

Theorem 1. Let y be a minimizer of the variational V(y)
defined on E = {y € CX(a, b) : y(a) = y,, y(b) = y,,}, where
Yoo Vi € R are fixed. Then y is a solution of the following
fractional Euler-Lagrange equation:
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RQE, y(©), DLy (©)

+ SRDE @00, (), TDEy () = 0, E € [a,b].
Proof. Let y be a solution for the functional V(y). Assume
y + 6w be a variation of ywith|6| <« 1,and w : [a, b] —

be a function of class C![a, b] in such a way that the
conditions w (a) = w (b) = 0 hold. Let 9(6) = V(y + dw).
Since y satisfies Eq. (4) as a solution, the first variation of
V must vanish, and hence 9'(0) = 0. Now, computing 9'(6)|s-o,
equating to zero, and further employing Proposition 1, we have

b

jazo(s, Y(&), DL y(@)w(€)dE

a

b
+jaso(£, y(€), DLy () D2, w(£)de

b
- j 0,00, y(©), D2 y(E)w(€)de

b

+ Iw(é’)CFRDZC(asQ(& V&), FDEy(E))dE
+ TR @50, (&), DLV @D

b
- [ 122066, v, 2y

+ RDE (3;Q(¢, y(&), DLy (ON]w(@)dE,
(v w@=wbhb)=0)=0

Now utilizing the boundary conditions w (a) = w (b) =
0 along with the assumption of arbitrariness of w, we obtain
the desired equation as:

3,Q(, y(&), DLy ()
+ FRDE (35Q(, y(&), DL y()) =0V e[a, b]. O

Remark 4. Eq. (5) is called the Euler-Lagrange equation
associated with the variational V(y) and the solutions for
this equation are termed as extremals.

Remark 5. It is notable that Eq. (5) provides necessary
criterion only. Now to obtain sufficient criterion, the con-
cept of convex function is necessary to recall.

Definition 9. A function Q(¢, p, N) is said to be convex
in T ¢ R; if Q possesses continuous derivatives in respect
of the second and third arguments and also satisfies the
following inequality:
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Q(é" ©+ P N+ Nl) - Q(‘f’ > N)
> 0,Q(8, g, Ny + 03Q(8, g, NNy,

VY, g, N), €, p+p, N+X)eT.
Theorem 2. If the function Q as described in Eq. (4) is
convex in[a, b] x R?, then each solution of the fractional
Euler-Lagrange Eq. (5) minimizes V in E.

Proof. Let y be a solution for the fractional Euler—
Lagrange Eq. (5). Assume y + 6w to be a variation of
y with || <« 1, and w : [a, b] —» R is a function that
belongs to C'[a, b] such that the boundary conditions

w(a) = w(b) = 0 hold. Now, we compute V(y + éw) — V(y)
in view of Definition 9 and Proposition 1 as follows:

V(y + 6w) - V(y)
b

= {10,y + 80(&), Dy + DL W(E)
; Q. ¥(©), DLy ()1

> [ 10,066, y(©), “DEyE)8w®)
a+ 3Q(E, y(&), DGy DG, w(§)]dE

b
- j 9,0, y(©), D% y(E)bw(&)dE
‘ b
+ j 95Q(¢, y(&), D y(£)8 D%, w(&)de

b
- [2:06.y©), “Dty @80 (6)
+ Blw(@)B-5Q(E, y(©), "Dy (EN,

b
v j 5w (&)RDE 35Q(, y(&), FDE y(£)dE
b a
- j 9,00, y(&), FDL,y(©))bw(@)dE

b
+ [ B0 ng 0,0, y(©), “Dy€)dg
(" w (@) =wb) =0),
b
- j [0, (&), D2, y(&))

+ FRDE 35Q(¢, (&), FDEy(€)]Sw(&)dé.
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Since y is a solution of the fractional Euler-Lagrange
Eq. (5), we have

3,Q(, y(&), DLy (&)
+ FRDE 3;Q(&, y(&), FD,y(§)) = 0.

Hence in view of Eq. (7), Eq. (6) provides the inequality
as follows:

@)

Vy + éw) - V(y) = 0. (8)
Consequently, V(y + éw) > V(y), which implies that
y is a local minimizer of V. O

Definition 10. Invexity definitions

LetQ = [a, b]bearealinterval. Let g : Q x R" x R" —
R be a continuously differentiable function. Consider
g, y), CFD;‘J({ )), where y : Q— R" is a function of
class C'[a, b] and “"D2,y represents the CF derivative of
order 0 < a <1 of a function y. We denote the partial
derivatives of g by

3 ay'” dy’ oy ay"
8cpay = [ CFai , CFaga ’
o o"Dg,yH)  0o("Dg,y?
dg ag
A DLy A Dy ]

Let Y be the space of piecewise smooth functions
y : Q— R" along with the norm ||y|| = |[¥]leo + IDYlloos
where the differential operator D is described as follows:
¢
v=Dyeyl)=y+ JV(s)ds,
a
where y, signifies the boundary value.
b
Let G: ¥ — 9% defined by G() = [ (&, y(€), D,
a
y(&))d¢ be Fréchet differentiable. For notational conveni-
ence g(¢, y(£), “Dg,y(&)) will be written as g(¢, y, ““D§,y).
Here, it is assumed that g(¢, y(¢), D2 y(¢)) is convex

in 9% if 3,g and 03¢ exist and are continuous, and the
condition

g€,y + v, “Diy + DLy, - g€, y, “DL.y)
> 8,(&,y, DGy + e (€, v, DG YDy,
holds for every (¢, y, “D2.y), (&,y + Vis Dty + CFDng)

€ 9%. Here, 0,g and d3g denote the partial derivatives of g

with respect to y and “FD%,y, respectively.
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Let y be a solution of the variational functional
b
GW) = | 8. y(©), "D y(E)dE vy e Y and &< a,b]

Lety =y +n(§,y,y) and np € C'[a, b] with n (£, y, V)l¢-a
=1, ¥, ¥)le=p. Clearly also n(§,y,y) = 0

Now utilizing the linearity property of the CF deriva-
tive operator and further the convexity assumption of

g(&, 7 (&), "D%.y(¢)), we have
G()’) -Gy =Gy +n) - GY)

j[g(f y(&) + n&,y, 1), CDLy(&) + “Dgn(E, y, )
b—g(‘s, y(©), Dy, y(E)1d¢
> 18, 7, S 3N € v, )
) gerpe (&, 9, TDEIENTDENE, v, PIAE
_[[rz(f Y. 8,(E. 7 (), DEIE)
+ ("Dg (&, y, Y)gerpa (&, ¥(&), DG y(E))]AE.
Clearly,
60) - 65> [, v, g€ 7, DLy

a
+ (DG, y, P)gerpe (&, 7, OGNS,
Vy,yeV.

Clearlyasa — 1, the above obtained inequality reduces
to

d¢ d¢

D —

b
g(é', y(©), iy({))d& - | g(f, 76, iy({))d&

b

j{n N2 y)gy(f Vs 75 { )

( 015?1(',r Y y))gdy(é” Vs = & )}dé'

which is the definition of invexity in the continuous case
extended by Mond et al. [40]. It is notable that if the
function g is independent of ¢, the above given definition
of invexity transforms to the inequality g(y) - g(¥) >
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1 (v, 7)g;(¥), which is the fundamental interpretation of
invexity prescribed by Hanson [41].

