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Abstract
In the present article a modified decomposition method is implemented to solve
systems of partial differential equations of fractional-order derivatives. The derivatives
of fractional-order are expressed in terms of Caputo operator. The validity of the
proposed method is analyzed through illustrative examples. The solution graphs have
shown a close contact between the exact and LADM solutions. It is observed that the
solutions of fractional-order problems converge towards the solution of an
integer-order problem, which confirmed the reliability of the suggested technique.
Due to better accuracy and straightforward implementation, the extension of the
present method can be made to solve other fractional-order problems.
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1 Introduction
In the last decade, scientists and engineers have paid much attention towards nonlinear
equations, as the nonlinearity exists everywhere in most of the physical problems. The
nonlinear partial differential equations of fractional order (FPDEs) are the special case
of nonlinear equations that have many applications in science and technology, including
chemistry, biology, physics, vibration, acoustic, signals processing, electromagnetic, poly-
meric materials, and fluid dynamics, super conductivity, optics, and quantum mechanics
[1–4]. Due to frequent appearance of FPDEs in different disciplines of engineering and
science, the researchers have added a lot of research contribution to both theory of math-
ematical science and technology [5–9].

In mathematical analysis, the most frequent developing area is fractional-order calcu-
lus. In fact, many physical phenomena are dependent on time instant as well as at the
earlier history of time are modeled by using fractional-order ordinary differential equa-
tions (FODEs), and thus FDEs have attained their importance in many fields of applied
sciences. Due to the importance of FDEs, many researchers have made their focus on
the analytical solution as well as the numerical solutions of FDEs [10–12]. In this regard
numerous techniques have been discussed for the solutions of FPDEs such as homotopy
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analysis method (HAM), homotopy perturbation technique (HPM), Laplace transforma-
tion, variational technique with Pade approximation, corrected Fourier series, natural de-
composition method [13–16], and fractional complex transformation [17]. The optimal
q-HAM is discussed in [18] to solve FPDEs.

Numerical solution of FPDEs has been discussed in [19] efficiently by using Bernoulli
wavelets and collocation method. Auxiliary Laplace parameter method has been discussed
for the solution of FDEs [20]. Exact solution of Kodomtsev–Petviashvili (KP) equation is
obtained in [21] by using simple equation method. Modified variational iteration tech-
nique is developed in [2] for the result of nonlinear PDEs. The solution of linear and
nonlinear FPDEs has been studied in [22] by using iterative Laplace transform method.
Biological nonlinear phenomena like shallow water waves and multicellular biological dy-
namics can be modeled in terms of nonlinear PDEs of integer order [23]. Numerous FPDEs
do not have exact or analytical solution, so numerical methods are used as an alterna-
tive. In this regard, numerical solutions of FPDEs have been obtained in [24] by using
tau approximation. Discrete HAM is suggested to solve linear and nonlinear FPDEs [25–
27].

Laplace–Adomian decomposition method (LADM) is one of the effective and straight-
forward techniques to solve nonlinear FPDEs. LADM possesses the combined behavior of
Laplace transformation and Adomian decomposition method (ADM). It is observed that
the suggested method requires no predefined declaration size like RK4. LADM requires
fewer number of parameters, no discretization and linearization as compared to other an-
alytical techniques [28]. LADM is also compared with ADM to analyze the solution of
FPDEs given in [29]. The solution of Kundu–Eckhaus equation is discussed in [30] via
LADM. Multistep LADM is implemented to solve FPDEs in [31, 32]. LADM is also used
for the solution of fractional Navier–Stokes, Smoke models, and third-order dispersive
PDEs [33–35].

In the current study, we implement LADM for the solution of some nonlinear system
of FPDEs. The desired degree of accuracy is achieved. The procedure of the suggested
technique is very simple and straightforward. The accuracy is calculated in terms of ab-
solute error. The results have shown that the present method has the desired accuracy as
compared to other analytical techniques.

2 Definitions and preliminaries
Definition 2.1 The Riemann–Liouville definition of fractional integral of a function g
with order β ≥ 0 can be expressed as [36, 37]

Iβ

ξ g(ξ ) =

⎧
⎨

⎩

g(ξ ) if β = 0,
1

Γ (β)
∫ ξ

0 (ξ – υ)β–1g(υ) dυ if β > 0,

where Γ is denoted as

Γ (ω) =
∫ ∞

0
e–ξ ξω–1 dξ ω ∈C.
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Definition 2.2 The Caputo definition of fractional derivative of order β is described as
[36, 37]

Dβ

ξ g(ξ ) =
1

Γ (m – β)

∫ ξ

0
(ξ – τ )m–β–1g(m)(τ ) dτ ,

for m – 1 < β ≤ m, m ∈N, ξ > 0, g ∈Cτ , τ ≥ –1.

