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1. Introduction

Fractional calculus is a generalization of the ordinary calculus and it has been used prosperously
in sundry fields of engineering and science [1, 2]. It was introduced in 1695 when L’Hospital raised
the question in a letter written to Leibnitz [3]. Leibnitz’s prophetic answer to this profound question
enclosed the innovative idea for all generations of experts and also continues to refresh the minds of
that time researchers. Then after the Liouville’s work, in 1847, Riemann [4] derived the formula which
can be linked with the fractional integral formula of Liouville. From 1900 till now, a huge number of
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results and the cluster of booklets on fractional calculus appeared in the literature. Detailed discussions
of the history of fractional calculus may be found in [5–13].

There are variants of fractional derivatives in the current literature. Riemann-Liouville’s (R-L)
definition of fractional differentiation and integration is the most popular model. The Caputo derivative
(also known as Caputo-Fabrizio derivative) is another commonly used derivative [8,14,15]. Numerical
methods were also used to solve the fractional parabolic differential problems [16] and subdiffusion
equations involving Caputo fractional derivatives to get the convergence of results in more effective
way [17].

An important subtopic of fractional calculus is the class of fractional derivatives and integrals with
analytic kernel proposed in 2019 by Fernandez et al. [18]. Each of the above mentioned class of
fractional calculus covers major portions of the subject and capture diverse behaviors in fractional
systems. Combining both ideas gives a more general class of fractional integrals and derivatives with
analytic kernels with respect to functions. Taylor series and asymptotic approximations of the integral
whose integrands depends on the fabrication from two hypergeometric functions is most commonly
solved by the method of Mellin transform and by using this approach gives the exceptional results
along with the evaluation of electromagnetic propagation in a turbulent medium, optical multi-image
encryption and image compression [19–21]. The Mellin transform is used to solve different biological
models, (see [22–24]).

General properties of the Mellin transform are typically treated in detail in books on integral
transforms, see [25–31]. In 1959, Francis [32] discussed the applications of complex Mellin
transform to networks with time-variant parameters. In 1995, Flajolet et al. [33] used Mellin
transform for the asymptotic evaluation of harmonic sums. In 2016, Kilicman and Omran [21] studied
some effects of Mellin transform on fractional integral and differential operators and discussed their
properties. The Mellin transform is mostly used to solve the axisymmetric problems and to simplify a
number of derivations. Till now, the Mellin integral transform has been sporadically employed within
the fractional calculus guides.

The arrangement of this article is as follows: In Section 2, some basic definitions and features of
the fractional models with general analytic kernel are defined. In Section 3, we define some basic
concepts of Mellin transform and the notion of Mellin transform for both R-L and Caputo models
are discussed. In Section 4, the concept of Mellin transform is extended for the R-L and Caputo
type fractional derivatives in the presence of general analytic kernel. In Section 5, the relation of
Mellin transforms with the previously defined Laplace and Fourier transforms, applied on the fractional
differential equations having the general analytic kernel is discussed. Using the method of Fourier and
Laplace transforms, we analyzed and solved some simple ordinary differential equations in the new
general framework. In Section 6, the conclusion of the article is given.

2. Preliminaries

In this section, some basic definitions regarding R-L and Caputo fractional derivative and integral
operator are stated. Also the notion of general analytic kernel and some related properties are given.

Definition 2.1. [34] A function h(t), t > 0 is said to be in the space Cb, (b ∈ R) if h(t) = xqh1(t)
for some q > b, where h1(t) is continuous in [0,∞) and it is said to be in the space Cm

b if and only if
hm ∈ Cb,m ∈ N. For more details see [35–37].
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Definition 2.2. [1] The R-L fractional integral of order ς > 0 of a function h(t) is defined as

RLI
ς
c+h(t) =

1
Γ(ς)

∫ t

c
(t −ϖ)ς−1h(ϖ)dϖ, 0 < ϖ < t, ς > 0.

Definition 2.3. [1] The R-L fractional derivative of order ς of a function h(t) is defined as

RLDςh(t) =
dm

dtm

(
RLIm−ςh(t)

)
, m − 1 < ς < m.

Definition 2.4. [38] Let 0 ≤ m − 1 < ς < m and the function h(t) has (m + 1) continuous bounded
derivative in [0,T ] for every T > 0. Then Caputo derivative of a function is defined as

D
ς
0+h(t) =

1
Γ(m − ς)

∫ t

0
(t −ϖ)m−ς−1hm(ϖ)dϖ, m − 1 < ς < m.

Definition 2.5 (Semigroup property). [2] It is also important to note that if ς, ϱ, η, ξ be any complex
parameters, then IςIϱh(t) = Iς+ϱh(t).

Thus, we have composition property of differential operators

Dη(Dξh(t)) = Dη+ξh(t).

Remark 1. [39] By convention, we have

RLD−ςc h(t) = RLIςch(t),

so that the fractional operators RLD
ς
ch(t) and RLI

ς
ch(t) are well-defined for all ς ∈ C.