Example 1. The proposed inequality which is derived
earlier is given as follows:

W) - G)
> [0, v, g€, 7, D29 (©)

+ ("D§n(E, y, y)gerpe (&, ¥, DG, 7)HE.

Lety =&,y =2y, 9=y -7, 8¢,y “D¢

E+y+ D8y, and g(&,y, “Dy) = &+ y + “DLy.
Then

&y, »=y-y=&Din¢&y,y) ="Ds¢, (10)
g&, v, Dly)=¢E+y+ DLy = 1)

Now utilizing the formula of CF derivative, we obtain

+)7)=

28+ “Fp2 &,

CFa

D¢ = (1I<Ea))j (——(5 T))dr

- %[1 - xp(—m(i— a))]’

where K(a) = (1 - a) + ri signifies the normalization
function with the property K(0) = K(1) = 1.
Thus,

(12)

“Din &y, y)

= @[1 - exp(—ﬁ(f— a))],

g(&, 7, DLy)
_ g, K@ )[

(13)
and

of-2ge-a)) ™

Now

N () (_ @, )
gy(é” y’ Da+)’) _2+ (1 _a) eXp 1_a(£ a) ’ (15)

gCFD,‘;y(‘{’ )7! a+Y) =1L

Now, we evaluate the term G(y) — G(y) of the afore-
mentioned proposed inequality (9) in view of Eq. (14) as
follows:
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b
6() - G() = j &,y (&), FDLy(E)dE

b
- jg(rs, §(£), DL y(£)dE

(16)
Loy K@ g
2 a
N K(a)(lz— a) exp(— a(b - a)) _ K@@ - (x).
a 1-a a?

In this sequence, we also evaluate the integral term
of the proposed inequality (9) in view of Egs. (10) and (15)
as follows:

[y, 8,65, Di7)

+ (CF a+rl(§' Y, y))gCFDa’ﬂy(‘f }7’ CFDa+y)}d£

— (b2 _ aZ) _ bﬂ exp(_—a(b - a)) (17)
a 1-a
2K(oz)(l2 -a) exp(— abh - a)) ~ 2K((J()(l -a)
a 1-a a?
pX@,
a

Case I: Fora=0, b=1, a=05, K(a)=(1-a) +
the proposed inequality is satisfied.

CaseIl: Fora=0, b=1, a=0.2, K(a) =1 -a) +
the proposed inequality is also satisfied.

a
T(a)’

T ( T’
Consequently, it is concluded that the proposed

inequality (9) with CF fractional derivative holds

well for the function g(¢, y, “D%,y) = 2¢ + {— + %a)}

[1 - exp(—ﬁ{)], where 0 < a < 1.

Now, we extend the definitions of invex, pseudoinvex
(PIX), strictly pseudoinvex (SPIX), and quasi-invex (QIX)
as described in ref. [58] with the CF fractional derivative
of order O < a < 1 in the following way:

Definition 11. Invex

The functional G is stated as invex with respect to n if
there exists a differentiable vector function n (&, y,y) €

C'la, b] with n(¢,y,y) = O such thatV y,y € Y,

GW) - GW) > I{n(€, v, 1)8,(&, 7, DLy

+ (DI, y, P)gerpe /&, ¥, DI IE.
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Definition 12. PIX

The functional G is stated as PIX w.r.t. n if 3 a differenti-
able vector functionn(¢, y, y) € Clla, b]withn(¢,y,y) = 0
such thatvy,y € Y,

j 16y, 7)8,(€, 7, “DE)

+ ("Dgn (&, y, ¥)gerpe (&, 7, TDG)}E 2 0
= Gy) = GY),

or equivalently,

60) < 65) = [{1 €.y, D)8, (€, 7, “DE)
+ ("DEn (&, y, P)gerpe (&, ¥, TDE AL < .
Definition 13. SPIX
The functional G is stated as SPIX w.r.t. r7 if 3 a differenti-

able vector function n(¢, y, y) € C'[a, bl withn(&,y,y) = 0
such thatVy,y € Y,

[ €y g6 7.“Dep)

+ (DG &, v, gy 5§ 9 DG YIS = 0
= G) > Gy),

or equivalently,

60) < 60) = [t €y 7)8(€, 7. “DEP)
+ (D& (&, y, y)gerps (&, ¥, FDEIE < 0.

Definition 14. QIX

The functional G is stated as QIX w.r.t. nj if 3 a differenti-
able vector function n(&, y, y) € C[a, bl withn(¢,y,y) = 0
such thatVy,y € Y,

[ &y s 5. i)

+ (D50 (&, y, y)gerpa (€, 7, DG 7)}dE > 0
= G(y) > Gy,

or equivalently,

60) < GO = [t €y 98,7, “DL)

+ ("Dg,n (€, y, ¥)gerpe (&, 7, DG )}E < 0.
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“DEn (&, y,¥) is

the vector whose ith component is (d%/d¢%) ni(¢, y, ¥).

In the aforementioned definitions,

Let g(&,y,“" D%y (£)) be a real scalar function and
h(¢,y, CFDg‘+y (¢)) be an m-dimensional function with
continuous derivatives up to the second order with
respect to each of its arguments. Here, y is an n-dimensional
function of & and “*DZ,y (¢) denotes the CF fractional deri-
vative of order a with respect to £ where 0 < a < 1.

Now we deal with the multiobjective variational primal
problem, as discussed in the work of Mukherjee and Mishra
[45], with the CF fractional derivative operator in the fol-
lowing way:

(P) Minimize

b
jg(s, y (©), DL y(©))de,

subject to y (a) =y,, ¥ (b) =y,
(&, y(©), “Diy () <0,

where g: [a, b] x R" x R" —» RP and h: [a, b] x R" x
R > R 0<ac<l

For the primal problem (P), a point y,, is referred to as
a weak minimum if there exists no other feasible point y
for which the following inequality will hold

b
jg(s, Yo (£, D2 yo())dE
a (18)

b
> jg(& y (&), D2 y())de.

Now, we frame the continuous versions of Theorems
2.1 and 2.2, as described in the work of Weir and Mond
[44], involving fractional derivative operators with expo-
nential kernel in the following way:

Theorem 3. Let y = y, be a weak minimum for the primal
problem (P). Then 3 A € RP, z € R™ such that

ATg, (&, o(), DG 306
+2@Thy(&, Yo (©), “DEY(§))

19)
= - Ry [ATgerpe /(&) Yo(&), D5, Yo(E))
+ 2(&)Therpa (€, Yo (6, “DEVEN]
2(E)h(E, yo (§), “DE,yp(8)) = 0, (20)
A,y) = 0. 21)
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Proof. The proof is easily established through Theorem 1.
O

Theorem 4. Let the primal problem (P) have a weak
minimum at a point y,, which satisfies the KT constraint
qualification. Then 3 A € RP, z € R™ such that

ATg, (&, o(©), DG 36
+ 2O hy(&, ¥o(&), DG

2
= - CFRDZ-[/\Tg crpe v (§5 Yo (), CFDZ+Y0(£ )
+ 2(&)Therpa /(€ Yo (&), DG Y],
2()Th (&, yo(&), “Dg.yp(©)) = 0, 23)
z(&) =0, (24)
A) =0, ATe =1, (25)

wheree = (1, ..... ,1) € P,

Proof. The proof is easily established through Theorem 1.
O

3 Duality

In relation to the primal problem (P), the dual problem
(D) as discussed in ref. [45] is considered with fractional
derivative operators pertaining to exponential kernel in
the following way:

(D) Maximize

b
_[{g (&, v(&), DG v(&) + 2(E)Th(E, v(&), “"Dg,v(§)e}ds,

subject to
y (a) =Yoo Y (b) =W (26)

8,&,v(), DGy (©) + 2()Th(&, v(&), DG v())e

= - ORDy [gerpe (&5 v(E), FDEV(E)) @7
+ 2(E) herpa (&, v (€), “DEv(E))el,
z>0. (28)
Ae A,
where
A=fAeRP: 120, Me=1}. (29)
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In upcoming steps, we discuss the duality theorems,
as discussed in the work of Mukherjee and Mishra [45],
with the CF fractional derivative operator of order 0 < a < 1
as follows:

Theorem 5. (Weak duality): If, for all feasible (y, v, z, A),

(a) j:{g(f, v(€), D2 V(&) + z(E)Th(E, v(£), D2, v(£))e}
d¢ is PIX or

(b) [T, v(©), SDEVE) + 2R, V), “DEVEN)
d¢ is PIX, then

b
j (&, y(©), D y(€))de

b
¢ [, v ©, “Dev©)
+ 2(E)Th(E, v(§), “Dg,v(&))e}ds.

Proof. (a) Let y be feasible for (P) and (v, z, A) feasible

for (D).
From Eq. (27), we have

b
[ n &y viee v, oy @)
Thy(&, v(&), FDS, d
+Z§) &, v(&) v(¢&))e}dé (30)
= = [ 16y, VDRt e €, ), DEVED)

+ 2(E) herpg (&, v(E), DG V(E))e}dé.

Suppose contrary to the result given in statement of
Theorem 5, i.e.

b
'[g(f L ¥(©), DS y(&))dg

b
< j{g@, v(&), D V(&)
a G31)
+ 2(E)ThE, v(E), DR v(E))e}dE
b
- j{g(f, y(&), D%,y (©)

+ 2(OTRE, y(©), “Dg,y(©))edé
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b
CFna
<!{g(s, v(&), D% v(£) o
+ 2(&)Th(E, v(E), TDEv(E))e}dé.

Now, use of pseudoinvexity of Jj {g(&,v(é), CFDZJ(.{ )+

2(&)Th(&, v(&),FD2 v(¢))e}d¢ along with the above obtained
inequality (31) provides

b
j M, v, VI8E, v(E), TDEV(E))

+ 2@)Th(&, v(E), “DEv(E))e]
+ “DEn(E, v, Vgerps (&, V), TDGVE)
+ 2(&) herpe (&, v(&), DG V(E))el}dé < 0,

or

b
[ n& v, vis e v©, g

+ 2R, V(E), DL, v(E)eldg
f 32)
+ [ Tgeng i & VO, DL )

+ Z(‘f’)ThCFD;‘,rV({)({’ V({)r CFD;X+V(€))6]CFD(‘;+
n(, y, v)dé < 0.

Now using Proposition 1 in the above obtained
inequality (32), we have

b
[ n&. v, vis e v©, “oev©n

+ 2 h(§, v(©), TDGv(§)eldg
+ [0, y, =g € V&), “DEVE)
+ 2 herg (&, v (), DV,

b
+ frz(f, Y, VITRDY {gerpa (&, v (©), DG V(&)

+ 2() herp o (&, V(E), FDEV(E))e}dE < 0.

rl(‘f’y’)/) =0,

we obtain
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b b
jn(s, y, Vg, (&, V&), FDEv(£) '[n(sf, y, VT8, v(E), FDEV(E))
T CFna T CFpa
+ i(e) (&, v(&), “Dg,v(&))eldé 33 + zb(s> (&, v(&), D v(&))idE G4
+jn(£, Y, VITRDE {gerpe (&, v(E), DG V(&) = - jn(s, ¥, V)TRDE ATgerpe (&, V(E), DG V(&)
+ 2(E) herpa (&, V(E), DG v(€))e}dé < 0. + 2(&) hespa (&, v(E), DG V(E))AE.
Now in view of Eq. (30) and inequality (33), we have Suppose contrary to the result given in the statement
b of Theorem 5, i.e.
j 0 &y, V)Ig &, v(©), FDEVE) b
) [EXFGRATG)
+ 2(O)hy(&, v(&), DL v(&))eldE a
+2(E)Th(E, y(&), D2,y (&))e}dE (35)

b
[ 6, v, VD Aoy e €. vIE), FDEVED b
) RGRCAG)
+ 2(&) herpe (&, v(&), DS, v)eldE = 0 < 0, a
o o + 2(E)Th(E, v(£), “Dg v())e}de.
which is a contradiction.

Hence, Multiplying the aforementioned obtained inequality
(35) by AT and using ATe = 1, we obtain

b
[ 186y, “D2.y) + 2R &), FDy(EVeldg b
) ng(f, y(€), D%,y (£)

b

¢ j{g(f (), D V() + 2(§)Th(E, y(&), “Dg,y(&))}dé (36)
a b

+ 2(&)Th(E, v(£), FD2 v(&))e}dé. < I{ATg(s( (), DG V()

a

Thus, the supposition (31), which is contrary to the
+ 2(E)Th(E, v(§), "D v(E))}dé.

result given in the statement of Theorem 5, is wrong and

tl b
consequently Now, the pseudoinvexity of | ATg (¢, v(&), DE,v(&)) +
2(&)Th(E, v(&), FD2,v(¢))}d¢ along with the above obtained

b
CFna
_[ 8(5,¥(§), " Day(§))dd inequality (36) provides

b b
¢I{g (&, v(), "D v(&)) _[{'1(5 LY, VI, (&, v(©), DL v(&))
+ z(E)Th(E, v(§), “Di,v(§))e}dé. o + 2(O)h(&, v(§), D, v(&))]
(b) Let y be feasible for (P) and (v, z, A) feasible + DG, y, VA gerpe )&, v(§ ), “Dg ()
for (D). + 2(E) herpa (&, v(&), DS V(E)HE < 0,

Multiplying Eq. (30) by AT and usingATe = 1, we
obtain or
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b b
fn (&, ¥, VINTg, &, v(&), DL v(&)) jg(f, y(€), DL, y(&))de
+ 2(Th(&, v(©), DG vE)IdE i -
: (37) ¢J{g(€, v(&), FDE (&)
b | g6 V(). DLV g
+ 206 herpe o (&, V(E), DL V()DL + 2O V), DG V(ENeds. -
né,y,v)dé < 0. Theorem 6. (Strong duality): Let the primal (P) have a

d weak minimum at y,, which satisfies the KT constraint
qualification. Then there exists (z, A) in such a way that
(Vo 2, A) s feasible for (D) and the objective values of (P)
and (D) are equal. If also,

(@ |18, v(®), FDEVEN + 2 hE, v(©), DL V(E)e)

Now by using Proposition 1 in the above obtaine
inequality (37), we have

b
[ ey vine & v @, i

+ 2(h(E, V(E), FDEVENIAE 46 s FiXor
+ [, v, VB AT gerge e (&, V&), D2V (E)) (b) | ATg (&, (&), “DEVE) + 2(§)Th(E, v(§), DL VE
a -b (38) ;
+ 2(8) herg e (&, VE), FDE VN d¢'is PIX,
) §=a then (y,, z, A) is a weak maximum for (D).
CFR CF

+ J"l(‘f’ Y V) Dy AT gerpe 6§, V&), Dgv(§)) Proof. Since the primal (P) has a weak minimum at

a Yp» Which satisfies the KT constraint qualification, by
+ 2(&) herpe (&, v(E), D v(E))E < 0. Theorem 4,3z > 0, A > 0, ATe = 1 such that

1§, y,y) = 0, the above obtained inequality (38)  ATg (£, y,(£), “Dg,3,(£)) + 2(&)Thy(£, yo(&), “Di.yo(8))
duces t
reduces o = = RO (gt o€ Yo(©)s DL Yo(©)
+ Z(f)ThCFDg+y({)(£s )/o(f), CFDg+yO(€))]’

b
[ ne v vine & ve), v
2 and z(E)h (&, yo(&), FDE,y,(€) = 0. Hence, (5,2, A) is

+ 2(&)Th,(&, v(&), FD2 v(&))]d¢ feasible for dual (D) and the objective values of primal
b (39) (P) and dual (D) are equal.