Lemma 2.3 If m – 1 < β ≤ m with m ∈N and g ∈Cτ with τ ≥ –1, then [36, 38]

Dβ

ξ Iβ

ξ g(ξ ) = g(ξ ),

Iβξλ =
Γ (λ + 1)

Γ (β + λ + 1)
ξβ+λ, β > 0,λ > –1, ξ > 0,

Dβ

ξ Iβ

ξ g(ξ ) = g(ξ ) –
m∑

k=0

g(k)(0+)ξ k

k!
for ξ > 0.

Definition 2.4 The Laplace transform G(s) of g(τ ) is expressed as [30]

G(s) = L
[
g(τ )

]
=

∫ ∞

0
e–sτ g(t) dt.

Definition 2.5 The Laplace transform of fractional derivative is [30]

L
(
Dβ

τ g(τ )
)

= sβG(s) –
m–1∑

k=0

sβ–1–kg(k)(0), m – 1 < β < m.

3 LADM idea for FPDEs
Consider the following FPDE [30]:

Dβu(ξ , τ ) + Lu(ξ , τ ) + Nu(ξ , τ ) = q(ξ , τ ), ξ , τ ≥ 0, m – 1 < β ≤ m. (1)

The fractional derivative in equation (1) is expressed in the Caputo sense. The linear and
nonlinear terms are denoted by L and N respectively, and q(ξ , τ ) is the sources term with
the initial condition

u(ξ , 0) = f (ξ ). (2)

Applying the Laplace transform on both sides of equation (1), we get [30]

sβL
[
u(ξ , τ )

]
– sβ–1u(ξ , 0) = L

[
q(ξ , τ )

]
– L

[
Lu(ξ , τ ) + Nu(ξ , τ )

]
,

L
[
u(ξ , τ )

]
=

k(ξ )
s

–
1
sβ
L

[
Lu(ξ , τ ) + Nu(ξ , τ ) + q(ξ , τ )

]
.

(3)

The ADM solution is

u(ξ , τ ) =
∞∑

j=0

uj(ξ , τ ). (4)
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The nonlinear term in the problem is expressed as

Nu(ξ , τ ) =
∞∑

j=0

Aj, (5)

where

Aj =
1
j!

[
dj

dλj

[

N
∞∑

j=0

(
λjuj

)
]]

λ=0

, j = 0, 1, 2, . . . , (6)

are called Adomian polynomials.
Substituting equations (4) and (5) in equation (3), we get

L
[ ∞∑

j=0

u(ξ , τ )

]

=
f (x)

s
–

1
sβ
L

[

L
∞∑

j=0

uj(ξ , τ ) +
∞∑

j=0

Aj + q(ξ , τ )

]

.

Applying the decomposition method, we get

L
[
u0(ξ , τ )

]
=

f (ξ )
s

(7)

and

L
[
uj+1(ξ , τ )

]
= –

1
sβ
L

[
Luj(ξ , τ ) + Aj + q(ξ , τ )

]
, j ≥ 1. (8)

Using the inverse transform to equations (7) and (8), we have [30]

u0(ξ , τ ) = f (ξ ),

uj+1(ξ , τ ) = –L–1
[

1
sβ
L

[
Luj(ξ , τ ) + Aj

]
]

.
(9)

4 Theorem
Here, we study the convergence analysis in the same manner as in [39] of the LADM ap-
plied to PDEs. Let us consider the Hilbert space H which may define by H = L2((α,β)X[0,
T]) the set of applications

u : (α,β)X[0, T] → with
∫

(α,β)X[0,T]
u2(ξ , s) ds dθ < +∞.

Now we consider the PDEs in the light of the above assumptions. Let us denote

L(u) =
∂γ u
∂τ γ

,

then the fractional-order of PDEs becomes, in an operator form,

L(u) = ϕ
∂υ(ξ , τ )

∂ξ
– w

∂υ(ζ , τ )
∂ζ

.

The LADM reaches convergence if the following two hypotheses are satisfied:
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(H1)
(
L(u) – L(v), u – v

) ≥ k‖u – v‖2; k > 0, ∀u, vεH .
(H2) Whatever may be M > 0, there exists a constant C(M) > 0 such that, for u, vεH with

‖u‖≤M, ‖v‖≤M, we have (L(u) – L(v), u – v)≤C(M)‖u – v‖‖w‖ for every wεH .