Fractional model with general analytic kernel is two parameter fractional model defined on the
analytic disc. Due to their analytic behavior, this kernel is also known as “singular kernel”. The
following definitions and theorems are taken from [18]:

Definition 2.6. Let [c, d] ∈ R, ς and ϱ be complex parameters with positive real parts and positive real
number R satisfying R > (d− c)Re(ϱ). LetA be an analytic complex function defined on the disc D(0,R)
by locally uniformly convergent power series

A(x) =
∞∑

k=0

ckxk,

where the coefficients ck may depend on complex parameters.

Definition 2.7. For any analytic function as in Definition 2.6, modified analytic function AΓ is
defined as

AΓ(x) =
∞∑

k=0

ckΓ(ϱk + ς)xk, (2.1)

where the radius of convergence of the series (2.1) is given by

lim
k→∞

∣∣∣∣∣ ck

ck+1
(ϱk + ϱ + ς)−ϱ

∣∣∣∣∣ .
Note: The convergence of the series A depends upon the convergence of series AΓ but the converse
is not necessarily true.
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Definition 2.8. The fractional integral operator with general analytic kernel, acting on the function
h : [c, d]→ R as

AI
ς,ϱ
c+ h(t) =

∫ t

c
(t −ϖ)ς−1A ((t −ϖ)ϱ) h(ϖ)dϖ.

Theorem 2.9. With all the representations as in Definition 2.6, for any function h ∈ L1[c, d], the
following locally uniformly convergent power series for AIς,ϱc+ h is defined as

AI
ς,ϱ
c+ h(t) =

∞∑
k=0

ckΓ(ϱk + ς)RLI
ϱk+ς
c+ h(t), (2.2)

as a function on [c, d]. Similarly, fractional integral can also be written in the form of modified analytic
function (2.1) as

AI
ς,ϱ
c+ h(t) = AΓ(RLI

ϱ
c+)

RLI
ς
c+h(t).

Definition 2.10. For R-L and Caputo type the fractional derivative for general analytic kernel is
defined as

A
RLD

ς,ϱ
c+ h(t) =

dm

dtm

(
AI
ς′,ϱ′

c+ h(t)
)
, (2.3)

A
CD

ς,ϱ
c+ h(t) = AI

ς′,ϱ′

c+

(
dm

dtm h(t)
)
, (2.4)

where m ∈ N, m + ς′ = ς and ϱ′ = ϱ.

In many areas of applied mathematics, optics [20], quantum mechanics [40] and signal
processing [21, 41], integral transforms of fractional derivatives provide well-proven and valuable
methods for solving integral and differential problems. Since, in 1980, Namias’ introduced the
Fourier transform for fractional operators [42], many other mathematicians and applied physicists
have turned their goals not only to Fourier transform of fractional derivatives but also towards many
other transforms, such as the Mellin transform, Laplace transform and the Hilbert transform of
fractional differential problems [43, 44]. Laplace and Fourier transforms have a major role in solving
fractional differential and integral equations so Fernandez et al. [18] additionally defined these
transforms for the fractional integral with general analytic kernel utilizing convolution property.

Theorem 2.11. Let c = 0, d > 0, ς, ϱ,A be as in Definition 2.6 and h ∈ L2[c, d] with Laplace transform
h. Then Laplace transform of (2.2) is as follows

AI
ς,ϱ
0+h(s) = s−ςAΓ(s−ϱ)h̄(s),

whereAΓ is defined in Definition 2.7.

Theorem 2.12. Let c = −∞, d ∈ R, ς, ϱ,A be as in Definition 2.6 and h ∈ L2[c, d] with Fourier
transform h̃. Fourier transform for fractional integral (2.2) is defined as

˜AIς,ϱ+ h(k) = k−ςeiςπ/2AΓ(k−ϱeiϱπ/2)h̃(k),

where AΓ is defined in Definition 2.7.
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3. Mellin transform

According to Flajolet et al. [33], Mellin gave his denomination to the Mellin transformM[h(t); u]
that associates to a function h(t) defined over the positive reals. It is approximately cognate to the
Fourier and Laplace transform. From now onwards, we recall some definitions and some basic
properties of the Mellin transform.

Definition 3.1. Let h(t) be the function defined on the interval (0,∞), the Mellin transform of the
function h(t), denoted by H(u), is as follows

H(u) =M{h(t); u} =
∫ ∞

0
h(t)tu−1dt, (3.1)

where s is complex.
The function h(t) can be restored using inverse Mellin formula

h(t) =
1

2πi

∫ γ+i∞

γ−i∞
H(u)t−udu. (3.2)

Some important properties of Mellin transform are:

(1) M(t−ςh(t)) = H(u − ς),
(2) M(h(tµ)) = 1

µ
H( u
µ
),

(3) M
{
tλ

∫ ∞
0
ϖµh(tϖ)g(ϖ)dϖ

}
= H(u + λ)G(1 − u − λ − µ).

To define the Mellin transform of R-L and Caputo derivatives, let m − 1 < ς < m and h be the
function defined in Definition 4. The Mellin transform is defined as follows [1]:

M
{

RLDςh(t)
}
=M

{
CDςah(t)

}
=

(1 − u + ς)
(1 − u)

H(u − ς). (3.3)

The Mellin transform of R-L fractional integral of order ς > 0 of a function h ∈ Cµ, where µ ≥ −1 is
defined as

M
{

RLD−ςh(t)
}
=

(1 − u − ς)
(1 − u)

H(u + ς). (3.4)

4. Results and discussion

In this section, we define the Mellin transform of R-L fractional integral operator with general
analytic kernel, and Laplace, Fourier and Mellin transforms of the Caputo fractional integrals in the
presence of general analytic kernel, indeed, Laplace and Fourier transforms of fractional integral with
general analytic kernel are already defined in [18]. It is straight forward to find formulae for the
transformed function using Theorem 2.