+ In(é’ .Y, v)CFRDg_{ATgchgJ(Q({ ,v(&), DR v(&)) If (3, 2, A) is not a weak maximum for (D), then a
a feasible (v*, z*, A*) for dual (D) occurs so that

2§ e g6 VEE), PDLVENIAE < 0. b
[EXBIGRRNG)

Now in view of Eq. (34) and inequality (39), we have

f + 2 (ETh(E, yp(&), FDE,yp(€))edde

f n(E, v, VN, &, v(&), FDEv(E)) ) ° ° (40)

a < j{g(s, V&), D% v (§))
+ z(&)Thy(&, v(§), ““DZ,v(§))]dE p

f + 2°ETh(E, vi(€), D2 v (E))elds.
b [0y, vITDE g e (€, VO, TDENEO)

(a) The pseudoinvexity of j:{g(f, VE), DS v (E)) +

(T h, vi(&), CF DJ.v*(&))e}d¢ together with the above
obtained inequality (40) gives

+ 2 herpa (&, v, FDEV)}E = 0 < 0,

which is a contradiction. Thus, the supposition (35) is
false. Consequently,
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b
j{n(f, Yor VG, v(E), FDE V()

+ 2(E)Th(&, vi(&), FDg v (E)el
+ D3N, Yo Vgerpe o6& Vi), TDEVE)
+ 2°(&) herpa (&, v*, DS v¥)e]}dé < 0.

Since A* > 0 thus multiplying inequality (41) by A*
and using A*(¢)Te = 1, we obtain

b
_[{n(f s Yo VIR ()78, (€, vi(©), DG, v(§))

+ 2(E)Thy (&, v(£), D5 v (£))] (42)
+ DG, Yo VIIX(E) gerps o€, v, DG, V")
+ 2°(§)Therpa (€, V7, “Dg v dé < 0.
Now by using Proposition 1 in inequality (42),
we have

b
In(f s Yo VIR ()8, (€, vi(§), DG v (§))

+ 2 (E)Th &, vi(&), “Dg v ())]dE
+ [1(€, Yoo VLA () gerpa ey
& v'(©), D2y (©))
+ 2§ herpg (€, v, DV

(43)

b
# [0y vITRDE g€, v, DR
a

+ 2°(§)Therpe (€, V7, “Dgv)de < 0.

- n&,y,y) =0, inequality (43) reduces to
b

J"Z(f Yo VIR ()8, (&, vi(§), DG ,v*(§))

a

* Ty * * CFpa .«
+2°(§) (&, vi(§), " Dg,vi(§))]dé (44)

b
+ J‘n(é" Yo v*)CFRDg—{A*TgCFDgw*(f)('f’ v CFD3+V*)
a

+ 2°(&)Therpa (&, V7, “Dgv)HdE < 0.
Since (v*, z*, A*) is feasible for (D) thus from Eq. (34),
we have

b

[ 1660 v 8,6 v, FDEv )

a

+ 2°(E)hy (&, vi(&), FD2 v (&)}

(45)
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b
= - jﬂ(f » Yo V*)CFRDg-{A*TgCFD;;M(f)(f v, DG, v
a

+ 2°(&) herpa e (€, v¥, DS vME.

Using Eq. (45) in inequality (44), we obtain

b
[ 16 o oI 6 v, i)
+ 2°(E)Th*(&, v*(&), D v*(&))]d¢
b
+ J"T(& Yo V*)CFRDZZ{A*TgCFDgJ*(g)(f, v, “Dg v

+ 2 () herpe (€, v, Fp2 yv*)dé =0 < 0.

This is clearly a contradiction. Hence, the supposi-
tion of the existence of feasibility of (v*, z*, A*) for (D) is
false and consequently (y,, z, A) is a weak maximum for
(D). O

(b) The proof of part (b) is very similar to that of
part (a).

We now consider the following dual problem (D1) in
relation to the primal problem (P).

(D1) Maximize

b
j (&, (&), DL v(E)dE

(46)
subject toy(a) = y,, y(b) =y,
Ng,(&,v(&), “Di v(&)
+ 2(&)Th(&, v(&), D§ v(&))e
C DS g (6 v (O, FDEVE) )
+ 2(8)Therpa ye) (&, V(E), FDGVEN],
2(&)Th(E, v(§), i V(&) 2 0, (48)
z>0. (49)
A € A, where
A=AeRP:1>20, ATe=11}. (50)

The next step is to establish the weak and strong
duality theorems, as discussed in the work of Mukherjee
and Mishra [45], with the CF fractional derivative opera-
tors. O

Theorem 7. (Weak duality): If for all feasible (y, v, z, A),
(@) j:g(g, v(&), FDZ,v(€))d¢ is PIX and I:z(f)Th(f, v(§),
CFDE v(£))d¢ is QIX or
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(b) [ ATg(&, v(&), DI V@ENAE is PIX and [ z(€)Th(E, v
(&), D2, v(&))d¢ is QIX or
© ['86, v(®), DLV is QX and [ 2 h(E, v(E),
CFD2 v(&))d¢ is SPIX or
b CFna . b
@ [ g, v, “Div(E) d§ is QIX and [ 2()hE,

v(&), FD2 v(&))d¢ is SPIX.
Then

b
jg(& y(&), DL y(£))dE
‘ b
¢ j (&, v(&), FDE v(E)de.

Proof. (a) Let y be feasible for primal (P) and (v, z, A)
feasible for dual (D1).
Suppose contrary to the result, i.e.

b
_[g(€, y(&), DL y(£)dE
a (51)

b
< jg(s, v(), D2, v(€))dE.

b
Thus, in view of the pseudoinvexity of I g, v(é),
a
Fp2.v(¢))dé, we have

b
j{n(& Y, V&5 V(E), FDEV(E))

+ (" DE (&, v, Vg, (&5 VE), DG V(E))}E < 0.
T A=20,

we have

b

j{n(f, y, VITg, (€, v(&), DL v(£))
a (52)
CFDaHI(‘f Y, VAT 8CFpry (&)
(& v(&), D5 v(E))dé < 0.