Example 1 The system of fractional-order PDEs in [40]

∂βu
∂τβ

– v
∂u
∂ξ

–
∂v
∂τ

∂u
∂η

= 1 – ξ + η + τ ,

∂βv
∂τβ

– u
∂v
∂ξ

+
∂u
∂τ

∂v
∂η

= 1 – ξ – η – τ , 0 < β ≤ 1,
(10)

with the initial condition

u(ξ ,η, 0) = ξ + η – 1, v(ξ ,η, 0) = ξ – η + 1. (11)

Taking the Laplace transform of equation (10), we have

L
[

∂βu
∂τβ

]

= L
[

v
∂u
∂ξ

+
∂v
∂τ

∂u
∂η

+ 1 – ξ + η + τ

]

,

L
[

∂βv
∂τβ

]

= L
[

u
∂v
∂ξ

–
∂u
∂τ

∂v
∂η

+ 1 – ξ – η – τ

]

,

sβL
[
u(ξ ,η, τ )

]
– sβ–1[u(ξ ,η, 0)

]
= L

[

v
∂u
∂ξ

+
∂v
∂τ

∂u
∂η

+ 1 – ξ + η + τ

]

,

sβL
[
v(ξ ,η, τ )

]
– sβ–1[v(ξ ,η, 0)

]
= L

[

u
∂v
∂ξ

–
∂u
∂τ

∂v
∂η

+ 1 – ξ – η – τ

]

.

Using the inverse transformation, we get

u(ξ ,η, τ ) = L–1
[

u(ξ ,η, 0)
s

+
1
sβ
L

[

v
∂u
∂ξ

+
∂v
∂τ

∂u
∂η

+ 1 – ξ + η + τ

]]

,

v(ξ ,η, τ ) = L–1
[

v(ξ ,η, 0)
s

+
1
sβ
L

[

u
∂v
∂ξ

–
∂u
∂τ

∂v
∂η

+ 1 – ξ – η – τ

]]

,

u(ξ ,η, τ ) = ξ + η – 1 + L–1
[

1
sβ
L

[

v
∂u
∂ξ

+
∂v
∂τ

∂u
∂η

+ 1 – ξ + η + τ

]]

,

v(ξ ,η, τ ) = ξ – η + 1 + L–1
[

1
sβ
L

[

u
∂v
∂ξ

–
∂u
∂τ

∂v
∂η

+ 1 – ξ – η – τ

]]

.

Using the ADM procedure, we get

∞∑

j=0

uj(ξ ,η, τ ) = ξ + η – 1 + L–1

[
1
sβ
L

[ ∞∑

j=0

Aj(v, u) +
∞∑

j=0

Bj(v, u) + 1 – ξ + η + τ

]]

,

∞∑

j=0

vj(ξ ,η, τ ) = ξ – η + 1 + L–1

[
1
sβ
L

[ ∞∑

j=0

Cj(u, v) –
∞∑

j=0

Dj(u, v) + 1 – ξ – η – τ

]]

,
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where Adomian polynomial components Aj(v, u), Bj(v, u), Cj(u, v), and Dj(u, v) are given
as follows:

A0(v, u) = v0
∂u0

∂ξ
,

A1(v, u) = v0
∂u1

∂ξ
+ v1

∂u0

∂ξ
,

A2(v, u) = v0
∂u2

∂ξ
+ v1

∂u1

∂ξ
+ v2

∂u0

∂ξ
,

B0(v, u) =
∂v0

∂τ

∂u0

∂η
,

B1(v, u) =
∂v0

∂τ

∂u1

∂η
+

∂v1

∂τ

∂u0

∂η
,

B2(v, u) =
∂v0

∂τ

∂u2

∂η
+

∂v1

∂τ

∂u1

∂η
+

∂v2

∂τ

∂u0

∂η
,

C0(u, v) = u0
∂v0

∂ξ
,

C1(u, v) = u0
∂v1

∂ξ
+ u1

∂v0

∂ξ
,

C2(u, v) = u0
∂v2

∂ξ
+ u1

∂v1

∂ξ
+ u2

∂v0

∂ξ
,

(12)

D0(u, v) =
∂u0

∂τ

∂v0

∂η
,

D1(u, v) =
∂u0

∂τ

∂v1

∂η
+

∂u1

∂τ

∂v0

∂η
,

D2(u, v) =
∂u0

∂τ

∂v2

∂η
+

∂u1

∂τ

∂v1

∂η
+

∂u2

∂τ

∂v0

∂η
,

u0(ξ ,η, τ ) = ξ + η – 1,

v0(ξ ,η, τ ) = ξ – η + 1,

uj+1(ξ ,η, τ ) = L–1

[
1
sβ
L

{ ∞∑

j=0

Aj(v, u) +
∞∑

j=0

Bj(v, u) + 1 – ξ + η + τ

}]

,

vj+1(ξ ,η, τ ) = L–1

[
1
sβ
L

{ ∞∑

j=0

Cj(u, v) –
∞∑

j=0

Dj(u, v) + 1 – ξ – η – τ

}]

for j = 0, 1, 2, . . .

u1(ξ ,η, τ ) = L–1
[

1
sβ
L

{

v0
∂u0

∂ξ
+

∂v0

∂τ

∂u0

∂η
+ 1 – ξ + η + τ

}]

,

u1(ξ ,η, τ ) = L–1
[

2
sβ+1 +

1
sβ+2

]

=
2τβ

Γ (β + 1)
+

τβ+1

Γ (β + 2)
,

v1(ξ ,η, τ ) = L–1
[

1
sβ
L

{

u0
∂v0

∂ξ
–

∂u0

∂τ

∂v0

∂η
+ 1 – ξ – η – τ

}]

,

v1(ξ ,η, τ ) = L–1
[

–1
sβ+2

]

=
–τβ+1

Γ (β + 2)
.