4.1. Mellin transform of R-L fractional integral with general analytic kernel

Theorem 4.1. Let c = 0, d > 0 and ς, ϱ,A as in Definition 2.6, and let h ∈ L2[c, d] with the Mellin
transform ĥ. The function AIς,ϱ0+h(t) has the Mellin transform given by the following formula:

ÂI
ς,ϱ
0+h(u) =

∞∑
n=0

an
Γ(ς + nϱ)Γ(1 − u − ς − nϱ)

Γ(1 − u)
H(u + ς + nϱ). (4.1)
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Proof. Consider series formula from Theorem 2

AI
ς,ϱ
0+h(t) =

∞∑
n=0

anΓ(ς + nϱ) RLI
ς+nϱ
0+ h(t).

Taking Melllin transform on both sides

M
(
AI
ς,ϱ
0+h(t)

)
= M

 ∞∑
n=0

anΓ(ς + nϱ) RLI
ς+nϱ
0+ h(t)

 ,
ÂI
ς,ϱ
0+h(u) =

∞∑
n=0

anΓ(ς + nϱ)M
(

RLI
ς+nϱ
0+ h(t)

)
,

=

∞∑
n=0

anM

(∫ t

0
(t −ϖ)ς+nϱ−1h(ϖ)dϖ

)
. (4.2)

Consider

M

(∫ t

0
(t −ϖ)ς+nϱ−1h(ϖ)dϖ

)
= M

(∫ 1

0
t(t − tξ)ς+nϱ−1h(tξ)dξ

)
,

= M

(∫ 1

0
t.tς+nϱ−1(1 − ξ)ς+nϱ−1h(tξ)dξ

)
,

= M

(∫ 1

0
tς+nϱ(1 − ξ)ς+nϱ−1h(tξ)dξ

)
,

= M

(∫ ∞

0
tς+nϱg(ξ)h(tξ)dξ

)
, (4.3)

where

g(t) =

(1 − t)ς+nϱ−1 0 ≤ t < 1;
0 t ≥ 1.

The Mellin transform of the function g(t) is simply the Euler beta function.

M{g(t)} =
Γ(ς + nϱ)Γ(u)
Γ(ς + nϱ + u)

.

By using the convolution theorem of Mellin transform given by

M

{
tλ

∫ ∞

0
g(ξ)h(tξ)dξ

}
= H(u + λ)G(1 − u − λ), (4.4)

so from (4.3), we have

M

{
tς+nϱ

∫ ∞

0
g(ξ)h(tξ)dξ

}
=
Γ(ς + nϱ)Γ(1 − u − ς − nϱ)
Γ(ς + nϱ + 1 − u − ς − nϱ)

H(u + ς + nϱ),

=
Γ(ς + nϱ)Γ(1 − u − ς − nϱ)

Γ(1 − u)
H(u + ς + nϱ). (4.5)
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By using (4.5) in (4.2), we have

M
(

AI
ς,ϱ
0+h(t)

)
=

∞∑
n=0

anM

(∫ t

0
(t −ϖ)ς+nϱ−1h(ϖ)dϖ

)
,

=

∞∑
n=0

an
Γ(ς + nϱ)Γ(1 − u − ς − nϱ)

Γ(1 − u)
H(u + ς + nϱ).

□

4.2. Laplace transform of Caputo derivative with general analytic kernel

Theorem 4.2. Let c = 0, d > 0 and ς, ϱ,A as in Definition 2.6 and let h ∈ L2[c, d] with the Laplace
transform h. The function ACD

ς,ϱ
0+h(t) has a Laplace transform given by the following formula:

A
C Dς,ϱ0+ h(s) = sς−2ξAΓ(s−ϱ)h(s). (4.6)

Proof. The Caputo fractional derivative with general analytic kernel is given in (2.4) and defined as

A
CD

ς,ϱ
0+h(t) = AI

ς′,ϱ′

0+

(
dm

dtm h(t)
)
, (4.7)

where

m + ς′ = ς, ϱ′ = ϱ. (4.8)

By using (4.8) in (4.28), we get

AI
ς′,ϱ′

0+

(
dm

dtm h(t)
)
= AI

ς−m,ϱ
0+

(
h(m)(t)

)
.

Consider

AI
ς−m,ϱ
0+ h(m)(t) =

∞∑
n=0

anΓ(ς − m + nϱ)RLI
ς−m+nϱ
0+ h(m)(t),

=

∞∑
n=0

anΓ(ς − m + nϱ)
Γ(ς − m + nϱ)

∫ t

0
(t −ϖ)ς−m+nϱ−1h(m)(ϖ)dϖ,

=

∞∑
n=0

an

∫ t

0
(t −ϖ)ς−m+nϱ−1h(m)(ϖ)dϖ.