From the constraint of the primal problem (P),
we have

h(, y(&), 'Dg,y(&)) < 0.
. z(&) = 0 therefore

2(E)h(E, y(&), “Dg.y(©)) < 0. (53)
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Now from the constraint of the dual problem (D1),
we have

2()Th(E, v(§), D)) = 0. (54)
Combining both inequalities (53) and (54), we obtain
z(&)h(E, y(©), D5 y(©)) < 0 < z(&)h(E, v(§), D5 v(&)),

or

2(E)Th(E, y(&), FDEy(&)) < 2(&)Th(E, v(&), “D2,v(&)),

or

b
jz({)Th(f, y(©), D2, y(£))de
“ (55)

< j 2(&)Th (£, v(&), FDE v(&))de.

a
Now, inequality (55) together with the quasi-invexity
b
of ja 2(ETh(E, v(&), DS, v(£))d¢ implies that

b
j{n(f, Y, V2 h(E, v(E), FDEv(E))
J (56)

+ DL N, y, V2O hospg (€ v, FDEVINE < 0.

Now adding inequalities (52) and (56), we obtain

b
j{n(f, y, VN, v(&), D v(E))
T CFnha
* 2EHAE V), DLV g -
j (CDENE, y, VNG, e (& V(E), FDEV(E))

+ 2(&)Therpe )&, v, DS V)IAE < 0.

Now by using Proposition 1 in inequality (57),
we have

b
j{n(e’, y, VINTg, (£, v(&), FDE.v(E))

+ 2(E)Th (&, v(&), DG v(E))]}d¢
+ (&, v, VB W gaps , (&, v(E), TDEV(E))

= 58
+ 2§ herpg (&, V(E), DEVEN, o

b
+ [0y, VDR g €, V), FDEY (€)

+ 2() e y (&, V(E), FDEVENIE < 0.
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Using Eq. (47) and n(¢,y,y) = 0, inequality (58) b
reduces to < [z v @, “psvenna
‘ y (61)

b
_[{'l(f’ Y, V)[AT v('f’ v($), CFD:;J’(‘{)) < J‘Z(s)Th(‘f’ (&), CFpa V(E)de.

a

+2(§)"g,(&, v(§), D5 v(&)}dE )
b Thus, the strict pseudoinvexity of J z(EYh(E, v (§),
CFRpa (1T - CFna a
’ .[ MG Y2 V) Dy gy (&, V), T Darv(E)) FpZv(£))d¢ along with inequality (61) provides

+ Z({)ThCFDg+V(f)(€s v, CFD3+V)}df =0<0,

b
j M, v, VZETh(E, v(E), DL v(E))
J ©62)

which is a contradiction. Thus,
+ ("DEN(E, v, v)ZE) herps (€, v, FDEVINE < .

b
CFpna
jg (&, v(§), " Da,v(5))dé Now adding inequalities (60) and (62), we obtain

b b
¢ [s6 v, gz, 0 [0y, Ve vie), “Dsv©)

T CFna
(b) The proof of part (b) is very similar to the proof of * Zb({) (G, (&), " Do v(EDNAE

part (a). CFpya AT CFpya
() Let y be feasible for (P) and (v, z, A) feasible ~ * J 1 Dalt(&:y, VA gerpy, (&, v(5), = Dg,v(4))
for (D1). a

(63)

Suppose contrary to the result, i.e. + 2(&)Therpa (&, v, DGV} < 0.
b Now using Proposition 1 in inequality (63) along with
jg (& v(©), "D v(E)dE n(&,y,y) = 0, and from Eq. (47), we obtain
a

(59) b
b T CFnha

< [ste. e Tt e !{n(a, Y, VINE,(E, v(E), DR V(&)

’ X + 2(E)Thy(&, v(E), D2 V(@) NdE

Then in view of the quasi-invexity of _[a g, v(¢),

b
DS V(§)dé, we have o [y D W & V), DO

b
+ z(E)Therpa (&, v, CFDg+v)}d -0<0,
_[{71(5 > V)8, (&, v(&), DG V(&) &) herpg (s §

which is a contradiction. Consequently,
+ (CFDg+rl(£7 yy v))gCFDg+v (5)({) V({), CFDngV({))}dg < 0

b
o BRI AG)h
, we have ¢ b o
b IEAGRSATN
[y, e &, v©), v 2
a . (60) (e) The proof of part (d) is very similar to the proof of
+ ("Dgn(€, y, vIATgerpa , sy part (c). o

(& v(&), D v(E)Ndé < 0.
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Theorem 8. (Strong duality): Let the primal (P) have a
weak minimum at the point y,, which satisfies the KT con-
straint qualification. Then 3 (z, A) so that (y,, z, A) is fea-
sible for (D1) and the objective values of primal (P) and
dual (D1) are equal. If also,

b CFpa . b T

@ [ g, V), FDEVENAE is PIX and [ 2(6)'h, v(§),
Fp2 v(£))d¢ is QIX or

(b) _[:ATg(f, v(&), "D v(¢))d¢ is PIX and j:z(f)Th(f,
v(§), FDEv(£))d¢ is QIX or
b CFpa . b

© ['8(¢, V&), DEVENAE is QIX and [ 2(€)TH(E, (©),
FpE v(&))d¢ is SPIX or

(@) [ Ag(&, v(©), TDLVENAE is QIX and [ (),
v(&), FDZ,v(£))d¢ is SPIX,

then (y,, z, A) is a weak maximum for (DI).

Proof. Since the primal (P) have a weak minimum at y,
for which the KT constraint qualification is satisfied, then
by Theorem 4, there exists z > 0, A > 0, ATe = 1 such that

Ng, (&, o), FDE () + 2(E)Thy(&, yo(&), FDE (&)
= - ORDp [ATgerpe (&, Yo(E)s DLy (&)

+ 2(E)Therpa (€ Yo(&), DY),
and z(&)Th(, y, (£), “D,y,(£)) = 0. Therefore, (yy, z, A)
is feasible for (D1) and the objective values of primal (P)
and dual (D1) are equal.

If (9, 2, A) is not a weak maximum for (D1), then a
feasible solution (v*, z*, A*) for dual (D1) occurs such that

b
jg(f, Yo(£)» DLy (£))de
a (64)

b
< jg(-f, vi(), DS v (€))dE.

b
(a) The pseudoinvexity ofj g(&, vi(&), FD v (&))d¢
a
together with inequality (64) gives

b

j{n(-f, Yoo VIZ,(&, V(), FDE V¥ (2))
) (65)
+ ("DENCE, Yor VgD 1) (&, V7, DG YIAE < O,

Since A* > 0 thus multiplying the above obtained
inequality (65) by A*, and using A*(¢)Te = 1, we obtain

DE GRUYTER

b
j{n(& Yor VIR T8, (€, v'(£), FDEV(E))

(66)
+ (DG, Yoo VI E) gerpa (&, V(E), TDEV(EN}

d¢é <o.

From the constraint of the primal problem (P),
we have

h(&, y(&), DLy (&) < 0.

Since y, is feasible for primal problem (P) thus it
satisfies the aforementioned constraint and so h(&, y,(£),

“DEyo(&) < 0.
L zM(t) =0
thus

2 (@ThE, yo(&), D yy(£)) < 0. (67)

Now from the constraint of the dual problem (D1),
we have

2(€)h(E, v(©), DG V() = 0.