(13)
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The subsequent terms are

u2(ξ ,η, τ )

= L–1
[

1
sβ
L

{

v0
∂u1

∂ξ
+ v1

∂u0

∂ξ
+

∂v0

∂τ

∂u1

∂η
+

∂v1

∂τ

∂u0

∂η

}]

=
–τ 2β+1

Γ (2β + 2)
–

τ 2β

Γ (β + 2)
,

v2(ξ ,η, τ )

= L–1
[

1
sβ
L

{

u0
∂v1

∂ξ
+ u1

∂v0

∂ξ
–

∂u0

∂τ

∂v1

∂η
–

∂u1

∂τ

∂v0

∂η

}]

=
(

2Γ (β + 2) – (β + 1)Γ (β + 1)
Γ (2β + 1)Γ (β + 2)

)

τ 2β +
τ 2β+1

Γ (2β + 2)
–

2βΓ (β)τ 2β–1

Γ (β + 1)Γ (2β)
,

u3(ξ ,η, τ )

= L–1
[

1
sβ
L

{

v0
∂u2

∂ξ
+ v1

∂u1

∂ξ
+ v2

∂u0

∂ξ
+

∂v0

∂τ

∂u2

∂η
+

∂v1

∂τ

∂u1

∂η
+

∂v2

∂τ

∂u0

∂η

}]

=
τ 3β+1

Γ (3β + 2)
+

(
2Γ (β + 2) – (β + 1)Γ (β + 1)

Γ (3β + 1)Γ (β + 2)

)

τ 3β +
τ 3β

Γ (2β + 2)

–
2βΓ (β)τ 3β–1

Γ (β + 1)Γ (3β)
+

(
(2Γ (β + 2) – (β + 1)Γ (β + 1))2βΓ (β)

Γ (3β)Γ (2β + 1)Γ (β + 2)

)

τ 3β–1

–
(

2βΓ (β)
Γ (2β)Γ (β + 1)

)

τ 3β–2,

v3(ξ ,η, τ )

= L–1
[

1
sβ
L

{

u0
∂v2

∂ξ
+ u1

∂v1

∂ξ
+ u2

∂v0

∂ξ
–

∂u0

∂τ

∂v2

∂η
–

∂u1

∂τ

∂v1

∂η
–

∂u2

∂τ

∂v0

∂η

}]

=
–τ 3β+1

Γ (3β + 2)
+

(
(β + 1)Γ (β + 1)2βΓ (2β)
Γ (3β)Γ (β + 2)Γ (β + 2)

)

τ 3β–1.

(14)

The LADM solution for Example 1 is

u(ξ ,η, τ ) = u0(ξ ,η, τ ) + u1(ξ ,η, τ ) + u2(ξ ,η, τ ) + u3(ξ ,η, τ ) + · · · ,

v(ξ ,η, τ ) = v0(ξ ,η, τ ) + v1(ξ ,η, τ ) + v2(ξ ,η, τ ) + v3(ξ ,η, τ ) + · · · ,

u(ξ ,η, τ ) = ξ + η – 1 +
2τβ

Γ (β + 1)
+

τβ+1

Γ (β + 2)
–

τ 2β+1

Γ (2β + 2)
–

τ 2β

Γ (2β + 1)

+
τ 3β+1

Γ (3β + 2)
+

(
2Γ (β + 2) – (β + 1)Γ (β + 1)

Γ (3β + 1)Γ (β + 2)

)

τ 3β +
τ 3β

Γ (2β + 2)

–
2βΓ (β)τ 3β–1

Γ (β + 1)Γ (3β)
+

(
(2Γ (β + 2) – (β + 1)Γ (β + 1))2βΓ (β)

Γ (3β)Γ (2β + 1)Γ (β + 2)

)

τ 3β–1

–
(

2βΓ (β)
Γ (2β)Γ (β + 1)

)

τ 3β–2 + · · · ,

v(ξ ,η, τ ) = ξ – η + 1 –
τβ+1

Γ (β + 2)
+

(
2Γ (β + 2) – (β + 1)Γ (β + 1)

Γ (2β + 1)Γ (β + 2)

)

τ 2β
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Figure 1 The (a) exact and (b) LADM solutions graph of Example 1 of u at β = 1 and τ = 0.5

Figure 2 The (c) exact and (d) LADM solution graph of Example 1 of v at β = 1 and τ = 0.5

+
τ 2β+1

Γ (2β + 2)
–

2βΓ (β)τ 2β–1

Γ (β + 1)Γ (2β)
–

τ 3β+1

Γ (3β + 2)

+
(

(β + 1)Γ (β + 1)2βΓ (2β)
Γ (3β)Γ (β + 2)Γ (β + 2)

)

τ 3β–1 + · · · .