Taking Laplace transform on both sides, we get

L
(
AI
ς−m,ϱ
0+ h(m)(t)

)
=

∞∑
n=0

anL

(∫ t

0
(t −ϖ)ς−m+nϱ−1h(m)(ϖ)dϖ

)
. (4.9)

Consider

L

(∫ t

0
(t −ϖ)ς−m+nϱ−1h(m)(ϖ)dϖ

)
=

∫ ∞

0
e−st

∫ t

0
(t −ϖ)ς−m+nϱ−1h(m)(ϖ)dϖdt. (4.10)
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Let t −ϖ = u, dt = du, then∫ ∞

0
e−st

∫ t

0
(t −ϖ)ς−m+nϱ−1h(m)(ϖ)dϖ

=

∫ ∞

0
e−s(u+ϖ)

∫ t

0
uς−m+nϱ−1h(m)(ϖ)dϖdu.

Using Fubini’s theorem, we have∫ ∞

0
e−s(u+ϖ)

∫ t

0
uς−m+nϱ−1h(m)(ϖ)dϖ

=

∫ ∞

0

∫ ∞

0
e−s(u+ϖ)uς−m+nϱ−1h(m)(ϖ)dϖdu,

=

∫ ∞

0
e−suuς−m+nϱ−1du

∫ ∞

0
e−sϖh(m)(ϖ)dϖ, (4.11)

where the integral (4.11) is equals to∫ ∞

0
e−suuς−m+nϱ−1du =

Γ(ς − m + nϱ)
sς−m+nϱ , (4.12)

and ∫ ∞

0
e−sϖh(m)(ϖ)dϖ = smH(s) −

m−1∑
k=0

skh(m−k−1)(0). (4.13)

We assume that the function h(t) and all it’s derivatives gives zero at t = 0, so (4.10) becomes

L

(∫ t

0
(t −ϖ)ς−m+nϱ−1h(m)(ϖ)dϖ

)
=
Γ(ς − m + nϱ)

sς−m+nϱ

(
smH(s) −

m−1∑
k=0

sk × h(m−k−1)(0)
)
,

= Γ(ς − m + nϱ)s−ς+m−nϱsmH(s),
= Γ(ς − m + nϱ)s−ς+2m−nϱH(s). (4.14)

By using (4.14) in (4.9), we get

L
(
AI
ς−m,ϱ
0+ h(m)(t)

)
=

∞∑
n=0

anΓ(ς − m + nϱ)s−ς+2m−nϱH(s). (4.15)

Let us substitute m = ς − ξ, then (4.15) becomes

A
C Dς,ϱ0+ h(s) =

∞∑
n=0

anΓ(ξ + nϱ)s−ξ+ς−ξ−nϱH(s),

= sς−2ξAΓ(s−ϱ)L {h(t); s} .

Hence the result. □
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4.3. Fourier transform of Caputo fractional derivative with general analytic kernel

Theorem 4.3. Let c = 0, d > 0 and ς, ϱ,A as in Definition 2.6, and let h ∈ L2[c, d] with the Fourier
transform h̃. The function ACD

ς,ϱ
0+h(t) has a Fourier transform given by the following formula:

Ã
C Dς,ϱ0+ h(ω) = (e−iπ/2ω)ς−2ξAΓ(eiϱπ/2ω−ϱ)̃h(ω). (4.16)

Proof. The Caputo fractional derivative with general analytic kernel is given in (2.4) and defined as

A
CD

ς,ϱ
0+h(t) = AI

ς′,ϱ′

0+

(
dm

dtm h(t)
)
, (4.17)

where

m + ς′ = ς, ϱ′ = ϱ. (4.18)

By using (4.18) in (4.28), we get

AI
ς′,ϱ′

0+

(
dm

dtm h(t)
)
= AI

ς−m,ϱ
0+

(
h(m)(t)

)
.

Consider

AI
ς−m,ϱ
0+ h(m)(t) =

∞∑
n=0

anΓ(ς − m + nϱ)RLI
ςm+nϱ
0+ h(m)(t),

=

∞∑
n=0

anΓ(ς − m + nϱ)
1

Γ(ς − m + nϱ)

∫ t

0
(t −ϖ)ς−m+nϱ−1 × h(m)(ϖ)dϖ,

=

∞∑
n=0

an

∫ t

0
(t −ϖ)ς−m+nϱ−1h(m)(ϖ)dϖ.

Taking Fourier transform on both sides, we get

F
(
AI
ς−m,ϱ
0+ h(m)(t)

)
=

∞∑
n=0

anF
(∫ t

0
(t −ϖ)ς−m+nϱ−1h(m)(ϖ)dϖ

)
. (4.19)

Consider

F
(∫ t

0
(t −ϖ)ς−m+nϱ−1h(m)(ϖ)dϖ

)
=

∫ ∞

−∞

e−ikt
∫ t

0
(t −ϖ)ς−m+nϱ−1h(m)(ϖ)dϖdt. (4.20)

Let t −ϖ = u, dt = du, then∫ ∞

−∞

e−ikt
∫ t

0
(t −ϖ)ς−m+nϱ−1h(m)(ϖ)dϖdt

=

∫ ∞

−∞

e−ik(u+ϖ)
∫ t

−∞

uς−m+nϱ−1h(m)(ϖ)dϖdu.
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Using Fubini’s theorem, we have∫ ∞