Since (v*, z*, A*) is feasible for (D1) thus
2 (@)h(E, vi(§), DV (§)) = 0.
Combining both inequalities (67) and (68), we obtain

Z(OTh(E, yo(&), DL yy() < 0
< 2 (OTh(E, vi(©), D v (&),

(68)

or
2R, (), D))
< 2(OThE, vi(©), “Di v (&),
or
b
|z @h. (@), oz nag
“ (69)

b

< j 2(€)Th(E, v(&), DL v ())dE.

a

. . b T CFna
The quasi-invexity of_[ z*(EY'h(&, vi(&), D, v (€)dE
together with the above obtained inequality (69) provides

b
j{n(f, Yor V)2 (€Y hy (€, v(E), FDE V¥ (2)

a

+ CEDENE, Yoo VN2 @) herpa (&, vA(E), DLV (N}
dé<o0. (70)
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. . ey . b
Now adding inequalities (66) and (70), we obtain (¢) The quasi-invexity of L g(&,v(d), CFDav(+v*({))d€

b together with inequality (64) gives
J ey v 8,6 v, “Dv ) )

, R * (&, * ,CFD3+ *
e T ) o j H1GE, Yor V918, &, v'(8), TDEV(E)

D&, Yoo VN Tgerpg 1o 6§ v, DGV + (DG N, Yo v8Erpg v (€ V(§), DG v (€))}dE < 0.
+ 2(E) herpa (€, v¥, FDE v IE < 0.

(74)

Since A* > 0 thus multiplying inequality (74) by A*
Now using Proposition 1 in the above obtained and usingA*(§ )'e =1, we obtain

inequality (71) and 1 (¢, ,, Jp) = O, we obtain b

b I{U(§ »Yor VOX ()8, v (£), DS v ()

[ ey @786 v ©, FD8 w6 “

a

(75)
+ (DG, Yor VI @) gerpe (&, V),
+2° (&) hy (€, v(&), CFD3+V*($))]d§ 72) CFDngV*({))}d%‘ <o0.
b
+ j (&, Yor v TRDE [N Tgerpe - (& V7, DSV Since
a b
+ 2°(&) herpe (&, V7, “p2.v)]dé < 0. IZ*(f Yh(E, yo(&), Dy, (£))dé
Since (v*, z*, A*) is feasible for (D1) thus from Eq. (47), ‘ b (76)
we have < [z € v, oL@z,
b a
77(5, Yo» V*){A*T V*({i V*(g)’ CFD3+V*(£))
! ’ & f:z*(é’)Th({, ¥o(§), DG yo(€)) < 0
+ 22 () Thy (&, vi(), “DE v (E)dE 73) and _[bZ*(f Yh(E, vi(©), " Ds v (&) = 0).
b a
- I &, Yos V*)CFRDg,{A*TgCFDgJ* & V@), Thus, in view of strictly pseudoinvexity of Ijz*(cf )7
a h (&, v(§), ““Dg,v(§))dé, we have
FDEV(E)) + 27 () herpa (&, v, FDE VI, ,
Using Eq. (73) in inequality (72), we obtain J—{’T(‘f’ Yor v)Z' () hy (€, v*(§), DG, (§)
a (77)
’ CFpa *))z* CFpa | *
J‘n(g, yO’ V*){A*T V*(é', v* (6)’ CFDZ:,V*(f)) + ( Da+r1 (5’ yo’ v ))Z (€)Th D,V (f)(f’ v ('5),
a “Dgve(§)) }d¢ < .
+ 2 hy (€, vi(§), “DEv(§)idE Now combining inequalities (75) and (77), we obtain
b
Yo VIIRDE (AT gerpe - (&, vi(E), TDEVE) |
' I (16 Yo AT 6 O I ey vl 8,6, v, D)
*ThCF - LV, CFD(‘11+ N]deE = , a
F @V TN =0 <0 + 2@ A€ (), TDE V)] 78)

which is a discrepancy and consequently contradicts the + ("DgN (€, Yoo VDIATgerpe o (€, V¥, DG V)
feasibility of (v*, z*, A%). “
* T + CFpha |«
(b) The proof of part (b) is very similar to the proof of ~ + % (&) herpa (&, v¥, ~ Dg,vH)}dg < 0.

part (a). Now using Proposition 1 in inequality (78) and uti-

lizing n(¢, y,, ¥,) = 0, we obtain
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b
fn(é’ Yoo VI g€, vi(©), DG v (E)

% Th . * CFpa .«
+2°(§) hy (&, vi(§), " Dg,v'(§))1dS 79)

b
b [ s v DA T (€, v, TDEY)
a

+ Z*(%’)ThCFDngV*({)(‘f’ v, CFD(‘J1+V*)]d£ <0.

Now in view of Eq. (73), inequality (79) can be
expressed as

b
[ 166y O, 6 v, DRV )
+ 2R (€, v(E), DSV (E)]dE
b
+ j(n(& Yo V*))CFRDgf[A*TgCFDgJ* oV “Dgv)

+ 2 Therpa (&, ve, “DG V)] = 0 < 0,

which clearly contradicts the feasibility of (v*, z*, A*).

(d) The proof of part (d) is very much identical to the
proof of part (c).

Now we state the continuous form of a general primal
(CP) and dual (CD) for the multiobjective variational opti-
mization problem, as discussed in the work of Mukherjee
and Mishra [45], involving fractional derivative operator
with exponential kernel. Consider the problem given as
follows:

(CP) Minimize

b
j (&, y (&), D y(E)de,

subject to y (a) = y,, y(b) = ¥
h(E, y(©), DG y(E) < 0,

9, y(&), Diy(©) = 0,

whereg : I x R x R — RE h : I x B/ x K" — B™, and
9 : I x M| x R" — R are all differentiable.

LetK=1{1,2,..,k},U=1{1,2,..,u}, < K,f=0,1,...,
kwithlgnl, =@, B#y,andUf_oJg=Kand U, =
0,1,...,x with ynJ, =¢, B+y, and U’[;:()]ﬁ =U. It is
notable that any particular Iz or Jg may be empty. Hence,
if K has 1 disjoint subsets and U has % disjoint subsets,
K = max[x, 1]. So, if i > K, then Jg , B > 1, is empty.

In connection to (CP), we investigate the problem:
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(CD) Maximize
b

j{g(f, v(&), DA V(&) + Dz &) hi(E, v(&), FDEv(&))e

iel
a 0

+ 2 wETHE, v, CFD;ﬂv)e}df,
j€lo
subject to
y(@) =Y, y(b) =y,
A&, v (&), “DEV(E) + z(O)Thy(&, v(&), DL V()
+ w(OT9,(&, v(&), DI v(&))
= — DY A gerps e (&, V), TDEV(E))
+ 2(&) herpa (&, v(E), D5 V(&)
+ W) 9erpa (&, v(E), FDE V],

Y Z(ETh(E, v (©), DLV (§)

ielﬁ

+ Y wETHE, v (&), DLy (§) = 0,

jelp
B=0,1,..,k, y=0, Ae A, where A={1e RP:1>0,
AMe =11}

The weak and strong duality theorems, as described
in ref. [45], are articulated here with the CF fractional
derivative operators without proof because their proof
may be delivered in a very identical manner to that of
Theorems (5)—(8). O
Theorem 9. (Weak duality): If, for all feasible (y, v, z, w, A),

b
@ [ {g& v, " D5vE)
+ Y1, 2 EThi(E, v(E), TDG v(E))e
- 5T v, DS V)e}de

. b

is PIX and ["{¥,0, z(§) i€, v(§), “DEv()

+ T W ETHE, V@), TDEvEN]de,

B=1,2,.,x,is QIX; or

b
®) [ {rerg& v @, iy ¢
+ Ve, 2 HE, v (§), DG v(E)
+ Ty WETHE, v, DL}

. b

is PIX and [ {3,z h&, v(©), “DEV(E)