When β = 1, then LADM solution is

u(ξ ,η, τ ) = ξ + η + τ – 1,

v(ξ ,η, τ ) = ξ – η – τ + 1.
(15)

Example 2 The system of fractional-order PDEs in [40]

∂βu
∂ξβ

– v
∂u
∂τ

+ u
∂v
∂τ

= –1 + eξ sin τ ,

∂βv
∂ξβ

+
∂u
∂τ

∂v
∂ξ

–
∂v
∂τ

∂u
∂ξ

= –1 – e–ξ sin τ , 0 < β ≤ 1,
(16)
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Figure 3 The plot of u solution of Example 1 at (e) β = 0.75 and (f) 0.50

Figure 4 The plot of v solution of Example 1 at (g) β = 0.75 and (h) 0.50

Table 1 LADM solutions of Example 1 at different fractional order β and its corresponding absolute
error (A.E) of u at τ = 0.5

ξ η A.E (β = 0.55) A.E (β = 0.75) A.E [β = 1 (j = 5)] A.E [β = 1 (j = 6)]

0.1 0.1 1.639E–02 5.828E–03 1.000E–03 2.000E–04
0.2 0.2 3.278E–02 1.165E–02 2.000E–03 4.000E–04
0.3 0.3 4.917E–02 1.748E–02 3.000E–03 6.000E–04
0.4 0.4 6.556E–02 2.331E–02 4.000E–03 8.000E–04
0.5 0.5 8.196E–02 2.914E–02 5.000E–03 1.000E–03

with the initial conditions

u(0, τ ) = sin τ , v(0, τ ) = cos τ . (17)

Taking the Laplace transform of (16), we have

L
[

∂βu
∂ξβ

]

= L
[

v
∂u
∂τ

– u
∂v
∂τ

– 1 + eξ sin τ

]

,
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Table 2 LADM solutions of Example 1 at different fractional order β and its corresponding absolute
error (A.E) of v at τ = 0.5

ξ η A.E (β = 0.55) A.E (β = 0.75) A.E [β = 1 (j = 5)] A.E [β = 1 (j = 6)]

0.1 0.1 1.484E–02 5.308E–03 9.949E–04 9.994E–05
0.2 0.2 2.969E–02 1.061E–02 1.989E–03 1.998E–04
0.3 0.3 4.454E–02 1.592E–02 2.984E–03 2.998E–04
0.4 0.4 5.938E–02 2.123E–02 3.979E–03 3.997E–04
0.5 0.5 7.423E–02 2.654E–02 4.974E–03 4.997E–04

L
[

∂βv
∂ξβ

]

= L
[

–
∂u
∂τ

∂v
∂ξ

–
∂v
∂τ

∂u
∂ξ

– 1 – e–ξ sin τ

]

,

sβL
[
u(ξ , τ )

]
– sβ–1[u(0, τ )

]
= L

[

v
∂u
∂τ

– u
∂v
∂τ

– 1 + eξ sin τ

]

,

sβL
[
v(ξ , τ )

]
– sβ–1[v(0, τ )

]
= L

[

–
∂u
∂τ

∂v
∂ξ

–
∂v
∂τ

∂u
∂ξ

– 1 – e–ξ sin τ

]

.

Using the inverse transformation, we obtain

u(ξ , τ ) = L–1
[

u(0, τ )
s

+
1
sβ
L

{

v
∂u
∂τ

– u
∂v
∂τ

– 1 + eξ sin τ

}]

,

v(ξ , τ ) = L–1
[

v(0, τ )
s

+
1
sβ
L

{

–
∂u
∂τ

∂v
∂ξ

–
∂v
∂τ

∂u
∂ξ

– 1 – e–ξ sin τ

}]

.

Using the ADM procedure, we get

u0(ξ , τ ) = L–1
[

u(0, τ )
s

]

= L–1
[

sin τ

s

]

= sin τ ,

v0(ξ , τ ) = L–1
[

v(0, τ )
s

]

= L–1
[

cos τ

s

]

= cos τ ,

uj+1(ξ , τ ) = L–1
[

1
sβ
L

{

vj
∂uj

∂τ
– uj

∂vj

∂τ
– 1 + eξ sin τ

}]

,

vj+1(ξ , τ ) = L–1
[

1
sβ
L

{

–
∂uj

∂τ

∂vj

∂ξ
–

∂vj

∂τ

∂uj

∂ξ
– 1 – e–ξ sin τ

}]

,

j = 0, 1, 2, . . .