−∞

e−ik(u+ϖ)
∫ t

0
uς−m+nϱ−1h(m)(ϖ)dϖdu

=

∫ ∞

−∞

∫ ∞

0
e−ik(u+ϖ)uς−m+nϱ−1h(m)(ϖ)dϖdu,

=

∫ ∞

0
e−ikuuς−m+nϱ−1du

∫ ∞

0
e−ikϖh(m)(ϖ)dϖ, (4.21)

where the integral (4.21) is equals to∫ ∞

−∞

e−ikuuς−m+nϱ−1du =
Γ(ς − m + nϱ)
(−iω)ς−m+nϱ , (4.22)

and ∫ ∞

0
e−ikϖh(m)(ϖ)dϖ = (−iω)mH(ω). (4.23)

So, (4.21) becomes∫ ∞

−∞

e−ik(u+ϖ)
∫ t

0
uς−m+nϱ−1h(m)(ϖ)dϖ

=

(
Γ(ς − m + nϱ)
(−iω)ς−m+nϱ

)
((−iω)mH(ω)) ,

=Γ(ς − m + nϱ)(−iω)−ς+m−nϱ(−iω)mH(ω),
=Γ(ς − m + nϱ)(−iω)−ς+2m−nϱH(ω). (4.24)

By using (4.24) in (4.30), we get

F
(
AI
ς−m,ϱ
0+ h(m)(t)

)
=

∞∑
n=0

anΓ(ς − m + nϱ)(−iω)−ς+2m−nϱH(ω). (4.25)

Let us substitute ς − m = η, m = ς − η, then (4.25) becomes

Ã
C Dς,ϱ0+ h(ω) =

∞∑
n=0

anΓ(η + nϱ)(−iω)−η+ς−η−nϱH(ω),

= (−iω)ς−2ηAΓ(s−ϱ)F{h(t);ω},
= (e−iπ/2ω)ς−2ξAΓ(eiϱπ/2ω−ϱ)F{h(t);ω}; −i = e−iπ/2.

(4.26)

□

4.4. Mellin transform of Caputo fractional derivative with general analytic kernel

Theorem 4.4. Let c = 0, d > 0 and ς, ϱ,A as in Definition 2.6, and let h ∈ L2[c, d] with the Mellin
transform ĥ. The function ACD

ς,ϱ
0+h(t) has a Mellin transform given by the following formula:

Â
CD

ς,ϱ
0+h(u) =

∞∑
n=0

an
Γ(λ + nϱ)Γ(1 − u + ς − 2λ − nϱ)

Γ(1 − u)
H(u − ς + nϱ + 2λ). (4.27)
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Proof. The Caputo fractional derivative with general analytic kernel is given in (2.4) and defined as

A
CD

ς,ϱ
0+h(t) = AI

ς′,ϱ′

0+

(
dm

dtm h(t)
)
, (4.28)

m + ς′ = ς, ϱ′ = ϱ. (4.29)

By using (4.29) in equation (4.28), we get

AI
ς′,ϱ′

0+

(
dm

dtm h(t)
)
= AI

ς−m,ϱ
0+

(
h(m)(t)

)
.

Consider

AI
ς−m,ϱ
0+ h(m)(t) =

∞∑
n=0

anΓ(ς − m + nϱ)RLI
ς−m+nϱ
0+ h(m)(t),

=

∞∑
n=0

anΓ(ς − m + nϱ)
1

Γ(ς − m + nϱ)

∫ t

0
(t −ϖ)ς−m+nϱ−1 × h(m)(ϖ)dϖ,

=

∞∑
n=0

an

∫ t

0
(t −ϖ)ς−m+nϱ−1h(m)(ϖ)dϖ.

Taking Mellin transform on both sides, we get

M
(
AI
ς−m,ϱ
0+ h(m)(t)

)
=

∞∑
n=0

anM

(∫ t

0
(t −ϖ)ς−m+nϖ−1h(m)(ϖ)dϖ

)
. (4.30)

Consider

M

(∫ t

0
(t −ϖ)ς−m+nϱ−1h(m)(ϖ)dϖ

)
=M

(∫ 1

0
t(t − tξ)ς−m+nϱ−1h(m)(tξ)dξ

)
,

=M

(∫ 1

0
t.tς−m+nϱ−1(1 − ξ)ς−m+nϱ−1h(m)(tξ)dξ

)
,

=M

(∫ 1

0
tς−m+nϱ(1 − ξ)ς−m+nϱ−1h(m)(tξ)dξ

)
,

=M

(∫ ∞

0
tς−m+nϱg(ξ)h(m)(tξ)dξ

)
,

where

g(t) =

(1 − t)ς−m+nϱ−1, 0 ≤ t < 1,
0, t ≥ 1.

The Mellin transform of the function g(t) is simply the beta function.

M{g(t)} =
Γ(ς − m + nϱ)Γ(u)
Γ(ς − m + nϱ + u)

,
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and the Mellin transform of mth derivative of function h(t) is

M{h(m)t; u} =
{
Γ(1 − u + m)
Γ(1 − u)

H(u − m)
}
.