+ T ETIE, v©), DL V@),

B=1,2,..,k,is QIX; or
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(c) p#Kand J, + U,

iEIO

b
_[{g(f (), FDEVE) + Xz Th(E, v(E),

a

DG vEe + 2w HE, v, CFD3+V)e}d¢' :

Jj€lo
is QIX and {5, 2 i, v(&), “DEV(E)

+ Ty mETHE, v(©), TDEVENE,
a=1,2,...,v,is SPIX; or
(d Iy#Kand J, + U,

iEIo

b
j{A(t)Tg(a v(&), FDEV(E) + Dz E)Th(&, v, FDE,v)

+ 2 wWETHE, v, CFD;:v)}dg,
jelo
is QIX and J-:{Zié 12 Y (&, v(&), FDE,v(&))

+ Ty ETHE, V@), TDEvEN]de,
a=1,2,..,v,is SPIX,
then

b
f (&, y(©), D y(€))de

b
¢ j {g(& v(), D2, v(£))

+ 2 zEThi(E, v(&), FDEv(&))e

iely

+ Y wETE, vE), CFD3+V(6))e}.

Jj€lo

Theorem 10. (Strong duality): Let (CP) have a weak

minimum at y,, which satisfies the KT constraint qualifica-

tion. Then 3 (z, w, A), so that (y,, z, w, A) is feasible for
dual (CD) and the objective values of primal (CP) and dual
(CD) are equal. If one of the presumptions (a), (b), (c), or
(d) of Theorem 9 is fulfilled, then (y,, z, w, A) is a weak

maximum for (CD).

Now, we establish the strict converse duality theorem
as stated in ref. [45] with CF fractional derivative operator

in the forthcoming section.
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4 Strict converse duality

Theorem 11. Let y, be a weak minimum for (P) and
(vo, 20, Ag) be a weak maximum for (D1) such that

[ @8 18, "Dy
< [TAT8E vo(§). DL o).

Assume that

b T CFnha .
@ [ AT @& %), “DEyE))dE is SPIX at vo and

b T CFnha . .
[ 20&)hE, v(©), TDLVENAE is QIX at vo; or

by ¢ CFpa .
() [ AT %(§), TDLy(§))AE is QIX at vo and

b .
[ 200, v(&), FDEVENAE is SPIX at vo;
then y, = vo, i.e. vo is a weak minimum for (P).

Proof. It is assumed that y, # vo. Since y, and (vo, 2o, Ao)

are feasible for (P) and (D1), respectively. Thus, h(¢, y,(¢),

D2 y,(&)) < 0 and zo(&)Th(E, vo(£), DE,v(€)) = 0.

b
Now, the aforementioned inequalities imply that _[a zo(6)T

&, 9o(8), DRy (€)dE <0, and || zo(§)Th(E, vo(8), DL,

vo(£))dé > 0. Finally, they can be written in the combined
form as

b
j 20(&)Th(E, Yo(&), Dy, (£))dE
a (80)

b
< j 20(E)Th (&, vo(€), D, vo(&))dE.

(a) Now, inequality (80) in view of quasi-invexity of

Ibzo(f Yh(&, v(§), FDE,v(£))d¢ at v, provides the follow-
a
ing inequality:

b
j 11, You V0)20(E) hyo (€2 Vo), DL, v0(£))

(81)
+ (FDZ,1 (€, Yor voNZ0(E) herpa (€, vo(&),

DZ vo(€)AE < 0.

. e, . . b T CFna
Since it is given that L A" ()8 (&, ¥o(&), "D, Yp(&))

dg < ["A7 CFDE vo(€))dE, thus in view of stri
£< L oTg (&, vo(&), FDE vo(&))dE, thus in view of strict

b
pseudoinvexity of L Ao(E)Tg(é, Yo(&), CFDZ‘JO(@’ Ndé, we
have
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b
j 0, Yor VoI Ao(€)T 8, (&> Vo), FDE v (2)

(82)
+ (FDENCE, Yor o)) gerpe (€5 Vo(&),

DZ vo(€)IdE < 0.

Now combining inequalities (81) and (82), we obtain

f{n (&, Yo vA0(§)78,, (&, vo (£), DG, vo(£))

+ 20(6) (&, Vo (&), DG vo(§))] (83)
+ (CFD(‘Jx+rl ({9 yoy Vo))[Ao(f)TgCFngo(g)(f, Vo, CFD3+VO)
+ Zo(f)ThCFDg+VO(§)(§» Vo, CFDZJrVO)]}d‘f <0.
Now using Proposition 1 in inequality (83) and
N, ¥, %) = 0, we obtain

j{n(f, Yo Yo o€V 84, (€, ¥o(&), D2 v0(8)

T CFpa
+ Z;(«f) hyo(§, vo(§), Dy vo(§))1d§ (84)

o [ 168200 0D Ao(E 8, 6. ),

FDE V(&) + 2o(E) hy (&, vo(&), FDE vo(€))]dE < 0.

Since (vg, 2o, Ao) is feasible for (D1) thus from Eq. (47),
we have

b
j NCE, Yoo VOHAOT 2, (& Vo(E), D, Vo))

+ 20(E) hyy(€, (&), DG, vo(§))}dE

b
= — .[rl(.f, Yo» VO)CFRDg_{AOTgCFDg+VO(§)(€, V0, CFDZ+V0)

a

+ ZO({)ThCFDg+VO($)(E’ Vo0, CFD3+VO)}d€'

(85)

In view of Eq. (85), inequality (84) can be written as:

b
[ 1663 A8, vo €, TDE0(E)
20§ €, Yo (), D2 )]g
b
o [0 100D A6, (6. vou DE,v0)

+ 2o(&) (€, vo, g vo)1dé = 0 < 0,
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which contradicts the assumption y, # v,. Consequently,
Y = Vo and since y, is a weak minimum for (P), thus vy is
a weak minimum for (P). (|

(b) Since || zo(§)h (€, %,(8). DLy, (§)dg
< ["2o()h €, o (©), Do)

thus in view of the strictly pseudoinvexity of

b
[ 206 hE, v(£), TDE V()¢ at vo, we have

j 01, Yo Y0)20(E)T (€, (), DL vo(£))

(86)
CFD“M({ Yo Vo))Zo(§ )ThCFD“ vo(.g)(f vo(§),

“DZ vo(€)IAE < 0.

Since it is given that I AoT(©)8(&, yo (&), DE,yo(&))

dé < j AoTg(&, vo(&), D2 vp(¢))dé, thus in view of the

quast-invexity of [ Ao(§)75(£. 7). D2y (6))dé we have

j 1, Yor VoI Ao(€)T 8,0 (&5 VolE), DE,vo(2)

(87)
+ (D1 (€, Yoo VODAG(E) 8 erpa (€ Vol

DZ vo(€)AE < 0.

Now combining inequalities (86) and (87), we obtain

I{n(f s Yoo VO[AG(§)78,, (&, vo (£), D vo())

+ 2o(&) hyo (&, vo(£), FDEvo(8))] (88)

CFD“HI ¢ Yo, v0)) AO(‘E)TgCFD“ o©)($5 Vo, D3+V0)

+ 2o(§) herpa (& Vo, DG, Vo) 3dé < 0.