(18)

for j = 0

u1(ξ , τ ) = L–1
[

1
sβ
L

{

v0
∂u0

∂τ
– u0

∂v0

∂τ
– 1 + eξ sin τ

}]

,

u1(ξ , τ ) = L–1
[

sin τ

sβ (s – 1)

]

= sin τξβ

∞∑

k=0

ξ k

Γ (k + β + 1)
,

v1(ξ , τ ) = L–1
[

1
sβ
L

{

–
∂u0

∂τ

∂v0

∂ξ
–

∂v0

∂τ

∂u0

∂ξ
– 1 – e–ξ sin τ

}]

,

v1(ξ , τ ) = L–1
[

–1
sβ+1 +

cos τ

sβ (s + 1)

]

=
–τβ

Γ (β + 1)
– cos τξβ

∞∑

k=0

–ξ k

Γ (k + β + 1)
,

(19)
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Figure 5 (a) Exact and (b) LADM solution of u for different values of β of Example 2

Figure 6 (c) Exact and (d) LADM solution of v for different values of β of Example 2

The subsequent terms are

u2(ξ , τ ) = L–1
[

1
sβ
L

{

v0
∂u1

∂τ
+ v1

∂u0

∂τ
– u0

∂v1

∂τ
– u1

∂v0

∂τ

}]

=
∞∑

k=0

ξ 2β+k

Γ (2β + k + 1)
–

∞∑

k=0

(–ξ )2β+k

Γ (2β + k + 1)
– cos τ

ξ 2β

Γ (2β + 1)
,

v2(ξ , τ ) = L–1
[

1
sβ
L

{

–
∂u0

∂τ

∂v1

∂ξ
–

∂u1

∂τ

∂v0

∂ξ
–

∂v0

∂τ

∂u1

∂ξ
–

∂v1

∂τ

∂u0

∂ξ

}]

,

= cos τ
ξ 2β–1

Γ (2β)
+ cos2 τ

∞∑

k=0

(–ξ )2β+k–1

Γ (2β + k)
+ sin2 τ

∞∑

k=0

ξ 2β+k–1

Γ (2β + k)
.

(20)

The obtained result for Example 2 is as follows:

u(ξ , τ ) = u0(ξ , τ ) + u1(ξ , τ ) + u2(ξ , τ ) + u3(ξ , τ ) + · · · ,

v(ξ , τ ) = v0(ξ , τ ) + v1(ξ , τ ) + v2(ξ , τ ) + v3(ξ , τ ) + · · · ,
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u(ξ , τ ) = sin τ + sin τξβ

∞∑

k=0

ξ k

Γ (k + β + 1)
+

∞∑

k=0

ξ 2β+k

Γ (2β + k + 1)

–
∞∑

k=0

(–ξ )2β+k

Γ (2β + k + 1)
– cos τ

ξ 2β

Γ (2β + 1)
· · · ,

v(ξ , τ ) = cos τ –
τβ

Γ (β + 1)
– cos τξβ

∞∑

k=0

–ξ k

Γ (k + β + 1)
+ cos τ

ξ 2β–1

Γ (2β)

+ cos2 τ

∞∑

k=0

(–ξ )2β+k–1

Γ (2β + k)
+ sin2 τ

∞∑

k=0

ξ 2β+k–1

Γ (2β + k)
+ · · · ,

When β = 1, then LADM solution is

u(ξ , τ ) = eξ sin τ ,

v(ξ , τ ) = e–ξ cos τ .
(21)

Example 3 The system of inhomogeneous fractional-order nonlinear PDEs in [40]

∂βu
∂τβ

–
∂w
∂ξ

∂v
∂τ

–
1
2

∂w
∂τ

∂2u
∂ξ 2 = –4ξτ ,

∂βv
∂τβ

–
∂w
∂τ

∂2u
∂ξ 2 = 6τ ,

∂βw
∂τβ

–
∂2u
∂ξ 2 –

∂v
∂ξ

∂w
∂τ

= 4ξτ – 2τ – 2, 0 < β ≤ 1

(22)

with the initial conditions

u(ξ , 0) = ξ 2 + 1, v(ξ , 0) = ξ 2 – 1, w(ξ , 0) = ξ 2 – 1. (23)

Taking the Laplace transform of (22), we get

L
[

∂βu
∂τβ

]

= L
[

∂w
∂ξ

∂v
∂τ

+
1
2

∂w
∂τ

∂2u
∂ξ 2 – 4ξτ

]

,

L
[

∂βv
∂τβ

]

= L
[

∂w
∂τ

∂2u
∂ξ 2 + 6τ

]

,

L
[

∂βw
∂τβ

]

= L
[

∂2u
∂ξ 2 +

∂v
∂ξ

∂w
∂τ

+ 4ξτ – 2τ – 2
]

,

sβL
[
u(ξ , τ )

]
– sβ–1[u(ξ , 0)

]
= L

[
∂w
∂ξ

∂v
∂τ

+
1
2

∂w
∂τ

∂2u
∂ξ 2 – 4ξτ

]

,

sβL
[
v(ξ , τ )

]
– sβ–1[v(ξ , 0)

]
= L

[
∂w
∂τ

∂2u
∂ξ 2 + 6τ

]

,

sβL
[
w(ξ , τ )

]
– sβ–1[w(ξ , 0)

]
= L

[
∂2u
∂ξ 2 +

∂v
∂ξ

∂w
∂τ

+ 4ξτ – 2τ – 2
]

.