By using convolution theorem of Mellin transform

M

{
tλ

∫ ∞

0
g(ξ)h(tξ)dξ

}
= H(u + λ)G(1 − u − λ). (4.31)

So, we have

M

{
tς−m+nϱ

∫ ∞

0
g(ξ)h(m)(tξ)dξ

}
=
Γ(ς − m + nϱ)Γ(1 − u − ς + m − nϱ + m)
Γ(ς − m + nϱ + 1 − u − ς + m − nϱ)

× H(u + ς − m + nϱ − m), (4.32)

=
Γ(ς − m + nϱ)Γ(1 − u − ς + 2m − nϱ)

Γ(1 − u)
× H(u + ς − 2m + nϱ). (4.33)

By using (4.33) in (4.3), we have

∞∑
n=0

anM

(∫ t

0
(t −ϖ)ς+nϱ−1h(ϖ)dϖ

)
=

∞∑
n=0

an

Γ(ς − m + nϱ)Γ
(

1 − u − ς
+2m − nϱ

)
Γ(1 − u)

× H(u + ς + nϱ − 2m). (4.34)

By substituting ς − m = λ, m = ς − λ, then

Â
CD

ς,ϱ
0+h(u) =

∞∑
n=0

an
Γ(λ + nϱ)Γ(1 − u + ς − 2λ − nϱ)

Γ(1 − u)

H(u − ς + nϱ + 2λ). (4.35)

Hence the result. □

Mellin transform is mostly used in applied sciences such as physics, engineering and computer
sciences because of it’s invariance to scale. In reality, this property of scale invariance is analogous to
the shift invariance property of the Fourier transform. This transform is being considered very useful
for the problems in which the inputs and the outputs are functions of time.

Here, we consider an axisymmetric initial value fractional differential equation. In the following
example, we have c = 0, d > 0 and ς, ϱ and r are complex parameters with Re(ς) > 0,Re(ϱ) > 0 and
r > 0. The expression ∂ς,ϱ

∂tς,ϱ =
AD

ς,ϱ
0+ represents the generalized fractional differential operator with

general analytic kernel. We apply ”Combined Laplace and Mellin Transform Method” to get the
required solution.
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Example.
Consider the following initial value fractional differential equation

∂ς,ϱu(x, t)
∂tς,ϱ

= x2r+nϱ∂
2r,ϱu(x, t)
∂x2r,ϱ + xr+nϱ∂

r,ϱu(x, t)
∂xr,ϱ , (4.36)

with initial condition u(0, x) = h(x).
Applying Laplace transform with respect to t on both sides of (4.36) and using Theorem 2.9, we

have

∞∑
n=0

anΓ(ς + nϱ)

sς+nϱu(x, s) −
n−1∑
k=0

sς+nϱ−k−1u(x, 0)

 = x2r+nϱ AD
2r,ϱ
0+ u(r, s)

+ xr+nϱ AD
r,ϱ
0+u(r, s),

which implies

∞∑
n=0

anΓ(ς + nϱ)
{
sς+nϱu(x, s) − sς+nϱ−1h(x)

}
= x2r+nϱ AD

2r,ϱ
0+ u(r, s) + xr+nϱ AD

r,ϱ
0+u(r, s).

Now applying Mellin transform on both sides

∞∑
n=0

anΓ(ς + nϱ)
{
sς+nϱũ(p, s) − sς+nϱ−1h̃(p)

}
=

∞∑
n=0

anΓ(2r + nϱ)
Γ(1 − s)

Γ(1 − s − 2r − nϱ)
ũ(p, s) +

∞∑
n=0

an
Γ(r + nϱ)Γ(1 − s)
Γ(1 − s − r − nϱ)

ũ(p, s),


∑∞

n=0 anΓ(ς + nϱ)sς+nϱũ(p, s)
−

∑∞
n=0 an

(
Γ(2r+nϱ)Γ(1−s)
Γ(1−s−2r−nϱ) +

Γ(r+nϱ)Γ(1−s)
Γ(1−s−r−nϱ)

) ̃u(p, s)

=

∞∑
n=0

anΓ(ς + nϱ)sς+nϱ−1h̃(p), (4.37)

which implies

ũ(p, s) =
∑∞

n=0 anΓ(ς + nϱ)sς+nϱ−1h̃(p)∑∞
n=0 anΓ(ς + nϱ)sς+nϱ −

∑∞
n=0 an

(
Γ(2r+nϱ)Γ(1−s)
Γ(1−s−2r−nϱ) +

Γ(r+nϱ)Γ(1−s)
Γ(1−s−r−nϱ)

) ,
=

∑∞
n=0 anΓ(ς + nϱ)sς+nϱ−1h̃(p)∑∞
n=0 anΓ(ς + nϱ)sς+nϱ − ℵ2 ,

where

ℵ2 =

∞∑
n=0

an

(
Γ(2r + nϱ)Γ(1 − s)
Γ(1 − s − 2r − nϱ)

+
Γ(r + nϱ)Γ(1 − s)
Γ(1 − s − r − nϱ)