Now using Proposition 1 in inequality (88) along with
1 (&, Y» ¥o) = 0, we obtain

b

_[n(<f s Yo V[ Ao(§)7 8y, (&, o), "D vo(£))

a

+ Z;(é’ ) hy(€, (&), DG, vo(€))]dE (89)

+ jn(f s Yoo Vo) Dy _[A0(&)78, (€, vo(&), DG, vo(£))

+ 20(E) hyy(€, vo(&), DG, vo(§))]dE < 0.

In view of Eq. (85), inequality (89) can be written as
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b
166, 30 A8 75,6, o), D006
+ 26 huE, 10(E), FDE o (E]dE
b
+ [106 v0 Y0 D A€, € 10(E), D W€D

+ 2o(&) (€, vo, DG, v0)]1dE = 0 < 0,

which contradicts the assumption y;, # vo. Consequently,
Yo = Vo and Vg is a weak minimum for (P). O

In the next step, we state the theorem as stated in ref. [45]
with the CF fractional derivative operator in the fol-
lowing way:

Theorem 12. Let y, be a weak minimum for (CP) and
(Vo, 20, Wo, Ag) be a weak maximum for (CD) such that

b
_[Ao(s”)Tg(f, Yo (£), DLy, (£))dE

b
< j{Ao(e)Tg(a Yo(&), D, vo(£))

+ Y 20O x (&, vo(&), D vo(§))

iely

+ Y wo O x 9 wl©), CFD;,:vo@))}df.

Jj€o
If
@ [ {Ao@8 @), “DEME) + Tz @)
x (€, vo(§), DG Vo)) + X wo ()T
x 9(&, vo(&), DL wo(¢ Myd¢ is SPIX at vy and each
[ S0 % & ), D)
+ Ty Wo T x 8§, vo(8), TDE vo(@))}de,
B=1,2,3,...x, is QIX at vy; or
®) [ {Ao@2E vo ©), TDENE) + Ty 708
x (€, vo(&), DG, o))
+ Do §F x 86, w(@), “Diw(@)}dg
is QIX at vy and each
[ S0 % & vo (), FDEWEN + Ty wo &)
x 9(&, (@), DE Vo€ )},

B=1,2, 3, ..k, is SPIX at v then y, = v, i.e. Vo is a
weak minimum for (P).
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Corollary. Suppose y, is a weak minimum for (P) and
Vo, 29, Ao) is a weak maximum for (D) so that

R G R GR ALY
< [MAa(§)78 (&, vo©), DL (£)
+20(8)"h(E, vo(§), DG vo(€))HdS.
If [ @8, (&), “DEw(6))
+ 20(§)A(E ol©), D, w(§))}eg

then y, = vo, i.e. vp is a weak minimum for (P).

is SPIX at vy,

Proof. It is assumed that y, # v. Since y, is feasible for

(P) thus h(£, y,(&), “Dyp(&)) < 0, and (vo, 2o, Ao) is fea-
sible for (D) thus from Eq. (27), we have

b

1 &, Yo v0)i8,, (&, vo(£), DS, vo(£))

+ 2o(E) hyy(&, vo(&), FD2,vo(€))e}dé (©0)

b
=~ [ 1 o 0D g 6 € Yo DR
a

+2zo(¢ )ThCFDa‘ﬂvo(g)({ » Vo(£), CFDZJO(f )etds.
Multiplying Eq. (90) by A¢(¢)T and further using
Ao(é)Te = 1, we obtain

b
jn(é’ s Yoo VOHAG(§)T 8y, (&, vol(&), DG vo(£))

+ 2o(E) hyo (&, vo(&), DI vo(€))}d& o1

b
= = [ Yo Y0 DR AGE g € Yo D)
a

+2o(§ )ThCFDg+V0({)(£ » Vo, CFDngVo)}d{ .

Since

b
j Ao(ETE(E, Yo (€, DL yp(E))dE

b 92)
< j{Aocf)Tg(e, ¥ (&), D%, vo(£)

+ 20(§)Th(E, vo(§), “" DG v(E)}AE,

b
andalso h(¢, y, (&), CFDZ‘JO({ )) < 0, which implies I zo(6)T
a
h (&, yy(), CFDZ‘JO (£€))d¢ < 0, thus inequality (92) can be
written as
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b

j{Aoos)Tg(f, Yo(E), DL Y (£))

a

+ 20E)TR(E, Yo(©), DL y(EIdE
b
< I{Ao(f)Tg(f, Yo(&), D vo(£))

+ 2o(&)Th(E, vo (&), FDE,vo(E))}E,

and since [ {Ao(€)"g(&, w(®), “DEW(E)) + 20(E)Th(E, vo
(&), FD% vp(&))}d¢ is SPIX at vp, so we have

b
j{n(& Yoo Vo) [A0(€)78, (£, vo(&), FDEvo(8)

+ 20(E)Thy (&, vo(&), D2, vo(€))]1dE (93)

+ ("DE.N(E, vo, vo))[Ao(é)'g cFp yo()(& Vos “D§ o)
+ 2o(§) herpe (& Vo, “DE o)} < 0.

Now using Proposition 1 in inequality (93) and
n (€, Yo ¥o) = 0, we obtain

Lbn(f, Yoo Vo) [Ao€)8,E ol&), D 10(E))
2660 6 D D1 o
o [y v PD Ao Bt 61 o D)
+ 20(E)Therps )& Vo, ““Dg,v0)1dE < O.

Now using Eq. (91) in inequality (94), we have

b
j NCEs Yor ) Ao(E)T 8y, (€ ¥o(E), D, vo(£))

+ 20(E) hy (€, vo(&), DG vo(§))]dE

b
+ J-ﬂ(f + Yor Vo) RDp_[Ao" g cFpe yo()(§ Vos “Dg,vo)
a

(95)

+ ZO({)ThCFDg+vO(£)($! Vo, CFDZ+VO)]d€ =0< 03

which is a contradiction. Thus, the assumption y;, # vo is
false. Consequently, y, = v, and v, is a weak minimum for
(P). O

5 Conclusions

The proposed work extends and derives the generalized
invexity and duality results for multiobjective variational
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problems with the framing of a non-singular fractional
derivative pertaining to the exponential kernel by uti-
lizing the concept of weak minima. This work considers
the CF fractional derivative operator possessing a non-
singular exponential kernel. Moreover, several duality
results of weak, strong, and converse categories have
also been derived for various types of generalized invexity
conditions in view of the CF fractional derivative operator.
Some basic theorems and formulas for integration by parts
for the fractional derivative with an exponential kernel
have played a significant role in proving the weak, strong,
and converse duality theorems. This article also presents
the derivation of strict converse duality theorems for mul-
tiobjective variational problems with the CF fractional
derivative by employing some propositions and theorems
of fractional calculus. The variational problems with CF
fractional derivative may be helpful in analysing the opti-
mization problems and physical processes. Problems
related to production planning, oil refinery scheduling,
portfolio selection, management sciences, and eco-
nomics can be modelled successfully in the form of
multiobjective variational problems. The results derived
in this article are important for the growth of generalized
invexity and duality results for a class of multiobjective
variational problems involving a non-singular fractional
derivative. However, it is difficult to illustrate any practical
application on the basis of derived results. But there is an
ample scope to explore the optimality and duality results
for multiobjective variational problems within the scope of
fractional calculus. This work can be further extended to
study the multiobjective variational problems and non-
differentiable multiobjective variational problems invol-
ving other kinds of fractional derivatives. As a future scope
of the work, FVPs can also be studied with the theorems
and propositions applied in this article.
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