Using the inverse transformation, we have

u(ξ , τ ) = L–1
[

u(ξ , 0)
s

+
1
sβ
L

[
∂w
∂ξ

∂v
∂τ

+
1
2

∂w
∂τ

∂2u
∂ξ 2 – 4ξτ

]]

,
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v(ξ , τ ) = L–1
[

v(ξ , 0)
s

+
1
sβ
L

[
∂w
∂τ

∂2u
∂ξ 2 + 6τ

]]

,

w(ξ , τ ) = L–1
[

w(ξ , 0)
s

+
1
sβ
L

[
∂2u
∂ξ 2 +

∂v
∂ξ

∂w
∂τ

+ 4ξτ – 2τ – 2
]]

.

Using the ADM procedure, we get

u0(ξ , τ ) = L–1
[

u(ξ , 0)
s

]

= L–1
[

ξ 2 + 1
s

]

= ξ 2 + 1,

v0(ξ , τ ) = L–1
[

v(ξ , 0)
s

]

= L–1
[

ξ 2 – 1
s

]

= ξ 2 – 1,

w0(ξ , τ ) = L–1
[

w(ξ , 0)
s

]

= L–1
[

ξ 2 – 1
s

]

= ξ 2 – 1,

uj+1(ξ , τ ) = L–1
[

1
sβ
L

[
∂wj

∂ξ

∂vj

∂τ
+

1
2

∂wj

∂τ

∂2uj

∂ξ 2 – 4ξτ

]]

, (24)

vj+1(ξ , τ ) = L–1
[

1
sβ
L

[
∂wj

∂τ

∂2uj

∂ξ 2 + 6τ

]]

,

wj+1(ξ , τ ) = L–1
[

1
sβ
L

[
∂2uj

∂ξ 2 +
∂vj

∂ξ

∂wj

∂τ
+ 4ξτ – 2τ – 2

]]

,

j = 0, 1, 2, . . .

for j = 0

u1(ξ , τ ) = L–1
[

1
sβ
L

[
∂w0

∂ξ

∂v0

∂τ
+

1
2

∂w0

∂τ

∂2u0

∂ξ 2 – 4ξτ

]]

,

u1(ξ , τ ) = L–1
[

–4ξ

sβ+2

]

=
–4ξτβ+1

Γ (β + 2)
,

v1(ξ , τ ) = L–1
[

1
sβ
L

[
∂w0

∂τ

∂2u0

∂ξ 2 + 6τ

]]

,

v1(ξ , τ ) = L–1
[

6
sβ+2

]

=
6τβ+1

Γ (β + 2)
,

w1(ξ , τ ) = L–1
[

1
sβ
L

[
∂2u0

∂ξ 2 +
∂v0

∂ξ

∂w0

∂τ
+ 4ξτ – 2τ – 2

]]

,

w1(ξ , τ ) = L–1
[

4ξ

sβ+2 –
2

sβ+2

]

=
4ξτβ+1

Γ (β + 2)
–

2τβ+1

Γ (β + 2)
.

(25)

The subsequent terms are

u2(ξ , τ ) = L–1
[

1
sβ
L

[
∂w0

∂ξ

∂v1

∂τ
+

∂w1

∂ξ

∂v0

∂τ
+

1
2

∂w0

∂τ

∂2u1

∂ξ 2 +
1
2

∂w1

∂τ

∂2u0

∂ξ 2

]]

,

=
16ξτ 2β

Γ (β + 2)
–

2τβ

Γ (β + 2)
,
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v2(ξ , τ ) = L–1
[

1
sβ
L

[
∂w0

∂τ

∂2u1

∂ξ 2 +
∂w1

∂τ

∂2u0

∂ξ 2

]]

,

=
8ξτ 2β

Γ (β + 2)
–

4τ 2β

Γ (β + 2)
,

(26)

w2(ξ , τ ) = L–1
[

1
sβ
L

[
∂2u1

∂ξ 2 +
∂v0

∂ξ

∂w1

∂τ
+

∂v1

∂ξ

∂w0

∂τ

]]

,

=
8ξ 2τ 2β

Γ (β + 2)
–

4ξτ 2β

Γ (β + 2)
,

u3(ξ , τ ) = L–1
[

1
sβ
L

[
∂w0

∂ξ

∂v2

∂τ
+

∂w1

∂ξ

∂v1

∂τ
+

∂w2

∂ξ

∂v0

∂τ

]]