)
.
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Now,

ũ(p, s) =
∑∞

n=0 anΓ(ς + nϱ)sς+nϱ−1h̃(p)
a0Γ(ς)sς + a1Γ(ς + ϱ)sς+ϱ +

∑∞
n=2 anΓ(ς + nϱ)sς+nϱ − ℵ2 ,

=

∑∞
n=0 anΓ(ς + nϱ)snϱ−ϱ−1h̃(p)

a0Γ(ς)s−ϱ + a1Γ(ς + ϱ) +
∑∞

n=2 anΓ(ς + nϱ)sϱ(n−1) − ℵ2s−ς−ϱ
,

=

∑∞
n=0 anΓ(ς + nϱ)sϱ(n−1)−1h̃(p)

a0Γ(ς)
[
s−ϱ + a1Γ(ς+ϱ)

a0Γ(ς)
+

∑∞
n=2 anΓ(ς+nϱ)sϱ(n−1)

a0Γ(ς)
− ℵ

2 s−ς−ϱ
a0Γ(ς)

] ,
=

∑∞
n=0 anΓ(ς + nϱ)sϱ(n−1)−1h̃(p)

a0Γ(ς) (s−ϱ + (a1/a0Γ(ς))Γ(ς + ϱ))(
1 +

∑∞
n=2 anΓ(ς + nϱ)sϱ(n−1)

a0Γ(ς)
−
ℵ2s−ς−ϱ

a0Γ(ς)

)−1

s−ϱ + (a1/a0Γ(ς))Γ(ς + ϱ).

Using Taylor’s Theorem, we have

ũ(p, s) =
∑∞

n=0 anΓ(ς + nϱ)sϱ(n−1)−1h̃(p)
a0Γ(ς) (s−ϱ + (a1/a0Γ(ς))Γ(ς + ϱ))

∞∑
k=0

(−1)k

×

( ∑∞
n=2 anΓ(ς + nϱ)sϱ(n−1) − ℵ2s−ς−ϱ

a0Γ(ς) (s−ϱ + (a1/a0Γ(ς))Γ(ς + ϱ))

)k

,

=

∑∞
n=0 anΓ(ς + nϱ)sϱ(n−1)−1h̃(p)

a0Γ(ϱ) (s−ϱ + A)

∞∑
k=0

(−1)k

×

(∑∞
n=2 anΓ(ς + nϱ)sϱ(n−1) − ℵ2s−ς−ϱ

a0Γ(ς) (s−ϱ + A)

)k

,

=

∑∞
n=0 anΓ(ς + nϱ)sϱ(n−1)−1h̃(p)

(a0Γ(ς))k+1 (s−ϱ + A)k+1

∞∑
k=0

(−1)k

×

 ∞∑
n=2

anΓ(ς + nϱ)sϱ(n−1) − ℵ2s−ς−ϱ
k

,

=

∞∑
k=0

(−1)k

(a0Γ(ς))k+1

∑∞
n=0 anΓ(ς + nϱ)sϱ(n−1)−1h̃(p)

(s−ϱ + A)k+1

×

 ∞∑
n=2

anΓ(ς + nϱ)sϱ(n−1) − ℵ2s−ς−ϱ
k

,

where A = (a1/a0Γ(ς))Γ(ς + ϱ). Now, using binomial expansion

ũ(p, s) =
∞∑

k=0

(−1)k

(a0Γ(ς))k+1

∑∞
n=0 anΓ(ς + nϱ)sϱ(n−1)−1h̃(p)

(s−ϱ + A)k+1

k∑
m=0

(
k
m

)

×

 ∞∑
n=2

anΓ(ς + nϱ)sϱ(n−1)

m [
ℵ2s−ς−ϱ

]k−m
,
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=

∞∑
k=0

(−1)k

(a0Γ(ς))k+1

k∑
m=0

(ℵ2)k−m

(
k
m

) [∑∞
n=0 anΓ(ς + nϱ)sϱ(n−1)−1h̃(p)

(s−ϱ + A)k+1

]

×

 ∞∑
n=2

anΓ(ς + nϱ)sϱ(n−1)

m [
s−ς−ϱ

]k−m
.

Now using multinomial expansion and Laplace inverse, we get

û(p, t) =
∞∑

k=0

(−1)k

(a0Γ(ς))k+1

k∑
m=0

(ℵ2)k−m

(
k
m

) (
k

n1, n2, n3, ..., n∞

)

×

 ∞∑
n=0

anΓ(ς + nϱ)


 ∑

n2+n3+n3+...+n∞

Π∞i=2[aiΓ(ς + iϱ)]ni


× tµE(m)

−ϱ,η(At−ϱ)h(p),

where

µ = −mϱ +

(ς + ϱ)(m − k) − nϱ −
∞∑

i=2

(i − 1)ni + 1

 − 1

and

η = (ς + ϱ)(m − k) − nϱ −
∞∑

i=2

(i − 1)ni + 1.

Taking Mellin inverse, we get

u(x, t) =
∞∑

k=0

(−1)k

(a0Γ(ς))k+1

k∑
m=0

(ℵ2)k−m

(
k
m

) (
k

n1, n2, n3, ..., n∞

)

×

 ∞∑
n=0

anΓ(ς + nϱ)


 ∑

n2+n3+n3+...+n∞

Π∞i=2[aiΓ(ς + iϱ)]ni


×

1
2πi

∫ γ+i∞

γ−i∞
tµE(m)

−ϱ,η(At−ϱ)h(p)x−pdp.