+ L–1
[

1
sβ
L

[
1
2

∂w0

∂τ

∂2u2

∂ξ 2 +
1
2

∂w1

∂τ

∂2u1

∂ξ 2 +
1
2

∂w2

∂τ

∂2u0

∂ξ 2

]]

,

=
(

4(β + 1)Γ (2β + 2)
Γ (β + 2)Γ (β + 2)Γ (3β + 2)

)

τ 3β+1 +
(

48ξ 2(β)Γ (2β)
Γ (β + 2)Γ (3β)

)

τ 3β–1

–
(

24ξ (β)Γ (2β)
Γ (β + 2)Γ (3β)

)

τ 3β–1,

v3(ξ , τ ) = L–1
[

1
sβ
L

[
∂w0

∂τ

∂2u2

∂ξ 2 +
∂w1

∂τ

∂2u1

∂ξ 2 +
∂w2

∂τ

∂2u0

∂ξ 2

]]

,

=
(

32ξ 2βΓ (2β)
Γ (β + 2)Γ (3β)

)

τ 3β–1 –
(

16ξβΓ (2β)
Γ (β + 2)Γ (3β)

)

τ 3β–1,

w3(ξ , τ ) = L–1
[

1
sβ
L

[
∂2u2

∂ξ 2 +
∂v0

∂ξ

∂w2

∂τ
+

∂v1

∂ξ

∂w1

∂τ
+

∂v2

∂ξ

∂w0

∂τ

]]

,

=
(

32ξ 3βΓ (2β)
Γ (β + 2)Γ (3β)

)

τ 3β–1 –
(

16ξ 2βΓ (2β)
Γ (β + 2)Γ (3β)

)

τ 3β–1.

(27)

The obtained result for Example 3

u(ξ , τ ) = u0(ξ , τ ) + u1(ξ , τ ) + u2(ξ , τ ) + u3(ξ , τ ) + · · · ,

v(ξ , τ ) = v0(ξ , τ ) + v1(ξ , τ ) + v2(ξ , τ ) + v3(ξ , τ ) + · · · ,

w(ξ , τ ) = w0(ξ , τ ) + w1(ξ , τ ) + w2(ξ , τ ) + w3(ξ , τ ) + · · · ,

u(ξ , τ ) = ξ 2 + 1 –
4ξτβ+1

Γ (β + 2)
+

16ξτ 2β

Γ (β + 2)
–

2τβ

Γ (β + 2)

+
(

4(β + 1)Γ (2β + 2)
Γ (β + 2)Γ (β + 2)Γ (3β + 2)

)

τ 3β+1

+
(

48ξ 2(β)Γ (2β)
Γ (β + 2)Γ (3β)

)

τ 3β–1

–
(

24ξ (β)Γ (2β)
Γ (β + 2)Γ (3β)

)

τ 3β–1 + · · · ,

v(ξ , τ ) = ξ 2 – 1 +
6τβ+1

Γ (β + 2)
+

8ξτ 2β

Γ (β + 2)
–

4τ 2β

Γ (β + 2)

+
(

32ξ 2βΓ (2β)
Γ (β + 2)Γ (3β)

)

τ 3β–1 –
(

16ξβΓ (2β)
Γ (β + 2)Γ (3β)

)

τ 3β–1 + · · · ,
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Figure 7 (a) Exact and (b) LADM solution for Example 3 of u at different values of β

Figure 8 (c) Exact and (d) LADM solution for Example 3 of v at different values of β

w(ξ , τ ) = ξ 2 – 1 +
4ξτβ+1

Γ (β + 2)
–

2τβ+1

Γ (β + 2)
+

8ξ 2τ 2β

Γ (β + 2)
–

4ξτ 2β

Γ (β + 2)

+
(

32ξ 3βΓ (2β)
Γ (β + 2)Γ (3β)

)

τ 3β–1 –
(

16ξ 2βΓ (2β)
Γ (β + 2)Γ (3β)

)

τ 3β–1 + · · · .

When β = 1, then LADM solution is

u(ξ , τ ) = ξ 2 – τ 2 + 1,

v(ξ , τ ) = ξ 2 + τ 2 – 1,

w(ξ , τ ) = ξ 2 – τ 2 – 1.

(28)

5 Conclusion
In this research paper, a powerful analytical technique, called LADM, is applied to find the
solution of some important system of fractional-order partial differential equations. The
obtained results are interesting and also in good agreement towards the exact solutions.
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Figure 9 (e) Exact and (f) LADM solution for Example 3 of w at different values of β

The behavior and validity of the present method is checked by taking some numerical
examples. The procedure and results of LADM have shown higher accuracy of the cur-
rent method as compared to other methods in literature. The convergence of fractional-
order solutions towards integer-order solution can be observed from the graphs in the
paper.
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