By using [45] (Eq (8.2.6) on page 340), we get

1
2πi

∫ γ+i∞

γ−i∞
tµE(m)

−ϱ,η(At−ϱ)h(p)x−pdp = tµE(m)
−ϱ,η(At−ϱ)h(x),

implies

u(x, t) =
∞∑

k=0

(−1)k

(a0Γ(ς))k+1

k∑
m=0

(p2)k−m

(
k
m

) (
k

n1, n2, n3, ...., n∞

)

×

 ∞∑
n=0

anΓ(ς + nϱ)


 ∑

n2+n3+n3+....+n∞

Π∞i=2[aiΓ(ς + iϱ)]ni


× tµE(m)

−ϱ,η(At−ϱ)h(x)

which is the solution of (4.36).
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5. Relation between Mellin transform with Laplace and Fourier transforms of fractional
differential operators with general analytic kernel

In this section, some relationships between Mellin transform with Laplace and Fourier transform
of fractional differential operator with general analytic kernel are presented, which can be useful from
application aspect. These relations has great importance in different fields of applied mathematics and
signal processing [21, 41].

Theorem 5.1. Let c = 0, d > 0 and ς, ϱ,A as in Definition 2.6 and let h ∈ L2[c, d] with the Mellin
transform ĥ, then the following relation holds:

(1) M
{
AI
ς,ϱ
0+h(t)

}
= L

{
AI
ς,ϱ
0+h(e−t)

}
.

(2) M
{
AI
ς,ϱ
0+h(t)

}
= F

{
AI
ς,ϱ
0+h(e−k)e−at

}
.

Proof. (1) Consider series formula from Theorem 2

AI
ς,ϱ
0+h(t) =

∞∑
n=0

anΓ(ς + nϱ) RLI
ς+nϱ
0+ h(t).

Replacing t by e−t,

AI
ς,ϱ
0+h(e−t) =

∞∑
n=0

anΓ(ς + nϱ) RLI
ς+nϱ
0+ h(e−t),

=

∞∑
n=0

an

∫ e−t

0
(e−t −ϖ)ς+nϱ−1h(ϖ)dϖ.

Applying Laplace transform on both sides

L
{
AI
ς,ϱ
0+h(e−t)

}
=L

 ∞∑
n=0

an

∫ e−t

0
(e−t −ϖ)ς+nϱ−1h(ϖ)dϖ

 ,
=

∞∑
n=0

an

∫ ∞

−∞

e−st
∫ e−t

0
(e−t −ϖ)ς+nϱ−1h(ϖ)dϖdt.

Let setting e−t = y, we have

L
{
AI
ς,ϱ
0+h(e−t)

}
= −

∞∑
n=0

an

∫ 0

∞

ys
∫ y

0
(y −ϖ)ς+nϱ−1h(ϖ)dϖ

dy
y
,

=

∞∑
n=0

an

∫ ∞

0
ys−1

∫ y

0
(y −ϖ)ς+nϱ−1h(ϖ)dϖdy,

=

∞∑
n=0

anΓ(ς + nϱ)M
{

1
Γ(ς + nϱ)

∫ y

0
(y −ϖ)ς+nϱ−1h(y)dy

}
,

=

∞∑
n=0

anΓ(ς + nϱ)
Γ(1 − s − ς − nϱ)
Γ(1 − s)

H(s + ς + nϱ),
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=M
{
AI
ς,ϱ
0+h(t)

}
.

Therefore, we get the required result.
(2) We have

AI
ς,ϱ
0+h(t) =

∞∑
n=0

anΓ(ς + nϱ) RLI
ς+nϱ
0+ h(t).

Also, we have

M
{
AI
ς,ϱ
0+h(t)

}
=L

{
AI
ς,ϱ
0+h(e−t)

}
,

=

∞∑
n=0

anΓ(ς + nϱ)
∫ ∞

−∞

e−st
∫ t

0
(t −ϖ)ς+nϱ−1h(e−t)dtdt,

=

∞∑
n=0

anΓ(ς + nϱ)
∫ ∞

−∞

e−(a+2πiϱ)t
∫ t

0
(t −ϖ)ς+nϱ−1h(e−t)dtdt,

=

∞∑
n=0

anΓ(ς + nϱ)
∫ ∞

0
e−ate2πiϱt

∫ t

0
(t −ϖ)ς+nϱ−1h(e−t)dtdt,

=

∞∑
n=0

anΓ(ς + nϱ)(−ik)−ς−nϱh̃(e−k)e−at,

=(−ik)−ς
∞∑

n=0

anΓ(ς + nϱ)(−ik)−nϱh̃(e−k)e−at,

=F
{
AI
ς,ϱ
0+h(e−k)e−at

}
.

Hence, the result follows. □

6. Conclusions

In this work, we defined the Mellin transform for fractional differential equation with general
analytic kernel using the method of Laplace and Fourier transform of fractional differential operators.
Also, we have established the relationship between Mellin transform with Laplace and Fourier
transform of fractional operators which can play a significant role in various fields of applied
mathematics.
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